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Abstract 

 

Type II DNA topoisomerases of the family A (Topo IIA) are present in all bacteria (DNA 

gyrase) and eukaryotes. In eukaryotes, they play a major role in transcription, DNA replication, 

chromosome segregation and modulation of chromosome architecture. The origin of eukaryotic 

Topo IIA remains mysterious since they are very divergent from their bacterial homologues 

and have no orthologues in Archaea. Interestingly, eukaryotic Topo IIA have close homologues 

in viruses of the phylum Nucleocytoviricota, an expansive assemblage of large and giant viruses 

formerly known as the nucleocytoplasmic large DNA viruses (NCLDV). Topo IIA are also 

encoded by some bacterioviruses of the class Caudoviricetes (tailed bacteriophages). To 

elucidate the origin of the eukaryotic Topo IIA, we performed in-depth phylogenetic analyses 

combining viral and cellular Topo IIA homologs. Topo IIA encoded by bacteria and eukaryotes 

form two monophyletic groups nested within Topo IIA encoded by Caudoviricetes and 

Nucleocytoviricota, respectively. Importantly, Nucleocytoviricota remained well separated 

from eukaryotes after removing both bacteria and Caudoviricetes from the dataset, indicating 

that the separation of Nucleocytoviricota and eukaryotes is probably not due to long branch 

attraction artefact. The topology of our tree suggests that the eukaryotic Topo IIA was probably 

acquired from an ancestral member of the Nucleocytoviricota of the class Megaviricetes, before 

the emergence of the last eukaryotic common ancestor (LECA). This result further highlights a 

key role of these viruses in eukaryogenesis and suggests that early proto-eukaryotes used a 

Topo IIB instead of a Topo IIA for solving their DNA topological problems.     
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Introduction 

 

DNA topoisomerases are ubiquitous enzymes that are essential for solving topological 

problems inherent to the helical structure of DNA (Champoux 2001; Forterre and Gadelle 2009; 

Wang 2009; Vos et al. 2011; Forterre 2012; Pommier et al. 2016). Based on mechanistic 

properties, they have been classified into types I and II. Type I DNA topoisomerases (Topo I) 

produce transient single-strand breaks in double-stranded DNA (dsDNA) and catalyze the 

transfer of one DNA strand through this break. In contrast, type II DNA topoisomerases (Topo 

II) produce transient double-strand breaks and catalyze the transfer of a dsDNA segment (either 

from the same or different dsDNA molecule) through this break. Five different families of DNA 

topoisomerases have been defined based on amino-acid sequences and structural similarities: 

three families of Topo I (Topo IA, Topo IB and Topo IC)(Champoux 2001; Forterre 2006), and 

two families of Topo II (Topo IIA and Topo IIB) (Bergerat et al. 1997; Gadelle et al. 2003). All 

Topo II and some Topo I (IB and IC) can relax positive and negative superturns that otherwise 

would accumulate in front and behind the replication forks and transcription bubbles, 

respectively. In addition, Topo II can eliminate the catenanes that can accumulate at the end of 

the chromosome replication. In eukaryotes, Topo IIA are also intrinsic structural components 

of the chromosomal scaffold (Hizume et al. 2007) and play a major role in modulating 

chromosome architecture and long-range chromatin structure (Nitiss 2009; Nielsen et al. 2020).  

 

DNA topoisomerases have been extensively studied because they are the targets of important 

antibiotics and antitumor drugs (Pommier 2013). These drugs interfere with the breakage-

reunion mechanisms of the enzyme and transform the transient intermediate topoisomerase-

DNA covalent complexes into stable poisons, interfering with replication and transcription. 

However, these enzymes are also very interesting (and intriguing) in terms of the history of life 

on our planet. Indeed, the distribution patterns of the different DNA topoisomerase families 

within the three domains of life, Archaea, Bacteria and Eukarya (eukaryotes), do not fit the 

usual distribution of informational proteins, such as ribosomal proteins or DNA-dependent 

RNA polymerases (Da Cunha et al. 2017), raising challenging questions and prompting 

unorthodox hypotheses (Forterre and Gadelle 2009). Whereas informational proteins from 

eukaryotes usually much more closely resemble their archaeal homologs than their bacterial 

ones, the universal eukaryotic Topo II (member of the Topo IIA family) has no obvious 

orthologue in Archaea. All archaea (except for certain Thermoplasmatales) contain an enzyme 

of the Topo IIB family, dubbed DNA topoisomerase VI (Topo VI), suggesting that the Last 
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Archaeal Common Ancestor (LACA) contained no Topo IIA but a Topo IIB for relaxation of 

positive superturns and chromosome decatenation (Forterre and Gadelle 2009). All bacteria 

encode a unique Topo IIA, DNA gyrase, which is a distant homologue of the eukaryotic 

enzyme. DNA gyrases are heterotetramers composed of two subunits (GyrA and GyrB) that are 

homologous to the C-terminal and N-terminal moieties of the homodimeric Topo IIA of 

eukaryotes, respectively (Fig. 1). Some Archaea encode a two-subunit DNA gyrase very similar 

to the bacterial enzyme and highly divergent from the eukaryotic Topo IIA. Phylogenetic 

analysis has indicated that these DNA gyrases were recruited from Bacteria by lateral gene 

transfer (Forterre et al. 2014). Similarly, some eukaryotes, such as Archaeplastida, encode a 

bacterial-like DNA gyrase (Topo IIA) present in chloroplasts and mitochondria that was most 

likely acquired from Cyanobacteria during the endosymbiotic event that led to the emergence 

of the chloroplasts (Wall et al. 2004). These eukaryotic Topo II are very similar to their bacterial 

counterparts and in phylogenetic analyses are nested within the clade of bacterial gyrases 

(Forterre et al. 2007). It seems unlikely that the very divergent eukaryotic Topo IIA originated 

through a similar endosymbiotic pathway. The origin of the Topo IIA in eukaryotes thus 

remains enigmatic. 

 

 

Fig. 1. Schematic representation of the domain composition of Type II DNA 

topoisomerases of the family A. 

The different domains correspond to the Bergerat fold/ GHKL (Bf), TOPRIM (Tpm), the 5Y-

CAP or winged helix (WHD) domain containing the catalytic Tyrosine. 

 

 

A possible answer to this enigma could reside in the virosphere. The first viral Topo IIA was 

discovered in 1980 in the T4 bacteriovirus (Liu et al. 1979), the iconic virus of the class 

Caudoviricetes from the recently proposed family Straboviridae. Surprisingly, the T4 Topo 
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IIA, a heterotrimer (Fig. 1), is not specifically related to bacterial Topo IIA, but branched 

between DNA gyrases and eukaryal Topo IIA in phylogenetic trees (Gadelle et al. 2003). Later 

on, Topo IIA genes were discovered in several members of the phylum Nucleocytoviricota (Fig. 

1), formerly known as nucleocytoplasmic large DNA viruses (NCLDV)(Lavrukhin et al. 2000; 

Gadelle et al. 2003; Coelho et al. 2015; Coelho et al. 2016; Erives 2017). Inhibition of this Topo 

IIA disrupts replication of the African swine fever virus (ASFV; family Asfarviridae) in vitro 

(Freitas et al. 2016), indicating that compounds active against the ASFV-Topo IIA, such as 

fluoroquinolones, are promising drugs against the highly contagious and fatal disease caused in 

pigs by ASFV. 

 

The Topo IIA encoded by Nucleocytoviricota are very similar to the ubiquitous eukaryotic Topo 

IIA at the sequence level and in that they are homodimers devoid of gyrase activity (Fig. 1). In 

the traditional view that considers viruses as pickpockets of cellular proteins, this suggests that 

Topo IIA were acquired by Nucleocytoviricota from their eukaryotic hosts. However, in the 

framework of the “out of viruses” hypothesis for the origin of DNA (Forterre 2002), it is 

tempting to suggest that this gene transfer took place the other way around, and that eukaryotic 

Topo IIA was acquired from the Nucleocytoviricota (Forterre and Gadelle 2009). A preliminary 

phylogenetic analyses provided ambiguous results: some Topo IIA from Nucleocytoviricota 

branched between T4 and Eukarya, suggesting that Topo IIA was indeed transferred from 

viruses to cells, whereas other viral enzymes branched within eukaryotes in agreement with 

transfers from cells to viruses (Gadelle et al. 2003; Forterre et al. 2007).  

 

At the time of these analyses, only six Topo IIA from four families (Asfarviridae, Mimiviridae, 

Iridoviridae, Phycodnaviridae) within Nucleocytoviricota were known (Forterre et al. 2007). 

During the last decade, a great number of new Nucleocytoviricota genomes became available, 

including those of giant viruses from the families Mimiviridae, Marseilleviridae and 

Pandoraviridae, which encode Topo IIA (Abergel et al. 2015; Colson et al. 2017). Notably, it 

was shown that the Topo IIA encoded by Marseilleviridae branch as a sister clade to Eukarya 

(Erives 2017). We thus decided to update the Topo IIA phylogenetic classification, focusing on 

viral and eukaryotic Topo IIA. Our results strongly suggest that eukaryotic Topo IIA originated 

from a Topo IIA ancestor encoded by a virus closely related to modern Megaviricetes, a class 

of Nucleocytoviricota that includes many giant viruses, such as Mimiviridae. We have 

previously reported phylogenetic analyses suggesting that eukaryotic RNA polymerase II was 

probably recruited by eukaryotes from a virus related to Imitervirales in a tree including 
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Nucleocytoviricota and the three nuclear RNA polymerases present in all eukaryotes 

(Guglielmini et al. 2019). One can speculate that both RNA polymerase II and Topo IIA were 

possibly acquired simultaneously by a proto-eukaryote in the lineage leading to the last 

eukaryotic common ancestor (LECA), in agreement with the fact that these two enzymes 

interact functionally and physically in modern eukaryotes. Regardless, our results support the 

hypothesis that interactions between proto-eukaryotes and Nucleocytoviricota have played an 

important role in shaping the physiology of modern eukaryotic cells.   

 

Material and methods 

 

Data collection 

 

For Bacteria, we downloaded the full proteomes of a set of 112 bacterial strains spanning 10 

representative groups (Aquificae, Dictyoglomi, Elusimicrobia, FCB group, Nitrospirae, PVC 

group, Proteobacteria, Spirochaetes, Terrabacteria group, Thermotogae). We used BLASTP 

v2.9.0+ (Ramsay et al. 2000; Camacho et al. 2009) recursively to collect the homologs of 

Escherichia coli K12 GyrB and GyrA proteins (WP_000072067.1, NP_416734.1) in those 112 

proteomes. Finally, we concatenated each related pair of GyrB and GyrA hits. We also added 

the sequence of E. coli Topo IV (Table S1) that branched at the base of DNA gyrase in previous 

analyses.  

 

For Caudoviricetes (tailed phages), we downloaded all the 1,131,926 Caudoviricetes proteins, 

and next used BLASTP to search for the homologs of the three subunits of the T4 phage 

topoisomerase II (E-value lower than 1e-10). We kept only Caudoviricetes lineages for which 

we obtained a hit for the three subunits, and concatenated the corresponding sequences. 

Interestingly, beside the group of previously known Topo IIA closely related to T4 Topo IIA 

infecting Enterobacteriaceae, we detected several new related Topo IIAs sequences in distantly 

related members of the Myoviridae infecting Rhizobiaceae and Firmicutes, but also in three 

members of the Ackermannviridae infecting Enterobacter and Rhizobiaceae as well as three 

unclassified siphoviruses infecting Firmicutes (Table S1). 

 

For Nucleocytoviricota (NCLDV), we searched for Topo IIA sequences in Nucleocytoviricota 

genomes that we previously used to determine the list of core genes of Nucleocytoviricota and 

the phylogeny based on the concatenation of 8 core genes (Guglielmini et al. 2019). Topo IIA 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.12.488027doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488027
http://creativecommons.org/licenses/by-nc/4.0/


 7 

turned out to be present in all Imitervirales (formerly Megavirales in (Guglielmini et al. 2019)) 

an order that includes Mimiviridae, the so-called ‘extended Mimiviridae’ and several more 

recently described large DNA viruses (Catovirus, Hokovirus, Indivirus, Klosneuvirus and 

Tupanvirus) (Guglielmini et al. 2019). Topo IIA is also present in some members of the 

Pimascovirales, in particular, in all members of Marseilleviridae and viruses of the Pitho-like 

group (Orpheovirus, Cedratvirus, Pithovirus). Finally, Topo IIA is present in all members of 

the order Asfuvirales, which includes Asfarviridae and related viruses (Kaumovirus, 

Faustovirus, Pacmanvirus).  

 

It turned out to be more challenging to assemble the dataset of eukaryotic Topo IIA sequences, 

because we found many fragments of Topo IIA in eukaryotic proteomes. Thus, we produced 

position-specific scoring matrices (PSSM) for GyrA and GyrB proteins using alignments from 

the PFAM database (files provided as supplementary materials) and searched for coding 

sequences matching both profiles. We defined a list of 52 eukaryotic organisms, representative 

of the known eukaryotic diversity. When possible, we downloaded the corresponding 

proteomes and used PSSM as PSIBLAST queries to obtain Topo IIA homologs. For those 

organisms where no proteome was available, we looked for transcriptomic data and performed 

de novo assembly using Trimmomatic v0.36 (Bolger et al. 2014) for the read pre-processing 

step, SortMeRNA v2.1b (Kopylova et al. 2012) to filter out rRNA sequences, and Trinity v2.2.0 

(Grabherr et al. 2011) for the assembly. We then used the GyrA and GyrB PSSMs as queries 

for a TBLASTN search against the assemblies and kept hits matching both profiles.  

Phylogenetic analyses 

All multiple amino-acid sequence alignments were performed using MAFFT v7.407 (Katoh 

and Standley 2013) and the E-INSi algorithm. Sites containing more than 50% of gaps were 

filtered out. Of note, for the tree with the largest taxonomic sampling, we used Divvier v1.0 

(Ali et al. 2019) to reduce alignment errors with the MAFFT output. 

 

All phylogenetic analyses were performed using IQ-TREE v1.6.7.2 (Nguyen et al. 2015). We 

selected the best-fit model using the IQ-TREE’s model finder (Wong et al. 2017) according to 

the BIC criterion. For the tree with the largest taxonomic sampling we used a mixture model 

(selected according to the BIC criterion) and the PMSF implementation (Wang et al. 2018). We 

made the search for the best tree more thorough by using the “allnni” option as well as setting 

the “pers” parameter to 0.2 and the “nstop” parameter 500. We always used 10 independent 
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runs (--runs option of IQ-TREE) and selected the best one. Confidence branch supports were 

assessed using the transfer bootstrap expectation (1000 replicates except for the tree including 

all sequences, where 100 replicates were used (Lemoine et al. 2018). We used iToL v4.4.2 

(Letunic and Bork 2016) to generate the figures. All trees and alignments are available 

https://doi.org/10.5281/zenodo.5702416.  

 

Results 

 

Viral Topo IIA branch between bacterial and eukaryotic Topo IIA in a global phylogeny 

 

We first built a tree spanning the whole diversity of Topo IIA by including sequences from 

Bacteria, Caudoviricetes, Nucleocytoviricota and eukaryotic Topo IIA (Fig. 2). We did not 

include archaeal DNA gyrases because they branch within bacterial DNA gyrases in previous 

phylogenetic analyses (Forterre et al. 2007; Raymann et al. 2014). Importantly, we did not 

detect orthologues of eukaryotic-like Topo IIA in the MAGs of different lineages of Asgard 

archaea, but only bacterial-like DNA gyrases.  

 

The four groups of sequences (Bacteria, Caudoviricetes, Nucleocytoviricota and eukaryotes) 

were clearly separated in the tree (Fig. 2). The tree was arbitrarily rooted between 

Nucleocytoviricota and Caudoviricetes for convenience, dividing the tree in two clusters, one 

grouping eukaryotes and their viruses (Nucleocytoviricota) and the other grouping Bacteria and 

their viruses (Caudoviricetes). Both Bacteria and eukaryotes were monophyletic. In contrast, it 

was not possible to obtain the monophyly of either Caudoviricetes or Nucleocytoviricota. 

Importantly, in contrast to our previous analysis (Forterre et al. 2007), Nucleocytoviricota and 

eukaryotic Topo IIAs were not intermixed.  
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Fig. 2. Phylogenetic tree of the Topo IIA 

Maximum-likelihood tree for 269 Topo IIA proteins for bacteria (113 sequences, including the 

two Topoisomerase IV proteins from Escherichia coli, ParC and ParE), eukaryotes (53 

sequences), Nucleocytoviricota (47 sequences) and Caudoviricetes (56 sequences). The outer 

circle colors represent the group to which the sequences belong. The selected model was 

LG+F+R15. Thick branches have a branch support (TBE) greater than 70%. 
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Although DNA viruses encode many viral-specific DNA replication proteins, they can 

sometimes recruit cellular replisome components (Krupovič et al. 2010). We thus wondered if 

the grouping of Caudoviricetes and Nucleocytoviricota between Bacteria and eukaryotes was 

due to the long-branch attraction (LBA) artifact, with Caudoviricetes branching within Bacteria 

and Nucleocytoviricota within eukaryotes. This seemed unlikely considering the great 

divergence between viral Topo IIAs and their cellular counterparts. However, to test this 

hypothesis, we built several subtrees, both to remove groups with long branches and to enhance 

the signal by increasing the number of meaningfully aligned amino acids. After removing 

bacterial sequences, the most distant outgroup, we obtained a tree topology largely reproducing 

the relationships between Caudoviricetes, Nucleocytoviricota and eukaryotes observed in the 

global phylogeny (Fig. 3). More importantly, after removing both Bacteria and Caudoviricetes, 

Nucleocytoviricota remained well separated from eukaryotes (Fig. 4 a, b). This indicates that 

the separation of Nucleocytoviricota and eukaryotes in the tree was not due to an attraction of 

Nucleocytoviricota by Caudoviricetes and/or Bacteria. Similarly, Caudoviricetes remained well 

separated from bacteria after removing both Nucleocytoviricota and eukaryotes (Fig. 5).  

 

The distribution and phylogeny of Topo IIA can provide information about their presence, or 

not, in the ancestors of each group of organisms. The ubiquity of DNA gyrase in bacteria leaves 

little doubt that this enzyme was present in the Last Bacterial Common Ancestor (LBCA). 

Similarly, the ubiquity of the single-subunit Topo IIA in Eukarya testifies to the presence of at 

least one Topo IIA in the LECA. However, we did not recover the monophyly of all major 

eukaryotic divisions in our phylogeny (Fig. 4a). Members of certain divisions were present in 

different parts of the tree, suggesting a complex history of Topo IIA during the diversification 

of eukaryotes, including gene duplication and gene loss. Several eukaryotes indeed contain 

more than one Topo IIA gene (Forterre et al. 2007). Some correspond to recent duplications 

(such as the Topo II and Topo II in vertebrates), but others probably correspond to more 

ancient gene duplications or possibly gene transfers between eukaryotic lineages. With the root 

of the eukaryotic tree being still debated (Burki et al. 2019), it is difficult to propose a scenario 

for the evolution of Topo IIAs in eukaryotes. From our phylogenetic analyses, one cannot 

exclude that LECA already contained more than one Topo IIA.  
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Fig. 3. Phylogenetic tree of the Topo IIA for the eukaryotes, Nucleocytoviricota and 

Caudoviricetes 

Maximum-likelihood tree for 156 Topo IIA proteins for eukaryotes (53 sequences), 

Nucleocytoviricota (47 sequences) and Caudoviricetes (56 sequences). The outer circle colors 

represent the group to which the sequences belong. The selected model was LG+F+R10. Thick 

branches have a branch support (TBE) greater than 70%. 
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Fig. 4. Phylogenetic tree of the Topo IIA for the eukaryotes and Nucleocytoviricota  

Maximum-likelihood tree for 100 Topo IIA proteins for eukaryotes (53 sequences) and 

Nucleocytoviricota (47 sequences). The selected model was LG+F+R6. Thick branches have a 

branch support (TBE) greater than 70%. 

In panel A, the colored bar represents the eukaryotes classification. In panel B, the colored bar 

represents the Nucleocytoviricota classification. 

 

 

The broad representation of Topo IIA in Nucleocytoviricota suggests that this enzyme was also 

present in the Last Nucleocytoviricota Common Ancestor (LNCA), and was subsequently lost 

in a few lineages. This hypothesis is supported by the congruence between the phylogenetic 

tree of Nucleocytoviricota Topo IIA (Fig. 4b) and the global phylogenetic classification of 

Nucleocytoviricota based on the concatenation of eight (core) genes present in most families of 

this phylum (Guglielmini et al. 2019). In the 8-core-genes phylogeny, Nucleocytoviricota were 

divided into two clusters that we named PAM (Phycodnaviridae, Asfarviridae, Mimiviridae) 

and MAPI (Marseilleviridae, Ascoviridae, Pitho-like viruses, Iridoviridae), respectively. The 

PAM cluster included viruses corresponding to the recently proposed class Megaviricetes and 

Pokkesviricetes, whereas the MAPI cluster corresponded to the recently proposed order 

Pimascovirales (Koonin et al. 2020).  In the Topo IIA NCLDV phylogenetic tree rooted with 

A B
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eukaryotes (Fig. 4b), we recovered the monophyly of all families of Nucleocytoviricota, as well 

as and the monophyly of Pimascovirales. Notably, the NCLDV Topo IIA tree was rooted deep 

within Megaviricetes when eukaryotes were used as the outgroup.   

 

 

 

 

Fig. 5. Phylogenetic tree of the Topo IIA for the bacteria and Caudoviricetes. 

Maximum-likelihood tree for 167 Topo IIA proteins for bacteria (111 sequences) and 

Caudoviricetes (56 sequences). The outer circle colors represent the group to which the 

sequences belong. The selected model was LG+R11. Thick branches have a branch support 

(TBE) greater than 70%. 
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In contrast to the situation with Bacteria, eukaryotes and Nucleocytoviricota, Topo IIA are only 

present in a few subgroups of Caudoviricetes. Most Topo IIA are encoded by T4-like 

myoviruses (i.e., viruses with contractile tails recently reclassified into the family 

Straboviridae) with larger genomes, suggesting that Topo IIA was present in the last common 

ancestor of this phage group. Topo IIA encoded by Ackermannviridae (anther family of phages 

with contractile tails) branched within Straboviridae suggesting lateral gene transfer between 

these viral families (Fig. 5b). Three of the four Topo IIA encoded by viruses infecting 

Firmicutes have been tentatively assigned to the family Siphoviridae (phages with long non-

contractile tails). They were grouped with Topo IIA of T4-like viruses, as a sister clade of 

bacterial homologs if the tree is rooted between Nucleocytoviricota and Caudoviricetes. 

 

Discussion 

 

To discuss possible evolutionary scenarios, we arbitrarily rooted the Topo IIA phylogenetic 

tree (Fig. 2) at the three possible positions between the four clusters (Fig. 6 a,b,c). Rooting the 

tree between Nucleocytoviricota and eukaryotes (Fig. 6a) would suggest that 

Nucleocytoviricota and eukaryotic Topo IIA originated from a common viral or cellular 

ancestor. This scenario appears unlikely since it also implies that Caudoviricetes Topo IIA 

originated from Nucleocytoviricota Topo IIAs and in fine that bacterial DNA gyrases 

themselves originated from Nucleocytoviricota via Caudoviricetes. In that case, one should 

imagine that the LBCA originated after the diversification of Nucleocytoviricota. Since this 

diversification took place before LECA, at the time when ancestral Nucleocytoviricota infected 

proto-eukaryotic hosts, this scenario would suggest that proto-eukaryotes evolved before 

bacteria.  

 

Rooting the tree between Caudoviricetes and Nucleocytoviricota (Fig. 6b) produced two 

clusters corresponding to Bacteria/Caudoviricetes and to Nucleocytoviricota/eukaryotes. This 

rooting suggests that bacterial DNA gyrase originated from Topo IIA of Caudoviricetes, 

whereas eukaryotic Topo IIA originated from those of Nucleocytoviricota. Considering the 

universal conservation of Topo IIA in Bacteria and eukaryotes, this scenario suggests that the 

transfer from viruses to cells took place before the emergence of the LBCA and LECA, 

respectively. Hence, both Caudoviricetes and Nucleocytoviricota should have originated and 

diversified before the emergence of the LBCA and LECA, infecting proto-bacterial and proto-

eukaryotic hosts, respectively. Such ancient origin would explain the great divergence between 
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the different versions of Topo IIA. The diversification of Nucleocytoviricota before LECA is 

indeed supported by the RNA polymerase phylogenetic tree including both viral and cellular 

enzymes (Guglielmini et al. 2019). Moreover it has been suggested that Caudoviricetes, which 

also infect archaeal hosts (Liu et al. 2021), have diverged even prior to the emergence of LUCA 

(Krupovic et al. 2020).  

 

 

Fig. 6. Schematic representation of the different possible rooting for the Topo IIA 

phylogenetic tree. 

The tree is the same as in Fig. 2. Monophyletic clades encompassing sequences from the same 

group have been collapsed and colored following Fig. 2. Panel A: rooting using the eukaryotes 

as an outgroup. Panel B: rooting using the bacteria and Caudoviricetes as an outgroup. Panel 

C: rooting using the bacteria as an outgroup.  

 

 

Rooting the tree between Bacteria and Caudoviricetes (Fig. 6c) produced a tree in which Topo 

IIA of Bacteria and Caudoviricetes diverged from a common ancestor that predated the LBCA. 

In that case, the Caudoviricetes Topo IIA would have diverged from their bacterial counterparts 

before LBCA and continued during the diversification of Bacteria. The tree of Fig. 6c is 

consistent with the scenario in which eukaryotic viruses originated from a melting pot of 

bacterial viruses that infected the bacterium at the origin of mitochondria (Koonin, Krupovic, 

et al. 2015; Koonin, Dolja, et al. 2015) or another ancient bacterial endosymbiont present in a 

proto-eukaryotic ancestor of modern eukaryotes. In that case, the Topo IIA from a 

Caudoviricetes present in this putative bacterial endosymbiont would have been transferred to 

an ancestor of Nucleocytoviricota, potentially with other components of the DNA replication 

machinery shared between Caudoviricetes and Nucleocytoviricota, including NAD-dependent 

DNA ligase (Yutin and Koonin 2009). Notably, comparison of DNA replication machineries 
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of all dsDNA viruses revealed a strong evolutionary and likely functional coupling between 

DNA topoisomerases and DNA ligases, with 96% of viruses encoding DNA topoisomerases 

also carrying a gene for a ligase (Kazlauskas et al. 2016). To explain the great divergence 

between the Topo IIA encoded by Caudoviricetes and those encoded by Nucleocytoviricota in 

terms of sequences and structure, this scenario entails that the rate of Topo IIA evolution 

increased dramatically following the transfer of the Caudoviricetes version into the lineage 

leading to the LNCA, with the fusion of the three Topo IIA subunits of Caudoviricetes Topo 

IIA into a single polypeptide.  

 

The trees of Fig. 6b and 6c both can be also interpreted in the framework of the “out of virus 

hypothesis” for the origin of DNA topoisomerases (Forterre 2002; Forterre and Gadelle 2009). 

Conceivably, the different versions of Topo IIA originated in an ancient viral world. The 

scenario illustrated in Fig. 6b explicitly posits that proto-bacteria acquired their Topo IIA from 

an ancient Caudoviricetes, whereas in Fig. 6c, the bacterial and Caudoviricetes Topo IIA 

evolved from a common ancestor, which may or may not have been a virus. Regardless, in both 

scenarios, the eukaryotic Topo IIA has been acquired from Nucleocytoviricota. We have 

previously proposed a similar scenario to explain the ubiquitous distribution of Topo VI in 

Archaea and the restricted distribution of Topo VIII (both members of the Topo IIB family) in 

some archaea and bacterial mobile elements (Gadelle et al. 2014). In that scenario, the restricted 

distribution of Topo IIA to a few subgroups of Caudoviricetes seems surprising, but it 

resembles the restricted distribution of a recently described new version of RNA polymerase in 

a subgroup of these viruses (Weinheimer and Aylward 2020). 

 

Importantly, if we exclude the unlikely conjecture in which the Topo IIA phylogenetic tree is 

rooted between Nucleocytoviricota and eukaryotes (Fig. 6a), the branching of all eukaryotes 

within Nucleocytoviricota in all other configurations suggests that a Topo IIA was introduced 

into eukaryotes from a member of this viral phylum. If the node at the base of the eukaryotic 

monophyletic clade corresponds to the position of LECA, as expected from the ubiquity of this 

enzyme in eukaryotes, the transfer of Topo IIA should have occurred before the emergence of 

LECA, i.e., from a member of Nucleocytoviricota to a proto-eukaryote. Alternatively, Topo IIA 

could have been introduced from Nucleocytoviricota to a particular eukaryotic lineage and later 

transferred from this lineage to all other lineages by horizontal gene transfer. This last scenario 

seems unlikely considering that Topo IIAs are present in all contemporary lineages of 

eukaryotes, without exception, and the enzyme is essential for several key functions conserved 
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in all eukaryotic lineages. The fact that eukaryotes emerge in our analysis within the PAM 

group is consistent with the possibility that divergence of Nucleocytoviricota into several major 

families has predated the emergence of LECA (Guglielmini et al. 2019).  

 

Our result raises an interesting question: which Topo II did proto-eukaryotes use before they 

captured the viral Topo IIA? A likely answer is that they relied on Topo IIB, since this enzyme 

is ubiquitous in Archaea, but also present in many eukaryotes. A Topo IIB-like protein with a 

very divergent V-B subunit is present in all eukaryotes and is part of the complex responsible 

for initiation of meiotic recombination (Vrielynck et al. 2016; Robert et al. 2017) whereas 

several eukaryotic lineages, e.g., Viridiplantae, contain a bona fide archaeal-like Topo IIB 

(Forterre et al. 2007; Malik et al. 2007; Forterre and Gadelle 2009).  

 

In comparing the Nucleocytoviricota core genes’ phylogeny with the phylogeny of the three 

eukaryotic nuclear RNA polymerases and those of Nucleocytoviricota, we have previously 

shown that two of the eukaryotic RNA polymerases, Pol I and Pol II, were probably introduced 

into the proto-eukaryotic lineage from Nucleocytoviricota (Guglielmini et al. 2019). This 

possibility was strongly supported in the case of the RNA polymerase II. It is worth noting that, 

like the position of Topo IIA in the present study, the RNA Pol II branched within 

Megaviricetes in the RNA polymerase tree. One can speculate that these two proteins (that play 

a major role in the eukaryotic transcription machinery) were recruited together from the same 

virus. This would make sense from the viewpoint of cell physiology, since the two enzymes 

interact both functionally and structurally. Indeed, it has been shown that Topo IIA is a 

structural component of the holo-Pol II complex and is essential for efficient RNA synthesis of 

nucleosomal DNA by this complex (Mondal and Parvin 2001). Topo IIA is required to produce 

long RNA Pol II transcripts (>3 kb) in Saccharomyces cerevisiae (Joshi et al. 2012) and 

enhances the recruitment of RNA Pol II to promoters in budding yeast (Sperling et al. 2011). It 

is possible that both Topo IIA and RNA Pol II were domesticated by a proto-eukaryote 

following the integration of a Nucleocytoviricota encoding these genes into the host 

chromosome. Integration of entire or large portions of the genomes of some Nucleocytoviricota 

into the chromosome of modern eukaryotes has been well documented (Delaroque and Boland 

2008; Cock et al. 2010; Filée 2014; Moniruzzaman et al. 2020).  

 

The viral origin of eukaryotic Topo IIA, in addition to those of RNA Pol II and possibly RNA 

Pol I, strengthens the idea that giant viruses of the phylum Nucleocytoviricota (especially 
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members of the PAM group) played a major role in shaping the identity of modern eukaryotes 

(Forterre and Gaïa 2016). It is likely that other important proteins involved in eukaryotic 

physiology originated from Nucleocytoviricota. This has been proposed for eukaryotic histones, 

since the four histones from Medusavirus and Marseilleviruses branch at the base of the 

eukaryotic clades of their respective homologues (Erives 2017; Yoshikawa et al. 2019) and for 

enzymes involved in mRNA capping (Bell 2020). However, in those cases, robust phylogenetic 

analyses remain to be carried out since the published papers are based on limited sampling of 

the eukaryotic and Nucleocytoviricota diversity. The viral origin of some of the major players 

in eukaryotic cell biology was probably not limited to nuclear components since we have 

recently reported that the eukaryotic cytoplasmic actin might have been recruited by proto-

eukaryotes from an actin-like protein (viractin) encoded by some Imitervirales, an order of 

Megaviricetes (Da Cunha et al. 2020).  

 

The eukaryotic molecular fabric appears to be a melting pot of proteins that originated in 

Nucleocytoviricota (mainly Megaviricetes), those that emerged de novo in the eukaryotic stem 

branch, proteins inherited from the bacterial ancestor of mitochondria and chloroplasts, and 

proteins that had ancestors in Archaea (in two domains scenarios) or in the common ancestor 

of Archaea and eukaryotes (in three domains scenario). Sorting out the viral component of our 

eukaryotic ancestors is now a major task in understanding eukaryogenesis.  
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