

1 **Human and murine *Cryptococcus neoformans* infection selects for common
2 genomic changes in an environmental isolate.**

3
4 Poppy Sephton-Clark^{1*}, Scott A. McConnell^{2*}, Nina Grossman^{2*}, Rosanna Baker², Quigly
5 Dragotakes², Yunfan Fan³, Man Shun Fu², Gracen Gerbig², Seth Greengo², J. Marie
6 Hardwick², Madhura Kulkarni², Stuart M. Levitz⁴, Joshua D. Nosanchuk⁵, Shmuel
7 Shoham⁶, Daniel Smith², Piotr Stempinski², Maggie Wear², Christina A. Cuomo^{1*}, Arturo
8 Casadevall^{2*}

9
10 ¹ Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
11 ² Department of Molecular Microbiology and Immunology, Johns Hopkins School of
12 Public Health, Baltimore, MD.

13 Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD.

14 ⁴ Departments of Medicine and Microbiology and Physiological Systems, UMass Chan
15 Medical School, Worcester, MA 01605

16 ⁵ Departments of Medicine and Microbiology & Immunology, Albert Einstein College of
17 Medicine, Bronx, NY

18 ⁶ Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD

19

20 Address correspondence to: Christina Cuomo (cuomo@broadinstitute.org) or Arturo
21 Casadevall (acasade1@jhu.edu).

22

23 *PS-C, SAM and NG share first authorship and CAC and AC share senior authorship.
24 Other authors arranged alphabetically.

25

26

27 **Abstract**

28 A pet cockatoo was the suspected source of *Cryptococcus neoformans* recovered from the
29 cerebral spinal fluid (CSF) of an immunocompromised patient with cryptococcosis based
30 on the molecular analyses available in 2000. Here we report whole genome sequence
31 analysis of the clinical and cockatoo strains. Both are closely related MAT α strains
32 belonging to the VNII lineage, confirming that the human infection likely originated from
33 pet bird exposure. The two strains differ by 61 single nucleotide polymorphisms,
34 including 8 nonsynonymous changes involving 7 genes. To ascertain whether changes in
35 these genes are selected during mammalian infection, we passaged the cockatoo strain in
36 mice. Remarkably, isolates obtained from mouse tissue possess a frame-shift mutation in
37 one of the seven genes altered in the human sample, a gene predicted to encode a SWI-
38 SNF chromatin-remodeling complex protein. Both cockatoo and patient strains as well as
39 mouse passaged isolates obtained from brain tissue had a premature stop codon in a
40 homolog of ZFC3, a predicted single-zinc finger containing protein, which is associated
41 with larger capsules when deleted and appears to have reverted to a full-length protein in
42 the mouse passaged isolates obtained from lung tissue. The patient strain and mouse
43 passaged isolates show variability in the expression of virulence factors, with differences
44 in capsule size, melanization, and rates on non-lytic expulsion from macrophages
45 observed. Our results establish that environmental strains undergo genomic and
46 phenotypic changes during mammalian passage, suggesting that animal virulence can be
47 a mechanism for genetic change and that the genomes of clinical isolates may provide a
48 readout of mutations acquired during infection.

49

50 **Introduction**

51

52 *Cryptococcus neoformans* is a human pathogenic fungus that is a major cause of life-
53 threatening meningoencephalitis (1). Cryptococcosis is more common in patients with
54 impaired immune systems although occasional disease occurs in individuals with no
55 apparent immune deficits. *C. neoformans* infection is first thought to be acquired in
56 childhood (2) and is either cleared or can become latent to reactivate if impaired
57 immunity occurs later in life (3). However, disease can also follow exposure to
58 contaminated environmental sources in adults, but the ubiquity of this fungus
59 complicates the identification of point sources. Restriction enzyme polymorphism
60 analysis of patient and environmental samples in New York City revealed that some
61 clinical isolates shared the same restriction patterns and were thus indistinguishable from
62 local infection sources (4), but such analysis lacked the precision to reveal point sources,
63 particularly given that the disease often develops slowly and can be the result of latent,
64 distantly acquired, infection (5). A recent investigation of a cryptococcosis outbreak in a
65 Scottish hospital revealed how difficult it is to make associations between clinical, and
66 geographically and temporally matched environmental samples (6).

67 In 2000, we reported on the case of an immunosuppressed patient with cryptococcosis
68 who had a pet cockatoo (7). *Cryptococcus* was also recovered from the cockatoo guano,
69 which was not unexpected as bird guano is a common environmental reservoir for *C.*
70 *neoformans* (8, 9). Both the patient and bird guano strains were indistinguishable using
71 molecular tools available at the time, resulting in the first example of cryptococcal
72 infection traced from a point source (7). In subsequent years additional cases of *C.*
73 *neoformans* infections linked to pet birds were reported (10, 11). Since the original report,
74 genomic sequencing has become routine and there is now a wealth of information
75 available on *C. neoformans* genomes (12). In this study, we compared the genome
76 sequences of the patient and cockatoo strains and passaged the cockatoo strain in mice to
77 identify genetic and phenotypic changes resulting from mammalian infection. The results
78 validate the earlier conclusion that the clinical and cockatoo strain sequences were closely
79 related, and that the cockatoo was the likely source of infection. We also find evidence of
80 similar genome evolution in mouse-passaged and patient strains. These results implicate

81 novel genomic loci in virulence, identify functionally similar genomic changes arising
82 from mammalian infection, and characterize phenotypic differences between mouse
83 passaged isolates that appear to be organ specific.

84 **Materials and Methods**

85 **Resource Availability** Requests for strains used in this study should be directed to
86 Arturo Casadevall.

87 **Experimental model and subject details**

88

89 ***C. neoformans* strains.** The original patient and cockatoo strains were described in
90 Nosanchuk et al., (7) and have been maintained frozen at -80 °C since last studied. This
91 study involved the analysis of original clinical and cockatoo strains as well as mouse
92 passaged cockatoo isolates.

93

94 **Mouse passage studies.** An inoculum of 2×10^5 freshly grown *C. neoformans* (CU) cells
95 from the cryopreserved samples obtained from cockatoo guano was administered by
96 retroorbital intravenous injection to a female A/J mouse. Infections were administered
97 to the mouse under xylazine and ketamine anesthesia, 10 mg/kg and 100 mg/kg,
98 respectively. The mouse was observed daily for signs of cryptococcosis symptoms and
99 eventually euthanized 43 days post-infection. Brain and lungs were aseptically removed
100 and homogenized in a total volume of 2 mL sterile PBS and dilutions of 10^{-4} , 10^{-3} , 10^{-2} , 10^{-1} ,
101 and 10^0 were plated onto YPD agar plates supplemented with 1% Pen/Strep (Gibco
102 15140122) to determine CFUs in each organ. The brain and lung homogenates contained
103 8.16×10^2 and 7.88×10^1 CFU/mg, respectively.

104 **Animal studies.** An A/J female mouse 5-8 wk of age was obtained from The Jackson
105 Laboratory (Bar Harbor, ME). Animal experiments were conducted in accordance with
106 the policies and with the approval of the Johns Hopkins University Institutional Animal
107 Care and Use Committee (protocol MO21H124). Mice were sacrificed using CO₂
108 asphyxiation.

109 Macrophage non-lytic event quantification. Bone marrow derived murine macrophages
110 (BMDMs) were harvested from the hind leg bones of 6-week-old C57BL/6 female mice
111 from The Jackson Laboratory and were differentiated by seeding in 10 cm tissue culture
112 treated dishes in DMEM with 10% FBS, 1% nonessential amino acids, 1% penicillin-
113 streptomycin, 2 mM Glutamax, 1% HEPES buffer, 20% L-929 cell conditioned
114 supernatant, and 0.1% beta-mercaptoethanol for 6 days at 37 °C and 9.5% CO₂. BMDMs
115 were used for experiments within 5 days of differentiation. BMDMs were activated with
116 LPS (0.5 ug/mL) and IFN-γ (10 ng/mL) for 16 h prior to experiments. The media was
117 then refreshed and the BMDMs were infected with opsonized *C. neoformans* at MOI 1,
118 then imaged every 2 min for 24 h on a Zeiss Axiovert 200M inverted scope at 37 °C with
119 9.5% CO₂. Non-lytic events were quantified by determining the outcome of each infected
120 macrophage throughout the 24-h period and 95% confidence intervals were estimated
121 with a test of proportions. Statistical significance was determined with a test of equal
122 proportions and Bonferroni correction.

123 Amoeba predation analysis. A modified version of the fungal killing assay described
124 previously (26) was used to determine the ability of different fungal strains to resist killing
125 by *Acanthamoeba castellanii*. Briefly, *A. castellanii* were washed twice with Dulbecco's
126 phosphate buffered solution (DPBS) supplemented with calcium and magnesium,
127 counted in a hemocytometer and diluted with DPBS to 1 x 10⁴ cells/ml. Amoeba were
128 seeded in 96 well plates and incubated at 25°C for one hour to allow for adherence to the
129 bottom of the plate. *C. neoformans* cultures were grown overnight in liquid yeast peptone
130 dextrose (YPD) at 30°C, washed twice with DPBS, and similarly counted and diluted in
131 DPBS. Wells containing amoebae and control wells containing only DPBS were inoculated
132 with *C. neoformans* at 1 x 10⁴ cells/well and incubated at 25°C for 0, 24, or 48 h. Amoebae
133 were lysed by passage through a 27-gauge needle seven times and then lysates serially
134 diluted. Three 10 μL samples of each the serially diluted lysates were plated on YPD agar
135 and incubated at 30°C for 48 h. CFUs were counted with a light microscope. Total CFUs
136 were calculated, and significance was determined with two-way ANOVA.

137 Virulence in *Galleria mellonella*. *G. mellonella* were infected with CU, PU, CPB, and CBL
138 isolates as previously described (3). Briefly, final instar larvae ranging between

139 approximately 175 and 225 mg were injected with 10 μ l of *C. neoformans* culture grown
140 to stationary phase in YPD media, washed twice in PBS, and diluted to a concentration of
141 10^7 cells/ml. Survival of larvae and pupae was monitored daily for 14 days, with death
142 being defined by lack of movement in response to the stimulus of a pipette tip. Statistical
143 significance was determined with the log-rank Mantel-Cox test, corrected for multiple
144 comparisons using the Bonferroni method, via GraphPad Prism.

145 **Method Details**

146 India ink staining and capsule analysis. *C. neoformans* cells were mixed with India ink
147 and imaged on an Olympus AX70 microscope using QImaging Retiga 1300 digital camera
148 and the QCapture Suite V2.46 software (QImaging). Capsule measurements were
149 calculated using the exclusion zone produced with India ink and the Quantitative Capture
150 Analysis program as previously described (13). A minimum of 100 yeast cells were
151 measured for each strain and condition. Statistical significance was determined with
152 paired two-tailed T-tests with unequal variance, via Microsoft Excel.

153 Growth curves. *C. neoformans* strains were recovered from cryopreserved stocks by
154 growth in YPD for 48 h at 30°C and then sub-cultured in triplicate into Sabouraud
155 dextrose broth (BD Difco) at a density of 1×10^5 cells/mL in wells of a 96-well plate. The
156 plate was incubated at 30 or 37°C with orbital shaking in a SpectraMax iD5 plate reader
157 (Molecular Devices) and absorbance at 600 nm was read at 15 min intervals. Absorbance
158 was plotted against time using GraphPad Prism software and the linear region of each
159 curve was analyzed by simple linear regression to derive the slope and lag time (x-
160 intercept).

161 Exopolysaccharide preparation. *C. neoformans* CU, PU, CPB, and CPL isolates were
162 grown in YPD for 48 h and sub-cultured to modified minimal media (MMM) for NMR
163 analysis which also induces capsule growth. Cells were grown in MMM for 3 days and the
164 exo-polysaccharide (EPS) was harvested by centrifuging cells (10 minutes at 3494 x g)
165 and sterile filtration of culture supernatant (0.45 nm filtration). Any remaining media
166 components were removed, and EPS was concentrated by passage through a 3 kDa

167 molecular weight cut-off (MWCO) centricon filtration unit. The > 3 kDa fraction of EPS
168 was then characterized by NMR.

169 NMR analysis. 1D ¹H NMR data were collected on a Bruker Avance II (600 MHz),
170 equipped with a triple resonance, TCI cryogenic probe, and z-axis pulsed field gradients.
171 Spectra were collected at 60°C, with 128 scans and a free induction decay size of 84336
172 points. Standard Bruker pulse sequences were used to collect the 1D data (p3919gp and
173 zggpw5). Data were processed in TopSpin (Bruker version 4.1.3) by truncating the FID to
174 8192 points, apodizing with a squared cosine bell window function and zero filling to
175 65536 points. Relative peak integration and ¹H frequency referencing was performed on
176 TopSpin using d₆-DSS internal standard (10µl/510 µl sample).

177 DNA preparation and genomic sequencing. Oxford Nanopore Technologies (ONT)
178 sequencing libraries were prepared with genomic DNA from the CU and PU strains using
179 the Ligation Sequencing Kit (SQK-LSK109) with the Native Barcoding Kit (EXP-NBD103)
180 according to manufacturer instructions (Oxford Nanopore Technologies, Oxford, UK).
181 Illumina sequencing libraries were prepared using the Nextera Flex DNA library prep kit
182 (Illumina, San Diego, California) and sequencing was performed with a MiSeq using v2
183 2x150 chemistry. For genomic sequencing of CPL and CPB isolates, three individual
184 colonies were selected from brain and lung CFU plates and used to seed 100 mL YPD
185 cultures, which were allowed to grow for 48 h at 30°C with rotation. Genomic DNA was
186 isolated from each culture following the protocol described in Velegraki et al. (14). Briefly,
187 after a 48 h growth period, *C. neoformans* cells were collected by centrifugation, frozen
188 at -80°C overnight, then subsequently lyophilized overnight. Glass beads (0.5 mm
189 diameter, BioSpec Products, Cat No. 11079105z) were added to the dry cell pellets and
190 vortexed into a powder. DNA was then extracted with a CTAB buffer (100 mM Tris, pH
191 7.5, 700 mM NaCl, 10 mM EDTA, 1% CTAB, 1% beta-mercaptoethanol) at 65°C for 30
192 min. The tubes were cooled and then extracted with chloroform, then isopropanol, then
193 70% ethanol. The DNA pellet was then resuspended in 1 mL sterile water and treated with
194 20 µg RNase for 30 min at 37°C. Finally, the genomic DNA was further purified using the
195 DNeasy PowerClean CleanUp Kit (Qiagen 12877-50) for genomic sequencing. 100 uL
196 aliquots of 19-30 ng/µL DNA were used in the sequencing reactions. DNA was sheared to

197 250bp using a Covaris LE instrument and adapted for Illumina sequencing as described
198 by Fisher et al. (15). Libraries were sequenced on a HiSeq X10, generating 150bp paired
199 reads.

200 **Assembly and genomic analysis.** Whole genome assemblies were generated for CU and
201 PU strains with ONT long reads via Canu v2.1.1 (genome size 20Mb) (16), followed by
202 short read polishing via medaka v0.8.1 (1X) (<https://github.com/nanoporetech/medaka>)
203 and pilon v1.23 (3X)(17). Single nucleotide polymorphisms, insertions, and deletions
204 between CU and PU assemblies were then identified using nucmer v3.1 (18), with variants
205 in centromeric and telomeric regions removed prior to downstream analysis. To identify
206 variants in the mouse passaged isolates, Illumina reads for CPL and CPB samples were
207 aligned to the CU assembly with BWA-MEM v0.7.17 (19), and variants were called with
208 our publicly available GATK v4 pipeline (<https://github.com/broadinstitute/fungal-wdl/tree/master/gatk4>). Post calling, variants were filtered on the following parameters:
209 QD < 2.0, QUAL < 30.0, SOR > 3.0, FS > 60.0 (indels > 200), MQ < 40.0, GQ < 50,
210 alternate allele percentage = 0.8, DP < 10. All variants were annotated with SNPeff, v4.3t
211 (20). To identify strain lineage, reads for the CU and PU samples were aligned to the
212 *Cryptococcus neoformans* var. *grubii* H99 reference genome (GCA_000149245.3) with
213 BWA-MEM v0.7.17 (19), and variants were called and filtered as described above. A
214 maximum likelihood phylogeny was estimated using segregating SNP sites present in one
215 or more isolates, allowing ambiguity in a maximum of 10% of samples, with RAxML
216 v8.2.12 (21) rapid bootstrapping (GTRCAT substitution model), and visualized with
217 ggtree (R 3.6.0) (22). Aneuploidies were visualized using funpipe (coverage analysis)
218 v0.1.0 (<https://github.com/broadinstitute/funpipe>), transposon mobilization was
219 assessed through whole genome alignment of the CU and PU assemblies with nucmer v3.1
220 to identify alignment gaps, and copy number variation was assessed using CNVnator v0.3
221 (23).

223 **Urease activity assay.** *C. neoformans* strains and isolates were first grown in YPD for 48
224 h at 30 °C. Urea broth comprised of 10 mM KH₂PO₄, 0.1% Bacto Peptone (Difco), 0.1% D-
225 glucose, 0.5% NaCl, 2% urea, and 0.03 mM phenol red, as described by Roberts et al.,
226 (24), was inoculated with PBS-washed cells at a density of 1 × 10⁶ cells/mL for each strain

227 in triplicate. After incubation for 16 h at 30 °C, increased pH of culture media that is
228 indicative of ammonium production due to urease activity was detected by measuring
229 absorbance at 560 nm over a 6 h time course. Absorbance readings that had been
230 corrected by subtraction of media-only background absorbance were plotted against time.
231 Urease activity rates were derived by a simple linear regression model and data were
232 analyzed for statistical significance using an ordinary one-way analysis of variance
233 (ANOVA) with GraphPad Prism 9 software.

234 *C. neoformans* melanization assay. *C. neoformans* strains and isolates were first grown
235 in YPD liquid media for 48 h at 30 °C until the cultures were in stationary phase. Cells
236 were washed twice in PBS. 100 µl of washed culture was added to 5 mL Minimal Media
237 with 1 mM L-3,4-dihydroxyphenylalanine (L-DOPA) and grown for 5 d at 30 °C. Cultures
238 were removed and placed into a 6-well plate for imaging. Alternatively, 1 × 10⁶ PBS-
239 washed cells were spotted onto L-DOPA agar in triplicate. Plates were incubated at 30 °C
240 or 37 °C and then photographed after 2, 3, and 6 days using a 12-megapixel camera. Color
241 images were converted to grayscale using Adobe Photoshop, pigmentation intensities
242 were quantified using Image Studio Lite software, and graphed using GraphPad Prism
243 software. Statistical significance was determined with the ordinary one-way ANOVA test,
244 via GraphPad Prism.

245 Phospholipase activity. Extracellular phospholipase in *C. neoformans* strains and isolates
246 was tested by the modified method reported by the Chen et al. (25). Egg yolk agar medium
247 was created based on Difco Sabouraud Dextrose Agar media with 8% egg yolk, 1M sodium
248 chloride and 0.05M calcium chloride. After overnight growth in YPD media 3 ul of each
249 strain, with a total of 10,000 cells, were spotted onto egg yolk agar medium. Each strain
250 and isolate was tested on five separate plates and incubated at 30 °C. After 72 h and 96 h
251 colonies were photographed and measured with ImageJ software. Activity of
252 phospholipase was analyzed by the ratio of colony diameter to total precipitation
253 diameter, where a ratio equal to 1.0 indicates a lack of phospholipase activity. Statistical
254 significance was determined by an unpaired t-test test, via GraphPad Prism.

255 Heat-ramp and thermal stability analysis. Strains and isolates were maintained at -80°C
256 in glycerol, streaked onto Sabouraud dextrose (SAB) (BD Difco) agar and incubated at
257 30°C for 48 h prior to heat-ramp cell death assays. SAB broth was inoculated from growth
258 on plates to equal densities (OD 0.1) and incubated at 30°C for 18 h in stationary 96-well
259 plates. Isolates were resuspended, diluted 1:5 in fresh SAB broth, and 100 µl was treated
260 with a linear 30°C to 56°C heat-ramp stress over 10 min in a water bath with agitation
261 (Lauda). Untreated and heat-ramp treated strains were immediately spotted (5 µl in SAB)
262 in 5-fold serial dilutions on SAB agar and incubated at 30°C for 48 h to assess viability.
263 CFUs before and after heat-ramp assays were enumerated to calculate relative survival.
264 To determine growth differences at high temperature, untreated strains were spotted on
265 SAB agar and incubated at 37°C for 48 h. Statistical significance was determined with the
266 Anova test, via GraphPad Prism.

267 RNA-seq analysis. RNA-seq datasets were downloaded from the GSEO database from the
268 following deposited datasets: GSE162851, GSE136879, GSE93005, PRJEB4169,
269 GSE32049, GSE32228, GSE121183, GSE60398, and GSE66510. Where necessary, raw
270 data was reanalyzed by bowtie2 (2.3.5) (27) alignment to the most recent *C. neoformans*
271 H99 or KN99a genome (fungibd.org), count matrices generated with HTSeq (1.99.2)(28),
272 and RNA-seq analysis with Bioconductor DESeq2 (1.22.2) (29).

273 Protein structure prediction and glycosylation analysis. Protein structure predictions
274 were generated with AlphaFold2 v2.1.0 (reduced BFD database) (30). Intrinsically
275 disordered regions were identified with IUPred (31), and glycosylation predictions were
276 made with GPP (32)

277 Data and code availability. Genome data can be accessed via accession
278 PRJNA783275. This work did not lead to the generation of any new code.

279 Funding. This project has been funded in part with Federal funds from the National
280 Institute of Allergy and Infectious Diseases, National Institutes of Health, Department
281 of Health and Human Services, under award U19AI110818 to the Broad Institute. CAC is
282 a CIFAR fellow in the Fungal Kingdom Program. A.C. was supported in part by NIH

283 grants AI052733, AI15207, and HL059842. S.A.M. was supported in part by NIH
284 grants T32AI007417 and R01AI162381.

285

286

287 **Results**

288

289 The relationship of the original strains, previously described (7), is shown in **Figure 1**,
290 with the original patient strain referred to as patient unpassaged (PU), and the original
291 cockatoo strain referred to as cockatoo unpassaged (CU). Isolates recovered from mice
292 infected with the CU strain are identified as cockatoo passaged brain (CPB) and cockatoo
293 passaged lung (CPL) to denote the tissues from which they were isolated. *C. neoformans*
294 recovered from patient and cockatoo are referred to as strains to denote different origins
295 while those recovered from mouse tissues are referred to as isolates. Here, we aimed to
296 identify the relatedness of the CU and PU strains, examine genetic changes resulting from
297 mammalian passage of these strains, and interrogate differences across virulence
298 phenotypes arising from passage across hosts and body sites.

299

300 **Genomic analysis of patient and cockatoo strains.** To determine the relatedness of the PU
301 and CU strains, Illumina reads were aligned to the *C. neoformans* H99 reference genome
302 (33), and variants were called to identify single nucleotide polymorphisms (SNPs) and
303 insertion/deletion events (indels). Based on a phylogenetic analysis of these samples and
304 a subset of 238 additional whole genome sequences chosen to represent lineages VNIa,
305 VNIb, VNIc, VNBI, VNBII, and VNII, previously described by Desjardins et al. (34), we
306 assigned the PU and CU strains to the globally detected VNII lineage confirming their
307 close relationship (**Fig. 2, Supplementary Fig. 1**), and determined that both strains
308 possess the *MAT* α mating type. Utilizing ONT read data, we then generated genome
309 assemblies for both PU and CU strains, consisting of complete telomere-to-telomere
310 sequences for each chromosome, polished with Illumina reads. To identify variants, we
311 compared the two assemblies with nucmer (MUMmer). We identified 7 genes with
312 nonsynonymous variants between the two assemblies, all impacting genes with homologs
313 in the *C. neoformans* var. *grubii* (H99) genome (**Table 1**). Of these genes, 2

314 (LQVO5_002184 and LQVO5_000317) had *C. neoformans* H99 homologs
315 (CNAG_06273 and CNAG_00342) that are repressed during titan cell formation and
316 murine cryptococcal infection, respectively (35, 36). For both strains, we were able to
317 generate full-length chromosomal assemblies, consisting of 14 chromosomes, with rRNA
318 content residing on chromosome 4, and chromosome 15 representing the mitochondrion,
319 with equivalent gene sets and high levels of identity between the two assemblies (99.99%),
320 indicating high levels of relatedness (**Supplementary Fig. 2a**). When these assemblies
321 are compared to the *C. neoformans* H99 reference assembly, we see sequence identities
322 of 97.7%, for both CU and PU strains to the H99 reference (**Supplementary Fig. 2b**).
323

324 Mouse passage of cockatoo (CU) strain. The finding of genomic changes when comparing
325 CU and PU strains suggested that the PU differences may have occurred during human
326 infection. Consequently, we wondered whether passage of the CU strain in mice would
327 result in similar genomic changes. A female A/J mouse was infected intravenously with
328 the CU strain and observed for signs of illness, but none were apparent. Hence, at day 43
329 the mouse was sacrificed, brain and lung were harvested and homogenized, and the
330 suspensions plated, which yielded 816 and 78 CFU/mg in brain and lungs, respectively.
331 Three individual colonies were selected from the brain (CPB1-3) and lung (CPL1-3) CFU
332 plates. These isolates were sequenced and studied for phenotypic characteristics.
333

334 Genomic analysis of mouse-passaged isolates. To identify variants arising from the
335 passage of the CU strain in mice, we aligned Illumina data generated for all mouse evolved
336 isolates to our CU genome assembly. Samples aligned with an average coverage of 775X
337 across the CU reference. We found a frameshift variant in one of the seven genes altered
338 in the patient strain, LQVO5_000317 (**Table 1**). This frameshift in LQVO5_000317 was
339 present in all mouse evolved isolates from both brain and lung tissue (CPB1-3, CPL 1-3)
340 (**Table 2**). The commonality of this variant across brain and lung isolates suggests the
341 mutation was acquired at a common site prior to dissemination. This gene is a homolog
342 of CNAG_00342 in the *C. neoformans* H99 (VNI) genome, which is predicted via
343 eukaryotic orthologous groupings to function as a SWI-SNF chromatin-remodeling
344 complex protein (KOG2510), and is down-regulated in a murine lung infection model
345 (36), consistent with loss-of-function mutations in mammals.

346

347 A second variant impacting only the mouse passaged isolates collected from lung tissue
348 resulted in the loss of a premature stop codon in LQVO5_004463, a truncated homolog
349 of CNAG_05940, a predicted Zinc-finger domain protein (ZFC3). A premature stop
350 codon truncating the ZFC3 homolog (LQVO5_004463) is present in both the CU and PU
351 strains, as well as the CPB isolates, but appears to have reverted to wild type in the CPL
352 isolates. When LQVO5_004463 is extended through the loss of this premature stop
353 codon, the resulting gene encodes a full-length protein comparable to CNAG_05940 in
354 sequence and structure (**Supplementary Fig. 3**). Zfc3 has a single predicted zinc finger
355 and a striking number of serine and threonine residues in the LQVO5_004463 homolog,
356 CNAG_05940, totaling 21.9% of all residues present. The predicted structure of this
357 protein includes long intrinsically disordered regions that may transition to structured
358 regions upon binding to a substrate (**Supplementary Fig. 3c**). Interestingly, deletion
359 of CNAG_05940 in *C. neoformans* results in strains with significantly increased capsule
360 content (37), and this gene is thought to be a target of the virulence implicated
361 transcription factors Gat201 and Liv3 (38). The presence of variants impacting shared
362 genes in both patient and cockatoo-derived mouse isolates is consistent with the
363 hypothesis that the patient's *C. neoformans* infection was also derived from the pet
364 cockatoo.

365

366 To assess the frequency of loss-of-function mutations in the SWI-SNF and ZFC3
367 homologs among clinical and environmental *Cryptococcus* isolates, we looked for loss-
368 of-function variants in 387 published isolates from both patient and environmental
369 sources (34). We found 3 clinical samples (from the lineages VNI, VNII, and VNB) with
370 frameshift variants in CNAG_00342 (SWI-SNF) and 24 samples with frameshift variants
371 present in CNAG_05940 (ZFC3) (**Table 2**). VNI and VNB isolates from both clinical and
372 environmental sources are impacted by frameshift variants in CNAG_05940. To identify
373 large-scale genomic variation in these CU, PU, CPB and CPL isolates, we looked for
374 evidence of aneuploidy and copy number variation (CNV) based on sequence coverage,
375 however, we saw no evidence of either aneuploidy or significant CNVs arising in response
376 to human, bird, or murine passage.

377

378 CNAG_00342 and CNAG_05940 expression in published datasets. To further probe the
379 role of these genes altered in the patient and mouse isolates, we analyzed eight publicly
380 deposited RNA-seq datasets of *C. neoformans* strains H99 and KN99α (**Table 3**). These
381 databases were selected because they represented transcriptional studies done in
382 conditions that resemble the expected conditions during infection. We found that both
383 CNAG_00342 and CNAG_05940 were significantly differentially regulated ($p < 0.05$)
384 under conditions related to those expected during animal passage and infection, namely
385 37 °C, increased CO₂, in vitro infection of macrophages, or in vivo infection of rabbit CSF.
386 Both genes were mostly upregulated in H99 strains and downregulated in KN99α rather
387 than between conditions with the caveat that many of the H99 strains were exposed to
388 ambient CO₂ levels while both KN99α datasets were exposed to 5% CO₂, indicating strain
389 and condition specific changes that highlight variability in expression.

390
391 Heat tolerance. To determine if resistance to cell death may be related to virulence in
392 these strains, we compared the mouse passaged isolates to the patient strain in a cell death
393 assay that has been previously demonstrated to induce gene-dependent cell death in *S.*
394 *cerevisiae*, and more recently in *C. neoformans* (39, 40). To assess cell death
395 susceptibility, a transient sublethal heat-ramp (not heat shock) was applied to all isolates
396 and survival was determined by CFUs when plated at 30°C. Interestingly, all mouse,
397 cockatoo, and patient strains were death-resistant when compared to the lab strain,
398 KN99α (**Fig. 3A**). Among the isolates tested, the three mouse-passaged brain isolates
399 (CPB1-3) were significantly more death-resistant than the lung isolates (CPL1-3), and the
400 patient (PU) strain ($p=0.0324$ and $p = 0.002$, test=ANOVA) (**Fig. 3B**). However, cell
401 death-resistance does not appear to reflect a gain of heat tolerance at body temperature
402 as all isolates grew indistinguishably when untreated samples were plated on SAB agar
403 and incubated at 37°C (**Fig. 3C**). Although the lab strain KN99α may be slightly more
404 robust than the CU, PU, CPB, and CPL isolates at both 30°C and 37°C, no differences in
405 CFU number or size among the isolates was observed, suggesting that heat-ramp cell
406 death resistance is not directly correlated with the ability to grow at high temperature.

407
408 Growth in vitro and virulence factor expression. We analyzed both the CU and PU strains
409 and the CPB and CPL isolates for growth in vitro (**Fig. 4**) and expression of four

410 phenotypes known to be associated with virulence factors: capsule, melanin, urease, and
411 phospholipase (**Figs. 5, 6**). All four isolates grew well in culture with the CPB1 isolate
412 recovered from brain tissue growing faster than the others (**Fig. 4**). All isolates expressed
413 each of these virulence factors but there were subtle differences observed. The original
414 cockatoo strain (CU), patient strain (PU), and mouse passaged CU derivative isolates
415 varied little with regards to the capsule, except that CPL1 cells had significantly smaller
416 capsules than the other isolates ($p=1\times 10^{-4}$, 4×10^{-8} , 3.8×10^{-6} , CPL1 vs CU, PU, CPB1,
417 respectively; test= paired t-test) (**Fig. 5**), consistent with a functional ZFC3. Since a prior
418 analysis of sequential isolates recovered from individual patients showed changes in
419 polysaccharide structure (41), we analyzed their exopolysaccharide (EPS) by NMR, which
420 revealed variation in O-acetylation content such that CU (37.46) > PU (26.15) > CPL1
421 (23.01) > CPB1 (19.50) (**Fig. 5A**). Further analysis of the Structural Reporter Group
422 (SRG) ^1H NMR resonances corresponding from backbone mannose anomeric protons,
423 which provides a spectral signature for the repeating triad of glucuronoxylosemannan (4.8-
424 5.4ppm) (42) showed the same peak-set for CU and PU strains and CPB and CPL isolates
425 (4.91, 4.97, 4.99, 5.10, 5.12, 5.15, 5.16, 5.20) (**Fig. 5C**), implying conservation of EPS
426 structure in these strains and isolates. Isolates from the brain of the CU-infected mouse,
427 CPB1-3, had faster rates and higher total percentages of melanization when compared to
428 the other isolates, including the parental CU strain, the PU strain, and the CPL1-3 isolates
429 from the lungs of the mouse (**Fig. 6A-C**). The CPB1 isolate was significantly more
430 melanized than CU at 37°C when grown on L-DOPA-agar ($p=0.0365$, 0.0009, 0.0002; 2,
431 3, 6 d; test = ANOVA). For phospholipase, the size of the precipitation zone varied across
432 isolates and increased with the time of incubation. After 72h of incubation at 30°C , the
433 isolate recovered from the mouse brain (CPB1) presented significantly lower ($p = 0.033$,
434 test=t-test) phospholipase activity than the original CU strain. After 96h the
435 phospholipase activity of CPB1 was significantly lower ($p = 0.0049$, test=t-test) than in
436 all other strains and isolates (**Fig. 6D**). In contrast, the expression of urease was
437 comparable among the four isolates (**Fig. 6E**).
438

439 **Virulence in *Galleria mellonella*.** To identify strain differences in virulence, we tested the
440 CU, PU, CPB, and CPL isolates in the invertebrate model *G. mellonella* (**Fig. 6F**). This
441 model has been used previously to compare virulence of *Cryptococcus* isolates, which

442 roughly correlates to virulence in mammalian models (1,2). We found no statistical
443 differences between the virulence of the CU and PU strains. There was enhanced virulence
444 of the CPB1 brain isolate compared to its parental CU strain, and reduced virulence of the
445 CPL1 lung isolate. While all strains and isolates tested were virulent, these results show
446 subtle changes in virulence for an insect host.

447

448 **Interactions with macrophages.** The interaction of *C. neoformans* with macrophages is
449 unusual in that ingestion results in transient intracellular residence, which may be
450 followed by non-lytic exocytosis whereby the fungal cell exits the phagocytic cell without
451 lysing the latter (43, 44). Given that this process involves a complex choreography of
452 cellular events that must occur in synchrony we considered it a sensitive indicator of *C.*
453 *neoformans*-macrophage interaction, and examined its frequency for the CU, PU, CPL,
454 and CPB isolates (**Fig. 7**). The results show that the CPB1 isolate manifested a
455 significantly higher frequency of non-lytic exocytosis relative to the other strains and
456 isolates ($p=0.013$, test of equal proportions with Bonferroni correction).

457

458 **Interactions with amoeba.** Since amoebae are predators of *C. neoformans* and amoeba-
459 fungal interactions have been proposed to select for traits that function during
460 mammalian virulence, we evaluated whether passage through human and mice affected
461 the interaction with *A. castellanii*. In an assay favoring amoeba predation through the
462 presence of divalent cations (45), we observed that *C. neoformans* strains recovered from
463 the patient (PU) and cockatoo (CU), as well as mouse-passaged isolates (CPL and CPB)
464 were equally susceptible to predation (**Fig. S4**). All fungal strains experienced minimal
465 killing by *A. castellanii* at 24 h, and modest CFU rebounds by 48 h, but differences
466 between the CU and PU strains or CPL and CPB isolates were not significant (**Fig. S4A**).
467 This pattern of initial CFU decrease and subsequent rebound was not seen for the same
468 strains or isolates incubated in only DPBS (**Fig. S4B**).

469

470 **Discussion**

471

472 Comparison of the patient and cockatoo strains revealed that they are genetically and
473 phenotypically very similar and likely derived from each other. Given that the patient

474 strain came from an immunocompromised patient with cryptococcosis, and the cockatoo
475 strain came from bird excreta in the home of the patient, the inference was made that the
476 bird was the source of the infection (7). Although psittacine birds can develop
477 cryptococcosis, their association with *C. neoformans* is usually in the form of saprophytic
478 growth in their excrement (46). In this situation, the occurrence of cryptococcosis in an
479 immunocompromised individual who lived in close proximity to the cockatoo was
480 inferred to be a case of human infection from exposure to a point source associated with
481 the pet bird (7). The near genomic identity of the patient and cockatoo strains confirms
482 the finding that they were indistinguishable based on restriction length polymorphisms
483 and supports this scenario (7). However, the prior case report could not rule out the
484 possibility that the patient had acquired the infection first and then infected the bird in
485 some form, possibly through cough during a pulmonary phase of disease. Although this
486 scenario was, and is, considered unlikely, the observation that mice with experimental
487 cryptococcosis contaminate their cage bedding indicates that hosts with systemic
488 infection can shed *C. neoformans* (47), providing some support for the plausibility of
489 patient to bird transmission. However, our finding that some of the mutations observed
490 when the cockatoo strain was passaged in mice are also found in the patient strain
491 suggests that these were selected in mammalian hosts, which in turn supports the original
492 conclusion that the transmission was from the bird to the patient.

493

494 The comparison of patient and cockatoo strains revealed amino acid changes in 7
495 proteins. There were two non-synonymous changes in the predicted ribosome regulatory
496 protein (LQVO5_002184, homolog of the H99 gene CNAG_06273), a gene repressed
497 during titan cell formation (35). One variant is found in the predicted SWI-SNF
498 chromatin-remodeling complex (LQVO5_000317, homolog of the H99 gene
499 CNAG_00342), a protein that is down-regulated during murine cryptococcal infection
500 (36), is involved in cryptococcal morphogenesis (48), and is implicated in nitrosative
501 stress response in the plant pathogenic fungus *Fusarium graminearum* (49).

502

503 To ascertain whether we could reproduce some of the changes observed in the patient
504 strain relative to the cockatoo strain we passaged the latter in mice. In all mouse passaged
505 isolates we observed one frameshift variant that impacts the same gene (LQVO5_000317,

506 homolog of the H99 gene CNAG_00342) observed in the patient strain. A second variant
507 impacting only the mouse passaged isolates collected from lung tissue results in the loss
508 of a premature stop codon for LQVO5_004463, a homolog of CNAG_05940 (ZFC3).
509 ZFC3 is a transcription factor that is repressed during titan cell induction in addition to
510 being a target of the transcription factors Gat201 and Liv3 (38). Changes in length of the
511 protein encoded by LQVO5_000317 are likely to impact expression of this gene's targets.
512 Analysis of the expression of CNAG_00342 and CNAG_05940 in publicly available
513 databases involving conditions related to animal passage and infection revealed variation
514 in the expression of these genes, however, it is unclear whether the condition or genetic
515 background is responsible for this variation. Hence, it may be that the genomic changes
516 observed in the cockatoo strain upon mouse or human passage represent selection of this
517 particular genotype during infection, which may be specific to this genetic background.
518 Variation of gene expression across strains, correlating with genetic groupings and
519 lineage, have been observed for clinical and environmental isolates (50), and isolates
520 derived directly from human CSF (51). Consequently, we caution against generalization
521 from the results to other cryptococcal strains until there is greater sampling of changes
522 associated with virulence; given the plasticity of the *C. neoformans* genome, there may be
523 many solutions to the problem of survival in the ecologic niche defined by these hosts.
524

525 The occurrence of numerous *C. neoformans* genetic changes in the form of SNPs,
526 deletions, and insertions suggests that fungal replication in mammalian hosts may select
527 for specific changes. Although this is the first genomic study of a *C. neoformans* strain
528 before and after human passage, other studies have reported genetic changes during
529 infection. Analysis of serial isolates from patients shows chromosome rearrangements,
530 ploidy alterations, SNPs, insertions, and deletions (52). One mechanism of mutagenesis
531 is transposon mobilization during infection (53), however, we saw no evidence of
532 transposon mobilization upon mammalian passage. *C. neoformans* replicates within
533 macrophages *in vivo* (54), and internalized fungal cells are exposed to oxygen- and
534 nitrogen-derived radicals that can be mutagenic (55). A recent study of *C. albicans* during
535 *in vitro* and *in vivo* passage suggested a higher mutation rate *in vivo* (56). The fact that
536 mammalian infection may select for specific genetic changes in *C. neoformans* suggests
537 that those microbes capable of prolonged residence in hostile environments such as

538 human hosts can acquire genetic changes, such that the capacity for virulence could
539 provide a shortcut to greater genetic variation.

540

541 Our observation that human and mouse passage was associated with the emergence of
542 genetically different variants has important implications for the understanding of *C.*
543 *neoformans* genomics, virulence, and pathogenesis. Furthermore, the finding that
544 passage of an environmental strain of *C. neoformans* through humans and mice resulted
545 in genetic changes suggests that clinical strains may have been modified by residence in
546 human hosts, where they are exposed to higher constant temperature and must survive
547 attack by the immune system. However, these changes did not confer increased resistance
548 to amoeba, in contrast with previous findings that the passage of environmental isolates
549 in amoebae results in both genetic changes and the emergence of pleiotropic phenotypes
550 (57). Since *Entamoeba* spp. and slime molds can occur in bird feces (58, 59), the CU strain
551 may already be maximally resistant to amoeba predation. Comparison of genomic
552 changes in mammalian and amoeba passaged *Cryptococcus* revealed no obvious
553 commonalities, consistent with the notion that even whilst these hosts provide similar
554 challenges to *C. neoformans*, such as surviving phagocytosis and phagosome residence,
555 they constitute different selective environments. Overall, these results indicate that the
556 cryptococcal genome is highly malleable such that genetic changes can accumulate
557 rapidly.

558

559 Comparison of clinical and environmental isolates for genomic differences such as the
560 ones found in this study revealed multiple instances of frameshift variants in both
561 CNAG_00342 and CNAG_05940 in clinical and environmental isolates spanning
562 lineages VNI, VNII, and VNB (34). How these genetic changes affect virulence and
563 pathogenesis is a question for future studies. In this regard, a comparison of the virulence
564 of 10 clinical and 11 environmental *C. neoformans* isolates in mice revealed that 7 clinical
565 isolates and only 1 environmental isolate caused lethal infection (60). Considering these
566 results in the light of our findings suggest that the clinical strains in that study were
567 perhaps more virulent because of genetic changes that occurred or were selected for by
568 human passage.

569

570 The comparison of *C. neoformans* characteristics associated with virulence among
571 cockatoo, patient, and mouse passaged isolates in this study revealed subtle phenotypic
572 changes. There were differences in average capsule size between isolates recovered from
573 mouse lung and brain, but NMR analysis of the major polysaccharide component revealed
574 no major changes. The finding of organ related differences in capsule size is consistent
575 with prior reports (61). However, the finding that the GXM structure was unchanged
576 contrasted with the prior observation that serial clinical isolates from patients with
577 persistent infection manifested changes in the polysaccharide structure (41), suggesting
578 that for the CU strain studied here the polysaccharide structure was more stable. The
579 major difference in the polysaccharide structures involved the extent of acetylation, with
580 the CPB isolate having more than others. No major differences were observed in urease
581 expression, but the mouse-passaged brain isolates manifested faster melanization.
582 Despite melanin variability across the CPL isolates, we did not see genetic variation within
583 genes known to be involved in melanization in these isolates. Similarly, mouse-passaged
584 isolates and patient strains grew better at higher temperatures than the cockatoo strain
585 possibly reflecting a period of adaptation to thermal mammalian conditions. In general,
586 there were no major changes in phenotypes associated with virulence during mammalian
587 passage consistent with the notion that these attributes exist primarily for environmental
588 survival and only accidentally confer upon *C. neoformans* the capacity for mammalian
589 virulence. Nevertheless, we do note that the mouse passaged isolates recovered from
590 brain tissue manifested faster growth, higher melanization, increased rates of non-lytic
591 escape, and killed moth larvae faster, consistent with a relative gain in virulence during
592 animal passage. These inter-strain and -isolate phenotypic differences highlight the
593 tremendous variation apparent in closely related *C. neoformans* strains, a phenomenon
594 that contributes to virulence (62) and is also apparent in pleiotropic variants generated
595 by amoeba predation (57) and phenotypic switching (63).

596

597 We note with interest that the mouse passaged isolates recovered from brain tissue (CPB)
598 were more resistant to thermal stress. Since the mouse passaged isolates recovered from
599 lung tissue (CPL) did not show this phenotype we cannot attribute this to simple thermal
600 adaptation to mammalian temperatures. Furthermore, the comparison of genetic
601 variants between CPB and CPL isolates did not reveal genetic changes that are known to

602 confer increased thermal stability. Consequently, the most likely explanation for
603 increased thermal tolerance in CPB isolates is epigenetic change, possibly associated with
604 altered metabolic states, which may allow for greater survival during rapid heating. Brain
605 and lung environments are expected to differ in catecholamine concentrations (64) and
606 inflammatory responses (65-67). Although a mechanistic investigation of this
607 phenomenon is beyond the scope of this paper, we note that if this phenomenon occurs
608 in nature, it could provide environmental fungi capable of mammalian infection with a
609 mechanism for rapid thermal adaptation that could increase their fitness during climate
610 change. This in turn raises the specter that fungi capable of mammalian infection could
611 increase in prevalence with warming climates.

612

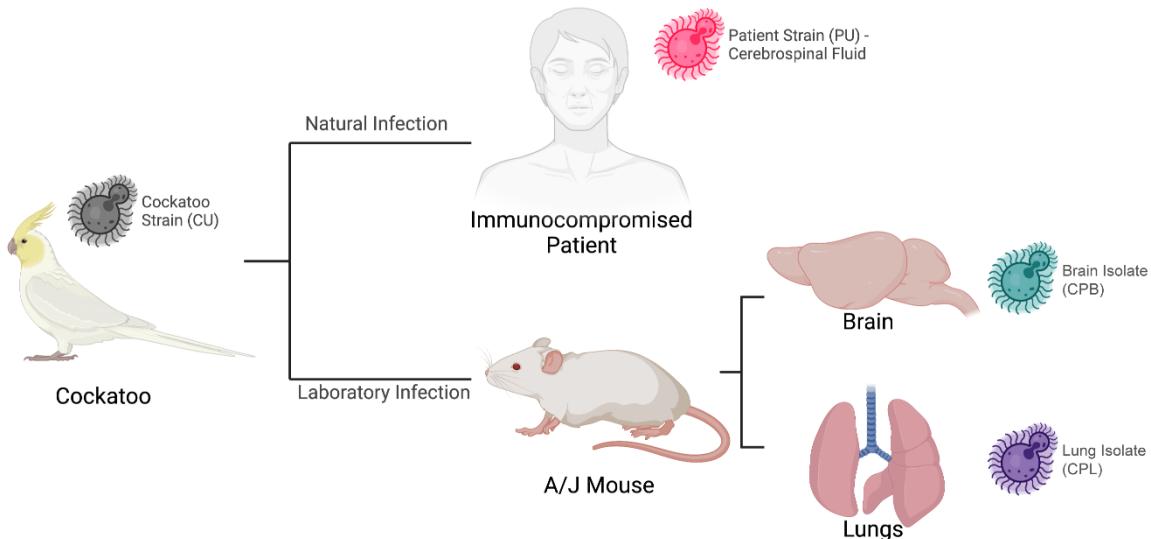
613 In summary, genomic analysis of cockatoo, human, and mouse passaged isolates strongly
614 supports our earlier inference that human infection resulted from exposure to a pet
615 cockatoo. In this study, the comparison of cryptococcal genomes of the incident bird and
616 patient strains with mouse-passaged isolates revealed the occurrence of common genetic
617 changes during mammalian passage. Previously we showed that passage of *C. neoformans*
618 in mice promotes the appearance of new electrophoretic karyotypes (69).
619 Similarly, in the ascomycete *C. albicans*, infection was associated with larger changes in
620 heterozygosity during murine passage (56) and human infection (70) than occur in vitro.
621 The capacity for virulence in pathogenic microbial species is not without cost as evident
622 by genome reduction and host specialization (71). The finding that mammalian infection
623 promotes genomic changes in both *C. neoformans* and *C. albicans* suggests that the
624 capacity for virulence can provide a mechanism for more rapid evolutionary change
625 through selection and adaptation in the mammalian host, which brings new parameters
626 for consideration when evaluating the cost-benefit equation for mammalian virulence in
627 pathogenic fungi.

628 **Table 1.** Genes with nonsynonymous variants between patient (PU) and cockatoo (CU)
629 strains.

CU(VNII) Gene	H99 (VNI) Homolog	Variant (CU>PU)	Function
LQVO5_000317	CNAG_00342	270C>G	KOG: SWI-SNF chromatin-remodeling complex protein
LQVO5_001277	CNAG_05000	1835T>C	EC: Exo-alpha-sialidase
LQVO5_004692	CNAG_05713	194C>G	RNA Polymerase II elongator complex protein 1
LQVO5_005253	CNAG_02201	448C>G	KOG: Serine/threonine protein kinase
LQVO5_005443	CNAG_03102	122C>T	Hypothetical Protein
LQVO5_006755	CNAG_01999	34C>T	KOG: Alpha SNAP protein, membrane fusion
LQVO5_002184	CNAG_06273	217C>A 223C>T	Pfam: Ribosome biogenesis regulatory protein (RRS1)

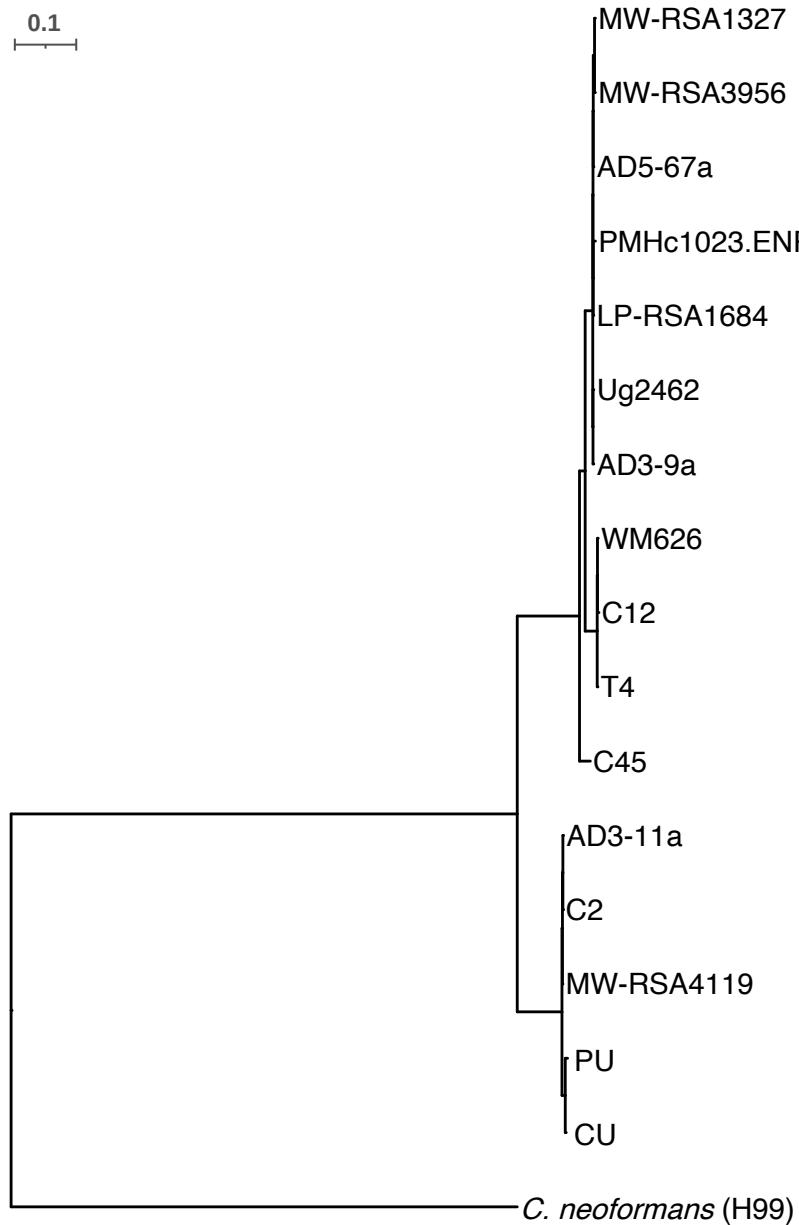
630

631 **Table 2.** Variants in patient strain (PU) and mouse evolved isolates (CPB, CPL).


VNII Gene	CNAG	Variant Type	CNAG Function	Desjardins collection(34)	Sample	Lineage ¹	Variant type	Source
LQVO5_000317	00342	Frameshift (270delC)	KOG: SWI-SNF chromatin-remodeling complex protein	3	VNI(1), VNII(1), VNB(1)	Frameshift	Clinical	
LQVO5_004463	05940	Premature stop codon lost (639A>T)	Pfam: ZFC3, Zinc finger, C2H2 type	24	VNI(5), VNB(19)	Frameshift	Clinical(50%) Environmental (50%)	

632 ¹ Strain frequency for each lineage is listed in parentheses.

633 **Table 3.** Metadata from RNAseq datasets, only including Log2FC values with $P < 0.05$.

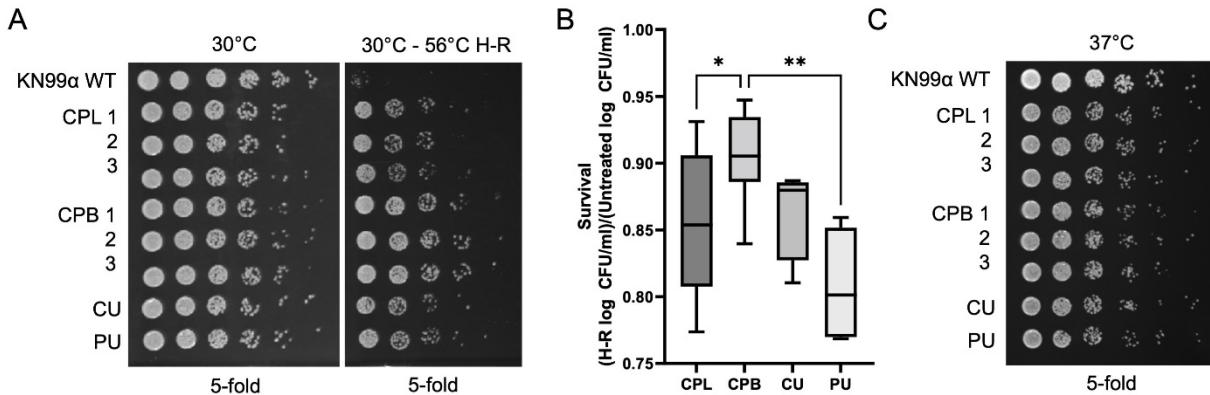

Reference PMID¹	Strain	Conditions	Duration	CNAG_00342 Log₂FC	CNAG_05940 Log₂FC
31666517	H99	37 °C, YPD	1 h	-	-
28376087	H99	37 °C, YPD	2 h	0.91	-
24743168	H99	37 °C, YPD	Grown at 37 °C until stationary	-	-
31860441_CSF	H99	Rabbit CSF	24 h	2.76	2.50
31860441	H99	37 °C, 5%, CO ₂ , Macrophage	24 h	6.30	4.40
22174677	H99	37 °C, 5% CO ₂ , DMEM	1.5 h	-	-
27094327	KN99α	37 °C, 5% CO ₂ , DMEM	1.5 h	-	-1.14
27094327_TM	KN99α	37 °C, 5% CO ₂ , DMEM	1.5, 3, 8, 24 h	0.37	-0.57
33688010	KN99α	37 °C, 5% CO ₂ , DMEM	24 h	-4.75	-3.23

634
635 ¹Dataset 31860441_CSF indicates analysis of *C. neoformans* samples from cerebrospinal
636 fluid *in vivo* infections, opposed to cryptococcal samples incubated in the described
637 conditions *in vitro*. Dataset 27094327_TM indicates analysis of an array of timepoints as
638 a time course model, opposed to analysis of a single time point closest to the other
639 datasets for consistency.
640

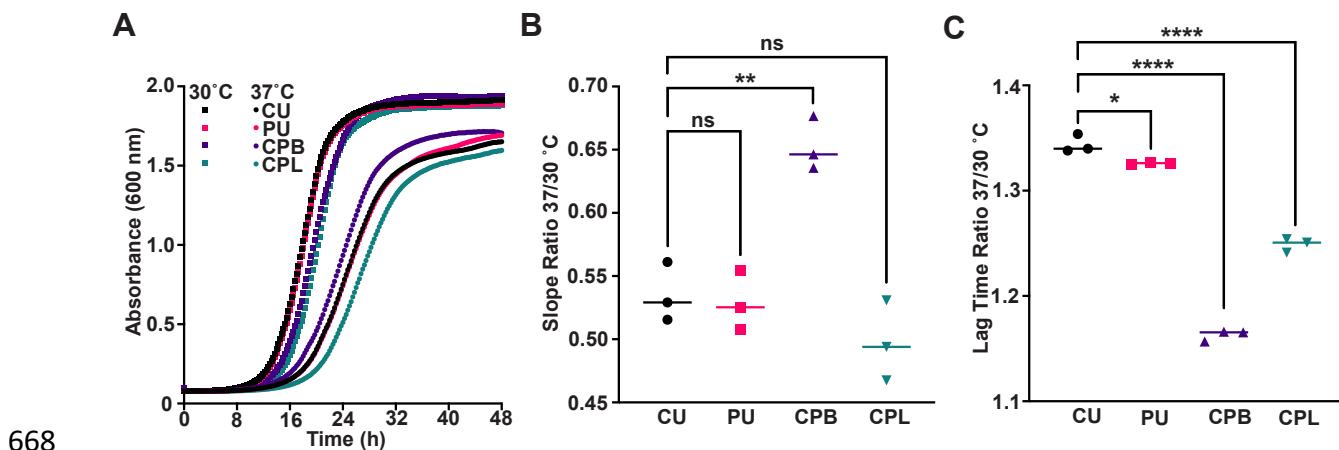
641
642
643
644
645
646
647
648

Figure 1. Passaging scheme and relationship between the *C. neoformans* strains and isolates. The cockatoo and patient strains had been kept frozen since the prior study was completed in 2000 (7). These are distinguished in that they were not passaged and are labelled cockatoo (CU) and patient (PU) where the U stands for unpassaged. The mouse passaged isolates come from a laboratory infection and are labelled CPB and CPL for cockatoo passaged brain and cockatoo passaged lung, respectively, to denote the mouse organ from where they were recovered.

649


650

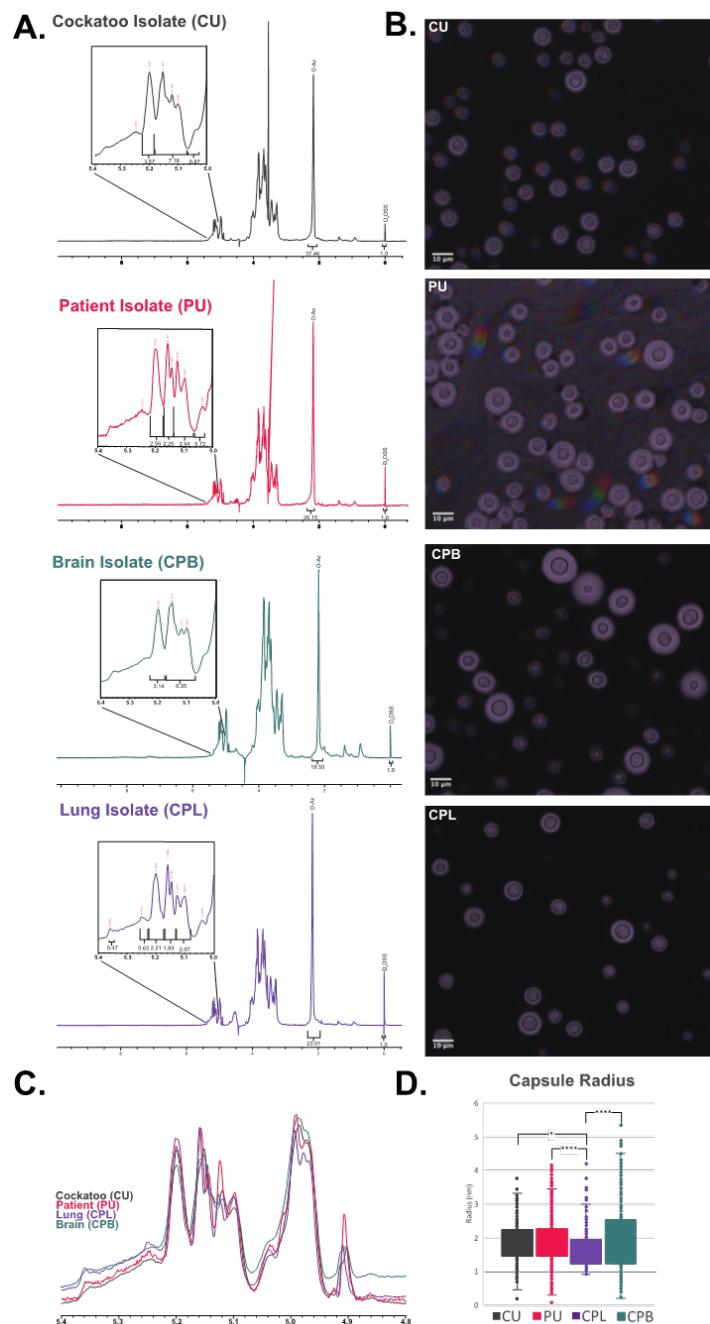
651

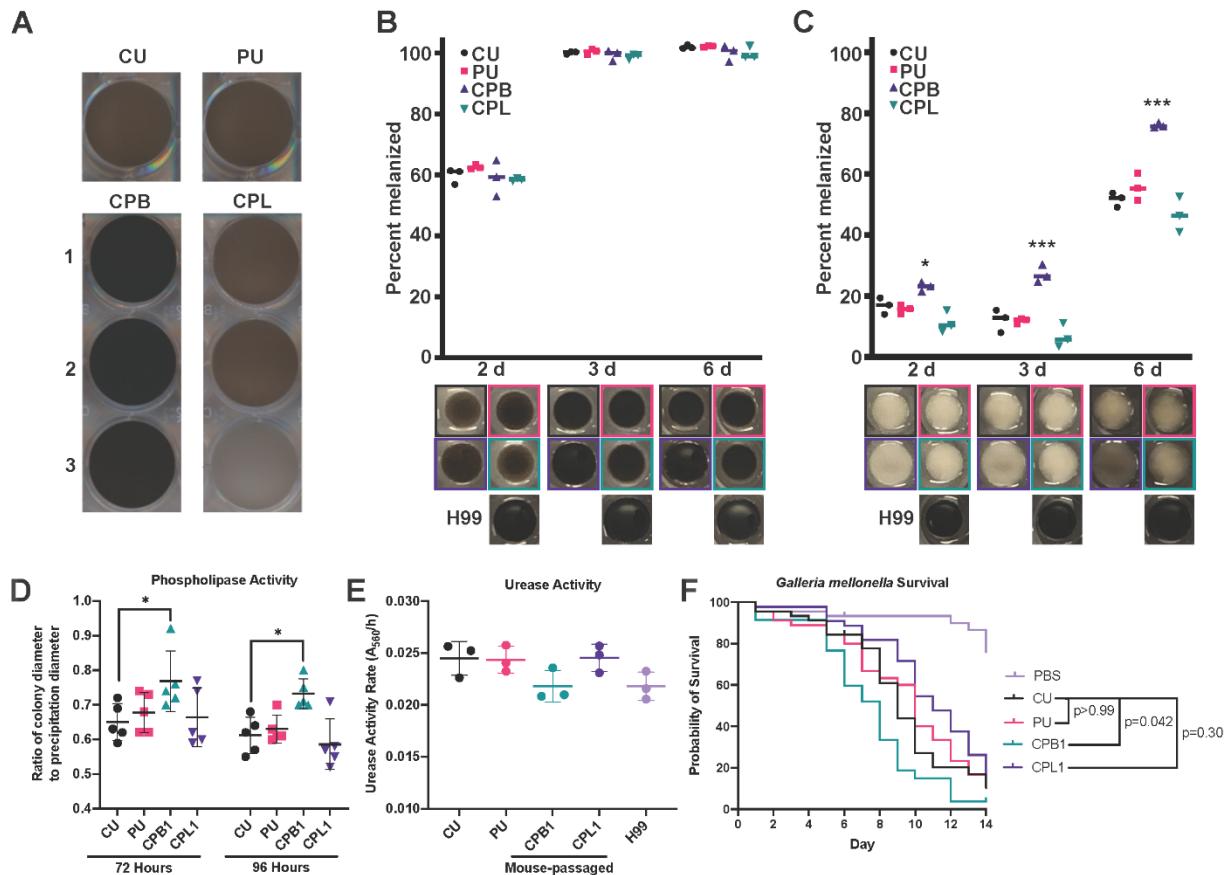

652

653

Figure 2. VNII phylogeny. SNP based maximum likelihood phylogeny for PU, CU and VNII strains rooted to the *C. neoformans* reference strain H99. Illumina reads for the VNII strains shown were aligned to the *C. neoformans* H99 reference genome to identify SNPs across the genome, which were used to infer a phylogeny with RAxML.

654
655
656 **Figure 3.** Heat ramp experiments to evaluate thermal survival of the various *C.*
657 *neoformans* strains and isolates. The cockatoo passage brain isolates (CPB) recovered
658 from mice infected with the cockatoo strain (CU) were more resistant to cell death when
659 compared to lung isolates (CPL) or to the original cockatoo (CU) and patient strains (PU).
660 (A) Survival after a cell death stimulus [10 min linear 30° to 56°C heat-ramp (H-R)] was
661 determined by CFU on SAB agar plates incubated 2 days at 30°C. (B) Quantification for
662 A calculated as the ratio of log 10 CFU/ml of heat-ramp treated to untreated from four
663 independent experiments. Ordinary one-way ANOVA with Tukey's multiple comparisons
664 test, *p = 0.0139 **p = 0.0012. (C) Growth of the same isolates (no heat-ramp) spotted
665 on SAB and incubated for 2 days at 37°C, representative of two independent experiments;
666 no differences between isolates were detected.
667

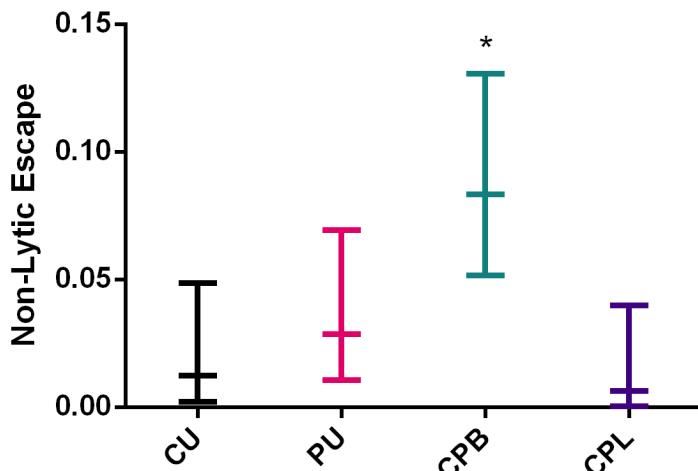



668
669
670

671 **Figure 4. Comparison of *C. neoformans* cockatoo, human, and mouse-
672 passaged derivatives growth at 30 °C and 37°C.** (A) Growth curves of *C.
673 neoformans* strains cultured in Sabouraud dextrose broth at the indicated temperatures
674 plotted as the mean of three biological replicates. (B) Comparison of growth rates at the
675 two temperatures expressed as a ratio of linear phase slopes indicates a significant growth
676 advantage at 37°C for the mouse-passaged brain isolate compared to the other strains and
677 isolates. (C) Both the patient strain and mouse-derived isolates show a significant
678 decrease in the length of lag time at 37°C compared to 30°C. Statistical significance was
679 determined using an ordinary one-way ANOVA (ns = not significant, *p < 0.05, **p <
680 0.01, ***p < 0.001, ****p < 0.0001).

681

682



692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

Figure 6. Changes in virulence factor activity associated with passaging the cockatoo strain in mice. (A) Melanization is greatly enhanced in the CPB isolates after growth at 30 °C for 5 days. There are no major differences in melanization between the PU strain or CPL isolates, which generally show melanization consistent with the parental strain (CU). (B-C) Scatter plot graphs (upper panel) and representative images (lower panels) of pigment production expressed as a percentage of the H99 reference strain for the cockatoo (CU) and human (PU) strains, and mouse-passaged brain (CPB) and lung (CPB) isolates grown for the indicated amount of time on L-DOPA-agar at either 30 °C (B) or 37 °C (C). Compared to the original cockatoo strain, only the mouse-derived brain isolate shows a significant increase in pigmentation at 37 °C. (D) *C. neoformans* were inoculated onto egg yolk agar and incubated at 30C. After 72h and 96h of incubation phospholipase production was analyzed by measuring the ratio of colony diameter to precipitate + colony diameter on the plate, where a ratio value equal to 1.0 indicates a lack of phospholipase activity. (E) Time course of urease activity for the indicated strains of *C. neoformans* grown at 30 °C in urea broth. Increased pH of culture media that results from the conversion of urea to ammonium was quantified by measuring the absorbance of cell culture media at 560 nm relative to a cell-free control. Urease activity rates were not statistically different between strains. (F) There is no statistical difference in virulence between the CU and PU strains in the *G. mellonella* model system. However, the CPB1 isolate from the mouse had significantly enhanced virulence when compared to the parental CU strain. Log-rank Mantel-Cox test was

714 performed using GraphPad PRISM and corrected for multiple comparisons using the
715 Bonferroni method.
716

717
718 **Figure 7. Non-Lytic escape frequency of each strain during BMDM infection.**
719 CPB was the only isolate with a significantly increased frequency of non-lytic escape
720 compared to the original CU strain. * Indicates $P < 0.05$ via a test of equal proportions
721 with Bonferroni correction.
722

723 **References**

724

725 1. Casadevall A, and Perfect JR. *Cryptococcus neoformans*. Washington, DC: American
726 Society for Microbiology; 1998.

727 2. Goldman DL, Khine H, Abadi J, Lindenberg DJ, Pirofski L, Niang R, and Casadevall A. Serologic evidence for *Cryptococcus* infection in early childhood. *Pediatrics*.
728 2001;107(E66).

729 3. Alanio A. Fungal latency. *J Clin Invest*. 2020;in press(

730 4. Currie BP, Freundlich LF, and Casadevall A. Restriction fragment length polymorphism
731 analysis of *Cryptococcus neoformans* isolates from environmental (pigeon excreta) and
732 clinical isolates in New York City. *J Clin Microbiol*. 1994;32(1188-92).

733 5. Alanio A. Dormancy in *Cryptococcus neoformans*: 60 years of accumulating evidence. *The
734 Journal of clinical investigation*. 2020;130(7):3353-60.

735 6. Farrer RA, Borman AM, Inkster T, Fisher MC, Johnson EM, and Cuomo CA. Genomic
736 epidemiology of a *Cryptococcus neoformans* case cluster in Glasgow, Scotland, 2018.
737 *Microbial genomics*. 2021;7(3).

738 7. Nosanchuk JD, Shoham S, Fries BC, Shapiro DS, Levitz SM, and Casadevall A. Evidence
739 for zoonotic transmission of *Cryptococcus neoformans* from a pet cockatoo to an
740 immunocompromised patient. *Ann Intern Med*. 2000;132(205-8).

741 8. Littman ML, and Schneier SS. *Cryptococcus neoformans* in pigeon excreta in New
742 York City. *Am J Hyg*. 1959;69(49-59).

743 9. Kielstein P, Hotzel H, Schmalreck A, Khaschabi D, and Glawischnig W. Occurrence of
744 *Cryptococcus* spp. in excreta of pigeons and pet birds. *Mycoses*. 2000;43(1-2):7-15.

745 10. Shrestha RK, Stoller JK, Honari G, Procop GW, and Gordon SM. Pneumonia due to
746 *Cryptococcus neoformans* in a patient receiving infliximab: possible zoonotic transmission
747 from a pet cockatiel. *Respir Care*. 2004;49(6):606-8.

748 11. Vanstraelen K, Lagrou K, Maertens J, Wauters J, Willems L, and Spiet I. The Eagle-like
749 effect of echinocandins: what's in a name? *Expert review of anti-infective therapy*.
750 2013;11(11):1179-91.

751 12. Cuomo CA, Rhodes J, and Desjardins CA. Advances in *Cryptococcus* genomics: insights
752 into the evolution of pathogenesis. *Memorias do Instituto Oswaldo Cruz*.
753 2018;113(7):e170473.

754 13. Dragotakes Q, and Casadevall A. Automated Measurement of Cryptococcal Species
755 Polysaccharide Capsule and Cell Body. *Journal of visualized experiments : JoVE*.
756 2018131).

757 14. Velegraki A, Kambouris M, Kostourou A, Chalevelakis G, and Legakis NJ. Rapid
758 extraction of fungal DNA from clinical samples for PCR amplification. *Med Mycol*.
759 1999;37(1):69-73.

760 15. Fisher S, Barry A, Abreu J, Minie B, Nolan J, Delorey TM, Young G, Fennell TJ, Allen
761 A, Ambrogio L, et al. A scalable, fully automated process for construction of sequence-
762 ready human exome targeted capture libraries. *Genome Biol*. 2011;12(1):R1.

763 16. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, and Phillippy AM. Canu: scalable
764 and accurate long-read assembly via adaptive k-mer weighting and repeat separation.
765 *Genome Res*. 2017;27(5):722-36.

766

767 17. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q,
768 Wortman J, Young SK, et al. Pilon: an integrated tool for comprehensive microbial variant
769 detection and genome assembly improvement. *PLoS One*. 2014;9(11):e112963.

770 18. Delcher AL, Phillippy A, Carlton J, and Salzberg SL. Fast algorithms for large-scale
771 genome alignment and comparison. *Nucleic Acids Res*. 2002;30(11):2478-83.

772 19. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
773 *arXiv preprint arXiv:13033997*. 2013.

774 20. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, and Ruden
775 DM. A program for annotating and predicting the effects of single nucleotide
776 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118;
777 iso-2; iso-3. *Fly*. 2012;6(2):80-92.

778 21. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
779 phylogenies. *Bioinformatics (Oxford, England)*. 2014;30(9):1312-3.

780 22. Yu G, Smith DK, Zhu H, Guan Y, and Lam TTY. ggtree: an R package for visualization
781 and annotation of phylogenetic trees with their covariates and other associated data.
782 *Methods in Ecology and Evolution*. 2017;8(1):28-36.

783 23. Abyzov A, Urban AE, Snyder M, and Gerstein M. CNVnator: an approach to discover,
784 genotype, and characterize typical and atypical CNVs from family and population genome
785 sequencing. *Genome Res*. 2011;21(6):974-84.

786 24. Roberts GD, Horstmeier CD, Land GA, and Foxworth JH. Rapid urea broth test for yeasts.
787 *Journal of clinical microbiology*. 1978;7(6):584-8.

788 25. Chen SCA, Muller M, Zhou JZ, Wright L, and Sorrell TC. Phospholipase activity in
789 *Cryptococcus neoformans*: a new virulence factor? *J Infect Dis*. 1997;175(414-20).

790 26. Malliaris SD, Steenbergen JN, and Casadevall A. *Cryptococcus neoformans* var. *gattii* can
791 exploit *Acanthamoeba castellanii* for growth. *Med Mycol*. 2004;42(149-58).

792 27. Langmead B, and Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nature
793 methods*. 2012;9(4):357-9.

794 28. Anders S, Pyl PT, and Huber W. HTSeq--a Python framework to work with high-
795 throughput sequencing data. *Bioinformatics (Oxford, England)*. 2015;31(2):166-9.

796 29. Love MI, Huber W, and Anders S. Moderated estimation of fold change and dispersion for
797 RNA-seq data with DESeq2. *Genome Biol*. 2014;15(12):550.

798 30. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K,
799 Bates R, Žídek A, Potapenko A, et al. Highly accurate protein structure prediction with
800 AlphaFold. *Nature*. 2021;596(7873):583-9.

801 31. Mészáros B, Erdos G, and Dosztányi Z. IUPred2A: context-dependent prediction of protein
802 disorder as a function of redox state and protein binding. *Nucleic Acids Res*.
803 2018;46(W1):W329-w37.

804 32. Hamby SE, and Hirst JD. Prediction of glycosylation sites using random forests. *BMC
805 bioinformatics*. 2008;9(500).

806 33. Janbon G, Ormerod KL, Paulet D, Byrnes EJ, 3rd, Yadav V, Chatterjee G, Mullapudi N,
807 Hon CC, Billmyre RB, Brunel F, et al. Analysis of the genome and transcriptome of
808 *Cryptococcus neoformans* var. *grubii* reveals complex RNA expression and
809 microevolution leading to virulence attenuation. *PLoS genetics*. 2014;10(4):e1004261.

810 34. Desjardins CA, Giamberardino C, Sykes SM, Yu CH, Tenor JL, Chen Y, Yang T, Jones
811 AM, Sun S, Haverkamp MR, et al. Population genomics and the evolution of virulence in
812 the fungal pathogen *Cryptococcus neoformans*. *Genome Res*. 2017;27(7):1207-19.

813 35. Trevijano-Contador N, de Oliveira HC, Garcia-Rodas R, Rossi SA, Llorente I, Zaballos A,
814 Janbon G, Arino J, and Zaragoza O. *Cryptococcus neoformans* can form titan-like cells in
815 vitro in response to multiple signals. *PLoS Pathog.* 2018;14(5):e1007007.

816 36. Li H, Li Y, Sun T, Du W, Li C, Suo C, Meng Y, Liang Q, Lan T, Zhong M, et al. Unveil
817 the transcriptional landscape at the *Cryptococcus*-host axis in mice and nonhuman
818 primates. *PLoS neglected tropical diseases.* 2019;13(7):e0007566.

819 37. Jung KW, Yang DH, Maeng S, Lee KT, So YS, Hong J, Choi J, Byun HJ, Kim H, Bang S,
820 et al. Systematic functional profiling of transcription factor networks in *Cryptococcus*
821 *neoformans*. *Nature communications.* 2015;6(6757).

822 38. Homer CM, Summers DK, Goranov AI, Clarke SC, Wiesner DL, Diedrich JK, Moresco
823 JJ, Toffaletti D, Upadhyay R, Caradonna I, et al. Intracellular Action of a Secreted Peptide
824 Required for Fungal Virulence. *Cell host & microbe.* 2016;19(6):849-64.

825 39. Teng X, Cheng WC, Qi B, Yu TX, Ramachandran K, Boersma MD, Hattier T, Lehmann
826 PV, Pineda FJ, and Hardwick JM. Gene-dependent cell death in yeast. *Cell death &*
827 *disease.* 2011;2(8):e188.

828 40. Stolp ZD, Kulkarni M, Liu Y, Zhu C, Jalisi A, Lin S, Casadevall A, Cunningham KW,
829 Pineda FJ, Teng X, et al. Gene-dependent yeast cell death pathway requires AP-3 vesicle
830 trafficking leading to vacuole membrane permeabilization. *bioRxiv.*
831 2021:2021.08.02.454728.

832 41. Cherniak R, Morris LC, Belay T, Spitzer ED, and Casadevall A. Variation in the structure
833 of glucuronoxylomannan in isolates from patients with recurrent cryptococcal meningitis.
834 *Infect Immun.* 1995;63(1899-905.

835 42. Cherniak R, Valafar H, Morris LC, and Valafar F. *Cryptococcus neoformans* chemotyping
836 by quantitative analysis of ¹H NMR spectra of glucuronoxylomannans using a computer
837 simulated artificial neural network. *Clin Diagn Lab Immunol.* 1998;5(146-59.

838 43. Alvarez M, and Casadevall A. Phagosome fusion and extrusion, and host cell survival
839 following *Cryptococcus neoformans* phagocytosis by macrophages. *Current Biology.*
840 2006;16(2161-5.

841 44. Ma H, Croudace JE, Lammas DA, and May RC. Expulsion of live pathogenic yeast by
842 macrophages. *Curr Biol.* 2006;16(21):2156-60.

843 45. Fu MS, and Casadevall A. Divalent metal cations potentiate the predatory capacity of
844 amoeba for *Cryptococcus neoformans*. *Appl Environ Microbiol.* 2017.

845 46. Marietto-Gonçalves GA, and Grandi F. Are all psittacine birds carriers of *Cryptococcus*
846 *neoformans*? *Memorias do Instituto Oswaldo Cruz.* 2011;106(6):781; author reply -2.

847 47. Nosanchuk JD, Mednick A, Shi L, and Casadevall A. Experimental murine cryptococcal
848 infection results in contamination of bedding with *Cryptococcus neoformans*.
849 *Contemporary topics in laboratory animal science.* 2003;42(4):9-12.

850 48. Lin J, Zhao Y, Ferraro AR, Yang E, Lewis ZA, and Lin X. Transcription factor Znf2
851 coordinates with the chromatin remodeling SWI/SNF complex to regulate cryptococcal
852 cellular differentiation. *Communications biology.* 2019;2(412).

853 49. Jian Y, Liu Z, Wang H, Chen Y, Yin Y, Zhao Y, and Ma Z. Interplay of two transcription
854 factors for recruitment of the chromatin remodeling complex modulates fungal nitrosative
855 stress response. *Nature communications.* 2021;12(1):2576.

856 50. Yu CH, Chen Y, Desjardins CA, Tenor JL, Toffaletti DL, Giamberardino C, Litvintseva
857 A, Perfect JR, and Cuomo CA. Landscape of gene expression variation of natural isolates

858 of *Cryptococcus neoformans* in response to biologically relevant stresses. *Microbial*
859 *genomics*. 2020;6(1).

860 51. Yu CH, Sephton-Clark P, Tenor JL, Toffaletti DL, Giamberardino C, Haverkamp M,
861 Cuomo CA, and Perfect JR. Gene Expression of Diverse *Cryptococcus* Isolates during
862 Infection of the Human Central Nervous System. *mBio*. 2021;12(6):e0231321.

863 52. Chen Y, Farrer RA, Giamberardino C, Sakthikumar S, Jones A, Yang T, Tenor JL, Wagih
864 O, Van Wyk M, Govender NP, et al. Microevolution of Serial Clinical Isolates of
865 *Cryptococcus neoformans* var. *grubii* and *C. gattii*. *MBio*. 2017;8(2).

866 53. Gusa A, Williams JD, Cho JE, Averette AF, Sun S, Shouse EM, Heitman J, Alspaugh JA,
867 and Jinks-Robertson S. Transposon mobilization in the human fungal pathogen
868 *Cryptococcus* is mutagenic during infection and promotes drug resistance in vitro.
869 *Proceedings of the National Academy of Sciences of the United States of America*.
870 2020;117(18):9973-80.

871 54. Feldmesser M, Kress Y, Novikoff P, and Casadevall A. *Cryptococcus neoformans* is a
872 facultative intracellular pathogen in murine pulmonary infection. *Infect Immun*.
873 2000;68(7):4225-37.

874 55. Wiseman H, and Halliwell B. Damage to DNA by reactive oxygen and nitrogen species:
875 role in inflammatory disease and progression to cancer. *The Biochemical journal*. 1996;313
876 (Pt 1)(Pt 1):17-29.

877 56. Ene IV, Farrer RA, Hirakawa MP, Agwamba K, Cuomo CA, and Bennett RJ. Global
878 analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen.
879 *Proceedings of the National Academy of Sciences of the United States of America*.
880 2018;115(37):E8688-e97.

881 57. Fu MS, Liporagi-Lopes LC, Dos Santos SRJ, Tenor JL, Perfect JR, Cuomo CA, and
882 Casadevall A. Amoeba Predation of *Cryptococcus neoformans* Results in Pleiotropic
883 Changes to Traits Associated with Virulence. *mBio*. 2021;12(2).

884 58. Martínez-Díaz R, Herrera S, Castro A, and Ponce F. Entamoeba sp.(sarcomastigophora:
885 Endamoebidae) from ostriches (*struthio camelus*)(Aves: Struthionidae). *Veterinary*
886 *Parasitology*. 2000;92(3):173-9.

887 59. Suthers HB. Ground-feeding migratory songbirds as cellular slime mold distribution
888 vectors. *Oecologia*. 1985;65(4):526-30.

889 60. Litvintseva AP, and Mitchell TG. Most environmental isolates of *Cryptococcus*
890 *neoformans* var. *grubii* (serotype A) are not lethal for mice. *Infect Immun*.
891 2009;77(8):3188-95.

892 61. Rivera J, Feldmesser M, Cammer M, and Casadevall A. Organ-dependent variation of
893 capsule thickness in *Cryptococcus neoformans* during experimental murine infection.
894 *Infect Immun*. 1998;66(5027-30).

895 62. Fernandes KE, Brockway A, Haverkamp M, Cuomo CA, van Ogtrop F, Perfect JR, and
896 Carter DA. Phenotypic Variability Correlates with Clinical Outcome in *Cryptococcus*
897 Isolates Obtained from Botswanan HIV/AIDS Patients. *mBio*. 2018;9(5).

898 63. Guerrero A, Jain N, Wang X, and Fries BC. *Cryptococcus neoformans* variants generated
899 by phenotypic switching differ in virulence through effects on macrophage activation.
900 *Infect Immun*. 2010;78(3):1049-57.

901 64. Polacheck I, Platt Y, and Aronovitch J. Catecholamines and virulence of *Cryptococcus*
902 *neoformans*. *Infect Immun*. 1990;58(2919-22).

903 65. Goldman D, Lee SC, and Casadevall A. Pathogenesis of pulmonary *Cryptococcus*
904 *neoformans* infection in the rat. *Infect Immun.* 1994;62(4755-61).

905 66. Goldman DL, Casadevall A, Cho Y, and Lee SC. *Cryptococcus neoformans* meningitis in
906 the rat. *Lab Invest.* 1996;75(759-70).

907 67. Huffnagle GB, Yates JL, and Lipscomb MF. Immunity to pulmonary *Cryptococcus*
908 *neoformans* infection requires both CD4+ and CD8+ T cells. *J Exp Med.* 1991;173(793-
909 800).

910 68. Lagrou K, Van Eldere J, Keuleers S, Hagen F, Merckx R, Verhaegen J, Peetermans WE,
911 and Boekhout T. Zoonotic transmission of *Cryptococcus neoformans* from a magpie to an
912 immunocompetent patient. *Journal of internal medicine.* 2005;257(4):385-8.

913 69. Fries BC, Chen F, Currie BP, and Casadevall A. Karyotype instability in *Cryptococcus*
914 *neoformans* infection. *J Clin Microbiol.* 1996;34(1531-4).

915 70. Forche A, Cromie G, Gerstein AC, Solis NV, Pisithkul T, Srifa W, Jeffery E, Abbey D,
916 Filler SG, Dudley AM, et al. Rapid Phenotypic and Genotypic Diversification After
917 Exposure to the Oral Host Niche in *Candida albicans*. *Genetics.* 2018;209(3):725-41.

918 71. Casadevall A, and Pirofski LA. Benefits and Costs of Animal Virulence for Microbes.
919 *mBio.* 2019;10(3).

920