

1 **Spatial Models of Pattern Formation During Phagocytosis**

2 J. Cody Herron^{1,2}, Shiqiong Hu³, Bei Liu³, Takashi Watanabe^{3,4}, Klaus M. Hahn^{2,3}, Timothy C.

3 Elston^{1-3 *}

4

5 1 Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel

6 Hill, Chapel Hill, NC, USA

7 2 Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC,

8 USA

9 3 Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,

10 Chapel Hill, NC, USA

11 4 Current address: Cancer Center Division of Gene Regulation, Fujita Health University,

12 Toyoake, Japan

13 * Address correspondence to TCE (telston@med.unc.edu)

14

15

16

17

18

19

20

21

22

23 **Abstract**

24 Phagocytosis, the biological process in which cells ingest large particles such as bacteria,
25 is a key component of the innate immune response. Fc γ receptor (Fc γ R)-mediated phagocytosis
26 is initiated when these receptors are activated after binding immunoglobulin G (IgG). Receptor
27 activation initiates a signaling cascade that leads to the formation of the phagocytic cup and
28 culminates with ingestion of the foreign particle. In the experimental system termed
29 “frustrated phagocytosis”, cells attempt to internalize micropatterned disks of IgG. Cells that
30 engage in frustrated phagocytosis form “rosettes” of actin-enriched structures called
31 podosomes around the IgG disk. The mechanism that generates the rosette pattern is
32 unknown. We present data that supports the involvement of Cdc42, a member of the Rho
33 family of GTPases, in pattern formation. Cdc42 acts downstream of receptor activation,
34 upstream of actin polymerization, and is known to play a role in polarity establishment.
35 Reaction-diffusion models for GTPase spatiotemporal dynamics exist. We demonstrate how the
36 addition of negative feedback and minor changes to these models can generate the
37 experimentally observed rosette pattern of podosomes. We show that this pattern formation
38 can occur through two general mechanisms. In the first mechanism, an intermediate species
39 forms a ring of high activity around the IgG disk, which then promotes rosette organization. The
40 second mechanism does not require initial ring formation but relies on spatial gradients of
41 intermediate chemical species that are selectively activated over the IgG patch. Finally, we
42 analyze the models to suggest experiments to test their validity.

43

44

45 **Author Summary**

46 Phagocytosis, the process by which cells ingest foreign bodies, plays an important role in
47 innate immunity. Phagocytosis is initiated when antibodies coating the surface of a foreign
48 body are recognized by immune cells, such as macrophages. To study early events in
49 phagocytosis, we used “frustrated phagocytosis”, an experimental system in which antibodies
50 are micropatterned in disks on a cover slip. The cytoskeleton of cells attempting to phagocytose
51 these disks organizes into “rosette” patterns around the disks. To investigate mechanisms that
52 underlie rosette formation we turned to mathematical modeling based on reaction-diffusion
53 equations. Building on existing models for polarity establishment, our analysis revealed two
54 mechanisms for rosette formation. In the first scenario an initial ring of an intermediate
55 signaling molecule forms around the disk, while in the second scenario rosette formation is
56 driven by gradients of positive and negative pathway regulators that are activated over the
57 disk. Finally, we analyze our models to suggest experiments for testing these mechanisms.

58

59 **Introduction**

60 All cells must be able to respond to changes in their environment, and often the proper
61 response requires cells to adopt a new morphology. For example, cell shape changes occur
62 during migration, division, and phagocytosis. Typically, these changes are initiated when
63 receptors on the cell surface are activated by an external cue [1]. Receptor activation initiates a
64 signaling cascade that results in spatiotemporal regulation of the actin cytoskeleton. The Rho
65 family of GTPases are a class of signaling molecules that play key roles in this process [2]–[6].
66 These proteins act as molecular switches. They are in an inactive state when bound with GDP

67 and become active when GDP is exchanged for GTP. Once active, Rho GTPases interact with
68 effector molecules including those that regulate the actin cytoskeleton. Due to the nonlinear
69 nature of the signaling pathways that regulate GTPase activity, understanding the molecular
70 mechanisms that generate cell shape changes has proven challenging [1]. Therefore, many
71 recent studies have turned to mathematical modeling to explore mechanisms capable of
72 generating complex molecular structures [7]–[11].

73 Here we focus on Fc γ Receptor (Fc γ R)-mediated phagocytosis because of its biological
74 importance in the innate immune response [12], [13] and because phagocytosis provides an
75 outstanding system for studying how Rho GTPases organize the cytoskeleton into well-defined
76 structures. Phagocytosis is initiated by the binding of the antibody Immunoglobulin G (IgG) to
77 Fc γ R. Upon Fc γ R clustering, receptor cross-linking leads to phosphorylation of activation motif
78 domains, enabling downstream signaling [12]–[14]. To study the events that initiate
79 phagocytosis under well-controlled conditions, IgG is micropatterned in small disks on a glass
80 coverslip (Fig. 1A). Because the antibody is attached to the coverslip it cannot be internalized,
81 and the experimental system is therefore referred to as “frustrated” phagocytosis [15].
82 Following receptor activation, actin-enriched, adhesion-like structures termed podosomes [12],
83 [13], [16] form in a circle around the IgG disk (Fig. 1B,C). Podosomes recruit many additional
84 molecules and are thought to coordinate interactions between the actin cytoskeleton and the
85 extracellular matrix [16]–[18]. They also form the leading edge of the phagocytic cup [19], [20].
86 The mechanisms responsible for podosome formation and patterning are not known.
87 Therefore, we turned to mathematical modeling to establish sufficient conditions for pattern
88 formation during frustrated phagocytosis.

89 Beginning with Turing's seminal paper [21] and continuing with developments by Gierer
90 and Meinhardt [22] and Meinhardt [23], reaction-diffusion models have been used to
91 investigate pattern formation in biological systems. These models rely on positive feedback to
92 amplify local fluctuations in signaling activity and some form of global inhibition to keep regions
93 of high activity localized [22]. Another key requirement of these models is that at least one of
94 the chemical species in the system diffuses at a different rate from the others [21], [22]. The
95 hydrolysis cycle of GTPases satisfies the requirements for spontaneous polarization [7]–[10],
96 [24], [25]. GTPases cycle between an active state when GTP-bound and an inactive state when
97 GDP-bound. Their activation is catalyzed by guanine nucleotide exchange factors (GEFs), which
98 promote the exchange of GDP to GTP. This exchange typically occurs at the cell membrane
99 where diffusion is slow as compared to the cytosol [7], [8], [10], [25], [26]. When in the active
100 state, some GTPases have been shown to recruit their own GEFs forming a positive feedback
101 loop [24], [25], [27]–[30]. GTPase inactivation is accelerated by GTPase-activating proteins
102 (GAPs) [3]–[6]. When inactive, GTPases are sequestered in the cytosol by guanine nucleotide
103 dissociation inhibitors (GDIs) and diffuse rapidly [3]–[6].

104 There are now many reaction-diffusion models that describe how GTPases can generate
105 cell polarity and patterning in various systems [8]–[11]. One of the best characterized cases is in
106 yeast (*Saccharomyces cerevisiae*) budding, in which the GTPase Cdc42 generates a single, active
107 site to determine the location of a bud site or mating projection. In yeast, autocatalysis is well-
108 defined: active Cdc42 binds to the scaffold protein Bem1, which subsequently binds to the GEF
109 Cdc24 that locally activates more GTPase [24], [25], [27], [28]. Another well characterized
110 system is in single-cell wound healing, where Rho and Cdc42 form in distinct rings through the

111 dual GAP-GEF Abr [31], [32]. Other examples include tip growth in pollen tubes and fungal
112 hyphae [10] and cell motility [33], [34].

113 Here, we expanded upon existing reaction-diffusion models for GTPase activity to
114 demonstrate how these systems can generate the “rosette” pattern of podosomes observed
115 during frustrated phagocytosis. We explore the behavior of a recent model for GTPase activity
116 that includes a negative feedback loop formed through the activation of a GAP [8]–[11].

117 Depending on the choice of parameter values, this model generates a range of patterns
118 including spots, mazes, and inverse spots. We use the model to identify two distinct
119 mechanisms for generating a rosette pattern. In the first scenario, an intermediate species
120 forms a ring of activity that promotes the formation of active GTPase spots in the ring. Next, we
121 use a parameterization approach involving an evolutionary algorithm followed by Markov chain
122 Monte Carlo to evolve systems that do not rely on initial ring formation to generate the rosette
123 pattern. A common theme that emerges from this analysis is that rosette formation requires
124 the activation of both a positive and negative regulator of GTPase activity over the IgG disk. This
125 creates spatial gradients of these regulators, which in turn are sufficient to drive the formation
126 of the rosette pattern. Finally, we analyzed the behavior of the models to suggest experiments
127 to test our proposed mechanisms.

128

129 **Results**

130 **Experimental observations suggest Cdc42, but not myosin, is required for rosette patterning**

131 Macrophages (RAW 264.7 cells) were observed during frustrated Fcγ receptor IIa (FcγR)
132 mediated phagocytosis, where cells attempt to phagocytose fixed, micropatterned disks of

133 immunoglobulin G (IgG). Actin, a major downstream effector during Fc γ R-mediated phagocytic
134 signaling, formed in rings of small puncta, just outside of the IgG disks (Fig. 1A-C). These puncta
135 were podosomes: actin-rich, adhesion-like structures observed during phagocytosis but more
136 commonly known for their roles in motility and extracellular matrix interactions [16], [17]. This
137 superstructural organization of podosomes in a circular arrangement has previously been
138 termed a podosome “rosette” [35]–[37]. Due to the dynamic nature of phagocytosis,
139 actomyosin contractility is known to play an integral role during the engulfment process [12],
140 [13], [20], [38] and myosin II has been observed to localize to phagocytic podosomes and
141 podosome rosettes [18], [20]. Therefore, we wondered whether actomyosin contractility was
142 important for podosome rosette formation. To test this possibility, we treated cells with the
143 Rho kinase inhibitor Y27632. Inhibition of Rho kinase during frustrated phagocytosis led to the
144 complete disassembly of myosin II filaments, demonstrating that myosin II contractility was
145 inhibited (Fig. S1). However, podosome rosettes still formed (Fig. S1), which suggested that the
146 formation and maintenance of podosomes during phagocytosis is independent of actomyosin
147 contractility and that a biochemical mechanism may underlie rosette formation.

148 Rho family GTPases, including Cdc42 are known to be activated during Fc γ R-mediated
149 phagocytic signaling [2], [12], [13], [39], [40]. Cdc42 is a regulator of the actin cytoskeleton, so
150 we next examined its localization during frustrated phagocytosis. Cdc42 was visualized during
151 frustrated phagocytosis using single particle tracking (Fig. 1D,E). Cdc42 appeared to colocalize
152 to the podosome rosette with individual tracks observed near podosomes (Fig. 1E).

153 Taken together these results suggest podosome rosette organization involves localized
154 Cdc42 activity but does not require active myosin-mediated force generation. Cdc42 is known

155 to play a role in cell polarization. Therefore, we decided to investigate if a similar mechanism
156 might underlie formation of the podosome rosette.

157

158 **Forming coexistent clusters of active GTPase**

159 The core components of mathematical models for polarity establishment include an
160 inactive form of a GTPase that is cytosolic and diffuses rapidly, an active form that is membrane
161 bound and diffuses slowly, and positive feedback through autoactivation [7]–[11]. Additionally,
162 these models often assume that mass is conserved and, therefore, do not include protein
163 synthesis and degradation. In their simplest form, these models typically form a single polarity
164 site [7]–[10], [24]. Recent investigations have focused on establishing mechanisms that
165 generate coexisting active sites. For example, Chiou *et al.* [8] demonstrated how local depletion
166 increases the competition time between clusters so that coexistence is maintained over
167 biologically relevant time scales. Jacobs *et al.* [10] found that either adding protein synthesis
168 and degradation or adding negative feedback through a GTPase-activating protein (GAP) could
169 limit the growth of active clusters of GTPase, thus enabling coexistence. Here, we focused on
170 one of the GAP models that balances biological relevance with mathematical simplicity.

171 The Wave-Pinning GAP model (WPGAP, Fig. 2A, [10]) is described mathematically by the
172 following set of reaction-diffusion equations:

173

174
$$\frac{\partial u}{\partial t} = bv + \gamma v \frac{u^n}{K^n + u^n} - \sigma u - eGu + D_u \nabla^2 u,$$

175
$$\frac{\partial v}{\partial t} = -bv - \gamma v \frac{u^n}{K^n + u^n} + \sigma u + eGu + D_v \nabla^2 v,$$

176
$$\frac{\partial G}{\partial t} = cug - dG + D_G \nabla^2 G,$$

177
$$\frac{\partial g}{\partial t} = -cug + dG + D_g \nabla^2 g,$$

178

179 where u is the concentration of active GTPase, v is the concentration of inactive GTPase, G is
180 the concentration of active GAP, and g is the concentration of inactive GAP. The basal GTPase
181 activation rate is b , the maximum self-positive feedback rate is γ , K is the concentration of
182 active GTPase when the feedback is at the half-maximal response, the basal GTPase inactivation
183 rate is σ , the GAP-mediated negative feedback rate is e , the GAP activation is c , and the GAP
184 inactivation rate is d . The total mass of both species is conserved:

185

186
$$T = \int (u + v) dV,$$

187
$$T_g = \int (G + g) dV,$$

188

189 where the integrals are over the volume of the system. A requirement for polarization is that
190 the membrane-bound active form of GTPase diffuses slowly in comparison to the cytosolic
191 inactive form:

192
$$D_v \gg D_u$$

193

194 Adding negative feedback through GAP activation limits the growth of an individual cluster,
195 allowing for coexistence of multiple clusters and other forms of patterning. Both the active and
196 inactive forms of the GAP are treated as cytosolic species that diffuse rapidly compared to the
197 membrane-bound active GTPase. Specifically, for the WPGAP model, Jacobs *et al.* [10] explored

198 how changes in the total amount of GTPase (T) impacted bistability and the types of patterns
199 that formed. They found the system could form spots (localized regions of high GTPase activity),
200 mazes, and negative spots (localized regions of low GTPase activity). For our purposes, we are
201 interested in coexisting spots, and thus we began with parameter values that placed the system
202 in this regime (Table 1).

203 To gain insight into the model, we explored how spot size depends on the diffusion
204 coefficients. By changing the diffusion coefficient of the active GTPase, D_u , while holding the
205 ratios for the other diffusion coefficients fixed, we found that increasing the diffusion
206 coefficients produced an exponential increase in spot size (Fig. S2A,B). To demonstrate that
207 changing the diffusion coefficients did not impact the patterns formed by the system, we also
208 quantified the eccentricity for spots and saw no deviations from circularity (Fig. S2C). Radii of
209 podosomes have been observed to be anywhere from $\sim 0.15 - 0.6$ microns [18], [41]–[43].
210 Therefore, for our simulations we used $D_u = 0.004 \mu\text{m}^2 \text{s}^{-1}$, which resulted in spots with radius
211 $0.31 \pm 0.02 \mu\text{m}$ (Fig. S2A-C).

212 Next, we explored how sweeping individual parameters changed pattern formation.
213 When sweeping the GTPase activation rate b , lower values resulted in spots, but higher values
214 resulted in a spatially homogenous steady state with an intermediate level of GTPase activity
215 (Fig. 2B). This suggested that a finite basal GTPase activation rate b was not required or had to
216 be quite small to facilitate patterning. Interestingly, each of the other parameter sweeps
217 resulted in changes in the observed patterning types, including spots, mazes, and holes (Fig.
218 2B). For the GTPase inactivation rate σ , a high value resulted in a single low concentration
219 throughout the domain, and decreasing this value led to spots, then mazes. However,

220 minimizing this value did not cause the entire domain to be at a single, high steady state, due to
221 negative feedback from GAPs. In contrast, the self-positive feedback rate γ , the GAP
222 inactivation rate c , the GAP activation rate d , and the GAP-mediated negative feedback rate e
223 were capable of all patterning types, from a single low state to spots, mazes, holes, and a single
224 high state (Fig. 2B). Overall, these observations suggested that it would be possible to spatially
225 modulate these parameters to go from the low, homogenous state to the spot forming state.

226

227

Parameter	Description	Value	Ref.
b	GTPase activation	0.1 s^{-1}	[10]
γ	GTPase maximal self-positive feedback rate	2 s^{-1}	[10]
K	Half-maximal response GTPase concentration	1 a.u.*	[10]/This study
n	Hill coefficient	2	[10]
σ	GTPase inactivation	1 s^{-1}	[10]
c	GAP activation	1 a.u.	[10]
d	GAP inactivation	1 s^{-1}	[10]
e	GAP dependent GTPase inactivation	1 a.u	[10]
D_u	Active GTPase diffusion	$0.004 \text{ } \mu\text{m}^2\text{s}^{-1}$	This study
D_v	Inactive GTPase diffusion	$100D_u \text{ } \mu\text{m}^2\text{s}^{-1}$	[10]/ This study
D_G	Active GAP diffusion	$100D_u \text{ } \mu\text{m}^2\text{s}^{-1}$	[10]/ This study
D_g	Inactive GAP diffusion	$100D_u \text{ } \mu\text{m}^2\text{s}^{-1}$	[10]/ This study
T	Total GTPase Concentration	4.04 a.u.	[10]
T_g	Total GAP Concentration	10 a.u.	[10]

228

229 **Table 1.** Baseline parameter values (See Methods for explanation on arbitrary units)

230

231

232 **A Two-Step Model for Rosette Formation**

233 We next sought to determine if the WPGAP model could be modified to enable rosette
234 formation. One possible explanation for how a rosette could form is if two distinct steps occur:
235 1) an initial ring of high or low concentration of some species (M) forms and 2) this species
236 modulates a key parameter in the pattern forming, WPGAP model. To test this model, we first
237 assumed that an initial ring forms. We discuss this assumption and potential mechanisms for
238 ring formation later, but rings have been observed in other contexts, such as in wound healing,
239 in which a chemical gradient and inhibition of a bistable GTPase by another resulted in two
240 distinct rings of GTPase activity [31], [32]. For our initial investigations, we assumed that a
241 modulator M affected a rate in the WPGAP model through the functional form:

242

243
$$\omega_{\pm}(r) = \omega_1 \pm \omega_2 M(r),$$

244

245 where ω_1 is the basal rate and ω_2 characterizes the effect of M on ω_{\pm} . M(r) was modeled as a
246 Gaussian-shaped function centered at $r = 2 \mu\text{m}$ with variable variance. This form of ω_{\pm} allowed
247 us to tune model parameters so that spot formation was only promoted within the ring.

248 For parameters that increase GTPase activity (GTPase activation b , GAP inactivation d ,
249 and the maximum self-positive feedback rate γ), the WPGAP model was coupled to a ring of

250 high M concentration ω_+ (Fig. 2C,D, three columns from the left). For parameters that decrease
251 GTPase activity (GAP activation c , GTPase inactivation σ , and GAP-mediated GTPase inactivation
252 e), the WPGAP model was coupled to an inverted ring of M, ω_- (Fig. 2C,D, three columns from
253 the right). For each model parameter, ω_1 and ω_2 were varied to determine if the system could
254 generate rosette organization. As an initial guess, the parameter values were chosen based on
255 the results from the parameter sweeps (Fig. 2B).

256 As expected from the parameter sweep results, modulating the basal GTPase activation
257 rate b did not appear sufficient to form a rosette pattern, because this produced spot formation
258 throughout the entire domain. However, modulating the positive feedback rate γ , the GTPase
259 inactivation rate σ , and the GAP-mediated negative feedback rate e all resulted in a rosette
260 forming (Fig. 2C,D). Interestingly, when we modulated the rates for GTPase inactivation and the
261 GAP-mediated negative feedback, we found that the rates required to form rosettes were
262 higher than expected (Fig. 2C,D). For example, to form a rosette, the rate required for the
263 GTPase inactivation σ within the ring was around 1.5, which resulted in no patterning when
264 used as the global rate in the isolated WPGAP model (Fig. 2B-D).

265

266 **Gradient Establishment by a Simple Reaction-Diffusion Model**

267 The analysis presented above demonstrated that the rosette pattern can form following
268 the establishment of a ring of activity. Therefore, we next wanted to determine if rosette
269 formation could occur in the absence of such an initial ring. To investigate this scenario, we first
270 considered the following simple reaction-diffusion model:

271

272
$$\frac{\partial X}{\partial t} = k_x(r) - \delta_x X + \frac{D_x}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) X$$

273

274 where X is a species that is activated with a rate k_x that depends on the distance from the IgG
275 patch. We assume that X is inactivated at a rate δ_x and diffuses at a rate D_x (Fig. 3A). Note that if
276 k_x is independent of r , then at steady state $X(r) = k_x/\delta_x$. To model the IgG disk, we treat $k_x(r)$ as a
277 step-function:

278

279
$$k_x(r) = \begin{cases} k_{disk} & \text{if } r < \mu_F, \\ k_{basal} & \text{if } r \geq \mu_F, \end{cases}$$

280

281 where k_{disk} is the activation rate over a disk of radius μ_F and k_{basal} is the activation rate
282 everywhere else. Thus, when $k_{disk} > k_{basal}$, this simple model describes a species whose activity is
283 increased over the disk. For fixed values of k_{disk} , k_{basal} , and δ_x , this system was simulated for
284 varying diffusion coefficients D_x (Fig. 3B). The range of diffusion coefficients was chosen to be
285 consistent with reported cellular diffusion rates [26], from the slowest membrane-bound rate
286 ($10^{-3} \mu\text{m}^2\text{s}^{-1}$) to the fastest cytosolic rate ($10.0 \mu\text{m}^2\text{s}^{-1}$). For a domain within $r = 4 \mu\text{m}$, changing
287 the diffusivity of X resulted in changes in both the gradient steepness and the difference
288 between the maximum and minimum values of X (Fig. 3C). For small values of D_x , the
289 distribution of X was switch-like, and X approached the expected steady state, $k_x(r)/\delta_x$.
290 However, for larger values of D_x , the gradient in X was shallower, and deviated significantly
291 from $k_x(r)/\delta_x$ with a lower total amplitude (Fig. 3B,C). We found that our simulation results
292 could be well approximated using a logistic function with the form:

293

294
$$f(r) = \beta + \frac{\alpha}{1 + e^{k_m(r - r_0)}},$$

295

296 where β and $\alpha + \beta$ are the minimum and maximum values of $f(r)$, respectively, k_m is the logistic
297 decay rate, and $f(r_0) = \beta + \alpha/2$ (Fig. 3D). The function $f(r)$ was fit to distributions of X using simple
298 optimization techniques (see Methods).

299

300 **Rosette Formation Through Gradients**

301 To determine if rosette formation is possible in the WPGAP model without the
302 formation of an initial ring around the IgG disk, we used the concentration profiles found above
303 for the simple diffusion model to emulate activation over the disk. Thus, this system was the
304 same as the WPGAP model, but the self-positive feedback rate γ and the GAP activation rate c
305 now treated as spatially non-constant rates with profiles given by $f(r)$.

306 Unlike the two-step model, it was difficult to empirically determine parameter values
307 that form a rosette. Thus, we used a two-step approach to search parameter space. We first
308 used an evolutionary algorithm (EA) [44] to perform a global search and subsequently
309 performed a more local sampling of parameter space using a Delayed Rejection Adaptive
310 Metropolis Markov chain Monte Carlo (DRAM-MCMC, see Methods) [45], [46].

311 To implement the two-step approach requires a score function that provides a
312 quantitative measure for how close a simulated result is to the desired rosette pattern. For the
313 desired pattern, a GTPase rosette formed by the two-step model was used (Fig. 2E). From this,
314 we measured the radial average and radial standard deviation for the active GTPase u (Fig. 4A-

315 C). For new simulations, we measured the radial average of u (Fig. 4A,C). We then divided the
316 system into octants and measured the radial standard deviation within each octant (Fig. 4B,C).
317 The difference between the means of the desired output and simulation result and the
318 differences between the standard deviation of the desired output and standard deviations in
319 each octant were calculated. These nine measurements (Fig. 4A-C) were then averaged to
320 produce a single score. This score function was accurate, but flexible enough to allow for
321 various numbers of spots and spot locations.

322 Simulations were initialized with a small amount of random noise and seeded with an
323 initial concentration of active GTPase in the shape of a rosette (see Methods). We seeded
324 simulations with a rosette to decrease the time for pattern formation, because parameter
325 estimation requires a significant number of simulations. Also, from observations of initial
326 parameterization attempts, the GTPase activation rate b , the GTPase inactivation rate σ , the
327 minimum self-positive feedback rate γ_α , and the minimum GAP activation rate c_α were typically
328 quite small and were thus fixed at 2e-4, 0.04, 5e-4, and 0.1 s^{-1} , respectively. For 99 individual EA
329 runs (100 individuals, 100 generations), most runs were able to discover parameters capable of
330 rosette organization (top 80 appeared successful, Fig. S4A,B). The best parameter set found by
331 the EAs was then used to initialize DRAM-MCMC simulations. DRAM-MCMCs were simulated
332 until they appeared to converge, with all but the final 5,000 iterations removed as a “burn-in”
333 period (Fig. S4C, see Methods).

334 The parameter distributions generated by MCMC sampling appeared Gaussian (Fig. 4D,
335 on the diagonal). We took the mean values of the individual parameter distributions as our
336 representative parameter set (Fig. 4D,F, Fig. S4D & Table 2). To check how well the MCMC

337 performed, we also simulated the worst scoring parameter set, and these parameters also
338 resulted in rosette organization (Fig. S4D,E & Table S1).

339 Inspection of the spatially dependent rates revealed how the system was capable of
340 rosette patterning (Fig. 4E). When the ratio between the positive to negative feedback ($\gamma(r)$
341 $/c(r)$) is plotted as a function of r using the identified parameter sets, in all cases the ratio is
342 maximized just beyond $r = 2 \mu\text{m}$, near where the spots formed (Fig. 4E,F). The GAP activation
343 rate $c(r)$ (Fig. 4G, green) is high relative to the self-positive feedback rate $\gamma(r)$ (Fig. 4G, magenta)
344 over the disk and away from the disk. However, c transitions more rapidly than γ between its
345 elevated level over the disk and its basal level away from the disk (Fig. 4G). Thus, while the
346 negative feedback dominates over the disk and away from it, there is a zone near the edge of
347 the disk where positive feedback surpasses negative feedback. It is in this region that rosette
348 formation occurs.

349 To gain further insight into the model's behavior we looked for pairwise correlations
350 between model parameters. Several parameters demonstrated strong correlations (Fig. 4D).
351 There was a strong anti-correlation between c_{max} , the maximum GAP activation rate, and e , the
352 rate constant for GAP-mediated GTPase inactivation. This likely indicates a sensitivity of the
353 model to the total amount of GAP activity. The other correlations were not as intuitively
354 apparent, so to further explore parameter-dependent model behavior, we performed individual
355 parameter sweeps using the representative parameter set (Table 2, Fig. 5A-F). Parameters
356 typically moved from no patterning to rosette organization to ring formation (c_{km} , γ_{max} , and d ,
357 Fig. 5B,C,E), or vice versa (c_{max} , γ_{km} , and e , Fig. 5A,D,F). Thus, the anti-correlations between c_{km}
358 and γ_{max} as well as γ_{km} and e likely result from a balancing of the effects produced by varying

359 the individual parameters. However, the reason for the positive correlation between c_{max} and
360 γ_{km} is not readily apparent but may result from the logistic function having a lower maximum
361 value for shallower gradients (i.e., low decay rates, Fig. 3).

362 Finally, we performed a two parameter sweep for γ and c . We restricted the sweeps to
363 the region of parameter space where spots formed (Fig. 4E,F). Individual simulations were
364 performed using a constant value for γ and c (Fig. 5G). For high values of γ as compared to c , the
365 model was in a high, homogenous regime (Fig. 5G, upper left). For high values of c as compared
366 to γ , the model was in a low, homogenous regime (Fig. 5G, lower right). For intermediate values
367 of c and γ , various types of patterning occurred, from spots to mazes to holes (Fig. 5G, bottom
368 left to upper right). We next plotted $c(r)$ vs. $\gamma(r)$ within this region using the representative
369 parameter set given in Table 2 (Fig. 5G, red curve). The curve is typically in the low,
370 homogenous regime but passes through the patterning area, demonstrating why spots can
371 form only within a certain spatial zone.

372 In the above simulations, the spatial profiles were prescribed using the logistic function.
373 Therefore, we wanted to confirm that this mechanism would work for a coupled system, in
374 which the modulating species were discretely modeled using the simple diffusion model with
375 step-like activation over the IgG disk. The parameters in these two additional reaction-diffusion
376 equations were optimized to fit the logistic functions for $\gamma(r)$ and $c(r)$ found above. Using the
377 distributions for these two reaction diffusion-equations in the model did not lead to proper
378 GTPase rosette formation, however there were differences between the logistic function fits
379 and the simple reaction-diffusion equations, so this was not surprising. Therefore, we used the
380 parameter values for these new equations to initialize another DRAM-MCMC. Because our goal

381 was to simply demonstrate proof of principle, we only performed 22 short (1000 iterations)
382 DRAM-MCMC runs, and we took the single best scoring parameter set. However, this was
383 sufficient to demonstrate that a coupled model was able to generate a GTPase rosette (Fig. 6).
384 In Fig. 6C and D, we plot the distributions of the species modulating the rates $c(r)$ and $\gamma(r)$,
385 respectively. Interestingly, if these profiles are used to modulate the intermediate species M in
386 the two-step model, the system creates a ring of active M (as in Fig. 6E). Thus, the same
387 mechanism where the positive feedback strength is lower, but transitions less rapidly than the
388 negative feedback strength can also be used to create an initial ring which could then drive
389 rosette formation. Finally, we note that with the right choice of parameter values, this model
390 can also generate a ring, which could then be used to drive rosette formation (examples of this
391 ring formation can be observed in Fig. 5A-F) as discussed above.

392

Parameter	Description	Value (\pm StDev)	Ref.	Fixed or Sampled
b	GTPase activation	0.0002 s ⁻¹	This study	Fixed
γ_{max}	GTPase maximal self-positive feedback rate, maximum spatial value	0.96 \pm 0.05 s ⁻¹	This study	Sampled
γ_{km}	GTPase maximal self-positive feedback rate, decay rate	2.04 \pm 0.16	This study	Sampled
γ_α	GTPase maximal self-positive feedback rate, minimum spatial value	0.0005 s ⁻¹	This study	Fixed
K	Half-maximal response GTPase concentration	1 a.u.*	[10]/ This study	Fixed
n	Hill coefficient	2	[10]	Fixed
σ	GTPase inactivation	0.04 s ⁻¹	This study	Fixed

C_{max}	GAP activation, maximum spatial value	1.59 ± 0.28 a.u.	This study	Sampled
C_{km}	GAP activation, decay rate	13.0 ± 1.2	This study	Sampled
C_α	GAP activation, minimum spatial value	0.1 s^{-1}	This study	Fixed
d	GAP inactivation	$4.30 \pm 0.11 \text{ s}^{-1}$	This study	Sampled
e	GAP dependent GTPase inactivation	3.13 ± 0.44 a.u.	This study	Sampled
D_u	Active GTPase diffusion	$0.004 \mu\text{m}^2\text{s}^{-1}$	This study	Fixed
D_v	Inactive GTPase diffusion	$100D_u \mu\text{m}^2\text{s}^{-1}$	[10]/ This study	Fixed
D_G	Active GAP diffusion	$100D_u \mu\text{m}^2\text{s}^{-1}$	[10]/ This study	Fixed
D_g	Inactive GAP diffusion	$100D_u \mu\text{m}^2\text{s}^{-1}$	[10]/ This study	Fixed
T	Amount of GTPase	4.04 a.u.	[10]	Fixed
T_g	Amount of GAP	10 a.u.	[10]	Fixed

393

394 **Table 2.** Mean parameter set after running the MCMC (See Methods for explanation on
395 arbitrary units)

396

397

398

Parameter	Description	Value
γ_{max}	GTPase maximal self-positive feedback rate, maximum spatial value	0.98 s^{-1}
γ_{km}	GTPase maximal self-positive feedback rate, decay rate	2.24 s^{-1}
C_{max}	GAP activation, maximum spatial value	1.86 a.u.
C_{km}	GAP activation, decay rate	12.2
d	GAP inactivation	4.63 s^{-1}

e	GAP dependent GTPase inactivation	2.93 a.u.
---	-----------------------------------	-----------

399

400 **Table S1.** Worst scoring parameter set after running the MCMC. Fixed values same as in Table

401 S2.

402

403

404 **Experimentally Testable Predictions**

405 Finally, we analyzed the model with the goal of motivating experimental investigations.

406 First, we simulated the model using varying disk sizes (Fig. 7A,B). We observed a linear

407 relationship between the disk radius and the number of spots, indicating that the distance

408 between spots remains constant as the disk size increases (Fig. 7A). To compare our simulation

409 results to experimental results, we counted the number of podosomes per site for IgG disks of

410 radius 1.75 μm (8.1 ± 1.4 , $N = 29$, Fig. S4A) and IgG disks of radius 5.0 μm (23.4 ± 2.4 , $N = 8$, Fig.

411 S4B). The observed number of spots qualitatively compared well with the numbers predicted by

412 the model (Fig. 7B). For simulations using disk sizes of radius greater than 0.24 μm , 3 or more

413 spots of active GTPase formed, while smaller disks formed 2 or fewer spots (Fig. 7A,B & S4C).

414 Similarly, we explored simulations with holes lacking IgG of various sizes (Table 2,

415 negative c_{km} and γ_{km} , Fig. 7C & S4D). Rosettes always formed for a hole of radius 2.1 μm , and

416 never formed for a hole of radius 1.6 μm . However, holes with radii between 1.7 and 2.0 μm

417 appeared to be capable of forming rosettes, but rosettes sometimes failed to organize properly

418 depending on the initial conditions, suggesting that the system is bistable within this regime

419 (Fig. 7C).

420 **Discussion**

421 Changes in cell morphology occur in many different physiological contexts, including cell
422 migration, division, and differentiation. In eukaryotes, cell shape changes are driven by forces
423 generated by the actin cytoskeleton. The Rho family of GTPases are primary regulators of the
424 actin cytoskeleton. Therefore, understanding how these signaling molecules generate
425 spatiotemporal patterns is fundamental to understanding cellular morphodynamics. An
426 emerging theme in Rho GTPase signaling is that pattern formation occurs through a
427 combination of positive autoregulation and differences in diffusivity between active and
428 inactive GTPase states. It is now well understood how these elements can generate cell polarity
429 (i.e., determining a cell front and back). However, what has been less clear is if this system can
430 generate more complicated spatial patterns. Therefore, we turned to mathematical modeling
431 to determine if this core polarity circuit can generate the rosette of podosomes observed
432 during frustrated phagocytosis. Experimental evidence for such a biochemical mechanism
433 comes from our observations that Cdc42 colocalizes to rosette structures and actomyosin
434 contractility does not appear to be needed for rosette formation.

435 The starting point of our analysis was the WPGAP model that was previously shown to
436 be capable of forming co-existing clusters of high GTPase activity [10]. The model consists of
437 three main features: 1) active, membrane-bound GTPases diffuse slowly compared to cytosolic
438 species, 2) active GTPases recruit other GTPase molecules from the cytosol to the membrane,
439 and 3) a negative feedback loop is formed by activation of cytosolic GAPs. We used the model
440 to investigate two potential mechanisms for rosette formation. In the first scenario, a ring of
441 high or low concentration of a regulator of GTPase activity initially forms. Our analysis revealed

442 that for rosette formation was possible if the species forming the ring regulated rates
443 associated with positive feedback, GTPase inactivation, GAP-mediated negative feedback, GAP
444 activation, or GAP inactivation. However, modulating the basal GTPase activation rate did not
445 generate rosette formation, but instead spots of high GTPase activity formed throughout the
446 entire domain.

447 We next used the model to demonstrate that rosette patterning could occur in the
448 absence of initial ring formation. This scenario required the following conditions to be met: 1)
449 the positive and negative feedback strengths increased over the IgG disk, 2) negative feedback
450 dominated over positive feedback over the disk and far from the disk and 3) the negative
451 feedback transitioned from its elevated level over the disk to its basal level more rapidly than
452 that of the positive feedback. These three features generated a small region outside of the disk
453 where the positive to negative feedback ratio is sufficiently high to enable spots of active
454 GTPase. This scenario occurs if the positive regulator of GTPase activity diffuses rapidly,
455 whereas the negative regulator of GTPase activity diffuses slowly in comparison. Furthermore,
456 this same scenario could be used to generate a ring of high activity of species that positively
457 regulates GTPase activity as required for the initial ring formation scenario described above.

458 Finally, we performed simulations using varying sizes of either IgG disks or holes.
459 Experimental results for the number of spots formed using different IgG disk sizes were
460 consistent with our simulation results. We also noticed that for simulations on disks of radius R
461 $= 0.24 \mu\text{m}$, 3 distinct spots of GTPase activity were produced, whereas disks of smaller radii
462 produced 1 or 2 sites. This result suggests a threshold for the minimum size of a particle that
463 can be internalized via phagocytosis, if three or more podosomes are required to engulf a

464 target. This observation is consistent with the reported value of 0.5 μm as the minimum size for
465 phagocytic targets [47], [48]. Simulations on holes lacking IgG of different sizes revealed that
466 holes of radii 1.6 μm or less do not form rosettes, while holes of 2.1 μm are capable of rosette
467 formation. Interestingly, for holes between 1.7 μm and 2.0 μm rosette formation depended on
468 initial conditions, suggesting the system is bistable in this regime.

469 Our analysis revealed how relatively minor additions to the Rho GTPase polarity circuit
470 were sufficient to generate the rosette of podosomes observed during frustrated phagocytosis.
471 It is likely that this same polarity circuit is also capable of generating more complex patterns
472 when additional regulatory elements are added. Importantly, our results provide a
473 computational framework for establishing sufficient conditions for more complex pattern
474 formation, and therefore should be relevant to many different areas of cell biology. Here we
475 focused on static cytoskeletal structures. However, the actin cytoskeleton is a dynamic system,
476 and phagocytosis requires exact spatiotemporal control of cellular morphodynamics during
477 engulfment. While this study demonstrated how initial cytoskeletal organization could occur, in
478 future studies it will be important to also consider both the time-dependent and three-
479 dimensional activity of Rho GTPase signaling during this process.

480

481 **Methods**

482 **Cell Culture and Transfection**

483 RAW 264.7 macrophages were obtained from the ATCC and maintained in culture
484 medium: RPMI 1640 medium GlutaMAX Supplement (ThermoFisher Scientific, 61870127)
485 containing 10% heat-inactivated FBS (HI-FBS, GEMINI Bio, 100-106) in a 5% CO_2 humidified

486 incubator at 37°C. To detach RAW 264.7 cells from the Falcon tissue culture dish (Fisher
487 Scientific, 08-772E), the cells were treated with Accutase (ThermoFisher Scientific, A1110501)
488 at 37°C for 5 min before gentle scraping (CytoOne, CC7600-0220). The plasmids FTractin-
489 tdTomato and myosin regulatory light chain (MRLC)-EGFP were described previously [49], [50].
490 RAW 264.7 cells were electroporated with the Neon Transfection System (ThermoFisher
491 Scientific) following the manufacturer's protocol. In brief, 5×10^6 cells were electroporated with
492 1 μ g plasmid in R buffer at a setting of 1680 V, 20 ms, and 1 pulse using 10 microliter Neon
493 pipette tip. The cells were transferred into a well of 12-well plate, with each well containing 1
494 ml of culture medium. After 12 hours of incubation, the transfected macrophages were ready
495 for the frustrated phagocytosis experiments.

496 Bone marrow cells were isolated from 6 to 12 weeks C57BL/6 mice and differentiated
497 into macrophages for 5-7 days in RPMI 1640 medium containing 10% heat inactivated FBS and
498 10% M-CSF (L929 conditioned medium) described elsewhere [51], [52]. These macrophages
499 were detached from the flask using Accutase and gentle scraping.

500

501 **Microcontact printing**

502 The IgG patterns on glass coverslips were made using the microcontact printing of
503 Polydimethylsiloxane (PDMS) as previously described [53]. The silicon master with an array of
504 3.5 μ m holes spaced 8 μ m apart or 10 μ m holes spaced 20 μ m apart was made using
505 photoresist lithography, and PDMS stamping on glass coverslips was carried out as described
506 previously [43].

507

508 **Inhibition treatment and immunofluorescence staining**

509 To inhibit actomyosin contractility and disassemble myosin II filaments, RAW 264.7
510 macrophages were plated on patterned IgG coverslips in Ham's F12 medium (Caisson Labs, UT)
511 supplemented with 2% HI-FBS and 20 μ M Rho kinase inhibitor Y-27632 (Hello Bio, HB2297) for
512 25 min of inhibition during frustrated phagocytosis. For frustrated phagocytosis against 10 μ m
513 IgG spots, bone marrow-derived macrophages were plated on patterned IgG in the above
514 medium without inhibitor and incubated at 37°C for 15 min before staining.

515 The cells were fixed with 4% paraformaldehyde at 37 °C for 10 - 15 min and
516 permeabilized using 0.1% Triton-X-100 (Sigma-Aldrich) in PBS for 5 min. Cells were then
517 thoroughly washed with PBS and fixative quenched with 0.1 M glycine for 20 min followed by
518 incubation with 2% BSA fraction V (Thermo, 15260037) in PBS for 30 min. Actin was stained
519 with Alexa-Fluor 568 phalloidin (dilution 1:500, ThermoFisher Scientific A12380) diluted in 2%
520 BSA in PBS at room temperature for 20 min followed by one wash with 1xPBS/0.05% Tween for
521 10 min, and two washes with 1x PBS for 15 min.

522

523 **Imaging of podosome structures during frustrated phagocytosis**

524 Total internal reflection fluorescence structured illumination microscopy (TIRF-SIM) was
525 used to image podosomes in F-tractin-tdTomato transfected live RAW 264.7 macrophages.
526 Fluorescence emission was recorded using an sCMOS camera (Hamamatsu, Orca Flash 4.0 v2
527 sCMOS). Lasers with wavelengths 560 and 647 nm and an Olympus UAp0 N 100x oil NA 1.49
528 objective were used, and fluorescence emission was recorded using an sCMOS camera
529 (Hamamatsu, Orca Flash 4.0 v2 sCMOS). A Nikon SIM microscope was used to image

530 podosomes in fixed RAW 264.7 macrophages after Y-27632 inhibition, using 488 and 561 nm
531 lasers. A 100x oil immersion objective (1.49 NA, Nikon CFI Apochromat TIRF 100x) and EMCCD
532 camera (Andor DU-897) were used. To image podosomes in bone marrow-derived
533 macrophages, a Zeiss confocal microscope LSM880 built around AxioObserver 7 with a 63x 1.4
534 NA oil objective (Zeiss) was used.

535

536 **Single Particle Tracking**

537 Single particle tracking was performed using a home-built total internal reflection
538 microscope based on an Olympus IX81. The microscope was equipped with four solid state
539 lasers (Coherent OBIS 405 nm, 488 nm, 561 nm, and 647 nm), a 100X TIRF objective (Olympus,
540 UPLAPO100XOHR) and an sCMOS camera (Photometrics Prime 95B) for fluorescence collection.
541 Raw cells were co-transfected with mScarlet-F-tractin (Excitation, 561 nm; Emission, Semrock,
542 FF01-600/52) and Cdc42-HaloTag [54]. Cells were incubated with 100 pM dye JF646-Halo
543 (Emission, Semrock, FF01-698/70) for 30 minutes and washed with culture medium three times
544 before imaging. Super-resolved F-tractin images were acquired at 100 Hz for 5 seconds and
545 subjected to Super-Resolution Radial Fluctuations analysis [55]. For single particle tracking of
546 Cdc42, we streamed for 40 seconds at 50 Hz (2000 frames).

547 Single molecule diffusion analysis was done as before [56]. Briefly, individual molecules
548 were identified by a wavelet decomposition based approach [57] and precise centroids were
549 obtained by fitting with a 2D Gaussian function. Single molecule trajectories were built through
550 a well-established linking algorithm [58] and the mean-square-displacement was then
551 calculated [59], [60] to color encode the tracks.

552 **Numerical Simulations**

553 Ordinary differential equation (ODE) simulations were performed by using the Python
554 package `odeint` from Scipy [61]. Reaction-diffusion equations were solved using the spectral
555 differential equation solver Python package `Dedalus` [62]. For simulations using Cartesian
556 coordinates, the system was spatially discretized using a Fourier basis in x and a Chebyshev
557 basis in y with the recommended dealiasing factor of 1.5, as done before [10]. The system had
558 periodic boundary conditions in x and Neumann (reflective) boundary conditions in y . Similarly,
559 for simulations using polar coordinates, the system was spatially discretized using a Fourier
560 basis in ϕ , and a Chebyshev basis in r (dealiasing factor of 1.5) with periodic boundary
561 conditions in ϕ , and Neumann (no flux) boundary conditions in r . The typical grid size used for
562 simulations was 256×128 (ϕ, r respectively) which was informed by mesh grid refinement (i.e.,
563 larger grid sizes resulted in the same outcome). However, a grid size of 64×64 was used for
564 parameterization steps to decrease simulation time. Simulations were typically performed using
565 a time step $dt = 0.1$ s or 0.25 s. Reaction steps were solved using 4th order Runge-Kutta,
566 although 2nd order Runge-Kutta was used for parameterization steps.

567 Homogeneous steady states were determined by running the ODE system (without
568 diffusion) for $t = 1000$ s using `odeint`. For initial conditions of the reaction-diffusion equations,
569 each species was set to its steady state value throughout the domain and subsequently noise
570 was added by converting a small fraction of inactive species to the active form. The fraction of
571 concentration converted was determined by each simulation but was typically generated by
572 uniform sampling between 0 and $0.2v_{ss}$ (where v_{ss} is the steady state concentration for the
573 inactive species). For seeded simulations, the same random noise (but between 0 and $0.1v_{ss}$)

574 was converted and additionally the normalized seed (i.e., a rosette) was scaled by $0.1v_{ss}$ and
575 converted to active GTPase. For simulations with non-constant coefficients, the initial steady
576 states were determined by using the basal values for the spatially-dependent rates.

577 To fit the logistic equation to the simple reaction-diffusion profiles, we used the Python
578 package minimize from Scipy [61].

579

580 **Concentration Units**

581 Because we currently do not know the average number of Cdc42 molecules associated
582 with an individual podosome, we did not assign specific units to the total concentrations of
583 Cdc42 and GAP. Thus, we used the unitless values from the non-dimensionalized version of the
584 model described by Jacobs *et al.* [10], and labeled these as arbitrary units (a.u.). Note that once
585 an estimate for the number of Cdc42 molecules per podosome is known, the total
586 concentrations can be scaled appropriately to produce this number without changing any of our
587 results. That is, scaling the concentrations for total Cdc42 and GAP by a factor χ and scaling the
588 Hill constant K by χ and the second order rate constants e and c by χ^{-1} leaves the solutions to
589 the reaction-diffusion equations scaled, but otherwise unchanged. For example, if $\chi = 100$ then
590 there would result in an average concentration of 404 Cdc42 molecules per μm^2 . Using our
591 value for the radius of a podosome (0.31 μm), the area of a podosome is approximately 0.30
592 μm^2 . This would result in approximately 120 Cdc42 molecules per podosome. The units of
593 concentration would then be molecules per μm^2 , and units of K would be the same. The second
594 order rate constants e and c would have units of $\mu\text{m}^2(\text{molecules}^*\text{s})^{-1}$.

595

596 **Parametrization**

597 Evolutionary algorithm (EA) simulations were performed using the Python package
598 DEAP [44]. For EA hyperparameters we used a mutation rate of 0.3 and a crossover rate of 0.5.
599 Markov chain Monte Carlo (MCMC) simulations were performed using the Python package
600 Pymcmcstat [46]. For MCMC sampling, we used the Delayed Rejection Adaptive Metropolis
601 (DRAM) algorithm [45], [46]. MCMC hyperparameters were set to $S20 = 0.015$ and $N0 = 0.015$,
602 which resulted in chain acceptance rates between 29-40%. All but the last 5,000 steps for
603 individual MCMC chains were discarded as a “burn-in” period. MCMC chains appeared to pass
604 all convergence tests, including within chain variance (Geweke statistic $p >> 0.05$, [63]) and
605 between chain variance (Gelman-Rubin diagnostic < 1.1 , [64]).

606 Note that for the coupled model, where the simple reaction diffusion model was
607 simulated in place of the logistic function, we used the same MCMC pipeline for sampling to
608 discover a working coupled model. For proof of concept, we simply ran this pipeline for 1,000
609 steps and took the best scoring parameter set.

610

611 **Spot Size Determination**

612 Simulations were performed as described above using cartesian coordinates ($t_{final} = 150$
613 s). Each system was interpolated to a uniform grid with the same grid size (128 x 128). A mask
614 was generated by thresholding at the mean of the maximum and minimum concentrations
615 within the system. Using this mask, features were quantified using the Python package scikit-
616 image [65]. The effective radius was defined as:

617

619
$$Radius_{\text{eff}} = \frac{\text{mean}(a_{\text{major}}, a_{\text{minor}})}{2}$$

618

620 where a_{major} and a_{minor} were the major and minor axis lengths respectively. After an initial pass
621 at fitting $Radius_{\text{eff}}$ based on $\log(D_u)$, simulations were rerun using different grid sizes to ensure
622 the number of spots counted for each simulation were similar ($N \sim 100$).

623

624 **Counting Podosomes Per Site**

625 For experimental results, the number of podosomes per site were calculated using a
626 pipeline we developed previously [43] (<https://github.com/elstonlab/PodosomeImageAnalysis>).
627 In essence, this pipeline uses persistent homology, a type of topological data analysis, to
628 identify significantly persistent features (connected components, holes) within images followed
629 by post-processing.

630 For simulated results, a mask was created by thresholding at the average between the
631 maximum and minimum intensity within a simulation. From this mask, the number of features
632 was counted using the Python package `ndimage.label` from Scipy [61].

633

634 **Data Availability**

635 The code and data used for this project is available on GitHub
636 (<https://github.com/elstonlab/PhagocytosisRosetteModel>) and under the Zenodo archive:
637 <https://doi.org/10.5281/zenodo.6448430>. Note that for counting podosomes, additional code
638 is required from: <https://github.com/elstonlab/PodosomeImageAnalysis>.

639

640 **Acknowledgements**

641 We thank Tony Perdue from the Department of Biology Microscopy Core at UNC for assistance
642 with Nikon N-SIM microscopy, and Teng-Leong Chew, Aaron Taylor, Satya Khuon for assistance
643 of TIRF-SIM and cell culture at Janelia Research Campus. We are grateful to Richard Superfine,
644 Michael Falvo, and Timothy O'Brien for help with micropatterning and Ellen C.
645 O'Shaughnessy, Wolfgang Bergmeier and Juan Song for primary macrophage culture. This work
646 was supported by grants from the National Institute of General Medical Sciences (NIGMS) to
647 KMH (R35GM122596) and to TCE (R35GM127145), as well as from the National Institute of
648 Biomedical Imaging and Bioengineering to TCE (U01 EB018816). JCH received support from the
649 NIGMS (5T32 GM067553).

650

651 **Contributions**

652 SH, TW, and BL performed the experiments and imaging. BL performed the single particle
653 tracking analysis. JCH performed the modeling and computational analyses. JCH and TCE wrote
654 the manuscript with contributions from all authors. The work was directed by TCE and KMH.

655

656

657

658

659

660

661

662 **References**

- 663
- 664 [1] R. Linding and E. Klipp, "Shapes of cell signaling," *Curr. Opin. Syst. Biol.*, vol. 27, p. 100354, Sep. 2021, doi: 10.1016/j.coisb.2021.100354.
- 665
- 666 [2] S. Etienne-Manneville and A. Hall, "Rho GTPases in cell biology," *Nature*, vol. 420, no. 6916, pp. 629–635, Dec. 2002, doi: 10.1038/nature01148.
- 667
- 668 [3] R. G. Hodge and A. J. Ridley, "Regulating Rho GTPases and their regulators," *Nat. Rev. Mol. Cell Biol.*, vol. 17, no. 8, pp. 496–510, Aug. 2016, doi: 10.1038/nrm.2016.67.
- 669
- 670 [4] C. D. Lawson and A. J. Ridley, "Rho GTPase signaling complexes in cell migration and invasion," *J. Cell Biol.*, vol. 217, no. 2, pp. 447–457, Feb. 2018, doi: 10.1083/jcb.201612069.
- 671
- 672 [5] S. Hanna and M. El-Sibai, "Signaling networks of Rho GTPases in cell motility," *Cell. Signal.*, vol. 25, no. 10, pp. 1955–1961, Oct. 2013, doi: 10.1016/j.cellsig.2013.04.009.
- 673
- 674 [6] D. Spiering and L. Hodgson, "Dynamics of the Rho-family small GTPases in actin regulation and motility," *Cell Adhes. Migr.*, vol. 5, no. 2, pp. 170–180, Mar. 2011, doi: 10.4161/cam.5.2.14403.
- 675
- 676
- 677 [7] Y. Mori, A. Jilkine, and L. Edelstein-Keshet, "Wave-Pinning and Cell Polarity from a Bistable Reaction-Diffusion System," *Biophys. J.*, vol. 94, no. 9, pp. 3684–3697, May 2008, doi: 10.1529/biophysj.107.120824.
- 678
- 679
- 680 [8] J.-G. Chiou, S. A. Ramirez, T. C. Elston, T. P. Witelski, D. G. Schaeffer, and D. J. Lew, "Principles that govern competition or co-existence in Rho-GTPase driven polarization," *PLOS Comput. Biol.*, vol. 14, no. 4, p. e1006095, Apr. 2018, doi: 10.1371/journal.pcbi.1006095.
- 681
- 682
- 683

- 684 [9] J. Chiou, K. D. Moran, and D. J. Lew, "How cells determine the number of polarity sites,"
685 *eLife*, vol. 10, p. e58768, Apr. 2021, doi: 10.7554/eLife.58768.
- 686 [10] B. Jacobs, J. Molenaar, and E. E. Deinum, "Small GTPase patterning: How to stabilise
687 cluster coexistence," *PLOS ONE*, vol. 14, no. 3, p. e0213188, Mar. 2019, doi:
688 10.1371/journal.pone.0213188.
- 689 [11] A. B. Goryachev and M. Leda, "Compete or Coexist? Why the Same Mechanisms of
690 Symmetry Breaking Can Yield Distinct Outcomes," *Cells*, vol. 9, no. 9, p. 2011, Sep. 2020,
691 doi: 10.3390/cells9092011.
- 692 [12] R. S. Flanagan, V. Jaumouillé, and S. Grinstein, "The Cell Biology of Phagocytosis," *Annu.*
693 *Rev. Pathol. Mech. Dis.*, vol. 7, no. 1, pp. 61–98, Feb. 2012, doi: 10.1146/annurev-pathol-
694 011811-132445.
- 695 [13] S. A. Freeman and S. Grinstein, "Phagocytosis: receptors, signal integration, and the
696 cytoskeleton," *Immunol. Rev.*, vol. 262, no. 1, pp. 193–215, Nov. 2014, doi:
697 10.1111/imr.12212.
- 698 [14] S. Bournazos, T. T. Wang, R. Dahan, J. Maamary, and J. V. Ravetch, "Signaling by
699 Antibodies: Recent Progress," *Annu. Rev. Immunol.*, vol. 35, no. 1, pp. 285–311, Apr. 2017,
700 doi: 10.1146/annurev-immunol-051116-052433.
- 701 [15] A. M. Labrousse, "Frustrated phagocytosis on micro-patterned immune complexes to
702 characterize lysosome movements in live macrophages," *Front Immunol*, vol. 2, p. 51,
703 2011.
- 704 [16] S. Linder and P. Kopp, "Podosomes at a glance," *J. Cell Sci.*, vol. 118, no. 10, pp. 2079–
705 2082, May 2005, doi: 10.1242/jcs.02390.

- 706 [17] S. Linder, "The matrix corroded: podosomes and invadopodia in extracellular matrix
707 degradation," *Trends Cell Biol.*, vol. 17, pp. 107–17, 2007.
- 708 [18] K. van den Dries, "Modular actin nano-architecture enables podosome protrusion and
709 mechanosensing," *Nat Commun*, vol. 10, p. 5171, 2019.
- 710 [19] P. P. Ostrowski, S. A. Freeman, G. Fairn, and S. Grinstein, "Dynamic Podosome-Like
711 Structures in Nascent Phagosomes Are Coordinated by Phosphoinositides," *Dev. Cell*, vol.
712 50, no. 4, pp. 397-410.e3, Aug. 2019, doi: 10.1016/j.devcel.2019.05.028.
- 713 [20] D. Vorselen *et al.*, "Phagocytic 'teeth' and myosin-II 'jaw' power target constriction during
714 phagocytosis," *eLife*, vol. 10, p. e68627, Oct. 2021, doi: 10.7554/eLife.68627.
- 715 [21] "The chemical basis of morphogenesis," *Philos. Trans. R. Soc. Lond. B. Biol. Sci.*, vol. 237,
716 no. 641, pp. 37–72, Aug. 1952, doi: 10.1098/rstb.1952.0012.
- 717 [22] A. Gierer and H. Meinhardt, "A theory of biological pattern formation," *Kybernetik*, vol. 12,
718 no. 1, pp. 30–39, Dec. 1972, doi: 10.1007/BF00289234.
- 719 [23] H. Meinhardt, "Pattern formation in biology: a comparison of models and experiments,"
720 *Rep. Prog. Phys.*, vol. 55, no. 6, pp. 797–849, Jun. 1992, doi: 10.1088/0034-4885/55/6/003.
- 721 [24] A. B. Goryachev and A. V. Pokhilko, "Dynamics of Cdc42 network embodies a Turing-type
722 mechanism of yeast cell polarity," *FEBS Lett.*, vol. 582, no. 10, pp. 1437–1443, Apr. 2008,
723 doi: 10.1016/j.febslet.2008.03.029.
- 724 [25] A. B. Goryachev and M. Leda, "Many roads to symmetry breaking: molecular mechanisms
725 and theoretical models of yeast cell polarity," *Mol. Biol. Cell*, vol. 28, no. 3, pp. 370–380,
726 Feb. 2017, doi: 10.1091/mbc.e16-10-0739.

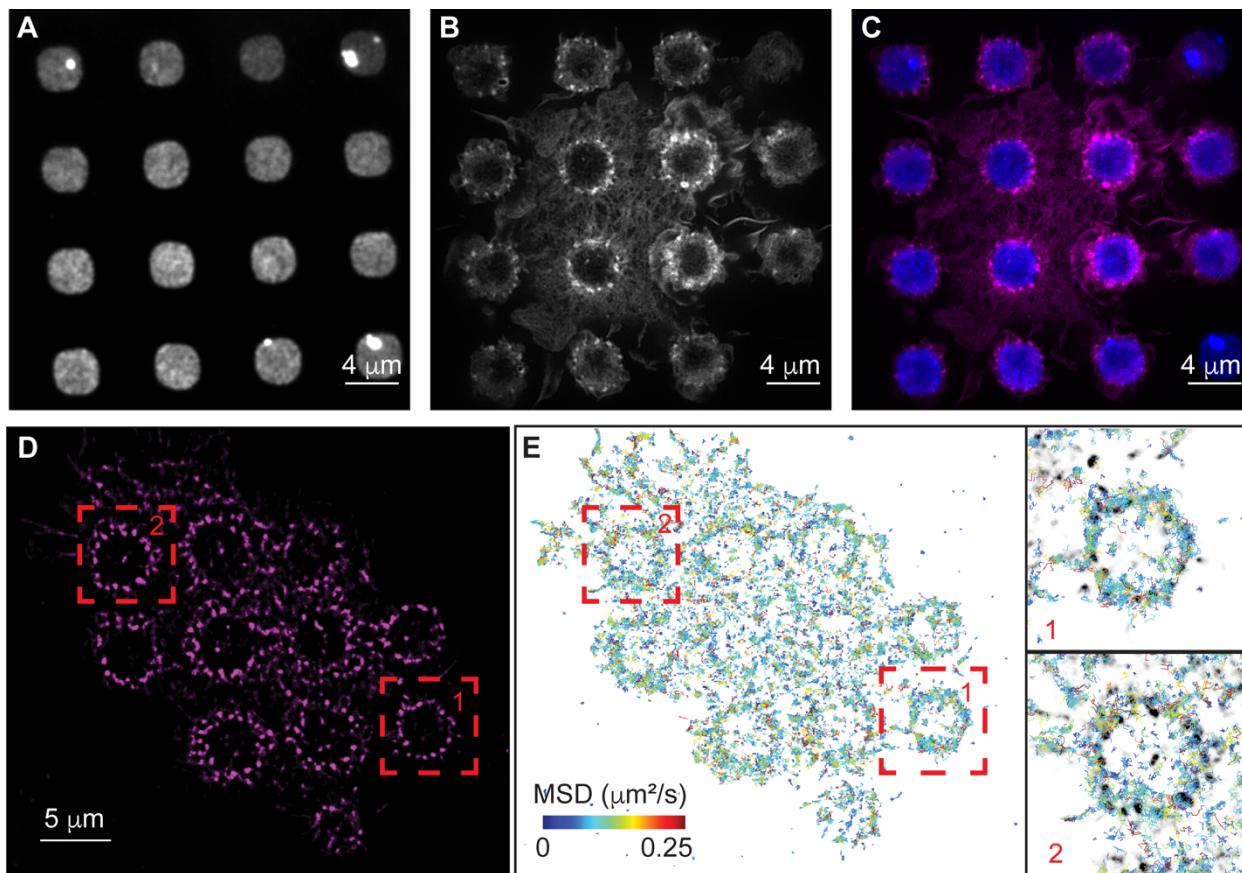
- 727 [26] W. Giese, G. Milicic, A. Schröder, and E. Klipp, “Spatial modeling of the membrane-
728 cytosolic interface in protein kinase signal transduction,” *PLOS Comput. Biol.*, vol. 14, no. 4,
729 p. e1006075, Apr. 2018, doi: 10.1371/journal.pcbi.1006075.
- 730 [27] A.-C. Butty, “A positive feedback loop stabilizes the guanine-nucleotide exchange factor
731 Cdc24 at sites of polarization,” *EMBO J.*, vol. 21, no. 7, pp. 1565–1576, Apr. 2002, doi:
732 10.1093/emboj/21.7.1565.
- 733 [28] B. Woods and D. J. Lew, “Polarity establishment by Cdc42: Key roles for positive feedback
734 and differential mobility,” *Small GTPases*, vol. 10, no. 2, pp. 130–137, Mar. 2019, doi:
735 10.1080/21541248.2016.1275370.
- 736 [29] I. Lamas, L. Merlini, A. Vještica, V. Vincenzetti, and S. G. Martin, “Optogenetics reveals
737 Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase,” *PLOS Biol.*,
738 vol. 18, no. 1, p. e3000600, Jan. 2020, doi: 10.1371/journal.pbio.3000600.
- 739 [30] K. Witte, D. Strickland, and M. Glotzer, “Cell cycle entry triggers a switch between two
740 modes of Cdc42 activation during yeast polarization,” *eLife*, vol. 6, p. e26722, Jul. 2017,
741 doi: 10.7554/eLife.26722.
- 742 [31] W. R. Holmes, A. E. Golding, W. M. Bement, and L. Edelstein-Keshet, “A mathematical
743 model of GTPase pattern formation during single-cell wound repair,” *Interface Focus*, vol.
744 6, no. 5, p. 20160032, Oct. 2016, doi: 10.1098/rsfs.2016.0032.
- 745 [32] C. M. Simon, E. M. Vaughan, W. M. Bement, and L. Edelstein-Keshet, “Pattern formation of
746 Rho GTPases in single cell wound healing,” *Mol. Biol. Cell*, vol. 24, no. 3, pp. 421–432, Feb.
747 2013, doi: 10.1091/mbc.e12-08-0634.

- 748 [33] A. Jilkine, A. F. M. Marée, and L. Edelstein-Keshet, “Mathematical Model for Spatial
749 Segregation of the Rho-Family GTPases Based on Inhibitory Crosstalk,” *Bull. Math. Biol.*,
750 vol. 69, no. 6, pp. 1943–1978, Aug. 2007, doi: 10.1007/s11538-007-9200-6.
- 751 [34] W. R. Holmes, A. E. Carlsson, and L. Edelstein-Keshet, “Regimes of wave type patterning
752 driven by refractory actin feedback: transition from static polarization to dynamic wave
753 behaviour,” *Phys. Biol.*, vol. 9, no. 4, p. 046005, Aug. 2012, doi: 10.1088/1478-
754 3975/9/4/046005.
- 755 [35] Y.-R. Pan, C.-L. Chen, and H.-C. Chen, “FAK is required for the assembly of podosome
756 rosettes,” *J. Cell Biol.*, vol. 195, no. 1, pp. 113–129, Oct. 2011, doi: 10.1083/jcb.201103016.
- 757 [36] G. Seano *et al.*, “Endothelial podosome rosettes regulate vascular branching in tumour
758 angiogenesis,” *Nat. Cell Biol.*, vol. 16, no. 10, pp. 931–941, Oct. 2014, doi:
759 10.1038/ncb3036.
- 760 [37] S.-L. Kuo, C.-L. Chen, Y.-R. Pan, W.-T. Chiu, and H.-C. Chen, “Biogenesis of podosome
761 rosettes through fission,” *Sci. Rep.*, vol. 8, no. 1, p. 524, Dec. 2018, doi: 10.1038/s41598-
762 017-18861-2.
- 763 [38] V. Jaumouillé and C. M. Waterman, “Physical Constraints and Forces Involved in
764 Phagocytosis,” *Front. Immunol.*, vol. 11, p. 1097, Jun. 2020, doi:
765 10.3389/fimmu.2020.01097.
- 766 [39] P. Beemiller *et al.*, “A Cdc42 Activation Cycle Coordinated by PI 3-Kinase during Fc
767 Receptor-mediated Phagocytosis,” *Mol. Biol. Cell*, vol. 21, no. 3, pp. 470–480, Feb. 2010,
768 doi: 10.1091/mbc.e08-05-0494.

- 769 [40] Y. Mao and S. C. Finnemann, "Regulation of phagocytosis by Rho GTPases," *Small GTPases*,
770 vol. 6, no. 2, pp. 89–99, Apr. 2015, doi: 10.4161/21541248.2014.989785.
- 771 [41] S. Cox *et al.*, "Bayesian localization microscopy reveals nanoscale podosome dynamics,"
772 *Nat. Methods*, vol. 9, no. 2, pp. 195–200, Feb. 2012, doi: 10.1038/nmeth.1812.
- 773 [42] L. Panzer *et al.*, "The formins FHOD1 and INF2 regulate inter- and intra-structural
774 contractility of podosomes," *J. Cell Sci.*, p. jcs.177691, Jan. 2015, doi: 10.1242/jcs.177691.
- 775 [43] J. C. Herron *et al.*, "Nano-architecture of phagocytic podosomes," *Submitted*.
- 776 [44] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and C. Gagné, "DEAP:
777 Evolutionary Algorithms Made Easy," *J Mach Learn Res*, vol. 13, no. 1, pp. 2171–2175, Jul.
778 2012.
- 779 [45] H. Haario, M. Laine, A. Mira, and E. Saksman, "DRAM: Efficient adaptive MCMC," *Stat.*
780 *Comput.*, vol. 16, no. 4, pp. 339–354, Dec. 2006, doi: 10.1007/s11222-006-9438-0.
- 781 [46] P. Miles, "pymcmcstat: A Python Package for Bayesian Inference Using Delayed Rejection
782 Adaptive Metropolis," *J. Open Source Softw.*, vol. 4, no. 38, p. 1417, Jun. 2019, doi:
783 10.21105/joss.01417.
- 784 [47] A. Aderem and D. M. Underhill, "MECHANISMS OF PHAGOCYTOSIS IN MACROPHAGES,"
785 *Annu. Rev. Immunol.*, vol. 17, no. 1, pp. 593–623, Apr. 1999, doi:
786 10.1146/annurev.immunol.17.1.593.
- 787 [48] D. Vorselen, R. L. D. Labitigan, and J. A. Theriot, "A mechanical perspective on phagocytic
788 cup formation," *Curr. Opin. Cell Biol.*, vol. 66, pp. 112–122, Oct. 2020, doi:
789 10.1016/j.ceb.2020.05.011.

- 790 [49] S. Hu, "Long-range self-organization of cytoskeletal myosin II filament stacks," *Nat Cell Biol*, vol. 19, pp. 133–141, 2017.
- 792 [50] T. Watanabe, "TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation," *J Cell Biol*, vol. 210, pp. 737–51, 2015.
- 794 [51] J. Weischenfeldt and B. Porse, "Bone Marrow-Derived Macrophages (BMM): Isolation and Applications," *Cold Spring Harb. Protoc.*, vol. 2008, no. 12, p. pdb.prot5080, Dec. 2008, doi: 10.1101/pdb.prot5080.
- 797 [52] X. Zhang, R. Goncalves, and D. M. Mosser, "The isolation and characterization of murine macrophages," *Curr Protoc Immunol Chapter*, vol. 14, Unit 14 1, 2008.
- 799 [53] M. Thery and M. Piel, "Adhesive micropatterns for cells: a microcontact printing protocol," *Cold Spring Harb Protoc*, p. 5255, 2009.
- 801 [54] G. V. Los *et al.*, "HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis," *ACS Chem. Biol.*, vol. 3, no. 6, pp. 373–382, Jun. 2008, doi: 10.1021/cb800025k.
- 803 [55] N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, and R. Henriques, "Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations," *Nat. Commun.*, vol. 7, no. 1, p. 12471, Nov. 2016, doi: 10.1038/ncomms12471.
- 807 [56] B. Liu *et al.*, "Biosensors based on peptide exposure show single molecule conformations in live cells," *Cell*, vol. 184, no. 22, pp. 5670-5685.e23, Oct. 2021, doi: 10.1016/j.cell.2021.09.026.

- 810 [57] J.-C. Olivo-Marin, "Extraction of spots in biological images using multiscale products,"
811 *Pattern Recognit.*, vol. 35, no. 9, pp. 1989–1996, Sep. 2002, doi: 10.1016/S0031-
812 3203(01)00127-3.
- 813 [58] J. C. Crocker and D. G. Grier, "Methods of Digital Video Microscopy for Colloidal Studies," *J.*
814 *Colloid Interface Sci.*, vol. 179, no. 1, pp. 298–310, Apr. 1996, doi: 10.1006/jcis.1996.0217.
- 815 [59] H. Qian and E. L. Elson, "Single-molecule enzymology: stochastic Michaelis–Menten
816 kinetics," *Biophys. Chem.*, vol. 101–102, pp. 565–576, Dec. 2002, doi: 10.1016/S0301-
817 4622(02)00145-X.
- 818 [60] M. J. Saxton, "Single-particle tracking: the distribution of diffusion coefficients," *Biophys.*
819 *J.*, vol. 72, no. 4, pp. 1744–1753, Apr. 1997, doi: 10.1016/S0006-3495(97)78820-9.
- 820 [61] P. Virtanen *et al.*, "SciPy 1.0: fundamental algorithms for scientific computing in Python,"
821 *Nat. Methods*, vol. 17, no. 3, pp. 261–272, Mar. 2020, doi: 10.1038/s41592-019-0686-2.
- 822 [62] K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown, "Dedalus: A flexible
823 framework for numerical simulations with spectral methods," *Phys. Rev. Res.*, vol. 2, no. 2,
824 p. 023068, Apr. 2020, doi: 10.1103/PhysRevResearch.2.023068.
- 825 [63] J. Geweke, "Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of
826 Posterior Moments," in *IN BAYESIAN STATISTICS*, 1992, pp. 169–193.
- 827 [64] A. Gelman and D. B. Rubin, "Inference from Iterative Simulation Using Multiple
828 Sequences," *Stat. Sci.*, vol. 7, no. 4, Nov. 1992, doi: 10.1214/ss/1177011136.
- 829 [65] S. van der Walt *et al.*, "scikit-image: image processing in Python," *PeerJ*, vol. 2, p. e453,
830 Jun. 2014, doi: 10.7717/peerj.453.
- 831



832

833 **Figure 1** Actin and Cdc42 localization around disks of IgG. **A-C)** Rosettes of actin podosomes
834 form around IgG disks. A micropattern of IgG disks of diameter 3.5 μm is shown in **A**. Actin is
835 shown in **B**, in which puncta are podosomes. An overlay (IgG in blue, actin in magenta) is shown
836 in **C**. **D, E)** Single particle tracking of Cdc42 during frustrated phagocytosis. Actin is shown in **D**.
837 Single particle tracking of Cdc42 is shown in **E**, with tracks colored by their mean squared
838 displacement. Insets in **E** show two individual examples corresponding to the red boxes, with
839 MSD colored as in **E** and actin shown in grayscale.

840

841

842

843

844

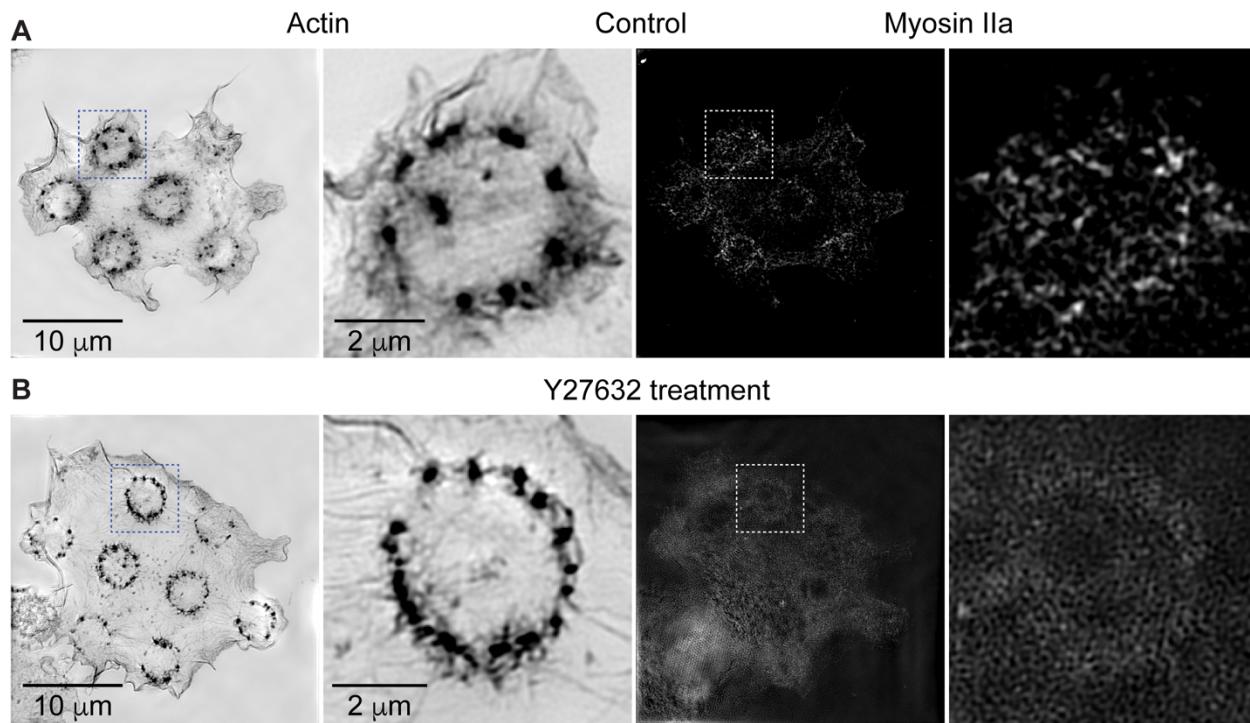
845

846

847

848

849



850

851 **Supplemental Figure 1** Actomyosin contractility does not appear to be necessary for rosette
852 formation. **A**) Control RAW 264.7 macrophages were marked for actin (phalloidin staining) and
853 myosin II (RLC-eGFP) during frustrated phagocytosis. **B**) RAW 264.7 macrophages were marked
854 for actin (phalloidin staining) and myosin II (RLC-eGFP) when treated with 20mM Rho kinase
855 inhibitor Y-27632 for 25 min during frustrated phagocytosis.

856

857

858

859

860

861

862

863

864

865

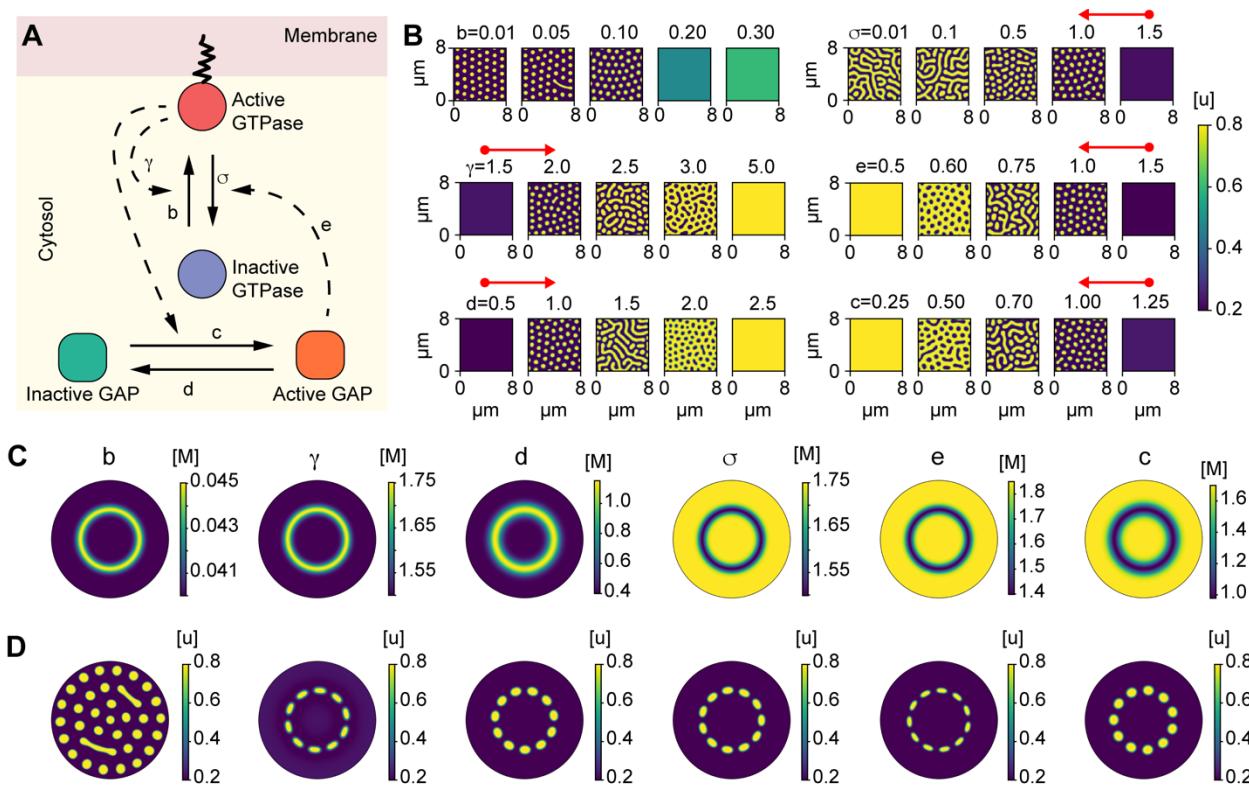
866

867

868

869

870



871

872

873 **Figure 2** The WPGAP model generates rosettes of GTPase activity if a ring of an intermediate
 874 species is assumed. **A)** Schematic of the Wave-Pinning GTPase Activating Protein (WPGAP)
 875 model. **B)** WPGAP simulation results for individual parameter sweeps (Table 1). Most
 876 parameters show a transition from a low intensity homogenous regime to a spot patterning
 877 regime (red arrows). For details on concentration units, see Methods. **C)** Radial distributions for
 878 a modulating species M. The ring shown in these panels represents either a region of high (first
 879 3 panels) or low (last 3 panels) [M]. **D)** Active GTPase concentrations using the distribution for
 880 [M] shown in **C** (above each panel, respectively).

881

882

883

884

885

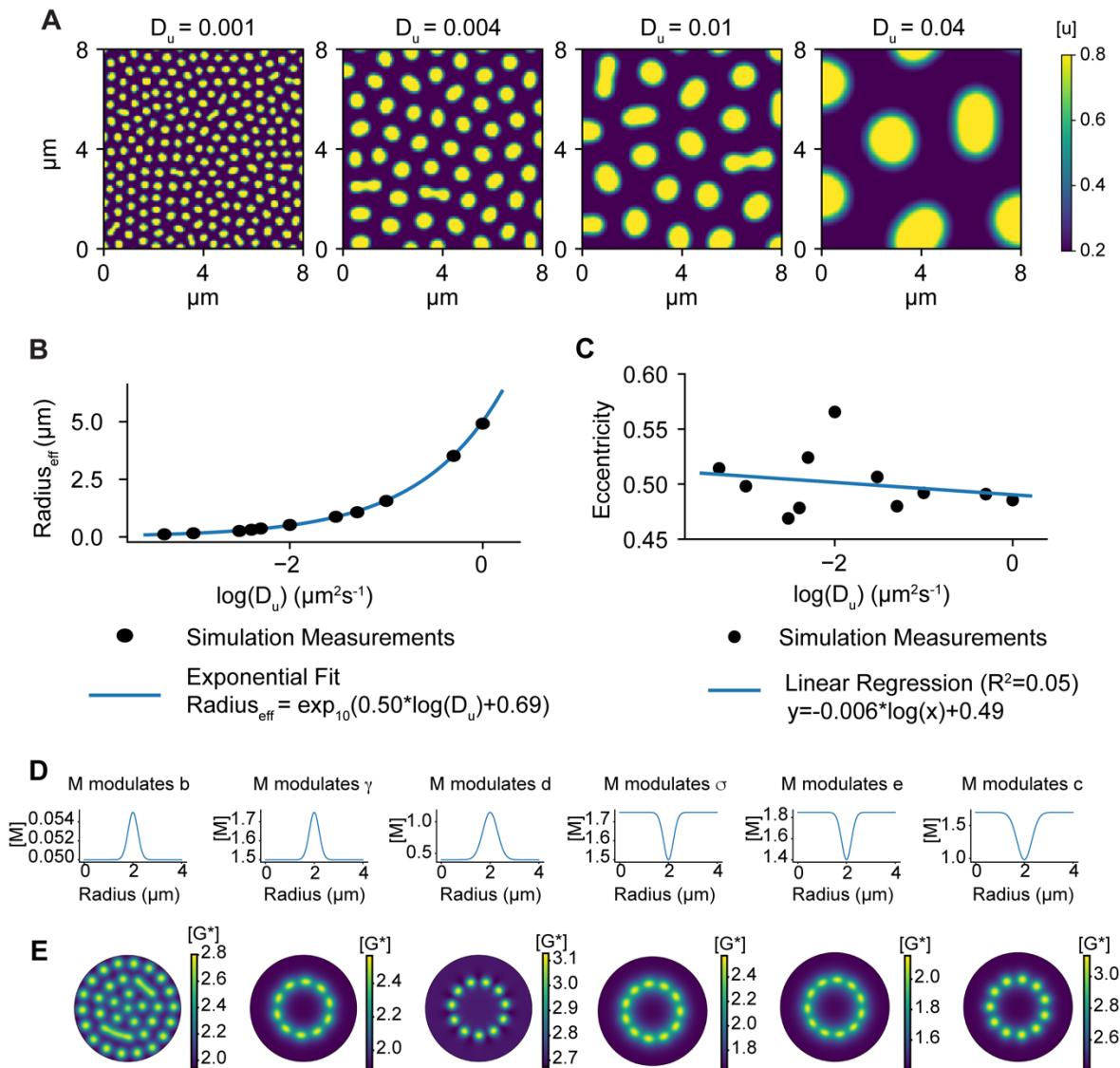
886

887

888

889

890



891

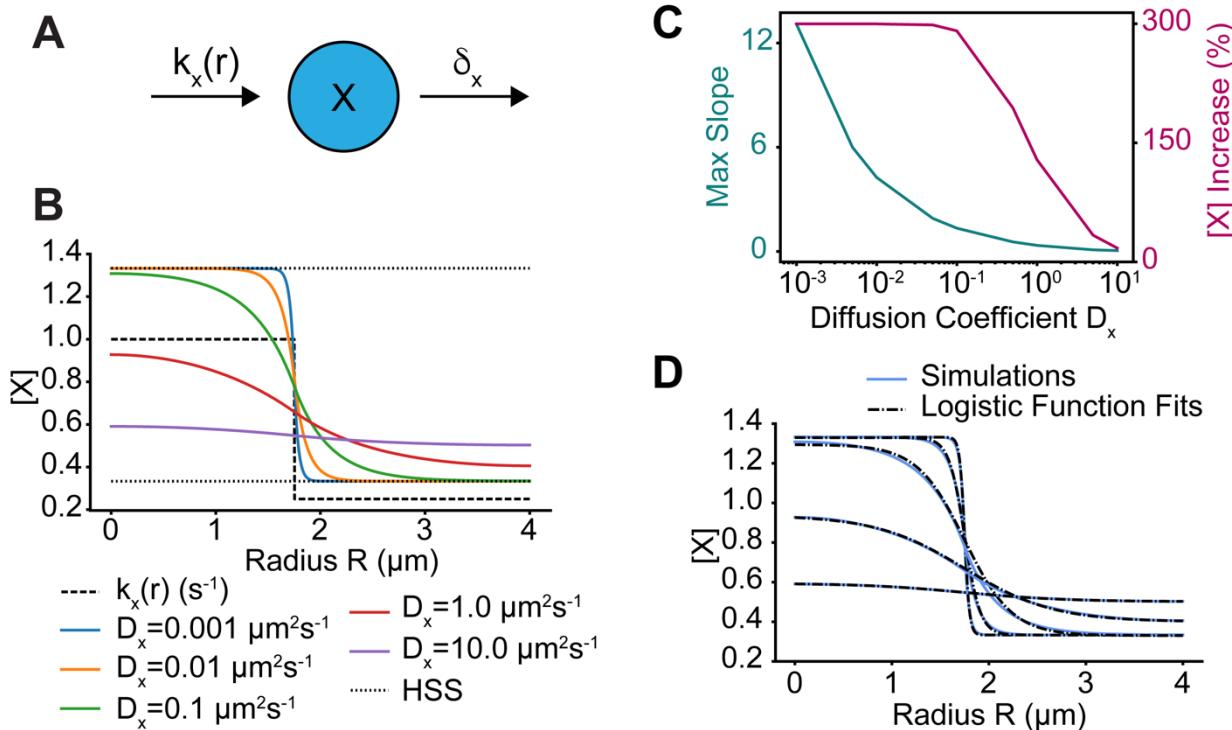
892 **Supplemental Figure 2** Diffusion rates determine the size of active GTPase spots. **A)**
893 Simulations of the WPGAP model for variable diffusion rates. The diffusion coefficient for
894 cytosolic species is taken to be $100D_u$. **B)** Relationship between the membrane diffusion
895 coefficient and spot size. **C)** Relationship between the membrane diffusion coefficient and spot
896 eccentricity. **D)** Radial distributions for the intermediate species M in Fig. 2E. **E)** Active GAP
897 concentrations for the results shown in Fig. 2E.

898

899

900

901



902 **Figure 3** A simple reaction-diffusion model generates gradients of activity. **A)** Schematic of the
903 simple reaction-diffusion model in which a species X is activated by a rate $k_x(r)$, which depends
904 on the local IgG concentration, and is deactivated at a constant rate δ_x . **B)** Simulations of the
905 model for various diffusion rates D_x . The spatial profile of $k_x(r)$ is shown as the dashed line and
906 $\delta_x = 0.75 \text{ s}^{-1}$. The homogenous steady states values of X when $k = k_x(0)$ and $k = k_x(r_{max})$ are
907 shown as well (dotted lines). **C)** Maximum slope of X(r) and percent increase of X(0) over X(r_{max})
908 as a function of D_x . **D)** Blue curves are same as in **B** and dashed lines are best fits of these curves
909 to the logistic function.

910

911

912

913

914

915

916

917

918

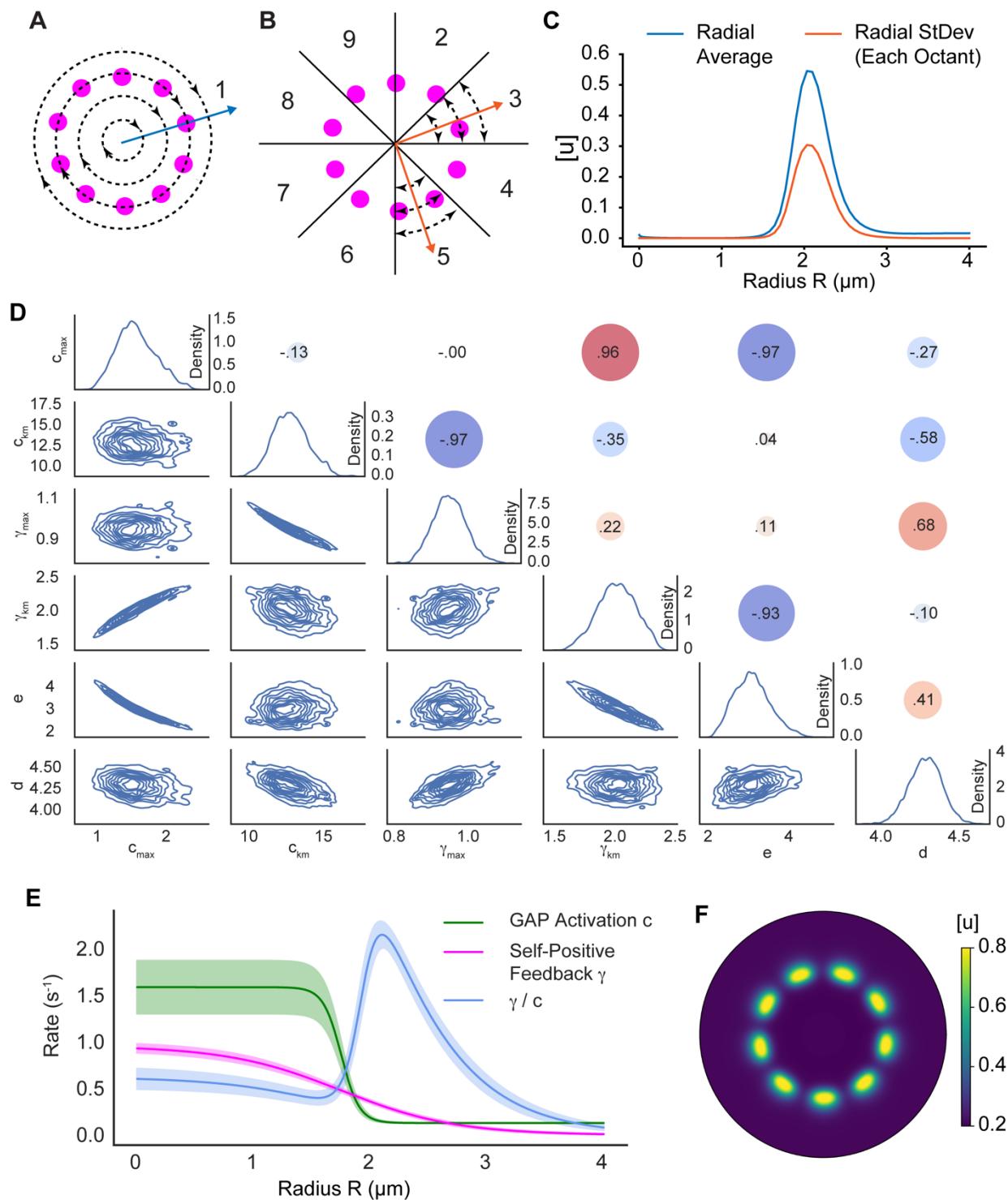
919

920

921

922

923



924

925 **Figure 4** Model parameterization reveals mechanism enabling rosette formation. **A)** Schematic
 926 illustrating the radial averaging of GTPase activity used in the score function. **B)** Schematic
 927 illustrating the radial standard deviation of GTPase activity per octant used in the score
 928 function. This results in eight individual quantifications used in the score function. **C)** Radial

929 profiles of the average and standard deviation of GTPase activity. These profiles were used in
930 the score function and compared to the results from numerical simulations. **D)** Parameter
931 distributions after performing DRAM-MCMC sampling. Individual parameter distributions are
932 shown on the diagonal. Lower triangular plots show kernel density estimates for parameter
933 pairs. Circles in the upper triangle represent the Spearman correlation coefficient between
934 parameters. **E)** Radial profiles for the non-constant parameters from the parameter estimation.
935 The positive to negative feedback ratio is also shown. The solid lines are the results for the
936 mean parameter values from **D** (on the diagonal, Table 2) and the shaded regions indicate one
937 standard deviation. **F)** Active GTPase concentration using the representative parameter set
938 (Table 2). Simulation domain has a max radius of 4.0 μm .

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

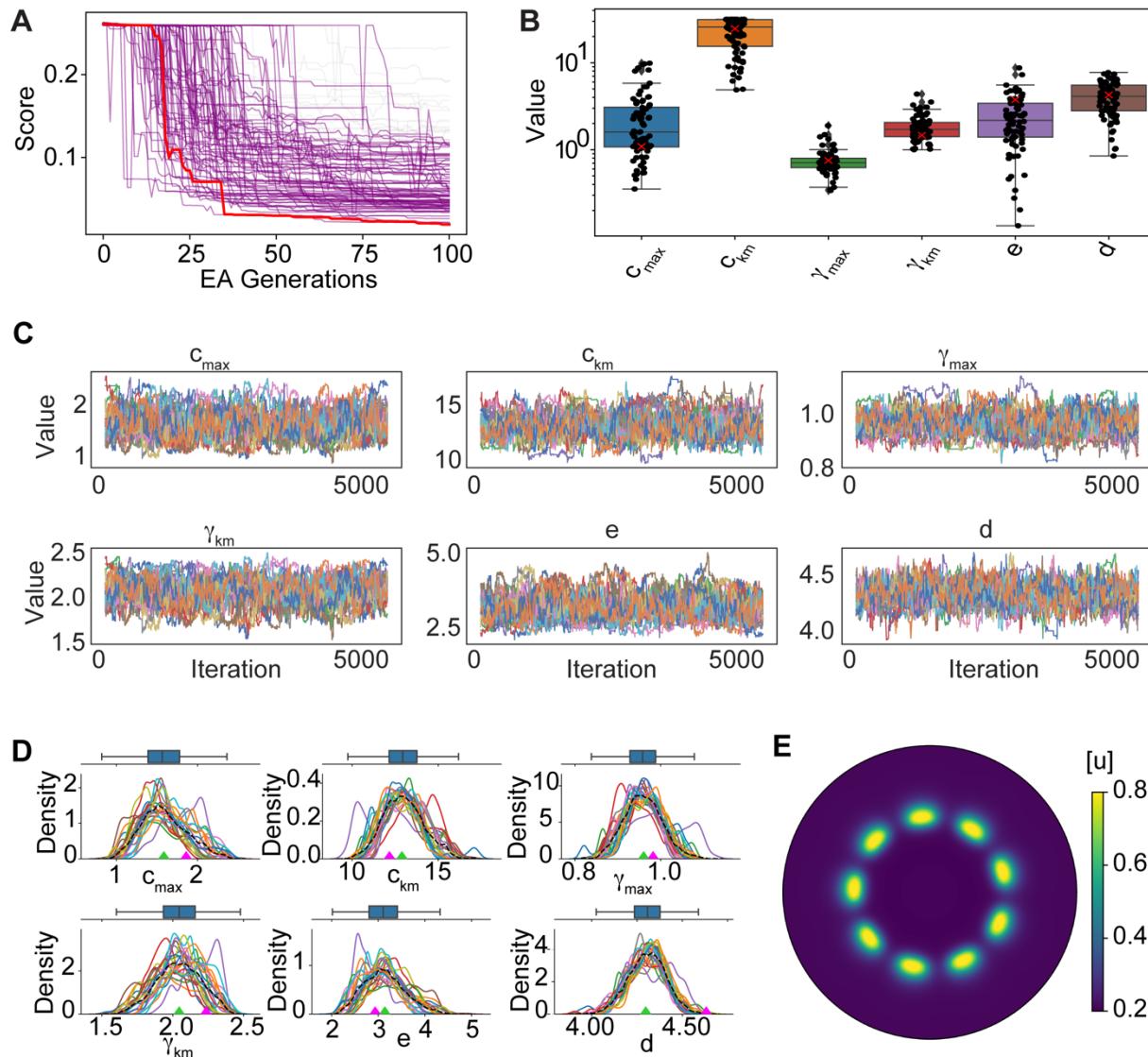
962

963

964

965

966



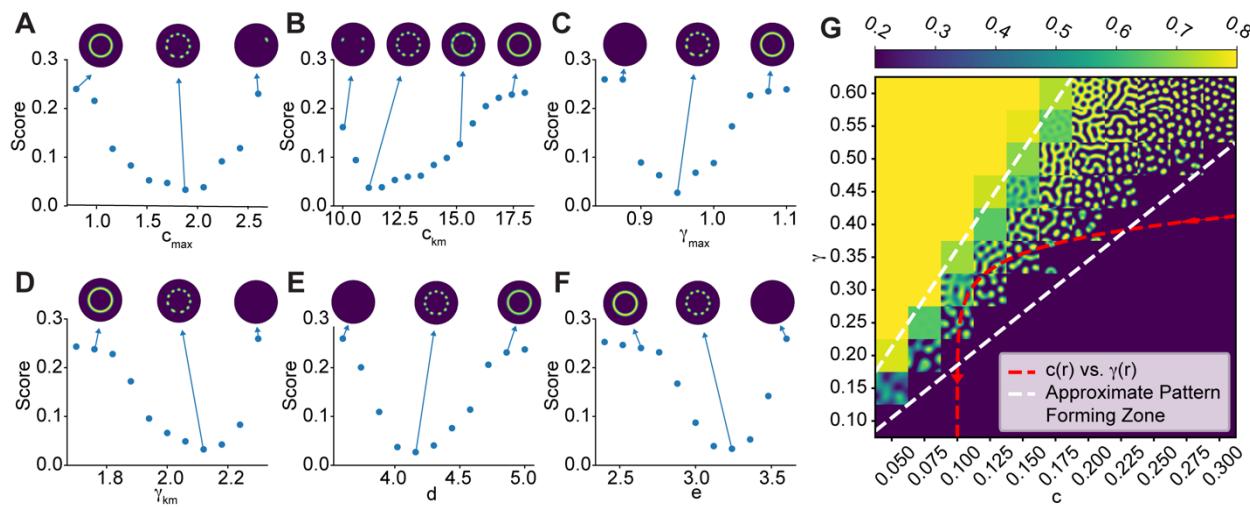
967

968 **Supplementary Figure 3** EA and DRAM-MCMC parameterization. **A)** EA parametrization runs
 969 (99 total). Best individual run shown in red and the runs that resulted in GTPase rosettes shown
 970 in purple. **B)** Individual parameter distributions from the successful EA runs shown in **A**. The
 971 best performing parameter set shown by red crosses. **C)** DRAM-MCMC chains for individual
 972 parameters post burn-in phase. **D)** Individual parameter densities for the chains shown in **C**.
 973 Representative parameter set values shown by green diamonds (Table 2). The worst scoring
 974 parameter set shown by magenta diamonds (Table S1). **E)** Active GTPase concentration for the
 975 worst scoring parameter set (Table S1).

976

977

978



979

980 **Figure 5** Effects of individual parameters on patterning. **A-F**) Plots of the score function versus
981 model parameters (Table 2). Representative simulation results shown to illustrate the impact of
982 varying parameter values on rosette formation. **G**) Two parameter sweep varying c and γ . Each
983 grid cell shows the active GTPase concentration for an individual simulation when c and γ are
984 fixed. The red dashed line is a plot of $c(r)$ versus $\gamma(r)$ from Fig. 4E & Table 2.

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

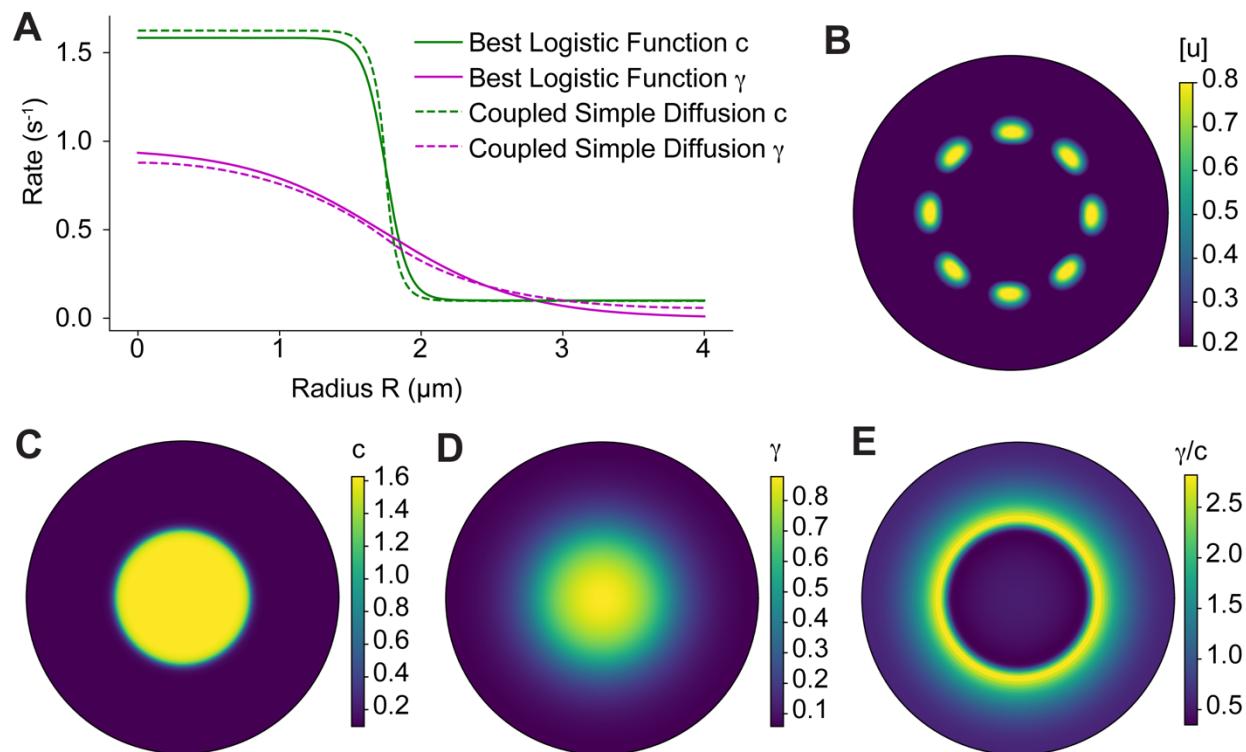
1001

1002

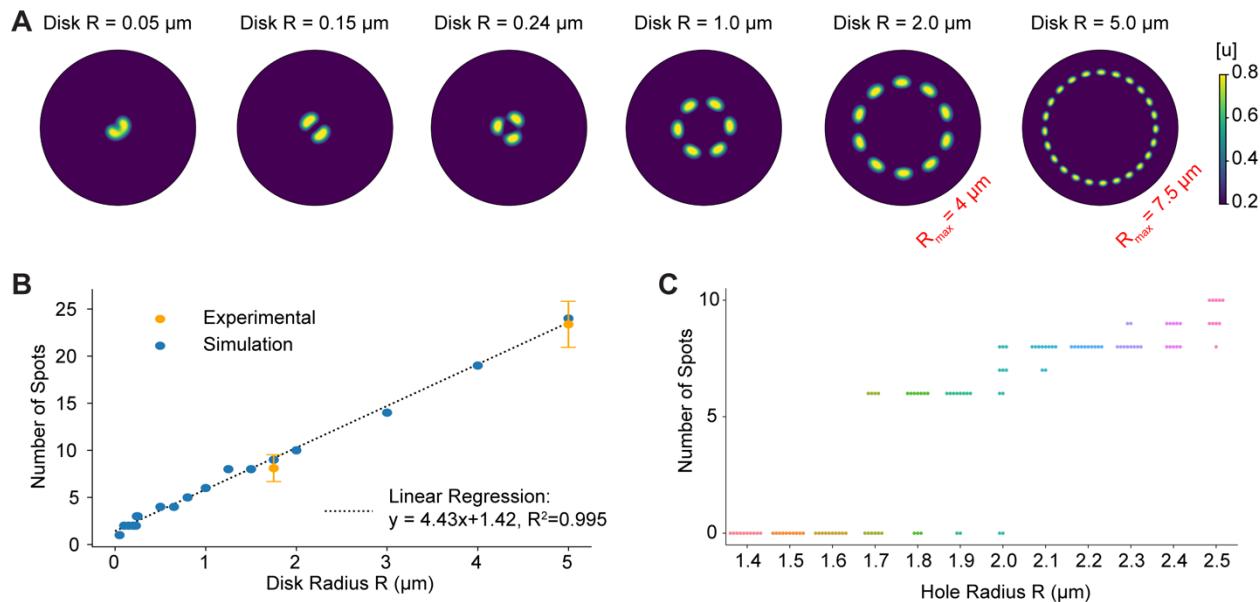
1003

1004

1005



1006
1007 **Figure 6** Rosette formation is possible when modulating species are explicitly included in the
1008 model. **A)** Radial distributions for c and γ from the coupled model (dashed lines) and the logistic
1009 function approximations using the representative parameter set (Table 2). **B)** Active GTPase
1010 concentration for the coupled model shown in **A**. **C)** Spatial concentration of the species
1011 modulating c . **D)** Spatial concentration of the species modulating γ . **E)** The positive to negative
1012 feedback ratio γ/c forms a ring.
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026



1027

1028 **Figure 7** Effects of varying the size of IgG disks and holes. **A)** Simulation results for various disk
1029 using the representative parameter set (Table 2). The radius of the simulation domain is $4.0 \mu\text{m}$
1030 except for the case with a disk size of $R = 5.0 \mu\text{m}$ (far right), where the domain radius is $7.5 \mu\text{m}$.
1031 **B)** The number of active GTPase spots linearly increases with disk sizes (blue circles). These
1032 results are consistent with experimental results (orange circles, whiskers denote one standard
1033 deviation). **C)** Number of active GTPase spots versus hole size. The system appears bistable for
1034 radii between 1.7 and $2.0 \mu\text{m}$. In this region rosette formation depends on the initial conditions
1035 used in the simulations.

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

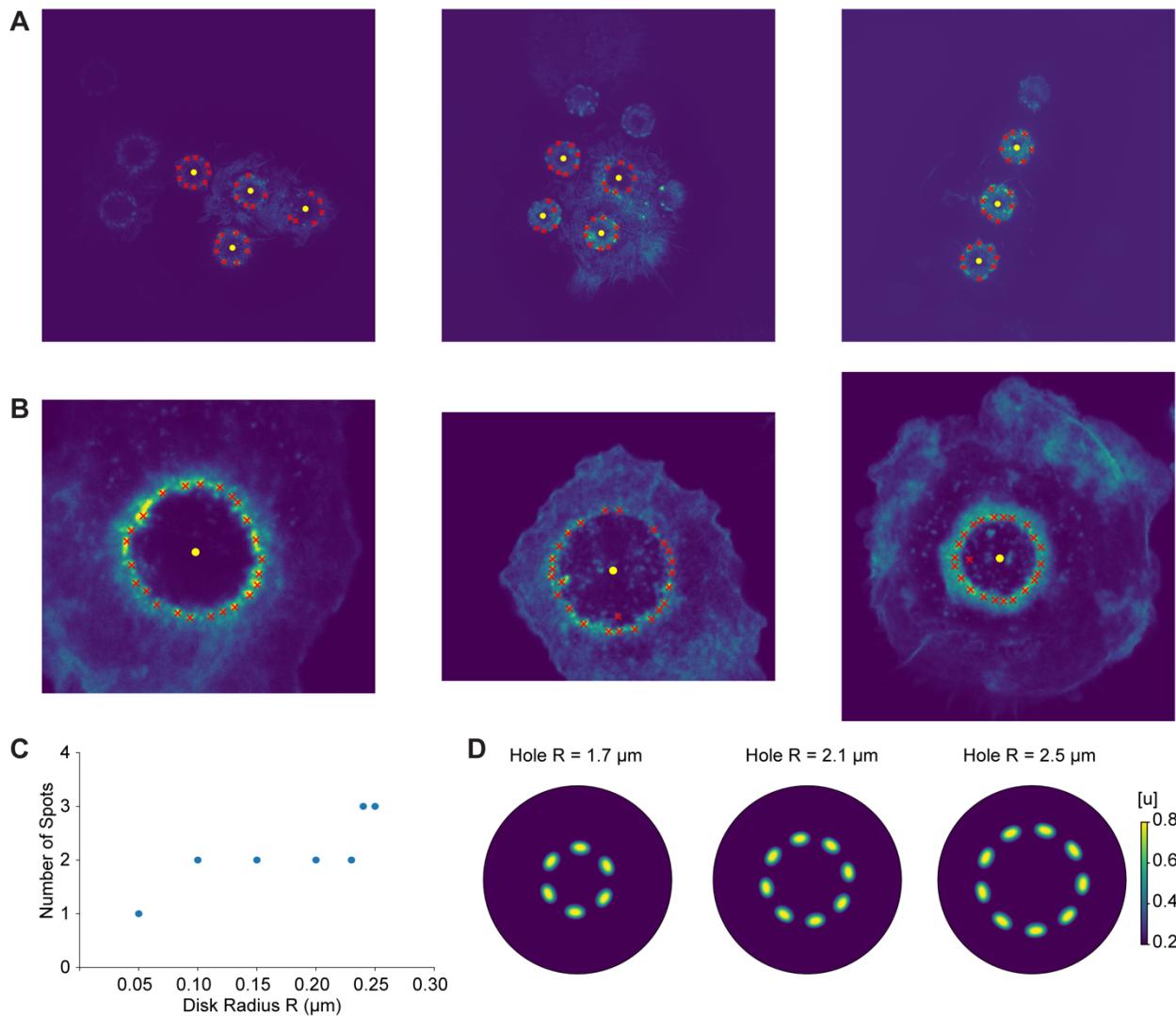
1047

1048

1049

1050

1051



1052

1053 **Supplemental Figure 4** Additional information for experimental and simulated results on
1054 varying disk and hole sizes. **A)** Representative experimental results for disks of radius 1.75 μm .
1055 Podosomes are indicated with red circles. **B)** Same as A but using disks of radius 5 μm . **C)**
1056 Number of GTPases spots versus disk radius for small disks with radius less than 0.25 μm . **D)**
1057 Simulations for the representative parameter set (Table 2, negative c_{km} and γ_{km}) when changing
1058 the hole size.

1059

1060

1061

1062

1063

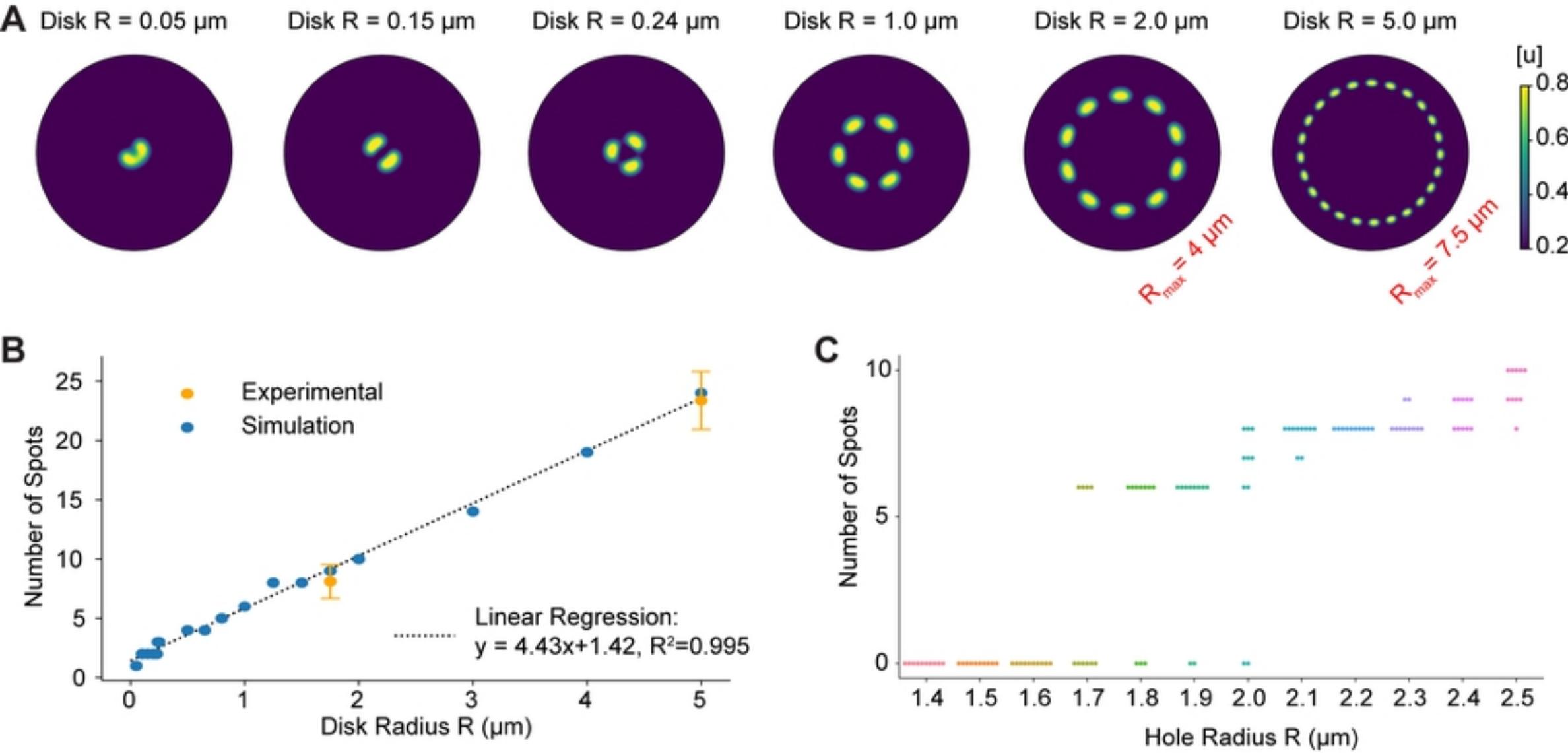


Figure 7

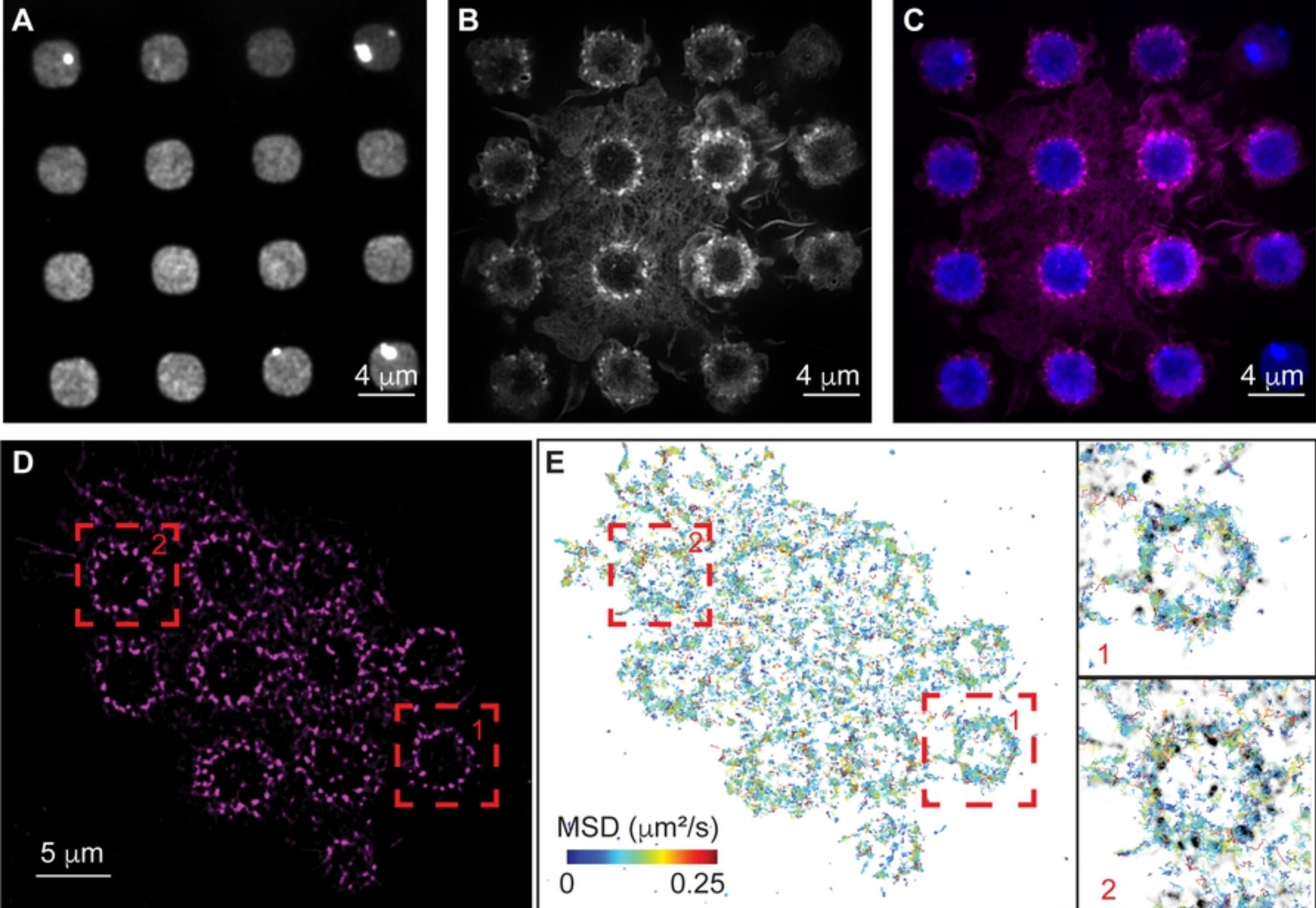


Figure 1

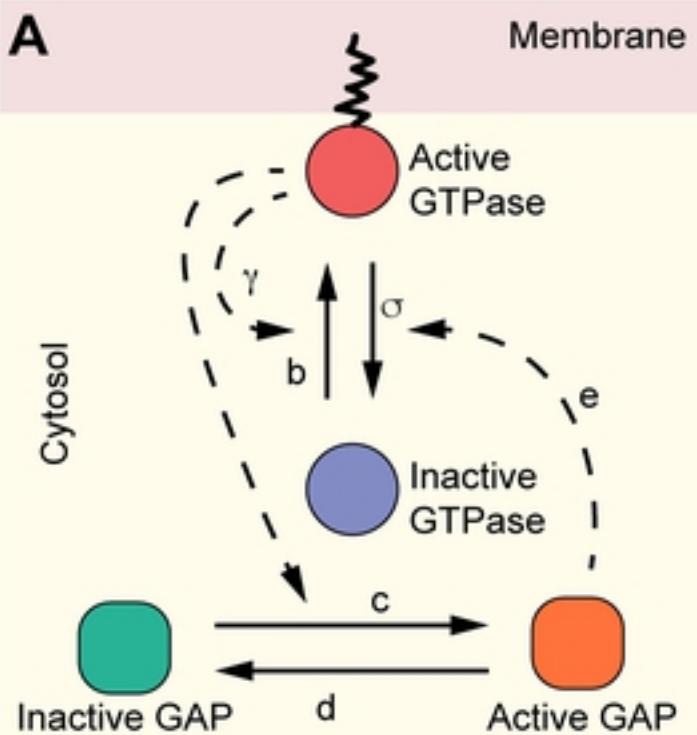
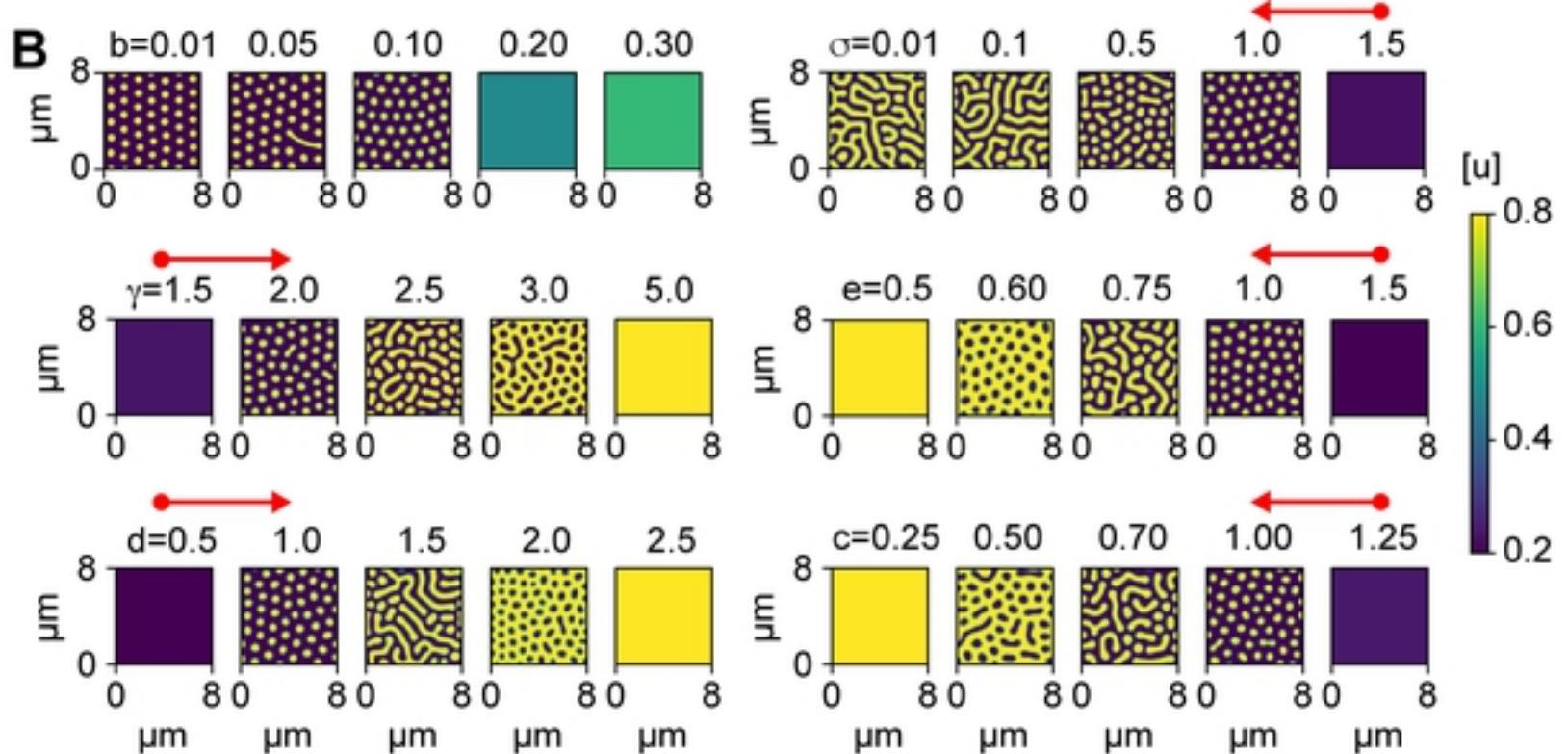
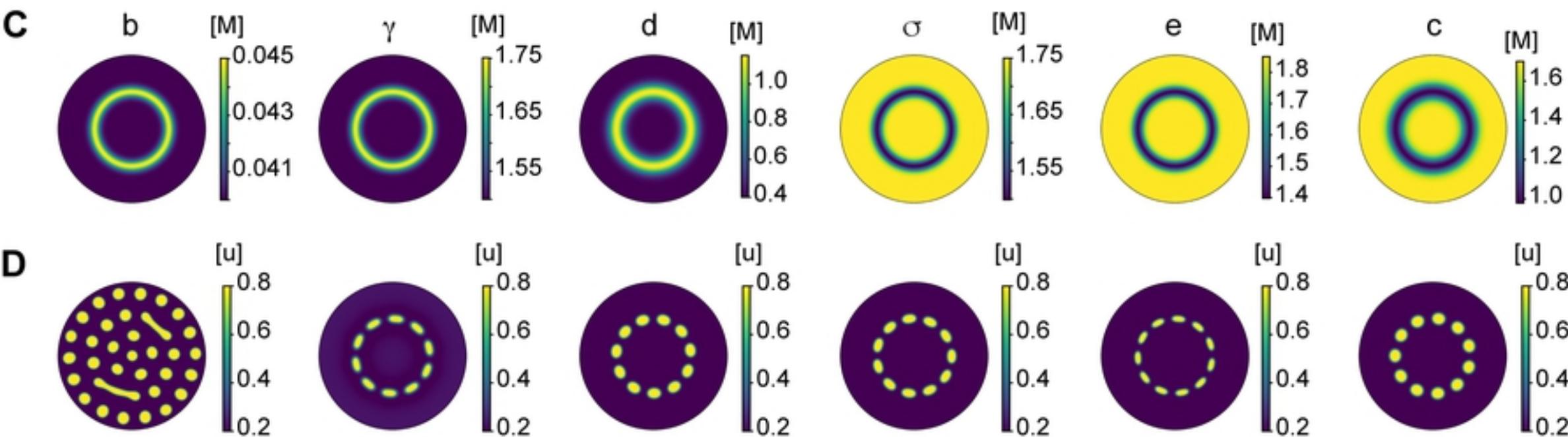


Figure 2

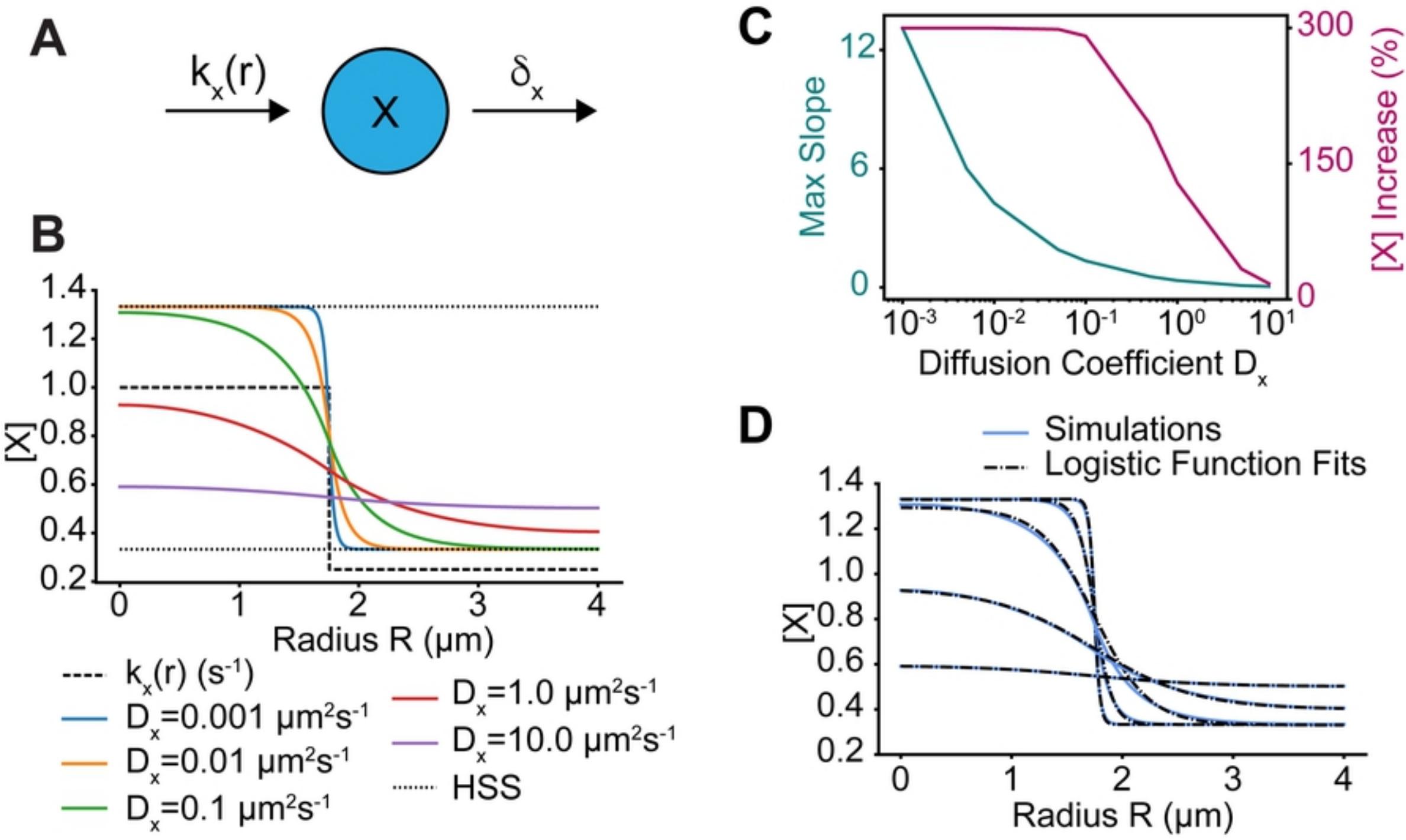


Figure 3

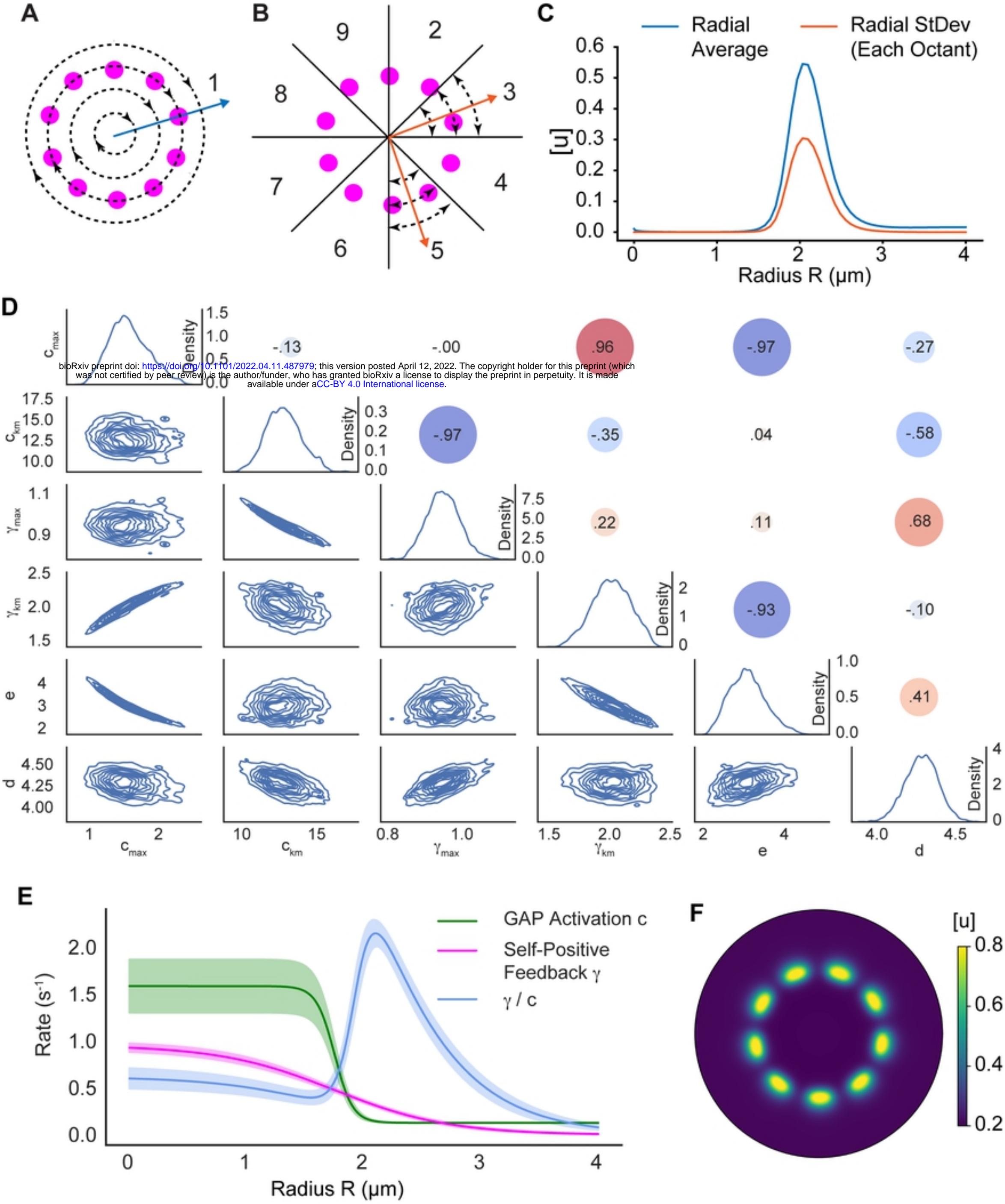


Figure 4

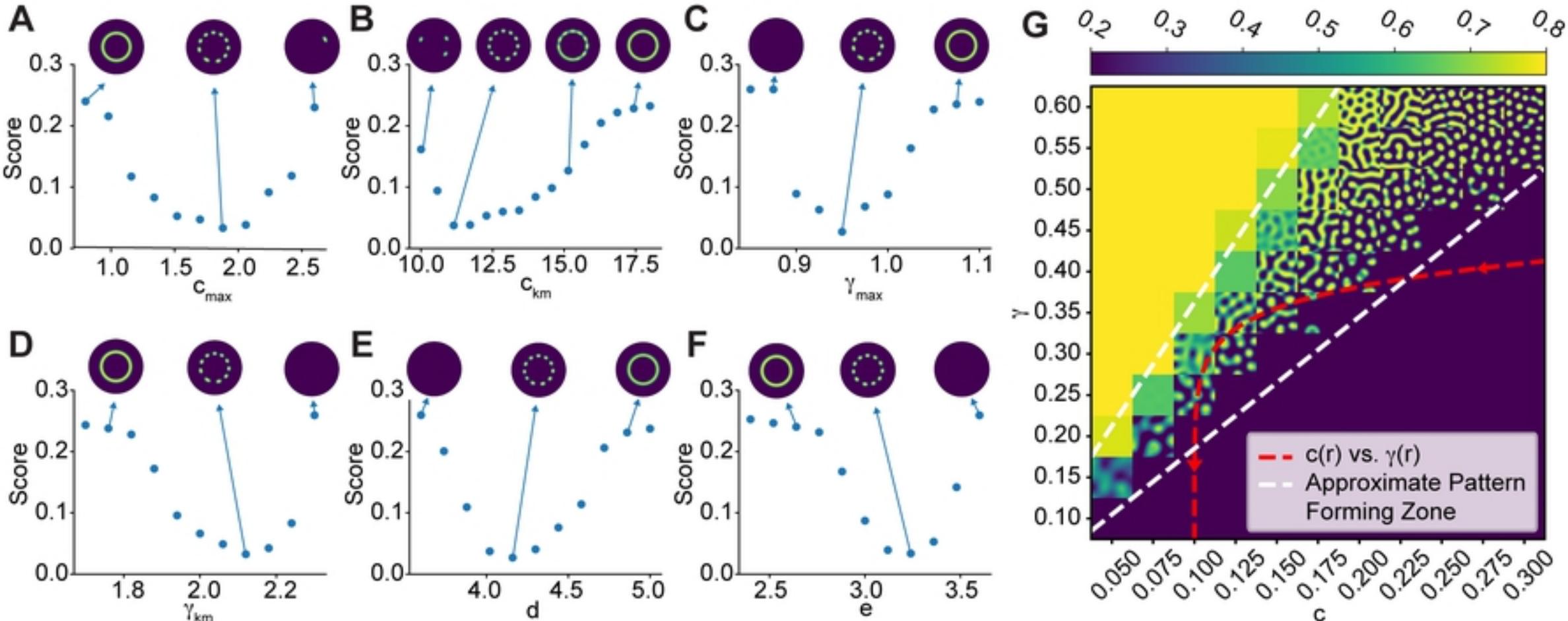


Figure 5

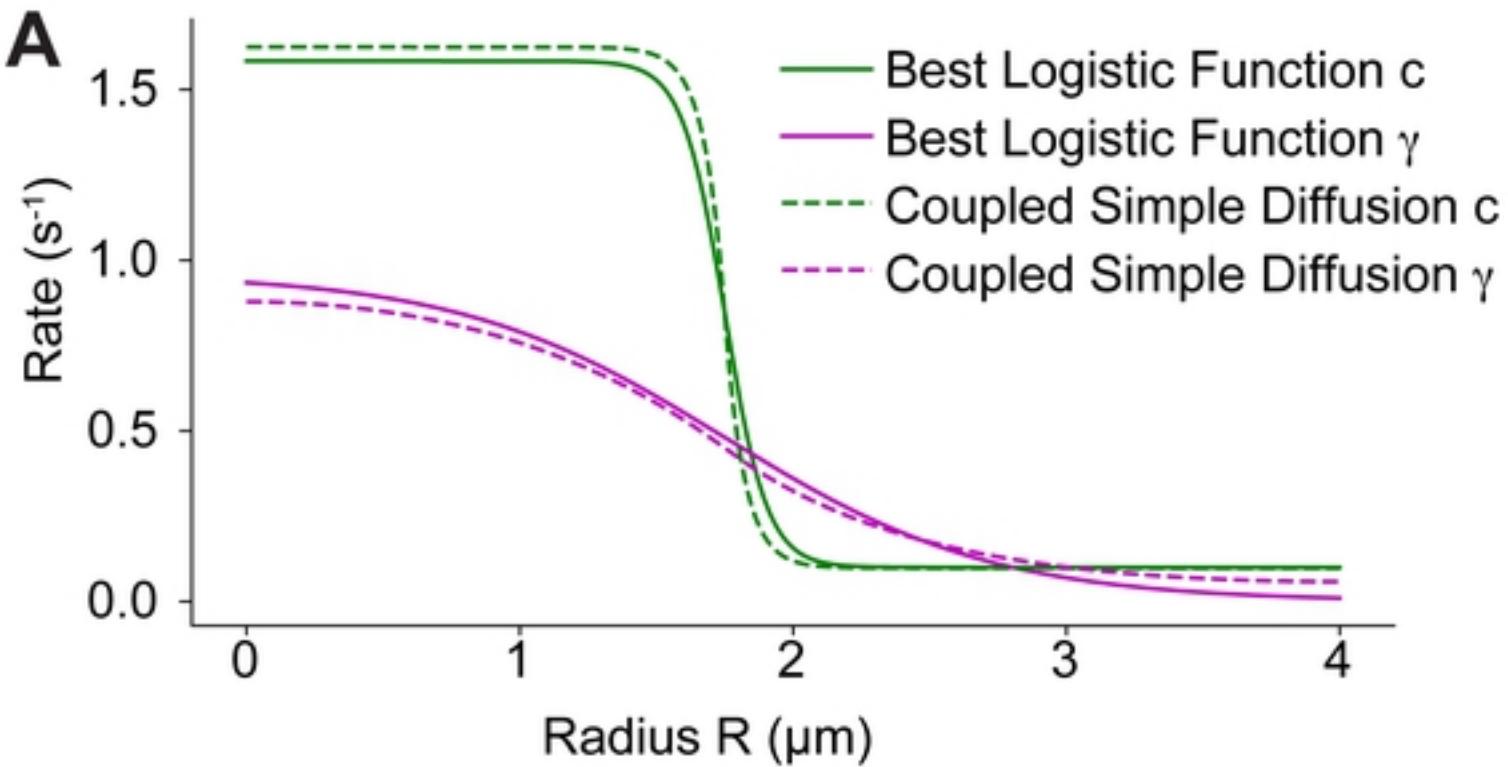
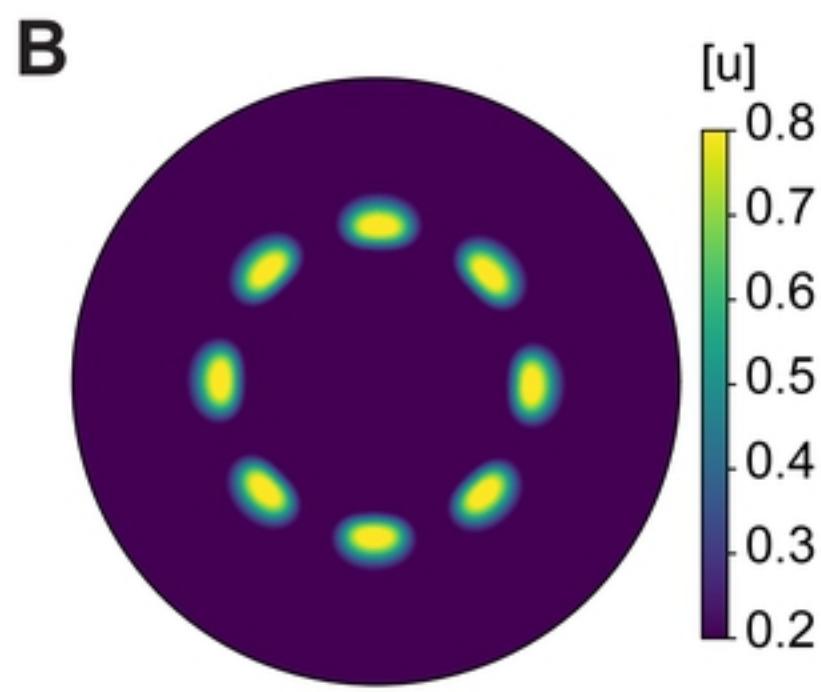
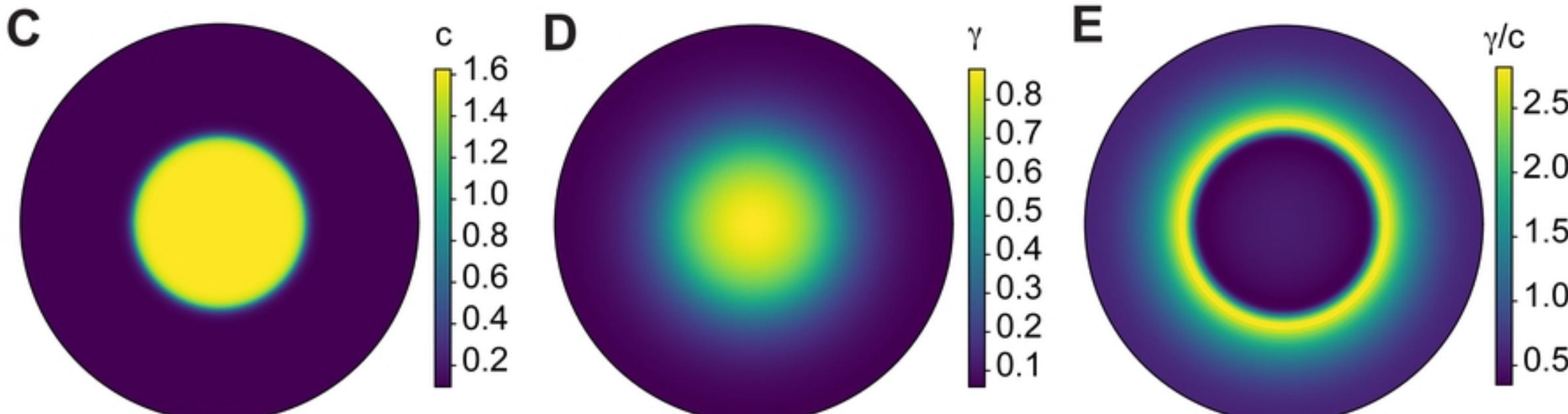


Figure 6