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Abstract

Phagocytosis, the biological process in which cells ingest large particles such as bacteria,
is a key component of the innate immune response. Fcy receptor (FcyR)-mediated phagocytosis
is initiated when these receptors are activated after binding immunoglobulin G (IgG). Receptor
activation initiates a signaling cascade that leads to the formation of the phagocytic cup and
culminates with ingestion of the foreign particle. In the experimental system termed
“frustrated phagocytosis”, cells attempt to internalize micropatterned disks of IgG. Cells that
engage in frustrated phagocytosis form “rosettes” of actin-enriched structures called
podosomes around the IgG disk. The mechanism that generates the rosette pattern is
unknown. We present data that supports the involvement of Cdc42, a member of the Rho
family of GTPases, in pattern formation. Cdc42 acts downstream of receptor activation,
upstream of actin polymerization, and is known to play a role in polarity establishment.
Reaction-diffusion models for GTPase spatiotemporal dynamics exist. We demonstrate how the
addition of negative feedback and minor changes to these models can generate the
experimentally observed rosette pattern of podosomes. We show that this pattern formation
can occur through two general mechanisms. In the first mechanism, an intermediate species
forms a ring of high activity around the IgG disk, which then promotes rosette organization. The
second mechanism does not require initial ring formation but relies on spatial gradients of
intermediate chemical species that are selectively activated over the IgG patch. Finally, we

analyze the models to suggest experiments to test their validity.
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Author Summary

Phagocytosis, the process by which cells ingest foreign bodies, plays an important role in
innate immunity. Phagocytosis is initiated when antibodies coating the surface of a foreign
body are recognized by immune cells, such as macrophages. To study early events in
phagocytosis, we used “frustrated phagocytosis”, an experimental system in which antibodies
are micropatterned in disks on a cover slip. The cytoskeleton of cells attempting to phagocytose
these disks organizes into “rosette” patterns around the disks. To investigate mechanisms that
underlie rosette formation we turned to mathematical modeling based on reaction-diffusion
equations. Building on existing models for polarity establishment, our analysis revealed two
mechanisms for rosette formation. In the first scenario an initial ring of an intermediate
signaling molecule forms around the disk, while in the second scenario rosette formation is
driven by gradients of positive and negative pathway regulators that are activated over the

disk. Finally, we analyze our models to suggest experiments for testing these mechanisms.

Introduction

All cells must be able to respond to changes in their environment, and often the proper
response requires cells to adopt a new morphology. For example, cell shape changes occur
during migration, division, and phagocytosis. Typically, these changes are initiated when
receptors on the cell surface are activated by an external cue [1]. Receptor activation initiates a
signaling cascade that results in spatiotemporal regulation of the actin cytoskeleton. The Rho
family of GTPases are a class of signaling molecules that play key roles in this process [2]-[6].

These proteins act as molecular switches. They are in an inactive state when bound with GDP
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and become active when GDP is exchanged for GTP. Once active, Rho GTPases interact with
effector molecules including those that regulate the actin cytoskeleton. Due to the nonlinear
nature of the signaling pathways that regulate GTPase activity, understanding the molecular
mechanisms that generate cell shape changes has proven challenging [1]. Therefore, many
recent studies have turned to mathematical modeling to explore mechanisms capable of
generating complex molecular structures [7]-[11].

Here we focus on Fcy Receptor (FcyR)-mediated phagocytosis because of its biological
importance in the innate immune response [12], [13] and because phagocytosis provides an
outstanding system for studying how Rho GTPases organize the cytoskeleton into well-defined
structures. Phagocytosis is initiated by the binding of the antibody Immunoglobulin G (IgG) to
FcyR. Upon FcyR clustering, receptor cross-linking leads to phosphorylation of activation motif
domains, enabling downstream signaling [12]—[14]. To study the events that initiate
phagocytosis under well-controlled conditions, IgG is micropatterned in small disks on a glass
coverslip (Fig. 1A). Because the antibody is attached to the coverslip it cannot be internalized,
and the experimental system is therefore referred to as “frustrated” phagocytosis [15].
Following receptor activation, actin-enriched, adhesion-like structures termed podosomes [12],
[13], [16] form in a circle around the 1gG disk (Fig. 1B,C). Podosomes recruit many additional
molecules and are thought to coordinate interactions between the actin cytoskeleton and the
extracellular matrix [16]-[18]. They also form the leading edge of the phagocytic cup [19], [20].
The mechanisms responsible for podosome formation and patterning are not known.
Therefore, we turned to mathematical modeling to establish sufficient conditions for pattern

formation during frustrated phagocytosis.
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Beginning with Turing’s seminal paper [21] and continuing with developments by Gierer
and Meinhardt [22] and Meinhardt [23], reaction-diffusion models have been used to
investigate pattern formation in biological systems. These models rely on positive feedback to
amplify local fluctuations in signaling activity and some form of global inhibition to keep regions
of high activity localized [22]. Another key requirement of these models is that at least one of
the chemical species in the system diffuses at a different rate from the others [21], [22]. The
hydrolysis cycle of GTPases satisfies the requirements for spontaneous polarization [7]—-[10],
[24], [25]. GTPases cycle between an active state when GTP-bound and an inactive state when
GDP-bound. Their activation is catalyzed by guanine nucleotide exchange factors (GEFs), which
promote the exchange of GDP to GTP. This exchange typically occurs at the cell membrane
where diffusion is slow as compared to the cytosol [7], [8], [10], [25], [26]. When in the active
state, some GTPases have been shown to recruit their own GEFs forming a positive feedback
loop [24], [25], [27]-[30]. GTPase inactivation is accelerated by GTPase-activating proteins
(GAPs) [3]-[6]. When inactive, GTPases are sequestered in the cytosol by guanine nucleotide
dissociation inhibitors (GDIs) and diffuse rapidly [3]-[6].

There are now many reaction-diffusion models that describe how GTPases can generate
cell polarity and patterning in various systems [8]-[11]. One of the best characterized cases is in
yeast (Saccharomyces cerevisiae) budding, in which the GTPase Cdc42 generates a single, active
site to determine the location of a bud site or mating projection. In yeast, autocatalysis is well-
defined: active Cdc42 binds to the scaffold protein Bem1, which subsequently binds to the GEF
Cdc24 that locally activates more GTPase [24], [25], [27], [28]. Another well characterized

system is in single-cell wound healing, where Rho and Cdc42 form in distinct rings through the
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dual GAP-GEF Abr [31], [32]. Other examples include tip growth in pollen tubes and fungal
hyphae [10] and cell motility [33], [34].

Here, we expanded upon existing reaction-diffusion models for GTPase activity to
demonstrate how these systems can generate the “rosette” pattern of podosomes observed
during frustrated phagocytosis. We explore the behavior of a recent model for GTPase activity
that includes a negative feedback loop formed through the activation of a GAP [8]—[11].
Depending on the choice of parameter values, this model generates a range of patterns
including spots, mazes, and inverse spots. We use the model to identify two distinct
mechanisms for generating a rosette pattern. In the first scenario, an intermediate species
forms a ring of activity that promotes the formation of active GTPase spots in the ring. Next, we
use a parameterization approach involving an evolutionary algorithm followed by Markov chain
Monte Carlo to evolve systems that do not rely on initial ring formation to generate the rosette
pattern. A common theme that emerges from this analysis is that rosette formation requires
the activation of both a positive and negative regulator of GTPase activity over the IgG disk. This
creates spatial gradients of these regulators, which in turn are sufficient to drive the formation
of the rosette pattern. Finally, we analyzed the behavior of the models to suggest experiments

to test our proposed mechanisms.

Results

Experimental observations suggest Cdc42, but not myosin, is required for rosette patterning
Macrophages (RAW 264.7 cells) were observed during frustrated Fcy receptor lla (FcyR)

mediated phagocytosis, where cells attempt to phagocytose fixed, micropatterned disks of
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immunoglobulin G (I1gG). Actin, a major downstream effector during FcyR-mediated phagocytic
signaling, formed in rings of small puncta, just outside of the IgG disks (Fig. 1A-C). These puncta
were podosomes: actin-rich, adhesion-like structures observed during phagocytosis but more
commonly known for their roles in motility and extracellular matrix interactions [16], [17]. This
superstructural organization of podosomes in a circular arrangement has previously been
termed a podosome “rosette” [35]—[37]. Due to the dynamic nature of phagocytosis,
actomyosin contractility is known to play an integral role during the engulfment process [12],
[13], [20], [38] and myosin Il has been observed to localize to phagocytic podosomes and
podosome rosettes [18], [20]. Therefore, we wondered whether actomyosin contractility was
important for podosome rosette formation. To test this possibility, we treated cells with the
Rho kinase inhibitor Y27632. Inhibition of Rho kinase during frustrated phagocytosis led to the
complete disassembly of myosin Il filaments, demonstrating that myosin Il contractility was
inhibited (Fig. S1). However, podosome rosettes still formed (Fig. S1), which suggested that the
formation and maintenance of podosomes during phagocytosis is independent of actomyosin
contractility and that a biochemical mechanism may underlie rosette formation.

Rho family GTPases, including Cdc42 are known to be activated during FcyR-mediated
phagocytic signaling [2], [12], [13], [39], [40]. Cdc42 is a regulator of the actin cytoskeleton, so
we next examined its localization during frustrated phagocytosis. Cdc42 was visualized during
frustrated phagocytosis using single particle tracking (Fig. 1D,E). Cdc42 appeared to colocalize
to the podosome rosette with individual tracks observed near podosomes (Fig. 1E).

Taken together these results suggest podosome rosette organization involves localized

Cdc42 activity but does not require active myosin-mediated force generation. Cdc42 is known
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155  to play arole in cell polarization. Therefore, we decided to investigate if a similar mechanism

156  might underlie formation of the podosome rosette.
157

158 Forming coexistent clusters of active GTPase

159 The core components of mathematical models for polarity establishment include an
160 inactive form of a GTPase that is cytosolic and diffuses rapidly, an active form that is membrane
161  bound and diffuses slowly, and positive feedback through autoactivation [7]-[11]. Additionally,
162  these models often assume that mass is conserved and, therefore, do not include protein

163  synthesis and degradation. In their simplest form, these models typically form a single polarity
164  site [7]-[10], [24]. Recent investigations have focused on establishing mechanisms that

165 generate coexisting active sites. For example, Chiou et al. [8] demonstrated how local depletion
166 increases the competition time between clusters so that coexistence is maintained over

167  biologically relevant time scales. Jacobs et al. [10] found that either adding protein synthesis
168 and degradation or adding negative feedback through a GTPase-activating protein (GAP) could
169 limit the growth of active clusters of GTPase, thus enabling coexistence. Here, we focused on
170  one of the GAP models that balances biological relevance with mathematical simplicity.

171 The Wave-Pinning GAP model (WPGAP, Fig. 2A, [10]) is described mathematically by the

172 following set of reaction-diffusion equations:

173
qu _ L 2
174 Pl bv + yv e O eGu + D, V“u,
ov ul 2
175 —= —bv — yv + ou + eGu + D, Vv,
at Kn+un
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G

176 = cug — dG + DsV?G,
98 _
177 5.= —cug +dG+ D,V?g,

178

179 where u is the concentration of active GTPase, v is the concentration of inactive GTPase, G is
180 the concentration of active GAP, and g is the concentration of inactive GAP. The basal GTPase
181  activation rate is b, the maximum self-positive feedback rate is y, K is the concentration of

182  active GTPase when the feedback is at the half-maximal response, the basal GTPase inactivation
183 rateis g, the GAP-mediated negative feedback rate is e, the GAP activation is ¢, and the GAP

184 inactivation rate is d. The total mass of both species is conserved:

185
186 T =/ (u+ v)dv,
187 T,=[ (G+g)av,
188

189  where the integrals are over the volume of the system. A requirement for polarization is that
190 the membrane-bound active form of GTPase diffuses slowly in comparison to the cytosolic

191  inactive form:

192 D, >> D,

193

194  Adding negative feedback through GAP activation limits the growth of an individual cluster,
195 allowing for coexistence of multiple clusters and other forms of patterning. Both the active and
196 inactive forms of the GAP are treated as cytosolic species that diffuse rapidly compared to the

197 membrane-bound active GTPase. Specifically, for the WPGAP model, Jacobs et al. [10] explored
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how changes in the total amount of GTPase (T) impacted bistability and the types of patterns
that formed. They found the system could form spots (localized regions of high GTPase activity),
mazes, and negative spots (localized regions of low GTPase activity). For our purposes, we are
interested in coexisting spots, and thus we began with parameter values that placed the system
in this regime (Table 1).

To gain insight into the model, we explored how spot size depends on the diffusion
coefficients. By changing the diffusion coefficient of the active GTPase, D,, while holding the
ratios for the other diffusion coefficients fixed, we found that increasing the diffusion
coefficients produced an exponential increase in spot size (Fig. S2A,B). To demonstrate that
changing the diffusion coefficients did not impact the patterns formed by the system, we also
guantified the eccentricity for spots and saw no deviations from circularity (Fig. S2C). Radii of
podosomes have been observed to be anywhere from ~0.15 — 0.6 microns [18], [41]-[43].
Therefore, for our simulations we used D, = 0.004 um? s, which resulted in spots with radius
0.31 £ 0.02 um (Fig. S2A-C).

Next, we explored how sweeping individual parameters changed pattern formation.
When sweeping the GTPase activation rate b, lower values resulted in spots, but higher values
resulted in a spatially homogenous steady state with an intermediate level of GTPase activity
(Fig. 2B). This suggested that a finite basal GTPase activation rate b was not required or had to
be quite small to facilitate patterning. Interestingly, each of the other parameter sweeps
resulted in changes in the observed patterning types, including spots, mazes, and holes (Fig.
2B). For the GTPase inactivation rate o, a high value resulted in a single low concentration

throughout the domain, and decreasing this value led to spots, then mazes. However,

10
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minimizing this value did not cause the entire domain to be at a single, high steady state, due to
negative feedback from GAPs. In contrast, the self-positive feedback rate y, the GAP
inactivation rate c, the GAP activation rate d, and the GAP-mediated negative feedback rate e
were capable of all patterning types, from a single low state to spots, mazes, holes, and a single
high state (Fig. 2B). Overall, these observations suggested that it would be possible to spatially

modulate these parameters to go from the low, homogenous state to the spot forming state.

Parameter Description Value Ref.

b GTPase activation 0.1s? [10]

y GTPase maximal self- | 2 s [10]
positive feedback rate

K Half-maximal response | 1 a.u.* [10]/This
GTPase concentration study

n Hill coefficient 2 [10]

o GTPase inactivation 1s? [10]

c GAP activation 1la.u. [10]

d GAP inactivation 1st [10]

e GAP dependent la.u [10]
GTPase inactivation

Dy Active GTPase 0.004 pm?s™ This study
diffusion

Dy Inactive GTPase 100D, um?s? [10]/ This
diffusion study

De Active GAP diffusion 100D, pm?s’t [10]/ This

study
Dy Inactive GAP diffusion | 100D, um?s? [10]/ This
study

T Total GTPase 4.04 a.u. [10]
Concentration

Ty Total GAP 10 a.u. [10]
Concentration

11
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228

229 Table 1. Baseline parameter values (See Methods for explanation on arbitrary units)

230

231

232 A Two-Step Model for Rosette Formation

233 We next sought to determine if the WPGAP model could be modified to enable rosette
234  formation. One possible explanation for how a rosette could form is if two distinct steps occur:
235 1) aninitial ring of high or low concentration of some species (M) forms and 2) this species
236  modulates a key parameter in the pattern forming, WPGAP model. To test this model, we first
237  assumed that an initial ring forms. We discuss this assumption and potential mechanisms for
238 ring formation later, but rings have been observed in other contexts, such as in wound healing,
239  in which a chemical gradient and inhibition of a bistable GTPase by another resulted in two
240  distinct rings of GTPase activity [31], [32]. For our initial investigations, we assumed that a

241  modulator M affected a rate in the WPGAP model through the functional form:

242

243 04 (r) = w; £ w,M(7),

244

245  where ws is the basal rate and @z characterizes the effect of M on @ +. M(r) was modeled as a
246  Gaussian-shaped function centered at r = 2 um with variable variance. This form of @ + allowed
247  us to tune model parameters so that spot formation was only promoted within the ring.

248 For parameters that increase GTPase activity (GTPase activation b, GAP inactivation d,

249  and the maximum self-positive feedback rate y), the WPGAP model was coupled to a ring of

12
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high M concentration @ « (Fig. 2C,D, three columns from the left). For parameters that decrease
GTPase activity (GAP activation ¢, GTPase inactivation o, and GAP-mediated GTPase inactivation
e), the WPGAP model was coupled to an inverted ring of M, @ - (Fig. 2C,D, three columns from
the right). For each model parameter, @w; and @, were varied to determine if the system could
generate rosette organization. As an initial guess, the parameter values were chosen based on
the results from the parameter sweeps (Fig. 2B).

As expected from the parameter sweep results, modulating the basal GTPase activation
rate b did not appear sufficient to form a rosette pattern, because this produced spot formation
throughout the entire domain. However, modulating the positive feedback rate 7, the GTPase
inactivation rate o, and the GAP-mediated negative feedback rate e all resulted in a rosette
forming (Fig. 2C,D). Interestingly, when we modulated the rates for GTPase inactivation and the
GAP-mediated negative feedback, we found that the rates required to form rosettes were
higher than expected (Fig. 2C,D). For example, to form a rosette, the rate required for the
GTPase inactivation ¢ within the ring was around 1.5, which resulted in no patterning when

used as the global rate in the isolated WPGAP model (Fig. 2B-D).

Gradient Establishment by a Simple Reaction-Diffusion Model

The analysis presented above demonstrated that the rosette pattern can form following
the establishment of a ring of activity. Therefore, we next wanted to determine if rosette
formation could occur in the absence of such an initial ring. To investigate this scenario, we first

considered the following simple reaction-diffusion model:

13
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X Dy 8 . 8.

P kx(T) - 6xX + > o (T‘ ar)X

where X is a species that is activated with a rate kx that depends on the distance from the IgG
patch. We assume that X is inactivated at a rate & and diffuses at a rate Dy (Fig. 3A). Note that if

ky is independent of r, then at steady state X(r) = ky/ . To model the 1gG disk, we treat k(r) as a

step-function:

_ (k aisk if v < pp,
kX(r) B {k basal if r = Ug,

where kqisk is the activation rate over a disk of radius zrand kpasar is the activation rate
everywhere else. Thus, when kgisk > Kpasal, this simple model describes a species whose activity is
increased over the disk. For fixed values of kuisk, kbasai, and o, this system was simulated for
varying diffusion coefficients Dy (Fig. 3B). The range of diffusion coefficients was chosen to be
consistent with reported cellular diffusion rates [26], from the slowest membrane-bound rate
(10 um?s!) to the fastest cytosolic rate (10.0 um?st). For a domain within r = 4 um, changing
the diffusivity of X resulted in changes in both the gradient steepness and the difference
between the maximum and minimum values of X (Fig. 3C). For small values of Dy, the
distribution of X was switch-like, and X approached the expected steady state, kx(r)/ox.
However, for larger values of Dy, the gradient in X was shallower, and deviated significantly
from ky(r)/ & with a lower total amplitude (Fig. 3B,C). We found that our simulation results

could be well approximated using a logistic function with the form:

14
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(44
1+ ekm(@—19)’

f(r) =g+
where fand a+/f are the minimum and maximum values of f(r), respectively, kn is the logistic
decay rate, and f(ro) = +a/2 (Fig. 3D). The function f(r) was fit to distributions of X using simple

optimization techniques (see Methods).

Rosette Formation Through Gradients

To determine if rosette formation is possible in the WPGAP model without the
formation of an initial ring around the IgG disk, we used the concentration profiles found above
for the simple diffusion model to emulate activation over the disk. Thus, this system was the
same as the WPGAP model, but the self-positive feedback rate yand the GAP activation rate ¢
now treated as spatially non-constant rates with profiles given by f(r).

Unlike the two-step model, it was difficult to empirically determine parameter values
that form a rosette. Thus, we used a two-step approach to search parameter space. We first
used an evolutionary algorithm (EA) [44] to perform a global search and subsequently
performed a more local sampling of parameter space using a Delayed Rejection Adaptive
Metropolis Markov chain Monte Carlo (DRAM-MCMC, see Methods) [45], [46].

To implement the two-step approach requires a score function that provides a
quantitative measure for how close a simulated result is to the desired rosette pattern. For the
desired pattern, a GTPase rosette formed by the two-step model was used (Fig. 2E). From this,

we measured the radial average and radial standard deviation for the active GTPase u (Fig. 4A-
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315 (). For new simulations, we measured the radial average of u (Fig. 4A,C). We then divided the
316  system into octants and measured the radial standard deviation within each octant (Fig. 4B,C).
317 The difference between the means of the desired output and simulation result and the

318 differences between the standard deviation of the desired output and standard deviations in
319 each octant were calculated. These nine measurements (Fig. 4A-C) were then averaged to

320 produce a single score. This score function was accurate, but flexible enough to allow for

321  various numbers of spots and spot locations.

322 Simulations were initialized with a small amount of random noise and seeded with an
323 initial concentration of active GTPase in the shape of a rosette (see Methods). We seeded

324  simulations with a rosette to decrease the time for pattern formation, because parameter

325 estimation requires a significant number of simulations. Also, from observations of initial

326  parameterization attempts, the GTPase activation rate b, the GTPase inactivation rate g, the
327  minimum self-positive feedback rate y,, and the minimum GAP activation rate c,were typically
328 quite small and were thus fixed at 2e-4, 0.04, 5e-4, and 0.1 s}, respectively. For 99 individual EA
329  runs (100 individuals, 100 generations), most runs were able to discover parameters capable of
330 rosette organization (top 80 appeared successful, Fig. S4A,B). The best parameter set found by
331  the EAs was then used to initialize DRAM-MCMC simulations. DRAM-MCMCs were simulated
332  until they appeared to converge, with all but the final 5,000 iterations removed as a “burn-in”
333  period (Fig. S4C, see Methods).

334 The parameter distributions generated by MCMC sampling appeared Gaussian (Fig. 4D,
335 onthe diagonal). We took the mean values of the individual parameter distributions as our

336 representative parameter set (Fig. 4D,F, Fig. S4D & Table 2). To check how well the MCMC
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performed, we also simulated the worst scoring parameter set, and these parameters also
resulted in rosette organization (Fig. S4D,E & Table S1).

Inspection of the spatially dependent rates revealed how the system was capable of
rosette patterning (Fig. 4E). When the ratio between the positive to negative feedback (y(r)
/c(r)) is plotted as a function of r using the identified parameter sets, in all cases the ratio is
maximized just beyond r = 2 um, near where the spots formed (Fig. 4E,F). The GAP activation
rate c(r) (Fig. 4G, green) is high relative to the self-positive feedback rate y(r) (Fig. 4G, magenta)
over the disk and away from the disk. However, c transitions more rapidly than ybetween its
elevated level over the disk and its basal level away from the disk (Fig. 4G). Thus, while the
negative feedback dominates over the disk and away from it, there is a zone near the edge of
the disk where positive feedback surpasses negative feedback. It is in this region that rosette
formation occurs.

To gain further insight into the model’s behavior we looked for pairwise correlations
between model parameters. Several parameters demonstrated strong correlations (Fig. 4D).
There was a strong anti-correlation between cmax, the maximum GAP activation rate, and e, the
rate constant for GAP-mediated GTPase inactivation. This likely indicates a sensitivity of the
model to the total amount of GAP activity. The other correlations were not as intuitively
apparent, so to further explore parameter-dependent model behavior, we performed individual
parameter sweeps using the representative parameter set (Table 2, Fig. 5A-F). Parameters
typically moved from no patterning to rosette organization to ring formation (ckm, ymax, and d,
Fig. 5B,C,E), or vice versa (Cmax, m,and e, Fig. 5A,D,F). Thus, the anti-correlations between ckm

and ymax as well as yxm and e likely result from a balancing of the effects of produced by varying
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the individual parameters. However, the reason for the positive correlation between cmaxand
7mis not readily apparent but may result from the logistic function having a lower maximum
value for shallower gradients (i.e., low decay rates, Fig. 3).

Finally, we performed a two parameter sweep for yand c. We restricted the sweeps to
the region of parameter space where spots formed (Fig. 4E,F). Individual simulations were
performed using a constant value for yand c (Fig. 5G). For high values of yas compared to c, the
model was in a high, homogenous regime (Fig. 5G, upper left). For high values of ¢ as compared
to 7, the model was in a low, homogenous regime (Fig. 5G, lower right). For intermediate values
of c and y, various types of patterning occurred, from spots to mazes to holes (Fig. 5G, bottom
left to upper right). We next plotted c(r) vs. y(r) within this region using the representative
parameter set given in Table 2 (Fig. 5G, red curve). The curve is typically in the low,
homogenous regime but passes through the patterning area, demonstrating why spots can
form only within a certain spatial zone.

In the above simulations, the spatial profiles were prescribed using the logistic function.
Therefore, we wanted to confirm that this mechanism would work for a coupled system, in
which the modulating species were discretely modeled using the simple diffusion model with
step-like activation over the IgG disk. The parameters in these two additional reaction-diffusion
equations were optimized to fit the logistic functions for »(r) and c(r) found above. Using the
distributions for these two reaction diffusion-equations in the model did not lead to proper
GTPase rosette formation, however there were differences between the logistic function fits
and the simple reaction-diffusion equations, so this was not surprising. Therefore, we used the

parameter values for these new equations to initialize another DRAM-MCMC. Because our goal
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381  was to simply demonstrate proof of principle, we only performed 22 short (1000 iterations)
382 DRAM-MCMC runs, and we took the single best scoring parameter set. However, this was

383  sufficient to demonstrate that a coupled model was able to generate a GTPase rosette (Fig. 6).
384 InFig. 6C and D, we plot the distributions of the species modulating the rates c(r) and y#r),

385 respectively. Interestingly, if these profiles are used to modulate the intermediate species M in
386 the two-step model, the system creates a ring of active M (as in Fig. 6E). Thus, the same

387 mechanism where the positive feedback strength is lower, but transitions less rapidly than the
388 negative feedback strength can also be used to create an initial ring which could then drive

389 rosette formation. Finally, we note that with the right choice of parameter values, this model

390 can also generate a ring, which could then be used to drive rosette formation (examples of this
391 ring formation can be observed in Fig. 5A-F) as discussed above.
392
Parameter Description Value (+ StDev) Ref. Fixed or
Sampled
b GTPase activation 0.0002 st This study Fixed
Yimax GTPase maximal self- 0.96 +0.05 st This study Sampled
positive feedback rate,
maximum spatial value
Ykm GTPase maximal self- 2.04+£0.16 This study Sampled
positive feedback rate,
decay rate
Ve GTPase maximal self- 0.0005 s This study Fixed
positive feedback rate,
minimum spatial value
K Half-maximal response | 1a.u.* [10]/ This Fixed
GTPase concentration study
n Hill coefficient 2 [10] Fixed
o GTPase inactivation 0.04 st This study Fixed
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Cmax GAP activation, 1.59+0.28 a.u. This study Sampled
maximum spatial value
Ckm GAP activation, decay 13.0+1.2 This study Sampled
rate
Ca GAP activation, 0.1st This study Fixed
minimum spatial value
d GAP inactivation 430+0.115s* This study Sampled
GAP dependent GTPase | 3.13 £ 0.44 a.u. This study Sampled
inactivation
Dy Active GTPase diffusion | 0.004 um?s* This study Fixed
Dy, Inactive GTPase 100D, pm?st [10]/ This Fixed
diffusion study
Ds Active GAP diffusion 100D, pm?st [10]/ This Fixed
study
Dy Inactive GAP diffusion | 100D, pm?s? [10]/ This Fixed
study
T Amount of GTPase 4.04 a.u. [10] Fixed
Tq Amount of GAP 10 a.u. [10] Fixed
393
394 Table 2. Mean parameter set after running the MCMC (See Methods for explanation on
395  arbitrary units)
396
397
398
Parameter Description Value
Yiax GTPase maximal self- 0.98 s
positive feedback rate,
maximum spatial value
Yhm GTPase maximal self- 2.24s1
positive feedback rate,
decay rate
Cmax GAP activation, 1.86 a.u.
maximum spatial value
Ckm GAP activation, decay 12.2
rate
d GAP inactivation 4.63 st
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e GAP dependent GTPase | 2.93 a.u.
inactivation

Table S1. Worst scoring parameter set after running the MCMC. Fixed values same as in Table

S2.

Experimentally Testable Predictions

Finally, we analyzed the model with the goal of motivating experimental investigations.
First, we simulated the model using varying disk sizes (Fig. 7A,B). We observed a linear
relationship between the disk radius and the number of spots, indicating that the distance
between spots remains constant as the disk size increases (Fig. 7A). To compare our simulation
results to experimental results, we counted the number of podosomes per site for IgG disks of
radius 1.75 um (8.1 + 1.4, N = 29, Fig. S4A) and 1gG disks of radius 5.0 um (23.4 £ 2.4, N = 8, Fig.
S4B). The observed number of spots qualitatively compared well with the numbers predicted by
the model (Fig. 7B). For simulations using disk sizes of radius greater than 0.24 um, 3 or more
spots of active GTPase formed, while smaller disks formed 2 or fewer spots (Fig. 7A,B & S4C).

Similarly, we explored simulations with holes lacking IgG of various sizes (Table 2,
negative ckm and ym, Fig. 7C & S4D). Rosettes always formed for a hole of radius 2.1 um, and
never formed for a hole of radius 1.6 um. However, holes with radii between 1.7 and 2.0 um
appeared to be capable of forming rosettes, but rosettes sometimes failed to organize properly
depending on the initial conditions, suggesting that the system is bistable within this regime

(Fig. 7C).
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Discussion

Changes in cell morphology occur in many different physiological contexts, including cell
migration, division, and differentiation. In eukaryotes, cell shape changes are driven by forces
generated by the actin cytoskeleton. The Rho family of GTPases are primary regulators of the
actin cytoskeleton. Therefore, understanding how these signaling molecules generate
spatiotemporal patterns is fundamental to understanding cellular morphodynamics. An
emerging theme in Rho GTPase signaling is that pattern formation occurs through a
combination of positive autoregulation and differences in diffusivity between active and
inactive GTPase states. It is now well understood how these elements can generate cell polarity
(i.e., determining a cell front and back). However, what has been less clear is if this system can
generate more complicated spatial patterns. Therefore, we turned to mathematical modeling
to determine if this core polarity circuit can generate the rosette of podosomes observed
during frustrated phagocytosis. Experimental evidence for such a biochemical mechanism
comes from our observations that Cdc42 colocalizes to rosette structures and actomyosin
contractility does not appear to be needed for rosette formation.

The starting point of our analysis was the WPGAP model that was previously shown to
be capable of forming co-existing clusters of high GTPase activity [10]. The model consists of
three main features: 1) active, membrane-bound GTPases diffuse slowly compared to cytosolic
species, 2) active GTPases recruit other GTPase molecules from the cytosol to the membrane,
and 3) a negative feedback loop is formed by activation of cytosolic GAPs. We used the model
to investigate two potential mechanisms for rosette formation. In the first scenario, a ring of

high or low concentration of a regulator of GTPase activity initially forms. Our analysis revealed
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442  that for rosette formation was possible if the species forming the ring regulated rates

443  associated with positive feedback, GTPase inactivation, GAP-mediated negative feedback, GAP
444  activation, or GAP inactivation. However, modulating the basal GTPase activation rate did not
445  generate rosette formation, but instead spots of high GTPase activity formed throughout the
446  entire domain.

447 We next used the model to demonstrate that rosette patterning could occur in the

448  absence of initial ring formation. This scenario required the following conditions to be met: 1)
449  the positive and negative feedback strengths increased over the 1gG disk, 2) negative feedback
450 dominated over positive feedback over the disk and far from the disk and 3) the negative

451 feedback transitioned from its elevated level over the disk to its basal level more rapidly than
452  that of the positive feedback. These three features generated a small region outside of the disk
453  where the positive to negative feedback ratio is sufficiently high to enable spots of active

454  GTPase. This scenario occurs if the positive regulator of GTPase activity diffuses rapidly,

455  whereas the negative regulator of GTPase activity diffuses slowly in comparison. Furthermore,
456  this same scenario could be used to generate a ring of high activity of species that positively
457  regulates GTPase activity as required for the initial ring formation scenario described above.
458 Finally, we performed simulations using varying sizes of either IgG disks or holes.

459  Experimental results for the number of spots formed using different IgG disk sizes were

460 consistent with our simulation results. We also noticed that for simulations on disks of radius R
461 =0.24 um, 3 distinct spots of GTPase activity were produced, whereas disks of smaller radii
462  produced 1 or 2 sites. This result suggests a threshold for the minimum size of a particle that

463  can be internalized via phagocytosis, if three or more podosomes are required to engulf a
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target. This observation is consistent with the reported value of 0.5 um as the minimum size for
phagocytic targets [47], [48]. Simulations on holes lacking I1gG of different sizes revealed that
holes of radii 1.6 um or less do not form rosettes, while holes of 2.1 um are capable of rosette
formation. Interestingly, for holes between 1.7 um and 2.0 um rosette formation depended on
initial conditions, suggesting the system is bistable in this regime.

Our analysis revealed how relatively minor additions to the Rho GTPase polarity circuit
were sufficient to generate the rosette of podosomes observed during frustrated phagocytosis.
It is likely that this same polarity circuit is also capable of generating more complex patterns
when additional regulatory elements are added. Importantly, our results provide a
computational framework for establishing sufficient conditions for more complex pattern
formation, and therefore should be relevant to many different areas of cell biology. Here we
focused on static cytoskeletal structures. However, the actin cytoskeleton is a dynamic system,
and phagocytosis requires exact spatiotemporal control of cellular morphodynamics during
engulfment. While this study demonstrated how initial cytoskeletal organization could occur, in
future studies it will be important to also consider both the time-dependent and three-

dimensional activity of Rho GTPase signaling during this process.

Methods

Cell Culture and Transfection
RAW 264.7 macrophages were obtained from the ATCC and maintained in culture
medium: RPMI 1640 medium GlutaMAX Supplement (ThermoFisher Scientific, 61870127)

containing 10% heat-inactivated FBS (HI-FBS, GEMINI Bio, 100-106) in a 5% CO> humidified
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incubator at 37°C. To detach RAW 264.7 cells from the Falcon tissue culture dish (Fisher
Scientific, 08-772E), the cells were treated with Accutase (ThermoFisher Scientific, A1110501)
at 37°C for 5 min before gentle scraping (CytoOne, CC7600-0220). The plasmids FTractin-
tdTomato and myosin regulatory light chain (MRLC)-EGFP were described previously [49], [50].
RAW 264.7 cells were electroporated with the Neon Transfection System (ThermoFisher
Scientific) following the manufacturer’s protocol. In brief, 5x10° cells were electroporated with
1 ug plasmid in R buffer at a setting of 1680 V, 20 ms, and 1 pulse using 10 microliter Neon
pipette tip. The cells were transferred into a well of 12-well plate, with each well containing 1
ml of culture medium. After 12 hours of incubation, the transfected macrophages were ready
for the frustrated phagocytosis experiments.

Bone marrow cells were isolated from 6 to 12 weeks C57BL/6 mice and differentiated
into macrophages for 5-7 days in RPMI 1640 medium containing 10% heat inactivated FBS and
10% M-CSF (L929 conditioned medium) described elsewhere [51], [52]. These macrophages

were detached from the flask using Accutase and gentle scraping.

Microcontact printing

The IgG patterns on glass coverslips were made using the microcontact printing of
Polydimethylsiloxane (PDMS) as previously described [53]. The silicon master with an array of
3.5 um holes spaced 8 um apart or 10 um holes spaced 20 um apart was made using
photoresist lithography, and PDMS stamping on glass coverslips was carried out as described

previously [43].
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Inhibition treatment and immunofluorescence staining

To inhibit actomyosin contractility and disassemble myosin Il filaments, RAW 264.7
macrophages were plated on patterned IgG coverslips in Ham’s F12 medium (Caisson Labs, UT)
supplemented with 2% HI-FBS and 20 uM Rho kinase inhibitor Y-27632 (Hello Bio, HB2297) for
25 min of inhibition during frustrated phagocytosis. For frustrated phagocytosis against 10 um
IgG spots, bone marrow-derived macrophages were plated on patterned IgG in the above
medium without inhibitor and incubated at 37°C for 15 min before staining.

The cells were fixed with 4% paraformaldehyde at 37 °C for 10 - 15 min and
permeabilized using 0.1% Triton-X-100 (Sigma-Aldrich) in PBS for 5 min. Cells were then
thoroughly washed with PBS and fixative quenched with 0.1 M glycine for 20 min followed by
incubation with 2% BSA fraction V (Thermo, 15260037) in PBS for 30 min. Actin was stained
with Alexa-Fluor 568 phalloidin (dilution 1:500, ThermoFisher Scientific A12380) diluted in 2%
BSA in PBS at room temperature for 20 min followed by one wash with 1xPBS/0.05% Tween for

10 min, and two washes with 1x PBS for 15 min.

Imaging of podosome structures during frustrated phagocytosis

Total internal reflection fluorescence structured illumination microscopy (TIRF-SIM) was
used to image podosomes in F-tractin-tdTomato transfected live RAW 264.7 macrophages.
Fluorescence emission was recorded using an sCMOS camera (Hamamatsu, Orca Flash 4.0 v2
sCMOS). Lasers with wavelengths 560 and 647 nm and an Olympus UApo N 100x oil NA 1.49
objective were used, and fluorescence emission was recorded using an sCMOS camera

(Hamamatsu, Orca Flash 4.0 v2 sCMOS). A Nikon SIM microscope was used to image
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podosomes in fixed RAW 264.7 macrophages after Y-27632 inhibition, using 488 and 561 nm
lasers. A 100x oil immersion objective (1.49 NA, Nikon CFI Apochromat TIRF 100x) and EMCCD
camera (Andor DU-897) were used. To image podosomes in bone marrow-derived
macrophages, a Zeiss confocal microscope LSM880 built around AxioObserver 7 with a 63x 1.4

NA oil objective (Zeiss) was used.

Single Particle Tracking

Single particle tracking was performed using a home-built total internal reflection
microscope based on an Olympus IX81. The microscope was equipped with four solid state
lasers (Coherent OBIS 405 nm, 488 nm, 561 nm, and 647 nm), a 100X TIRF objective (Olympus,
UPLAPO100XOHR) and an sCMOS camera (Photometrics Prime 95B) for fluorescence collection.
Raw cells were co-transfected with mScarlet-F-tractin (Excitation, 561 nm; Emission, Semrock,
FF01-600/52) and Cdc42-HaloTag [54]. Cells were incubated with 100 pM dye JF646-Halo
(Emission, Semrock, FF01-698/70) for 30 minutes and washed with culture medium three times
before imaging. Super-resolved F-tractin images were acquired at 100 Hz for 5 seconds and
subjected to Super-Resolution Radial Fluctuations analysis [55]. For single particle tracking of
Cdc42, we streamed for 40 seconds at 50 Hz (2000 frames).

Single molecule diffusion analysis was done as before [56]. Briefly, individual molecules
were identified by a wavelet decomposition based approach [57] and precise centroids were
obtained by fitting with a 2D Gaussian function. Single molecule trajectories were built through
a well-established linking algorithm [58] and the mean-square-displacement was then

calculated [59], [60] to color encode the tracks.
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Numerical Simulations

Ordinary differential equation (ODE) simulations were performed by using the Python
package odeint from Scipy [61]. Reaction-diffusion equations were solved using the spectral
differential equation solver Python package Dedalus [62]. For simulations using Cartesian
coordinates, the system was spatially discretized using a Fourier basis in x and a Chebyshev
basis in y with the recommended dealiasing factor of 1.5, as done before [10]. The system had
periodic boundary conditions in x and Neumann (reflective) boundary conditions in y. Similarly,
for simulations using polar coordinates, the system was spatially discretized using a Fourier
basis in ¢, and a Chebyshev basis in r (dealiasing factor of 1.5) with periodic boundary
conditions in ¢, and Neumann (no flux) boundary conditions in r. The typical grid size used for
simulations was 256 x 128 (¢, r respectively) which was informed by mesh grid refinement (i.e.,
larger grid sizes resulted in the same outcome). However, a grid size of 64 x 64 was used for
parameterization steps to decrease simulation time. Simulations were typically performed using
a time step dt = 0.1 s or 0.25 s. Reaction steps were solved using 4" order Runge-Kutta,
although 2" order Runge-Kutta was used for parameterization steps.

Homogeneous steady states were determined by running the ODE system (without
diffusion) for t = 1000 s using odeint. For initial conditions of the reaction-diffusion equations,
each species was set to its steady state value throughout the domain and subsequently noise
was added by converting a small fraction of inactive species to the active form. The fraction of
concentration converted was determined by each simulation but was typically generated by
uniform sampling between 0 and 0.2vss (where vss is the steady state concentration for the

inactive species). For seeded simulations, the same random noise (but between 0 and 0.1v)
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was converted and additionally the normalized seed (i.e., a rosette) was scaled by 0.1vssand
converted to active GTPase. For simulations with non-constant coefficients, the initial steady
states were determined by using the basal values for the spatially-dependent rates.

To fit the logistic equation to the simple reaction-diffusion profiles, we used the Python

package minimize from Scipy [61].

Concentration Units

Because we currently do not know the average number of Cdc42 molecules associated
with an individual podosome, we did not assign specific units to the total concentrations of
Cdc42 and GAP. Thus, we used the unitless values from the non-dimensionalized version of the
model described by Jacobs et al. [10], and labeled these as arbitrary units (a.u.). Note that once
an estimate for the number of Cdc42 molecules per podosome is known, the total
concentrations can be scaled appropriately to produce this number without changing any of our
results. That is, scaling the concentrations for total Cdc42 and GAP by a factor i and scaling the
Hill constant K by  and the second order rate constants e and c by ! leaves the solutions to
the reaction-diffusion equations scaled, but otherwise unchanged. For example, if y = 100 then
there would result in an average concentration of 404 Cdc42 molecules per um?2. Using our
value for the radius of a podosome (0.31 um), the area of a podosome is approximately 0.30
um?2. This would result in approximately 120 Cdc42 molecules per podosome. The units of
concentration would then be molecules per um?, and units of K would be the same. The second

order rate constants e and ¢ would have units of um?(molecules*s)™.
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Parametrization

Evolutionary algorithm (EA) simulations were performed using the Python package
DEAP [44]. For EA hyperparameters we used a mutation rate of 0.3 and a crossover rate of 0.5.
Markov chain Monte Carlo (MCMC) simulations were performed using the Python package
Pymcmcstat [46]. For MCMC sampling, we used the Delayed Rejection Adaptive Metropolis
(DRAM) algorithm [45], [46]. MCMC hyperparameters were set to S20 = 0.015 and NO = 0.015,
which resulted in chain acceptance rates between 29-40%. All but the last 5,000 steps for
individual MCMC chains were discarded as a “burn-in” period. MCMC chains appeared to pass
all convergence tests, including within chain variance (Geweke statistic p >> 0.05, [63]) and
between chain variance (Gelman-Rubin diagnostic < 1.1, [64]).

Note that for the coupled model, where the simple reaction diffusion model was
simulated in place of the logistic function, we used the same MCMC pipeline for sampling to
discover a working coupled model. For proof of concept, we simply ran this pipeline for 1,000

steps and took the best scoring parameter set.

Spot Size Determination

Simulations were performed as described above using cartesian coordinates (tfina= 150
s). Each system was interpolated to a uniform grid with the same grid size (128 x 128). A mask
was generated by thresholding at the mean of the maximum and minimum concentrations
within the system. Using this mask, features were quantified using the Python package scikit-

image [65]. The effective radius was defined as:
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mean(amajor' aminor)
2

Radiusgg =

where amgjorand aminor Wwere the major and minor axis lengths respectively. After an initial pass
at fitting Radiusegbased on log(D.), simulations were rerun using different grid sizes to ensure

the number of spots counted for each simulation were similar (N~100).

Counting Podosomes Per Site
For experimental results, the number of podosomes per site were calculated using a

pipeline we developed previously [43] (https://github.com/elstonlab/PodosomelmageAnalysis).

In essence, this pipeline uses persistent homology, a type of topological data analysis, to
identify significantly persistent features (connected components, holes) within images followed
by post-processing.

For simulated results, a mask was created by thresholding at the average between the
maximum and minimum intensity within a simulation. From this mask, the number of features

was counted using the Python package ndimage.label from Scipy [61].

Data Availability
The code and data used for this project is available on GitHub

(https://github.com/elstonlab/PhagocytosisRosetteModel) and under the Zenodo archive:

https://doi.org/10.5281/zenodo.6448430. Note that for counting podosomes, additional code

is required from: https://github.com/elstonlab/PodosomelmageAnalysis.
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833  Figure 1 Actin and Cdc42 localization around disks of IgG. A-C) Rosettes of actin podosomes
834  form around IgG disks. A micropattern of 1gG disks of diameter 3.5 um is shown in A. Actin is
835 shown in B, in which puncta are podosomes. An overlay (IgG in blue, actin in magenta) is shown
836 in C. D, E) Single particle tracking of Cdc42 during frustrated phagocytosis. Actin is shown in D.
837  Single particle tracking of Cdc42 is shown in E, with tracks colored by their mean squared

838 displacement. Inserts in E show two individual examples corresponding to the red boxes, with
839  MSD colored as in E and actin shown in grayscale.
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851  Supplemental Figure 1 Actomyosin contractility does not appear to be necessary for rosette
852  formation. A) Control RAW 264.7 macrophages were marked for actin (phalloidin staining) and
853  muyosin Il (RLC-eGFP) during frustrated phagocytosis. B) RAW 264.7 macrophages were marked
854  for actin (phalloidin staining) and myosin Il (RLC-eGFP) when treated with 20mM Rho kinase
855  inhibitor Y-27632 for 25 min during frustrated phagocytosis.
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Figure 2 The WPGAP model generates rosettes of GTPase activity if a ring of an intermediate
species is assumed. A) Schematic of the Wave-Pinning GTPase Activating Protein (WPGAP)
model. B) WPGAP simulation results for individual parameter sweeps (Table 1). Most
parameters show a transition from a low intensity homogenous regime to a spot patterning
regime (red arrows). For details on concentration units, see Methods. C) Radial distributions for
a modulating species M. The ring shown in these panels represents either a region of high (first
3 panels) or low (last 3 panels) [M]. D) Active GTPase concentrations using the distribution for
[M] shown in C (above each panel, respectively).
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Supplemental Figure 2 Diffusion rates determine the size of active GTPase spots. A)

Simulations of the WPGAP model for variable di

ffusion rates. The diffusion coefficient for

cytosolic species is taken to be 100D,. B) Relationship between the membrane diffusion
coefficient and spot size. C) Relationship between the membrane diffusion coefficient and spot

eccentricity. D) Radial distributions for the inter
concentrations for the results shown in Fig. 2E.

mediate species M in Fig. 2E. E) Active GAP
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902  Figure 3 A simple reaction-diffusion model generates gradients of activity. A) Schematic of the
903 simple reaction-diffusion model in which a species X is activated by a rate k«(r), which depends
904 onthe local IgG concentration, and is deactivated at a constant rate &. B) Simulations of the
905 model for various diffusion rates Dx. The spatial profile of k(r) is shown as the dashed line and
906 & =0.75 st The homogenous steady states values of X when k = kx(0) and k = kx(rmax) are

907 shown as well (dotted lines). C) Maximum slope of X(r) and percent increase of X(0) over X(rmax)
908 as a function of Dx. D) Blue curves are same as in B and dashed lines are best fits of these curves
909 tothe logistic function.
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924
925  Figure 4 Model parameterization reveals mechanism enabling rosette formation. A) Schematic
926 illustrating the radial averaging of GTPase activity used in the score function. B) Schematic
927 illustrating the radial standard deviation of GTPase activity per octant used in the score

928 function. This results in eight individual quantifications used in the score function. C) Radial
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929  profiles of the average and standard deviation of GTPase activity. These profiles were used in
930 the score function and compared to the results from numerical simulations. D) Parameter
931  distributions after performing DRAM-MCMC sampling. Individual parameter distributions are
932  shown on the diagonal. Lower triangular plots show kernel density estimates for parameter
933  pairs. Circles in the upper triangle represent the Spearman correlation coefficient between
934  parameters. E) Radial profiles for the non-constant parameters from the parameter estimation.
935 The positive to negative feedback ratio is also shown. The solid lines are the results for the
936 mean parameter values from D (on the diagonal, Table 2) and the shaded regions indicate one
937 standard deviation. F) Active GTPase concentration using the representative parameter set
938 (Table 2). Simulation domain has a max radius of 4.0 um.
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968 Supplementary Figure 3 EA and DRAM-MCMC parameterization. A) EA parametrization runs
969 (99 total). Best individual run shown in red and the runs that resulted in GTPase rosettes shown
970 in purple. B) Individual parameter distributions from the successful EA runs shown in A. The
971  best performing parameter set shown by red crosses. C) DRAM-MCMOC chains for individual
972  parameters post burn-in phase. D) Individual parameter densities for the chains shown in C.
973  Representative parameter set values shown by green diamonds (Table 2). The worst scoring
974  parameter set shown by magenta diamonds (Table S1). E) Active GTPase concentration for the
975  worst scoring parameter set (Table S1).
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979
980  Figure 5 Effects of individual parameters on patterning. A-F) Plots of the score function versus
981 model parameters (Table 2). Representative simulation results shown to illustrate the impact of
982  varying parameter values on rosette formation. G) Two parameter sweep varying c and 7. Each
983  grid cell shows the active GTPase concentration for an individual simulation when c and yare
984 fixed. The red dashed line is a plot of ¢(r) versus y(r) from Fig. 4E & Table 2.
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1007  Figure 6 Rosette formation is possible when modulating species are explicitly included in the
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1008  model. A) Radial distributions for ¢ and yfrom the coupled model (dashed lines) and the logistic
1009 function approximations using the representative parameter set (Table 2). B) Active GTPase
1010  concentration for the coupled model shown in A. C) Spatial concentration of the species

1011  modulating c. D) Spatial concentration of the species modulating . E) The positive to negative
1012  feedback ratio y/c forms a ring.
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1027

1028  Figure 7 Effects of varying the size of IgG disks and holes. A) Simulation results for various disk
1029  using the representative parameter set (Table 2). The radius of the simulation domain is 4.0 um
1030 except for the case with a disk size of R = 5.0 um (far right), where the domain radius is 7.5 um.
1031 B) The number of active GTPase spots linearly increases with disk sizes (blue circles). These
1032  results are consistent with experimental results (orange circles, whiskers denote one standard
1033  deviation). C) Number of active GTPase spots versus hole size. The system appears bistable for
1034  radii between 1.7 and 2.0 um. In this region rosette formation depends on the initial conditions
1035 used in the simulations.
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1053  Supplemental Figure 4 Additional information for experimental and simulated results on

1054  varying disk and hole sizes. A) Representative experimental results for disks of radius 1.75 um.
1055 Podosomes are indicated with red circles. B) Same as A but using disks of radius 5 um. C)
1056  Number of GTPases spots versus disk radius for small disks with radius less than 0.25 um. D)
1057  Simulations for the representative parameter set (Table 2, negative ckm and ym) when changing
1058 the hole size.
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