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31  Abstract

32  The superiority of multi-trait genomic selection (MT-GS) over univariate genomic selection (UNI-
33  GS) can be improved by redesigning the phenotyping strategy. In this study, we used about 300
34  advanced breeding lines from North Dakota State University (NDSU) pulse breeding program and
35 about 200 USDA accessions evaluated for ten nutritional traits to assess the efficiency of sparse
36 testing in MT-GS. Our results showed that sparse phenotyping using MT-GS consistently
37  outperformed UNI-GS when compared to partially balanced phenotyping using MT-GS. This
38  strategy can be further extended to multi-environment multi-trait GS to improve prediction
39 performance and reduce the cost of phenotyping and time-consuming data collection process.
40  Giventhat MT-GS relies on borrowing information from genetically correlated traits and relatives,
41  consideration should be given to trait combinations in the training and prediction sets to improve
42  model parameters estimate and ultimately prediction performance. Our results point to heritability
43  and genetic correlation between traits as possible parameters to achieve this objective.

44

45  Key words: Genomic selection, heritability, multi-traits, genomic best linear unbiased estimate,
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56 1.0 Introduction

57 Inrecent times, there is an increased demand for genetic improvement of nutritional traits in crops
58  due to the growing demand for plant-based protein, mineral elements and vitamins. Pulse crops
59 are known to have high protein value and are rich in micronutrients with potential to alleviate
60 hidden hunger (Mudryj et al. 2014; Wadhawan et al. 2021; Bari et al. 2021). However,
61  phenotyping/screening for nutritional traits such as protein, manganese, selenium, copper, zinc,
62  iron, potassium, phosphorus, magnesium and calcium is expensive and time consuming, especially
63 in the early yield testing stage with hundreds of lines to evaluate. This is a major limitation in a
64  public breeding program aiming to have a biofortified product profile. However, due to
65 advancement in the genotyping platform, the cost of genotyping is becoming relatively less
66  expensive compared to the cost of phenotyping; thus, genomic selection (GS) that uses whole-
67 genome information to predict genomic estimated breeding value (GEBV) of unobserved
68  genotypes is gaining traction as breeders’ choice of selection method (Poland et al. 2012; Zhao et
69 al. 2021; Bassi et al. 2016; Santantonio et al. 2020; Atanda, et al. 2021a). Though GS research in
70  peais scanty, the available studies (Annicchiarico et al. 2019; Crosta et al. 2021; Bari et al. 2021)
71 show GS potential to predict the genetic merit of pea lines and germplasm accessions. Following
72 Bari et al. (2021), the North Dakota State University (NDSU) pulse breeding program is
73  prioritizing the use of GS particularly in the preliminary yield trial (PYT or stage 1) where
74  effectiveness of phenotypic selection is limited by phenotyping in one/two locations due to seed
75  multiplication challenges for hundreds of lines for multi-location trials. Consequently, the NDSU
76  pulse breeding program is focused on redesigning the PYT from phenotypic based selection to GS
77  to reduce the number of seeds for phenotyping and increase selection accuracy for advancement
78  of promising lines to advanced yield testing stage.

79
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80 Ingeneral, GS is often performed with univariate-trait (UT) models that assume genetic correlation
81  among traits to be zero ( Jia and Jannink 2012; Montesinos-Lopez et al. 2016, 2018; Bhatta et al.
82  2020; Gaire et al. 2022). However, in practice, breeders’ select for multiple traits that are
83  genetically correlated, ranging from negative to positive correlations. To harness the genetic
84  correlation between traits and among genotypes to improve prediction accuracy, multi-trait (MT)
85 models, which are the generalization of UT models, have been investigated. Several empirical
86  studies (Calus and Veerkamp 2011; Montesinos-LoOpez et al. 2018; Bhatta et al. 2020; Gaire et al.
87  2022) have reported improved prediction accuracy in different crops using MT models that allow
88  borrowing of information between correlated traits and among genotypes compared to UT models.
89  Prediction accuracy in MT-GS improves as correlation between traits increases (Jia and Jannink
90  2012; Okeke et al. 2017; Montesinos-L06pez et al. 2018, 2019; Neyhart et al. 2019), however, trait
91 heritability varies and is a key limiting factor to upper bound of prediction accuracy (Manolio et
92 al. 2009; Yang et al. 2015; Schopp et al. 2017; Zhang et al. 2019; Atanda et al. 2021a). These
93  factors will likely influence the composition of traits in the training and the prediction sets in MT-
94  GS and ultimately the prediction accuracy.
95
96 Inthe MT-GS model, the training set consists of individuals with phenotypic records for all traits
97  to predict the genetic values of un-phenotyped individuals in the prediction set using genome-wide
98  marker information. The crucial question is how to design a MT-GS strategy that will optimize the
99 trade-off between the limiting factors and accuracy of predicting the genetic value of the traits.
100  Studies (Montesinos-Lépez et al. 2016, 2018, 2019; Guo et al. 2014; Bhatta et al. 2020; Gaire et
101  al. 2022) have highlighted the importance of each factor to prediction accuracy; however, nothing
102 s known about their combinations on composition of traits in the training and prediction set in the

103 context of MT-GS. Consequently, we investigated the influence of the limiting factors on
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104  composition of traits in the training and prediction sets to guide the use of MT-GS in a breeding
105  program.

106  Further, in most MT-GS cross-validation studies (Montesinos-Lopez et al. 2016, 2018, 2019; Guo
107 etal. 2014; Bhatta et al. 2020; Gaire et al. 2022), the same set of genotypes overlap across traits
108  for testing prediction models (Suppl. Fig. 1A, C). In such a scenario, the same set of genotypes
109 have phenotypic records for all traits while the other genotypes serve as a prediction set (partially
110  balanced testing strategy, denoted as PBT); however, results from multi-environment GS studies
111  have shown that this approach is less optimal compared to sparse testing using genomic prediction
112  where phenotyping of genotypes is split across environments (Burguefio et al. 2012; Jarquin et al.
113  2020; Atanda et al. 2021). We extend sparse phenotyping in the context of MT-GS in which the
114  phenotyping of lines is split across traits (Suppl. Fig. 1B, D). This strategy could improve
115  prediction accuracy in MT-GS by efficiently using information across traits and genotypes. More
116  so, it can be robust for building historical data for use in prediction models, since all genotypes
117  have phenotypic records for the different traits. To further evaluate the potential of GS in the
118  NDSU pulse breeding program and how it can be efficiently deployed to improve genetic gain, the
119  following were our objectives in this study: 1) determine the efficiency of MT compared to UT in
120  predicting nutritional traits in pea, 2) determine the optimal method to design training and testing
121 trait sets using heritability and genetic correlation between traits as metric, and 3) identify optimal
122  resource allocation for phenotyping nutritional traits in the early yield testing stage by comparing
123  the predictive ability of sparse and partial balanced testing.
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129 2.0 Materials and Methods

130 2.1 Genetic Materials and Field or Greenhouse Evaluation

131  The genetic material consisted of 282 pea lines (DS1) from North Dakota State University (NDSU)
132  pulse breeding program and 192 USDA pea accessions (DS2) previously described in Bari et al.
133  (2021). The NDSU lines were planted in augmented row-column design with five repeated checks
134  in the 2020-2021 growing season at the North Dakota Agricultural Experiment Station, Minot,
135 North Dakota, United States (27°29'N, 109°56'W). Seeds were treated with fungicide and
136 insecticide prior to planting. At planting, 30 seeds were planted on 152 x 60 cm plot size with 30
137 cm spacing between plots. Plots were harvested at physiological maturity (90-120 days after
138  planting) and dried to 15% moisture content. For the USDA pea accessions, six plants of each
139  accession were grown in 5L black plastic pots filled with a synthetic soil mix composed of two
140  parts Metro-Mix 360 (Scotts-Sierra Horticultural Products Co., Marysville, Ohio) and one part
141  vermiculite (Strong-Lite Medium Vermiculite, Sun Gro Horticulture Co, Seneca Illinois). Plants
142  were grown in a controlled environment greenhouse with a temperature regime of 22 + 3 °C/day
143  and 20 £ 3 °C/ night, with a relative humidity ranging from 45% to 65% throughout the day/night
144  cycle. Sunlight was supplemented with metal halide lamps, set to a 15 h day, 9 h night cycle (lights
145 onat 700 h). In order to maintain an adequate supply of all mineral nutrients, a complete fertilizer
146  mixture was provided to each pot on a daily basis. Pots were irrigated with an automated drip
147  irrigation system (one drip line to each pot); the system was regulated with a timer that delivered
148  nutrient solution twice a day (younger plants) or three times a day (older plants) in sufficient
149  quantity to saturate the soil mass at each irrigation. The nutrient solution contained the following
150  concentrations of mineral salts: 1.0 mM KNOs, 0.4 mM Ca(NOs)2, 0.1 mM MgSOs, 0.15 mM
151  KH2PO4 and 25 pM CaCly, 25 uM H3BOs3, 2 UM MnSOs, 2 UM ZnSO4, 0.5 uM CuSQOg4, 0.5 uM
152  H2Mo00Og4, 0.1 pM NiSOa4, 1 uM Fe(IlI)-N, N’-ethylenebis[2-(2-hydroxyphenyl)-glycine] (Sprint

153  138; Becker-Underwood, Inc., Ames, lowa, USA). We thus attempted to maintain all essential
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154  minerals at sufficient, but non-toxic levels, in the soil. Seeds were harvested from each accession
155  at full plant maturity.

156

157 2.2 Mineral Analysis

158  Mineral elements for DS1 were measured following procedures described in (Ma et al., 2017; Lan
159 etal. 2019). Briefly, 200g non-dehulled pea seeds were ground to fine flour and then digested with
160  concentrated nitric acid (70% HNO3) in a digestion system block at 90 °C for 60 minutes.
161  Afterward, 3 mL of hydrogen peroxide was added to further the digestion process for 15 minutes,
162  followed by the addition of 3 mL hydrochloric acid (70% HCI) and heated for additional 5 minutes.
163  After cooling to room temperature, the digested samples were filtered through DigiFILTER (SCP
164  Science) and diluted to 10mL with nanopure water. To validate the procedure and analytical
165 measurement, an apple leaf standard (SRM 1515; National Institute of Standards and Technology,
166  Gaithersburg, Maryland, USA) was analyzed simultaneously with the pea flour samples. Total
167  concentration of the mineral elements was measured using inductively coupled plasma atomic
168  emission spectrometry (IRIS Advantage ICP-AES; Thermo Elemental, Franklin, Massachusetts,
169  USA). Mineral values were determined with the ICP-AES using the following spectral emission
170  lines (in nm): Ca, 184.0; Mg, 285.2; K, 769.8; P, 177.4; Fe, 238.2; Zn, 213.8; Mn, 260.5; Cu,
171 324.7; Ni, 231.6; B, 208.9; Mo, 202.0.

172

173  For the DS2, dried seeds (with seed coats) from 6 plants of each accession were ground to a
174  uniform powder using a coffee grinder with stainless steel blades. Two sub-samples of each
175  accession were weighed (approximately 200 mg each), dry ashed, resuspended in ultra-pure nitric
176  acid and analyzed for Ca, Mg, K, P, Fe, Zn, Mn, Cu, Ni, B and Mo concentrations using inductively
177  coupled plasma atomic emission spectrometry (IRIS Advantage ICP-AES; Thermo Elemental,

178  Franklin, Massachusetts, USA). Dry ashing was performed in quartz tubes, with samples ashed for
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179 6 hat450 °C. After cooling, to ensure complete oxidation of all tissues, 2.5 ml of 30% H20. was
180  added to each tube and samples were reheated to 450 °C for 1 h. Apple leaf standards (SRM 1515;
181  National Institute of Standards and Technology, Gaithersburg, Maryland, USA) were ashed and
182 analyzed along with pea seed samples to verify the reliability of the procedures and analytical
183  measurements. Mineral values were determined with the ICP-AES using the same spectral
184  emission lines (in nm) noted for the DS1 population.

185

186 2.3 Genotyping

187  Details on DNA isolation and genotyping-by-sequencing (GBS) can be found in Bari et al. (2021).
188 DS1 and DS2 were genotyped using GBS and 28, 832SNP markers were generated for DS1 while
189 380,527 SNP markers were generated for DS2. After removing SNPs with more than 90% missing
190 values, heterozygosity greater than 20% and with a minor allele frequency less than 5%, 11, 858
191 and 30, 645 SNPs remained for DS1 and DS2 respectively and were used for the analysis. Missing
192  SNPs were imputed with Beagle 5.1 (Browning et al., 2018).

193

194 2.4 Phenotypic Data Analysis

195  Best linear unbiased estimates of the phenotypes for DS1 accounting for spatial trend on the field
196  modelled by a smooth bivariate function of the spatial coordinates f(r, c) represented by 2D P-
197  splines was implemented in SpATS R package (Rodriguez-Alvarez et al. 2016). This was modeled
198 as:

199

200

201 y=f(r,c)+Xb+ Zu,.+ Zu.+& (1)
202
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203  where: vy is the response variable for n-th phenotype, b is the fixed effect of the genotype, u, and
204 wu. are row and column random effects accounting for discontinuous field variation with
205  multivariate normal distribution: u, ~ N(0, I6?) and u, ~ N(0, Io2) respectively. | is an identity
206  matrix and o2 and o? are variance for row and column effect. f(r, c) is a smooth bivariate function
207  defined over the row and column positions (see Velazco et al. 2017 for details), € is the
208  measurement error from each plot with distribution of € ~ N(0, 162). | is the same as above, o2 is
209 variance for the residual term or simply referred to as nugget. X and Z are incidence matrix for the
210  fixed and random terms.

211

212  For the DS2, the mineral elements value of each accession was estimated as follows; mineral
213  values from the two sub-samples (see Mineral Analysis section for details) were averaged for each
214  accession; these averaged values are presented as ppm (parts per million), which is equivalent to
215 ug/g DW (micrograms per gram dry weight). In this study it was denoted as mean phenotypic
216  value of each accession for each mineral element. In general, the standard deviations for each
217  mineral were low (i.e., within each accession). Across all accessions, the average standard
218  deviation for each mineral (calculated as percent of the mean of the two sub-samples) was: Ca,
219  10.4%; Mg, 2.0%; K, 2.5%; P, 2.5%; Fe, 6.0%; Zn, 5.1%; Mn, 6.9%; Cu, 7.5%; Ni, 15.4%; B,
220  5.8%; Mo, 3.7%.

221
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228 2.5 Genomic Selection Models
229  Univariate GS model was implemented in ‘BGLR’ R package (Pérez and de los Campos 2014)
230 using Bayesian ridge regression model equivalent to the genomic best linear unbiased prediction

231  (GBLUP) model expressed as:
232 y=1u+ Zu+e (2

233

234  where y is the vector (n x 1) of adjusted means (BLUES) using DS1 or mean phenotypic value
235 using DS2 for k-th genotypes for a given n-th trait/mineral element, p is the overall mean and 1,
236  (kx1) is a of vector ones, u is the genomic effect of k-th genotypes assumed to follow multivariate

237  normal distribution expressed as u ~ N(0, Gag). G is the genomic relationship matrix and o is

238  the additive genetic variance.

239  MT-GS model was fit using Bayesian multivariate gaussian model in ‘MTM’ R package (de los

240  Campos and Griineberg 2016). This is expressed as:

Z1 0 uy &
P ][]+[] (3)
O . Zn un En

242  where y, ...y, are the vector of phenotypes, u; ...y, are the overall mean for each n-th trait, Z,

V1

241

1

1klvln

Yn

243  ...Z, isthe incidence matrix for genomic effect of the lines for each n-th trait, u; .... u, is genomic
244  effect of the lines for each n-th trait and €, ... €, is the residual error for each n-th trait. The random
245  term is assumed to follow multivariate normal distribution [u; .... u,] ~ N[0, (G ® G,)]. Where
246 G is the same as above and G, is an unstructured variance-covariance matrix of the genetic effect

247  of the traits, this is represented as follows:

10
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[ G§1 Og1z Ggln]

o 0.2

248 G,Q®G = | g1 e : |® G 4
% ;. o2 |

249  The off-diagonal elements represent variance for each trait and covariances between traits are the

250 off-diagonal elements.

251  Further, the residual term for each n-th trait is assumed to follow multivariate normal distribution:
252  [g&; ... €4] ~ N[0, (I® R)], where I is the same as above and R is a heterogeneous diagonal matrix

253  of the residual variances for each n-th trait:

254
[0z, O 0]
I O 0.2 O I

255 R:|- €2 ,|®1 (5)
lo o o2 |

256

257  The diagonal elements represent the residual variance for each n-th trait and off-diagonal elements
258  of the R matrix equal zero. In our preliminary analysis unstructured R matrix where off-diagonal
259 element of R represent covariance of the residual effects of the traits was considered; however, we
260  observed inconsistent model convergence for all iterations. The same results were observed when
261  factor analytic model was considered for the R structure which might be due to size of the dataset

262  used in our study relative to the number of model parameters to estimate.

263  Genomic heritability estimate (de los Campos et al. 2015; Feldmann et al. 2021) for n-th trait using
264  individual level data was derived from the variance components obtained from the model using
265  the complete dataset.

O&n

266 hZ = (6)

gn 2 2
o5, t0E,

267  where cgn and ogn are the genetic, residual variance estimates for n-th trait.

268
269
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270
271 2.4 Cross-Validation Scheme

272  To evaluate the performance of sparse testing strategy in the context of MT-GS, different cross-
273  validations mimicking potential applications of MT-GS in a breeding program were explored.
274  Leveraging on the results from sparse testing in multi-environment yield trials using GS (Jarquin
275 et al. 2020; Atanda et al. 2021b), we varied the number of genotypes that serve as connectivity
276  across traits to assess predictive ability in the different scenarios. Depending on the size of the data
277  set and the number of phenotypes, different overlapping sizes were evaluated (Suppl. Table 1).
278  Five different overlapping sizes (50, 60, 70, 80, 90%) were considered for DS1 (n=282), which
279  had the highest total number of genotypes, followed by four overlapping sizes (40, 50, 60, 70%)
280 inDS2 (n=192). For example, when 50% of the total genotypes in DS1 serve as connectivity across
281  the traits, the remaining 141 genotypes were partitioned into 10 distinct sets, each trait with a
282  unique set. Thus, each trait has 155 genotypes as training set to predict the genetic merit of 127
283  genotypes (Suppl. Figure 1B). This process was repeated 50 times. As the size of the overlapping
284  genotypes increased (60, 70, 80, and 90% of total genotypes), the training set size increased to
285 180, 205, 230, 255, and the prediction set size reduced to 102, 77, 27 respectively. The splitting of
286  the genotypes across traits was also repeated 50 times for each overlapping size scenario, each
287  iteration has different genotypes that serve as connectivity across traits, non-overlapping training
288  set for each trait and the prediction set (Suppl. Table 1). In each iteration, the Pearson correlation
289  of the predicted GEBV and the BLUE estimates of the genotypes for each trait obtained using
290 complete dataset was calculated and the mean was recorded as the predictive ability of the
291  prediction set for each trait. The same process was repeated for DS2, however, the predictive
292  ability in each iteration is the Pearson correlation of the predicted GEBV obtained using complete
293 dataset and the  mean phenotypic value of each accession for each trait and the mean was

294  recorded.
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295

296  To determine the efficiency of MT (sparse and partially balanced phenotyping) and univariate
297  (UNI) GS model, we compared the predictive ability of the prediction sets using the different
298 training set size defined in each dataset. Again, this process was repeated 50 times, each iteration
299  having different genotypes included in the training and prediction set for all traits in the UNI-GS
300 model and across traits for the partially balanced phenotyping MT-GS. For sparse phenotyping
301 each iteration has different genotypes that serve as connectivity across traits, a non-overlapping
302 training set for each trait, and the prediction set (Suppl. Figure 1). For DS1, predictive ability for
303 each iteration was measured as the Pearson correlation of the predicted GEBV and the BLUE
304  estimates of the genotypes for each trait obtained using the full dataset. Average was reported. In
305 the DS2, BLUE was replaced with the mean phenotypic value of each accession for each trait.
306

307  Based on the preliminary analysis results, only the sparse testing using MT-GS was considered to
308 evaluate the efficiency of using heritability, genetic correlation between traits or combination of
309 the factors for trait assignment in the prediction set and/or training set respectively. The following

310 scenarios were assessed:

311 1) Exclusion of trait(s) with lowest heritability but moderate to high genetic correlation
312 with other traits from the prediction set however reserved in the model. We also evaluated
313 the scenario when it was removed from the model.

314 2) Exclusion of trait(s) with the highest occurrence of negative correlation with other traits
315 but moderate to high heritability from the prediction set but reserved in the model. We also
316 evaluated the scenario when it was removed from the model.

317 3) Exclusion of trait(s) with the lowest heritability but moderate to high genetic correlation
318 with other traits, as well as trait(s) with the highest occurrence of negative correlation with
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319 other traits but moderate to high heritability, from the prediction set but reserved in the
320 model. We also evaluated the scenario in which they were left out of the model.

321 3.0 Results

322 3.1 Traits genomic heritability (diagonal) and genetic correlation among traits (upper

323 diagonal)

324  In DS1 heritability was moderately high for all traits except Ca with very low heritability value of
325 0.01 (Fig. 1A). However, in DS2 Ca had moderate heritability of 0.40 (Fig. 1B). Similarly, Fe had
326  heritability of 0.63 in DS2 compared to 0.29 in DS1, and in general the traits heritability in DS2
327 ranged from moderate to high. In the two datasets, P consistently had the highest heritability of
328 0.87in DS1 and 0.73 in DS2. The genetic correlation between traits in DS1 ranged from -0.01 to
329  0.96 while it ranged from -0.01 to 0.99 in DS2. In DS1, Cd had zero or no genetic correlation with
330 most of the traits. Similarly, K had no genetic correlation with Ca in DS2, contrary to the 0.33
331 genetic correlation observed in DS1 (Fig. 1A, B). Generally, in DS1, K, Fe, P and Mg had
332  moderate to high genetic correlation with most of the traits while in DS2 Ni, Cu and Mg had high

333  genetic correlation with other traits except with Mo.
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335 Figure 1: Genomic heritability (diagonal) and genetic correlation between pairs of traits
336  (upper diagonal) from MT-GS model using complete datasets. Fig. 1A, represent results

337 using DS1 dataset and Fig. 1B indicate results using DS2 dataset.

338

339 3.2 Sparse testing MT-GS improves predictive ability across traits compared to partially

340 balanced testing MT and univariate GS models.

341  Regardless of cross-validation schemes or dataset, sparse testing MT-GS model outperformed PBT
342  MT and UNI-GS models for all traits except for Ca in DS1 which might be attributed to near-zero
343  genetic signal observed for this trait (Fig. 2A: B). For instance, in DS2 where the predictive ability
344  is generally high compared to DS1, sparse testing using MT-GS outperformed PBT using MT-GS

345 Dby 25, 36, 15, 26, 27, 67, 81, 50, 66, 56% respectively for Mo, Mg, P, K, Ca, Mn, Fe, Zn, Cu and
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346  Ni while it improved predictive ability by 7, 58, 23, 17, 60, 12, 2, 95, 56% compared to UN-GS
347  model (Fig. 2B). Surprisingly, PBT using MT-GS model did not consistently outperform UNI-GS
348 model in DS2 compared to DS1 where PBT using MT-GS marginally results in improved

349  predictive ability for all traits.

04-

Predictive Ability

§e cd Mn Ca Cu Zn M'g P Fe K

Traits

ﬁ_..

Predictive Ability

0.00-

Mo Mg p K ca Min Fe Zn Cu Ni

350 Tait

351  Figure 2: Predictive performance of UNI and MT-GS using partially balanced (PBT) and
352  sparse testing (ST) phenotyping of the traits. The number within each box represents mean
353  predictive ability of 50 iterations of the process of line assignment as training and prediction
354  set. In each iteration different genotypes were assigned as training and prediction set for the
355 traitsin the UNI-GS model and across traits for the partially balanced phenotyping MT-GS.
356 For sparse phenotyping each iteration has different genotypes that serve as connectivity

357 across traits, a non-overlapping training set for each trait, and the prediction set
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358 3.2 Traits combination as a function of heritability, genetic correlation between traits and

359 their combination

360 When either heritability or genetic correlation was considered a decision tool for a combination of
361 traits in the prediction and/or calibration set, the predictive ability improved for all traits compared
362 to having all the traits in the prediction and the training set. However, the magnitude of the gain in
363  predictive ability varies by trait (Fig. 3, 4). In DS1, for example, when Ca with the lowest
364 heritability (0.01) but moderate to high genetic correlation with other traits was dropped from the
365  prediction set but kept in the model, the gain in the predictive ability for the remaining 9 traits in
366 the prediction set across the overlapping scenarios ranged from 2.79 to 85.07% (Fig. 3B), while it
367 ranged from 3.28 to 63.37% when excluded from the model (Fig. 3B*). When Cd with high
368 heritability (0.51) but zero genetic correlation with most traits was removed from the prediction
369  set, but retained in the calibration model, the improvement in predictive ability ranged from 6.75
370 to 104.41% (Fig. 3C) and ranged from 1.38 to 45.42% when removed from the training model
371  (Fig. 3C*). Similar results were obtained in DS2, when Mo with heritability of 0.43 and negative
372  correlation with the majority of the traits was removed from the prediction set but reserved in the
373  calibration model. The predictive ability of traits in the prediction set ranged from 2.41 to 77.92%
374  (Fig. 4B) and ranged from 0.62 to 19.62% when removed from the model (Fig. 4B*). Because Mo
375 has a negative genetic correlation with the majority of the traits, in addition to having the lowest
376 heritability of all the traits in DS2, we substitute Mo with Ca, which has a heritability of 0.41 and
377  a moderate to high genetic correlation with other traits, to disentangle the confounding effect of
378  heritability and genetic correlation. The gain in predictive ability ranged from 3.19 to 90.34%
379  when the calibration model was reserved (Fig. 4C) and from 1.34 to 14.65% when the calibration

380 model was removed (Fig. 4C*).

17


https://doi.org/10.1101/2022.04.11.487944
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.11.487944; this version posted April 12, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

381  Unsurprisingly, when Mo and P, which have moderate and high heritabilities of 0.32 and 0.73 but
382  are negatively correlated with other traits, respectively, were excluded from the prediction set, the
383  predictive ability improved for all traits except Ca and Fe (Fig. 4D). When the traits were removed
384  from the calibration model, the predictive ability decreased for majority of the traits (Fig. 4D*).
385  On the contrary, removing Mo and K from the prediction set with moderate heritability of 0.32
386 and 0.43 resulted in an improved predictive ability (Fig. 4E, E*). In contrast to P, K has zero,
387  weak negative, and strong positive correlations with other traits. Figures 3D and 3D* corroborate
388 the findings in Figures 4D and 4D*, in which Se and Cd with moderate heritability of 0.51 and
389  0.52, respectively, but low genetic correlation with other traits, were excluded from the prediction
390 set but retained or removed from the calibration model. The additional improvement in predictive
391  ability observed when Se, Cd, and Ca were excluded from the prediction set (Fig. 3E, E*)
392 demonstrates the efficacy of heritability and genetic correlation between traits as decision metric,

393  corroborating the results obtained in Figure 4E and 4E*.
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394

395 Figure 3: Predictive ability of untested lines in DS1 for each trait for different overlapping
396 and non-overlapping size. The different colors denote traits in the prediction set, which might
397 also be present in the calibration model. The suffix (*) indicate exclusion of trait (s) from the
398 calibration model based on its heritability, degree of genetic correlation with other traits or
399 combination of the two factors.
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403  Figure 4: Predictive ability of untested lines in DS2 for each trait for different overlapping
404  and non-overlapping size. The different colors denote traits in the prediction set, which might
405  also be present in the calibration model. The suffix (*) indicate exclusion of trait (s) from the
406  calibration model based on its heritability, degree of genetic correlation with other traits or
407  combination of the two factors.
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412 4.0 Discussion

413  Breeders make advancement decisions based on multiple traits with varying genetic correlations,
414  ranging from negative to positive, and in exceptional cases, no genetic correlation at all. Thus, the
415  use of the MT-GS model is gaining popularity as a choice GS model to estimate the genetic merit
416  of new genotypes. When comparing models, our results corroborate previous studies (Calus and
417  Veerkamp 2011; Jia and Jannink 2012; Montesinos-Lépez et al. 2018; Lado et al. 2018; Bhatta et
418  al. 2020; Gaire et al. 2022) that MT-GS outperforms UNI-GS by harnessing genetic correlation
419  Dbetween traits to improve predictive ability across traits. The proposed MT-GS aided sparse
420  phenotyping depart from the previous reports of weak genetic correlation between traits as a
421 limitation to the advantage of MT-GS over UNI, which was evident in the partially balanced
422  phenotyping aided MT-GS. The performance of MT-GS enabled sparse phenotyping was
423  consistently superior to UNI-GS, with least 20% improvement on predictive ability on average
424  across traits, suggesting the importance of borrowing information across traits and related
425  genotypes. Similar results have been reported in sparse testing aided GS in multi-environment
426 trials (Atanda et al. 2021a; 2021b; 2022). This demonstrates the improvement in predictive
427  performance in sparse testing using MT-GS is primarily due to efficient estimation of correlated
428  effects across genetically related traits, as phenotypic records are available for all traits, albeit in a
429  different set of genotypes. In addition, allowing for significant genotype overlap improves
430  predictive ability because genetic connectivity across traits improves estimates of trait-to-trait
431  correlation effects. The observed inflection points in this study, however, suggests that more
432  research is required to determine the optimal number of overlapping genotypes, which might be
433 influenced by the degree of genetic relationship between lines, the number of lines per cross, the
434  genetic correlation between traits, yield testing stage and expected prediction accuracy.

435
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436  Overall, predictive ability improves with heritability in all models except Se, Cd, and Mn in DS1,
437  though DS1 generally has low predictive ability compared to DS2, presumably due to low genetic
438  variation for nutritional traits in DS1 which are elite breeding lines compared to DS2 which are
439  accessions and the growing condition of the accessions in the greenhouse compared to DS1 planted
440 outin the field. Thavarajah et al. (2022) reported heritability estimates of nearly zero for Ca, K, P,
441 Mg, Mn, Fe, Zn, Cu and Se in 44 pea lines evaluated in two locations in 2019 and one location in
442 2020 with two replications in each location. On the contrary, Ma et al. (2017) observed moderately
443  high genetic diversity for mineral elements in 158 recombinant inbred lines evaluated in two
444  locations with two replications. Given the number of replications and locations used in these
445  studies further suggests that the degree of genetic variation (by inference heritability) for
446  nutritional traits in DS1 may be responsible for the observed low predictive ability.

447

448  Multi-trait combinations were created in training and prediction sets based on genetic correlations
449  Dbetween traits, heritability, and the combination of the limiting factors to optimize the trade-off
450  between the limiting factors and the accuracy of predicting the genetic value of the phenotypes. In
451  general, the improvement in predictive ability when traits with low heritability but moderate to
452  high genetic correlation with other traits or traits with high occurrence of negative correlation with
453  other traits but moderate to high heritability were excluded from the prediction set suggests that
454  traits with low heritability or genetic correlation with other traits cannot be adequately predicted
455  (Jia and Jannink 2012; Gaire et al. 2022). However, reserving the traits in the training set as
456  secondary traits improves estimation of model parameters resulting in an improvement in
457  predictive ability compared to exclusion from the model. The observed difference in predictive
458 ability for each limiting factor suggests both factors independently affects predictive ability.
459  Consequently, both factors are equally important in determining traits combination in MT-GS. In

460  practice, this information can be sourced from relevant literature on the phenotypes or historical
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461  datain the breeding program. To our knowledge this is the first time these two factors are designed
462  to designate traits in the training and prediction set to improve predictive performance in MT-GS.
463  The gain in predictive performance achieved by using this strategy requires further investigation
464  Dbecause it has only been tested in pea datasets with limited environments (year by location
465  combinations) and replication which is a major limitation in this study, and does not represent
466  extensive data generated in breeding programs. The availability of multi-environment dataset can
467  improve estimate of genotypic values for quantitative traits. Since significant progress has been
468  made in multi-trait multi-environment genomic prediction (Montesinos-Lopez et al. 2016, 2018,
469  2019; Gill et al. 2021; Sandhu et al. 2022), our findings suggest future research should focus on
470 developing an optimal strategy for genomic prediction enabled sparse testing of multiple traits in
471  multi-environment trials. This will likely further lower the cost of phenotyping and the time-
472  consuming data collection process. In addition, we encourage use of different crops with varying
473  genetic backgrounds that fairly cover the diversity of data generated in breeding programs to gather
474  more evidence on the efficiency of this strategy in improving prediction performance in MT-GS.
475

476  Conclusion

477  Inthis study we propose use of sparse testing in MT-GS which ultimately can be extended to multi-
478  environment multi-trait GS to improve prediction performance and further reduce the cost of
479  phenotyping and time-consuming data collection process. Although our results agree with previous
480  study that weak correlation is a limiting factor of MT-GS superiority over UNI-GS using partially
481  balanced phenotyping. However, our results were inconsistent with sparse phenotyping,
482  suggesting that MT-GS performance can be improved further if phenotyping strategy is
483  redesigned. Our results show that traits combination in training and prediction sets impact

484  prediction performance. Therefore, when designing MT-GS strategy, consideration should be
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given to traits combination in the training and prediction sets. In addition, our results suggest the

use of heritability and genetic correlation between traits as metrics to achieve this objective.
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662  Supplementary Table 1: Proportion of genotypes overlapping and non-overlapping across
663 traits for DS1 and DS2 datasets

Total # of # of Percent Overlapping Non- Total Testing
genotypes Traits overlap across traits Overlapping Training set size
across set size
traits

DS1 | 282 10 50 141 14:15 155:156 126:127
282 10 60 169 11:12 179:180 102:103
282 10 70 197 8:9 205:206 76:77
282 10 80 225 5:6 230:231 52:51
282 10 90 253 2:3 255:256 26:27
282 9 50 141 15:16 156:157 125:126
282 9 60 169 12:13 181:182 101:102
282 9 70 197 9:10 206:207 75:76
282 9 80 225 6:7 231:30 50:51
282 9 90 253 34 256:257 25:26
282 8 50 141 17:18 156:157 123:124
282 8 60 169 14:15 183:184 99:98
282 8 70 197 10:11 207:208 74:75
282 8 80 225 7:8 232:233 49:50
282 8 90 253 3:4 256:257 25:26
282 7 50 141 20:21 161:162 120:121
282 7 60 169 16:17 185:186 95:96
282 7 70 197 12:13 204:205 77:78
282 7 80 225 8:9 233:234 48:49
282 7 90 253 4:5 257:258 24:25

DS2 | 192 10 40 76 11:12 87:88 104:105
192 10 50 96 9:10 105:106 86:87
192 10 60 115 7:8 122:123 69:70
192 10 70 134 5:8 139:140 52:53
192 9 40 76 12:13 88:89 103:104
192 9 50 96 10:11 106:107 85:86
192 9 60 115 8:9 123:124 68:69
192 9 70 134 6:7 140:141 51:52
192 8 40 76 14:15 90:91 101:102
192 8 50 96 12 108:109 83:84
192 8 60 115 9:10 124:125 67:68
192 8 70 134 7:8 141:142 50:51

664
665

666  The symbol (;) between numbers implies when splitting the lines across the traits some traits might

667  have the first value and others have the second value. Splitting of lines across the traits was

668  repeated 50 times. DS1 includes 282 NDSU pea lines while DS2 includes 192 USDA accessions.

669
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670

671  Supplementary Figure 1: Allocation of lines to 10 traits in DS1 (A and B) and DS2 (C and D)
672  respectively. In A and C, the green section corresponds to 155 and 87 lines in DS1 and DS2
673  with phenotypic data for all traits using partially balanced phenotyping. While the red
674  implies un-phenotyped lines across traits in which the genetic value will be predicted. The
675 B and D are sparse phenotyping strategy, each column represents a trait and the green

676  sections correspond to 14 and 11 lines in DS1 and DS2 unique to each trait while the light
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677  green section denotes 141 and 76 lines (Approx. 50% of 282 lines in DS1 and 40% 192 lines
678 in DS2) common to all traits.

679

680

681

682
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