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Abstract 31 

The superiority of multi-trait genomic selection (MT-GS) over univariate genomic selection (UNI-32 

GS) can be improved by redesigning the phenotyping strategy. In this study, we used about 300 33 

advanced breeding lines from North Dakota State University (NDSU) pulse breeding program and 34 

about 200 USDA accessions evaluated for ten nutritional traits to assess the efficiency of sparse 35 

testing in MT-GS. Our results showed that sparse phenotyping using MT-GS consistently 36 

outperformed UNI-GS when compared to partially balanced phenotyping using MT-GS. This 37 

strategy can be further extended to multi-environment multi-trait GS to improve prediction 38 

performance and reduce the cost of phenotyping and time-consuming data collection process. 39 

Given that MT-GS relies on borrowing information from genetically correlated traits and relatives, 40 

consideration should be given to trait combinations in the training and prediction sets to improve 41 

model parameters estimate and ultimately prediction performance. Our results point to heritability 42 

and genetic correlation between traits as possible parameters to achieve this objective.  43 

 44 

Key words: Genomic selection, heritability, multi-traits, genomic best linear unbiased estimate, 45 

sparse testing, genetic correlation, cross-validation  46 
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1.0 Introduction 56 

In recent times, there is an increased demand for genetic improvement of nutritional traits in crops 57 

due to the growing demand for plant-based protein, mineral elements and vitamins. Pulse crops 58 

are known to have high protein value and are rich in micronutrients with potential to alleviate 59 

hidden hunger (Mudryj et al. 2014; Wadhawan et al. 2021; Bari et al. 2021). However, 60 

phenotyping/screening for nutritional traits such as protein, manganese, selenium, copper, zinc, 61 

iron, potassium, phosphorus, magnesium and calcium is expensive and time consuming, especially 62 

in the early yield testing stage with hundreds of lines to evaluate. This is a major limitation in a 63 

public breeding program aiming to have a biofortified product profile. However, due to 64 

advancement in the genotyping platform, the cost of genotyping is becoming relatively less 65 

expensive compared to the cost of phenotyping; thus, genomic selection (GS) that uses whole-66 

genome information to predict genomic estimated breeding value (GEBV) of unobserved 67 

genotypes is gaining traction as breeders’ choice of selection method (Poland et al. 2012; Zhao et 68 

al. 2021; Bassi et al. 2016; Santantonio et al. 2020; Atanda, et al. 2021a). Though GS research in 69 

pea is scanty, the available studies (Annicchiarico et al. 2019; Crosta et al. 2021; Bari et al. 2021) 70 

show GS potential to predict the genetic merit of pea lines and germplasm accessions. Following 71 

Bari et al. (2021), the North Dakota State University (NDSU) pulse breeding program is 72 

prioritizing the use of GS particularly  in the preliminary yield trial (PYT or  stage 1) where 73 

effectiveness of phenotypic selection is limited by phenotyping in one/two locations due to seed 74 

multiplication challenges for hundreds of lines for multi-location trials. Consequently, the NDSU 75 

pulse breeding program is focused on redesigning the PYT from phenotypic based selection to GS 76 

to reduce the number of seeds for phenotyping and increase selection accuracy for advancement 77 

of promising lines to advanced yield testing stage.  78 

 79 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487944doi: bioRxiv preprint 

https://paperpile.com/c/E6n38Q/u4lX+ag3r+cvvU
https://paperpile.com/c/E6n38Q/B5Vk+Ygeg+aiHQ+zC1q+Han5
https://paperpile.com/c/E6n38Q/B5Vk+Ygeg+aiHQ+zC1q+Han5
https://paperpile.com/c/E6n38Q/CQke+5U9x+cvvU
https://paperpile.com/c/E6n38Q/cvvU
https://doi.org/10.1101/2022.04.11.487944
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

In general, GS is often performed with univariate-trait (UT) models that assume genetic correlation 80 

among traits to be zero ( Jia and Jannink 2012; Montesinos-López et al. 2016, 2018; Bhatta et al. 81 

2020; Gaire et al. 2022). However, in practice, breeders’ select for multiple traits that are 82 

genetically correlated, ranging from negative to positive correlations. To harness the genetic 83 

correlation between traits and among genotypes to improve prediction accuracy, multi-trait (MT) 84 

models, which are the generalization of UT models, have been investigated. Several empirical 85 

studies (Calus and Veerkamp 2011; Montesinos-López et al. 2018; Bhatta et al. 2020; Gaire et al. 86 

2022)  have reported improved prediction accuracy in different crops using MT models that allow 87 

borrowing of information between correlated traits and among genotypes compared to UT models. 88 

Prediction accuracy in MT-GS improves as correlation between traits increases (Jia and Jannink 89 

2012; Okeke et al. 2017; Montesinos-López et al. 2018, 2019; Neyhart et al. 2019), however, trait 90 

heritability varies and is a key limiting factor to upper bound of prediction accuracy (Manolio et 91 

al. 2009; Yang et al. 2015; Schopp et al. 2017; Zhang et al. 2019; Atanda et al. 2021a). These 92 

factors will likely influence the composition of traits in the training and the prediction sets in MT-93 

GS and ultimately the prediction accuracy.  94 

 95 

In the MT-GS model, the training set consists of individuals with phenotypic records for all traits 96 

to predict the genetic values of un-phenotyped individuals in the prediction set using genome-wide 97 

marker information. The crucial question is how to design a MT-GS strategy that will optimize the 98 

trade-off between the limiting factors and accuracy of predicting the genetic value of the traits. 99 

Studies (Montesinos-López et al. 2016, 2018, 2019; Guo et al. 2014; Bhatta et al. 2020; Gaire et 100 

al. 2022) have highlighted the importance of each factor to prediction accuracy; however, nothing 101 

is known about their combinations on composition of traits in the training and prediction set in the 102 

context of MT-GS. Consequently, we investigated the influence of the limiting factors on 103 
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composition of traits in the training and prediction sets to guide the use of MT-GS in a breeding 104 

program.   105 

Further, in most MT-GS cross-validation studies (Montesinos-López et al. 2016, 2018, 2019; Guo 106 

et al. 2014; Bhatta et al. 2020; Gaire et al. 2022), the same set of genotypes overlap across traits 107 

for testing prediction models (Suppl. Fig. 1A, C). In such a scenario, the same set of genotypes 108 

have phenotypic records for all traits while the other genotypes serve as a prediction set (partially 109 

balanced testing strategy, denoted as PBT); however, results from multi-environment GS studies 110 

have shown that this approach is less optimal compared to sparse testing using genomic prediction 111 

where phenotyping of genotypes is split across environments (Burgueño et al. 2012; Jarquin et al. 112 

2020; Atanda et al. 2021). We extend sparse phenotyping in the context of MT-GS in which the 113 

phenotyping of lines is split across traits (Suppl. Fig. 1B, D). This strategy could improve 114 

prediction accuracy in MT-GS by efficiently using information across traits and genotypes. More 115 

so, it can be robust for building historical data for use in prediction models, since all genotypes 116 

have phenotypic records for the different traits.  To further evaluate the potential of GS in the 117 

NDSU pulse breeding program and how it can be efficiently deployed to improve genetic gain, the 118 

following were our objectives in this study: 1) determine the efficiency of MT compared to UT in 119 

predicting nutritional traits in pea, 2) determine the optimal method to design training and testing 120 

trait sets using heritability and genetic correlation between traits as metric, and 3) identify optimal 121 

resource allocation for phenotyping nutritional traits in the early yield testing stage by comparing 122 

the predictive ability of sparse and partial balanced testing.  123 

 124 

 125 

 126 
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2.0 Materials and Methods 129 

2.1 Genetic Materials and Field or Greenhouse Evaluation 130 

The genetic material consisted of 282 pea lines (DS1) from North Dakota State University (NDSU) 131 

pulse breeding program and 192 USDA pea accessions (DS2) previously described in Bari et al. 132 

(2021). The NDSU lines were planted in augmented row-column design with five repeated checks 133 

in the 2020-2021 growing season at the North Dakota Agricultural Experiment Station, Minot, 134 

North Dakota, United States (27°29′N, 109°56′W). Seeds were treated with fungicide and 135 

insecticide prior to planting. At planting, 30 seeds were planted on 152 × 60 cm plot size with 30 136 

cm spacing between plots. Plots were harvested at physiological maturity (90-120 days after 137 

planting) and dried to 15% moisture content. For the USDA pea accessions, six plants of each 138 

accession were grown in 5L black plastic pots filled with a synthetic soil mix composed of two 139 

parts Metro-Mix 360 (Scotts-Sierra Horticultural Products Co., Marysville, Ohio) and one part 140 

vermiculite (Strong-Lite Medium Vermiculite, Sun Gro Horticulture Co, Seneca Illinois).  Plants 141 

were grown in a controlled environment greenhouse with a temperature regime of 22 ± 3 °C/day 142 

and 20 ± 3 °C/ night, with a relative humidity ranging from 45% to 65% throughout the day/night 143 

cycle.  Sunlight was supplemented with metal halide lamps, set to a 15 h day, 9 h night cycle (lights 144 

on at 700 h).  In order to maintain an adequate supply of all mineral nutrients, a complete fertilizer 145 

mixture was provided to each pot on a daily basis. Pots were irrigated with an automated drip 146 

irrigation system (one drip line to each pot); the system was regulated with a timer that delivered 147 

nutrient solution twice a day (younger plants) or three times a day (older plants) in sufficient 148 

quantity to saturate the soil mass at each irrigation.  The nutrient solution contained the following 149 

concentrations of mineral salts: 1.0 mM KNO3, 0.4 mM Ca(NO3)2,  0.1 mM MgSO4, 0.15 mM 150 

KH2PO4  and 25 µM CaCl2, 25 µM H3BO3, 2 µM MnSO4, 2 µM ZnSO4, 0.5 µM CuSO4, 0.5 µM 151 

H2MoO4, 0.1 µM NiSO4, 1 µM Fe(Ш)-N, N’-ethylenebis[2-(2-hydroxyphenyl)-glycine] (Sprint 152 

138; Becker-Underwood, Inc., Ames, Iowa, USA).  We thus attempted to maintain all essential 153 
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minerals at sufficient, but non-toxic levels, in the soil.  Seeds were harvested from each accession 154 

at full plant maturity. 155 

 156 

2.2 Mineral Analysis 157 

Mineral elements for DS1 were measured following procedures described in (Ma et al., 2017; Lan 158 

et al. 2019). Briefly, 200g non-dehulled pea seeds were ground to fine flour and then digested with 159 

concentrated nitric acid (70% HNO3) in a digestion system block at 90 °C for 60 minutes. 160 

Afterward, 3 mL of hydrogen peroxide was added to further the digestion process for 15 minutes, 161 

followed by the addition of 3 mL hydrochloric acid (70% HCl) and heated for additional 5 minutes. 162 

After cooling to room temperature, the digested samples were filtered through DigiFILTER (SCP 163 

Science) and diluted to 10mL with nanopure water. To validate the procedure and analytical 164 

measurement, an apple leaf standard (SRM 1515; National Institute of Standards and Technology, 165 

Gaithersburg, Maryland, USA) was analyzed simultaneously with the pea flour samples. Total 166 

concentration of the mineral elements was measured using inductively coupled plasma atomic 167 

emission spectrometry (IRIS Advantage ICP-AES; Thermo Elemental, Franklin, Massachusetts, 168 

USA). Mineral values were determined with the ICP-AES using the following spectral emission 169 

lines (in nm): Ca, 184.0; Mg, 285.2; K, 769.8; P, 177.4; Fe, 238.2; Zn, 213.8; Mn, 260.5; Cu, 170 

324.7; Ni, 231.6; B, 208.9; Mo, 202.0.   171 

 172 

For the DS2, dried seeds (with seed coats) from 6 plants of each accession were ground to a 173 

uniform powder using a coffee grinder with stainless steel blades. Two sub-samples of each 174 

accession were weighed (approximately 200 mg each), dry ashed, resuspended in ultra-pure nitric 175 

acid and analyzed for Ca, Mg, K, P, Fe, Zn, Mn, Cu, Ni, B and Mo concentrations using inductively 176 

coupled plasma atomic emission spectrometry (IRIS Advantage ICP-AES; Thermo Elemental, 177 

Franklin, Massachusetts, USA). Dry ashing was performed in quartz tubes, with samples ashed for 178 
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6 h at 450 °C.  After cooling, to ensure complete oxidation of all tissues, 2.5 ml of 30% H2O2 was 179 

added to each tube and samples were reheated to 450 °C for 1 h.  Apple leaf standards (SRM 1515; 180 

National Institute of Standards and Technology, Gaithersburg, Maryland, USA) were ashed and 181 

analyzed along with pea seed samples to verify the reliability of the procedures and analytical 182 

measurements. Mineral values were determined with the ICP-AES using the same spectral 183 

emission lines (in nm) noted for the DS1 population. 184 

 185 

2.3 Genotyping 186 

Details on DNA isolation and genotyping-by-sequencing (GBS) can be found in Bari et al. (2021). 187 

DS1 and DS2 were genotyped using GBS and 28, 832SNP markers were generated for DS1 while 188 

380,527 SNP markers were generated for DS2. After removing SNPs with more than 90% missing 189 

values, heterozygosity greater than 20% and with a minor allele frequency less than 5%, 11, 858 190 

and 30, 645 SNPs remained for DS1 and DS2 respectively and were used for the analysis. Missing 191 

SNPs were imputed with Beagle 5.1 (Browning et al., 2018). 192 

 193 

2.4 Phenotypic Data Analysis 194 

Best linear unbiased estimates of the phenotypes for DS1 accounting for spatial trend on the field 195 

modelled by a smooth bivariate function of the spatial coordinates f(r, c) represented by 2D P-196 

splines was implemented in SpATS R package (Rodríguez-Álvarez et al. 2016). This was modeled 197 

as: 198 

 199 

 200 

𝐲 = f(𝐫, 𝐜) + 𝐗𝐛 + 𝐙r𝐮𝒓 + 𝐙c𝐮c + 𝛆     (1) 201 

 202 
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where:  y is the response variable for n-th phenotype, b is the fixed effect of the genotype, 𝐮𝐫 and 203 

𝐮𝐜 are row and column random effects accounting for discontinuous field variation with 204 

multivariate normal distribution: 𝐮𝐫 ~ N(0, 𝐈σr
2) and 𝐮𝐜 ~ N(0, 𝐈σc

2) respectively. I is an identity 205 

matrix and  σr
2 and σc

2 are variance for row and column effect. f(r, c) is a smooth bivariate function 206 

defined over the row and column positions (see Velazco et al. 2017 for details), 𝛆 is the 207 

measurement error from each plot with distribution of 𝛆 ~ N(0, Iσε
2). I is the same as above, σε

2 is 208 

variance for the residual term or simply referred to as nugget. X and Z are incidence matrix for the 209 

fixed and random terms.  210 

 211 

For the DS2, the mineral elements value of each accession was estimated as follows; mineral 212 

values from the two sub-samples (see Mineral Analysis section for details) were averaged for each 213 

accession; these averaged values are presented as ppm (parts per million), which is equivalent to 214 

ug/g DW (micrograms per gram dry weight). In this study it was denoted as   mean phenotypic 215 

value  of each accession for each mineral element.  In general, the standard deviations for each 216 

mineral were low (i.e., within each accession). Across all accessions, the average standard 217 

deviation for each mineral (calculated as percent of the mean of the two sub-samples) was: Ca, 218 

10.4%; Mg, 2.0%; K, 2.5%; P, 2.5%; Fe, 6.0%; Zn, 5.1%; Mn, 6.9%; Cu, 7.5%; Ni, 15.4%; B, 219 

5.8%; Mo, 3.7%.  220 

 221 

 222 

  223 

 224 

 225 

 226 

 227 
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2.5 Genomic Selection Models 228 

Univariate GS model was implemented in ‘BGLR’ R package (Pérez and de los Campos 2014) 229 

using Bayesian ridge regression model equivalent to the genomic best linear unbiased prediction 230 

(GBLUP) model expressed as:  231 

𝐲 = 𝟏kμ +  𝐙𝐮 + 𝛆     (2) 232 

 233 

where y is the vector (n × 1) of adjusted means (BLUEs) using DS1 or   mean phenotypic value 234 

using DS2 for k-th genotypes for a given n-th trait/mineral element, μ is the overall mean and 𝟏k 235 

(kx1) is a of vector ones, u is the genomic effect of k-th genotypes assumed to follow multivariate 236 

normal distribution expressed as u ~ N(0, Gσg
2). G is the genomic relationship matrix and σg

2 is 237 

the additive genetic variance.  238 

MT-GS model was fit using Bayesian multivariate gaussian model in ‘MTM’ R package (de los 239 

Campos and Grüneberg 2016). This is expressed as:  240 

[

𝐲1

⋮
𝐲n

]   = [
𝟏1μ1

⋮
𝟏kμn

] + [
𝐙1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐙n

]  [

𝐮1

⋮
𝐮n

]  +[

ε1

⋮
εn

]           (3) 241 

where 𝐲1…𝐲n are the vector of phenotypes, μ1 …μn are the overall mean for each n-th trait, 𝐙1 242 

…𝐙n is the incidence matrix for genomic effect of the lines for each n-th trait, 𝐮1 …. 𝐮n is genomic 243 

effect of the lines for each n-th trait and 𝛆1 … 𝛆n is the residual error for each n-th trait. The random 244 

term is assumed to follow multivariate normal distribution [𝐮1 …. 𝐮n]  ~ N[0, (𝐆⨂𝐆o)]. Where 245 

G is the same as above and 𝐆o is an unstructured variance-covariance matrix of the genetic effect 246 

of the traits, this is represented as follows: 247 
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𝐆o⊗G = 

[
 
 
 
 
σg1

2 σg12
⋯ σg1n

σg21
σg2

2 ⋯ ⋯

σgn1

⋮
⋮

⋱
…

⋮
σgn

2
]
 
 
 
 

⨂ 𝐆         (4) 248 

The off-diagonal elements represent variance for each trait and covariances between traits are the 249 

off-diagonal elements.  250 

Further, the residual term for each n-th trait is assumed to follow multivariate normal distribution: 251 

[𝛆1 … 𝛆n]  ~ N[0, (𝐈⨂𝐑)], where 𝐈 is the same as above and R is a heterogeneous diagonal matrix 252 

of the residual variances for each n-th trait: 253 

 254 

𝐑= 

[
 
 
 
 
σε1

2 0 ⋯ 0

0 σε2
2 ⋯ 0

⋮
0

⋮
0

⋱
…

⋮
σεn

2
]
 
 
 
 

 ⨂ 𝐈       (5) 255 

 256 

The diagonal elements represent the residual variance for each n-th trait and off-diagonal elements 257 

of the 𝐑 matrix equal zero. In our preliminary analysis unstructured R matrix where off-diagonal 258 

element of R represent covariance of the residual effects of the traits was considered; however, we 259 

observed inconsistent model convergence for all iterations. The same results were observed when 260 

factor analytic model was considered for the R structure which might be due to size of the dataset 261 

used in our study relative to the number of model parameters to estimate. 262 

Genomic heritability estimate (de los Campos et al. 2015; Feldmann et al. 2021) for n-th trait using 263 

individual level data was derived from the variance components obtained from the model using 264 

the complete dataset.    265 

hgn
2 =

σgn
2

σgn
2 +σεn

2      (6) 266 

where σgn
2  and σεn

2  are the genetic, residual variance estimates for n-th trait.  267 

 268 

 269 
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 270 

2.4 Cross-Validation Scheme 271 

To evaluate the performance of sparse testing strategy in the context of MT-GS, different cross-272 

validations mimicking potential applications of MT-GS in a breeding program were explored.  273 

Leveraging on the results from sparse testing in multi-environment yield trials using GS (Jarquin 274 

et al. 2020; Atanda et al. 2021b), we varied the number of genotypes that serve as connectivity 275 

across traits to assess predictive ability in the different scenarios. Depending on the size of the data 276 

set and the number of phenotypes, different overlapping sizes were evaluated (Suppl. Table 1). 277 

Five different overlapping sizes (50, 60, 70, 80, 90%) were considered for DS1 (n=282), which 278 

had the highest total number of genotypes, followed by four overlapping sizes (40, 50, 60, 70%) 279 

in DS2 (n=192). For example, when 50% of the total genotypes in DS1 serve as connectivity across 280 

the traits, the remaining 141 genotypes were partitioned into 10 distinct sets, each trait with a 281 

unique set. Thus, each trait has 155 genotypes as training set to predict the genetic merit of 127 282 

genotypes (Suppl. Figure 1B). This process was repeated 50 times. As the size of the overlapping 283 

genotypes increased (60, 70, 80, and 90% of total genotypes), the training set size increased to 284 

180, 205, 230, 255, and the prediction set size reduced to 102, 77, 27 respectively. The splitting of 285 

the genotypes across traits was also repeated 50 times for each overlapping size scenario, each 286 

iteration has different genotypes that serve as connectivity across traits, non-overlapping training 287 

set for each trait and the prediction set (Suppl. Table 1). In each iteration, the Pearson correlation 288 

of the predicted GEBV and the BLUE estimates of the genotypes for each trait obtained using 289 

complete dataset was calculated and the mean was recorded as the predictive ability of the 290 

prediction set for each trait. The same process was repeated for DS2, however, the predictive 291 

ability in each iteration is the Pearson correlation of the predicted GEBV obtained using complete 292 

dataset and the    mean phenotypic value of each accession for each trait and the mean was 293 

recorded. 294 
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   295 

To determine the efficiency of MT (sparse and partially balanced phenotyping) and univariate 296 

(UNI) GS model, we compared the predictive ability of the prediction sets using the different 297 

training set size defined in each dataset. Again, this process was repeated 50 times, each iteration 298 

having different genotypes included in the training and prediction set for all traits in the UNI-GS 299 

model and across traits for the partially balanced phenotyping MT-GS. For sparse phenotyping 300 

each iteration has different genotypes that serve as connectivity across traits, a non-overlapping 301 

training set for each trait, and the prediction set (Suppl. Figure 1). For DS1, predictive ability for 302 

each iteration was measured as the Pearson correlation of the predicted GEBV and the BLUE 303 

estimates of the genotypes for each trait obtained using the full dataset. Average was reported. In 304 

the DS2, BLUE was replaced with the mean phenotypic value of each accession for each trait. 305 

 306 

Based on the preliminary analysis results, only the sparse testing using MT-GS was considered to 307 

evaluate the efficiency of using heritability, genetic correlation between traits or combination of 308 

the factors for trait assignment in the prediction set and/or training set respectively. The following 309 

scenarios were assessed:   310 

1)  Exclusion of trait(s) with lowest heritability but moderate to high genetic correlation 311 

with other traits from the prediction set however reserved in the model. We also evaluated 312 

the scenario when it was removed from the model. 313 

2)   Exclusion of trait(s) with the highest occurrence of negative correlation with other traits 314 

but moderate to high heritability from the prediction set but reserved in the model. We also 315 

evaluated the scenario when it was removed from the model. 316 

3)  Exclusion of trait(s) with the lowest heritability but moderate to high genetic correlation 317 

with other traits, as well as trait(s) with the highest occurrence of negative correlation with 318 
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other traits but moderate to high heritability, from the prediction set but reserved in the 319 

model. We also evaluated the scenario in which they were left out of the model. 320 

3.0 Results 321 

3.1 Traits genomic heritability (diagonal) and genetic correlation among traits (upper 322 

diagonal) 323 

In DS1 heritability was moderately high for all traits except Ca with very low heritability value of 324 

0.01 (Fig. 1A). However, in DS2 Ca had moderate heritability of 0.40 (Fig. 1B). Similarly, Fe had 325 

heritability of 0.63 in DS2 compared to 0.29 in DS1, and in general the traits heritability in DS2 326 

ranged from moderate to high. In the two datasets, P consistently had the highest heritability of 327 

0.87 in DS1 and 0.73 in DS2. The genetic correlation between traits in DS1 ranged from -0.01 to 328 

0.96 while it ranged from -0.01 to 0.99 in DS2. In DS1, Cd had zero or no genetic correlation with 329 

most of the traits. Similarly, K had no genetic correlation with Ca in DS2, contrary to the 0.33 330 

genetic correlation observed in DS1 (Fig. 1A, B). Generally, in DS1, K, Fe, P and Mg had 331 

moderate to high genetic correlation with most of the traits while in DS2 Ni, Cu and Mg had high 332 

genetic correlation with other traits except with Mo.  333 
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 334 

Figure 1: Genomic heritability (diagonal) and genetic correlation between pairs of traits 335 

(upper diagonal) from MT-GS model using complete datasets.  Fig. 1A, represent results 336 

using DS1 dataset and Fig. 1B indicate results using DS2 dataset. 337 

 338 

3.2 Sparse testing MT-GS improves predictive ability across traits compared to partially 339 

balanced testing MT and univariate GS models. 340 

Regardless of cross-validation schemes or dataset, sparse testing MT-GS model outperformed PBT 341 

MT and UNI-GS models for all traits except for Ca in DS1 which might be attributed to near-zero 342 

genetic signal observed for this trait (Fig. 2A: B). For instance, in DS2 where the predictive ability 343 

is generally high compared to DS1, sparse testing using MT-GS outperformed PBT using MT-GS 344 

by 25, 36, 15, 26, 27, 67, 81, 50, 66, 56% respectively for Mo, Mg, P, K, Ca, Mn, Fe, Zn, Cu and 345 
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Ni while it improved predictive ability by 7, 58, 23, 17, 60, 12, 2, 95, 56% compared to UN-GS 346 

model (Fig. 2B). Surprisingly, PBT using MT-GS model did not consistently outperform UNI-GS 347 

model in DS2 compared to DS1 where PBT using MT-GS marginally results in improved 348 

predictive ability for all traits.  349 

 350 

Figure 2: Predictive performance of UNI and MT-GS using partially balanced (PBT) and 351 

sparse testing (ST) phenotyping of the traits. The number within each box represents mean 352 

predictive ability of 50 iterations of the process of line assignment as training and prediction 353 

set. In each iteration different genotypes were assigned as training and prediction set for the 354 

traits in the UNI-GS model and across traits for the partially balanced phenotyping MT-GS. 355 

For sparse phenotyping each iteration has different genotypes that serve as connectivity 356 

across traits, a non-overlapping training set for each trait, and the prediction set 357 
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3.2 Traits combination as a function of heritability, genetic correlation between traits and 358 

their combination 359 

When either heritability or genetic correlation was considered a decision tool for a combination of 360 

traits in the prediction and/or calibration set, the predictive ability improved for all traits compared 361 

to having all the traits in the prediction and the training set. However, the magnitude of the gain in 362 

predictive ability varies by trait (Fig. 3, 4). In DS1, for example, when Ca with the lowest 363 

heritability (0.01) but moderate to high genetic correlation with other traits was dropped from the 364 

prediction set but kept in the model, the gain in the predictive ability for the remaining 9 traits in 365 

the prediction set across the overlapping scenarios ranged from 2.79 to 85.07% (Fig. 3B), while it 366 

ranged from 3.28 to 63.37% when excluded from the model (Fig. 3B*).  When Cd with high 367 

heritability (0.51) but zero genetic correlation with most traits was removed from the prediction 368 

set, but retained in the calibration model, the improvement in predictive ability ranged from 6.75 369 

to 104.41% (Fig. 3C) and ranged from 1.38 to 45.42% when removed from the training model 370 

(Fig. 3C*). Similar results were obtained in DS2, when Mo with heritability of 0.43 and negative 371 

correlation with the majority of the traits was removed from the prediction set but reserved in the 372 

calibration model. The predictive ability of traits in the prediction set ranged from 2.41 to 77.92% 373 

(Fig. 4B) and ranged from 0.62 to 19.62% when removed from the model (Fig. 4B*). Because Mo 374 

has a negative genetic correlation with the majority of the traits, in addition to having the lowest 375 

heritability of all the traits in DS2, we substitute Mo with Ca, which has a heritability of 0.41 and 376 

a moderate to high genetic correlation with other traits, to disentangle the confounding effect of 377 

heritability and genetic correlation. The gain in predictive ability ranged from 3.19 to 90.34% 378 

when the calibration model was reserved (Fig. 4C) and from 1.34 to 14.65% when the calibration 379 

model was removed (Fig. 4C*). 380 
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Unsurprisingly, when Mo and P, which have moderate and high heritabilities of 0.32 and 0.73 but 381 

are negatively correlated with other traits, respectively, were excluded from the prediction set, the 382 

predictive ability improved for all traits except Ca and Fe (Fig. 4D). When the traits were removed 383 

from the calibration model, the predictive ability decreased for majority of the traits (Fig. 4D*). 384 

On the contrary, removing Mo and K from the prediction set with moderate heritability of 0.32 385 

and 0.43 resulted in an improved predictive ability (Fig. 4E, E*). In contrast to P, K has zero, 386 

weak negative, and strong positive correlations with other traits. Figures 3D and 3D* corroborate 387 

the findings in Figures 4D and 4D*, in which Se and Cd with moderate heritability of 0.51 and 388 

0.52, respectively, but low genetic correlation with other traits, were excluded from the prediction 389 

set but retained or removed from the calibration model. The additional improvement in predictive 390 

ability observed when Se, Cd, and Ca were excluded from the prediction set (Fig. 3E, E*) 391 

demonstrates the efficacy of heritability and genetic correlation between traits as decision metric, 392 

corroborating the results obtained in Figure 4E and 4E*. 393 
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 394 

Figure 3: Predictive ability of untested lines in DS1 for each trait for different overlapping 395 

and non-overlapping size. The different colors denote traits in the prediction set, which might 396 

also be present in the calibration model. The suffix (*) indicate exclusion of trait (s) from the 397 

calibration model based on its heritability, degree of genetic correlation with other traits or 398 

combination of the two factors.  399 

 400 

 401 
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 402 

Figure 4: Predictive ability of untested lines in DS2 for each trait for different overlapping 403 

and non-overlapping size. The different colors denote traits in the prediction set, which might 404 

also be present in the calibration model. The suffix (*) indicate exclusion of trait (s) from the 405 

calibration model based on its heritability, degree of genetic correlation with other traits or 406 

combination of the two factors.  407 

 408 

 409 

 410 

 411 
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4.0 Discussion 412 

Breeders make advancement decisions based on multiple traits with varying genetic correlations, 413 

ranging from negative to positive, and in exceptional cases, no genetic correlation at all. Thus, the 414 

use of the MT-GS model is gaining popularity as a choice GS model to estimate the genetic merit 415 

of new genotypes. When comparing models, our results corroborate previous studies (Calus and 416 

Veerkamp 2011; Jia and Jannink 2012; Montesinos-López et al. 2018; Lado et al. 2018; Bhatta et 417 

al. 2020; Gaire et al. 2022) that MT-GS outperforms UNI-GS by harnessing genetic correlation 418 

between traits to improve predictive ability across traits. The proposed MT-GS aided sparse 419 

phenotyping depart from the previous reports of weak genetic correlation between traits as a 420 

limitation to the advantage of MT-GS over UNI, which was evident in the partially balanced 421 

phenotyping aided MT-GS. The performance of MT-GS enabled sparse phenotyping was 422 

consistently superior to UNI-GS, with least 20% improvement on predictive ability on average 423 

across traits, suggesting the importance of borrowing information across traits and related 424 

genotypes. Similar results have been reported in sparse testing aided GS in multi-environment 425 

trials (Atanda et al. 2021a; 2021b; 2022). This demonstrates the improvement in predictive 426 

performance in sparse testing using MT-GS is primarily due to efficient estimation of correlated 427 

effects across genetically related traits, as phenotypic records are available for all traits, albeit in a 428 

different set of genotypes. In addition, allowing for significant genotype overlap improves 429 

predictive ability because genetic connectivity across traits improves estimates of trait-to-trait 430 

correlation effects. The observed inflection points in this study, however, suggests that more 431 

research is required to determine the optimal number of overlapping genotypes, which might be 432 

influenced by the degree of genetic relationship between lines, the number of lines per cross, the 433 

genetic correlation between traits, yield testing stage and expected prediction accuracy.  434 

 435 
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Overall, predictive ability improves with heritability in all models except Se, Cd, and Mn in DS1, 436 

though DS1 generally has low predictive ability compared to DS2, presumably due to low genetic 437 

variation for nutritional traits in DS1 which are elite breeding lines compared to DS2 which are 438 

accessions and the growing condition of the accessions in the greenhouse compared to DS1 planted 439 

out in the field. Thavarajah et al. (2022) reported heritability estimates of nearly zero for Ca, K, P, 440 

Mg, Mn, Fe, Zn, Cu and Se in 44 pea lines evaluated in two locations in 2019 and one location in 441 

2020 with two replications in each location. On the contrary, Ma et al. (2017) observed moderately 442 

high genetic diversity for mineral elements in 158 recombinant inbred lines evaluated in two 443 

locations with two replications.  Given the number of replications and locations used in these 444 

studies further suggests that the degree of genetic variation (by inference heritability) for 445 

nutritional traits in DS1 may be responsible for the observed low predictive ability.  446 

 447 

Multi-trait combinations were created in training and prediction sets based on genetic correlations 448 

between traits, heritability, and the combination of the limiting factors to optimize the trade-off 449 

between the limiting factors and the accuracy of predicting the genetic value of the phenotypes. In 450 

general, the improvement in predictive ability when traits with low heritability but moderate to 451 

high genetic correlation with other traits or traits with high occurrence of negative correlation with 452 

other traits but moderate to high heritability were excluded from the prediction set suggests that 453 

traits with low heritability or genetic correlation with other traits cannot be adequately predicted 454 

(Jia and Jannink 2012; Gaire et al. 2022). However, reserving the traits in the training set as 455 

secondary traits improves estimation of model parameters resulting in an improvement in 456 

predictive ability compared to exclusion from the model. The observed difference in predictive 457 

ability for each limiting factor suggests both factors independently affects predictive ability. 458 

Consequently, both factors are equally important in determining traits combination in MT-GS. In 459 

practice, this information can be sourced from relevant literature on the phenotypes or historical 460 
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data in the breeding program. To our knowledge this is the first time these two factors are designed 461 

to designate traits in the training and prediction set to improve predictive performance in MT-GS. 462 

The gain in predictive performance achieved by using this strategy requires further investigation 463 

because it has only been tested in pea datasets with limited environments (year by location 464 

combinations) and replication which is a major limitation in this study, and does not represent 465 

extensive data generated in breeding programs. The availability of multi-environment dataset can 466 

improve estimate of genotypic values for quantitative traits. Since significant progress has been 467 

made in multi-trait multi-environment genomic prediction (Montesinos-López et al. 2016, 2018, 468 

2019; Gill et al. 2021; Sandhu et al. 2022), our findings suggest future research should focus on 469 

developing an optimal strategy for genomic prediction enabled sparse testing of multiple traits in 470 

multi-environment trials. This will likely further lower the cost of phenotyping and the time-471 

consuming data collection process. In addition, we encourage use of different crops with varying 472 

genetic backgrounds that fairly cover the diversity of data generated in breeding programs to gather 473 

more evidence on the efficiency of this strategy in improving prediction performance in MT-GS.  474 

 475 

Conclusion 476 

In this study we propose use of sparse testing in MT-GS which ultimately can be extended to multi-477 

environment multi-trait GS to improve prediction performance and further reduce the cost of 478 

phenotyping and time-consuming data collection process. Although our results agree with previous 479 

study that weak correlation is a limiting factor of MT-GS superiority over UNI-GS using partially 480 

balanced phenotyping.  However, our results were inconsistent with sparse phenotyping, 481 

suggesting that MT-GS performance can be improved further if phenotyping strategy is 482 

redesigned. Our results show that traits combination in training and prediction sets impact 483 

prediction performance. Therefore, when designing MT-GS strategy, consideration should be 484 
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given to traits combination in the training and prediction sets. In addition, our results suggest the 485 

use of heritability and genetic correlation between traits as metrics to achieve this objective.  486 

 487 

 488 

 489 
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Supplementary Table 1: Proportion of genotypes overlapping and non-overlapping across 662 

traits for DS1 and DS2 datasets  663 

 Total # of 

genotypes 

# of 

Traits 

Percent 

overlap 

across 

traits 

Overlapping 

across traits 

Non-

Overlapping  

Total 

Training 

set size 

Testing 

set size 

DS1 282 10 50 141 14:15 155:156 126:127 

 282 10 60 169 11:12 179:180 102:103 

 282 10 70 197 8:9 205:206 76:77 

 282 10 80 225 5:6 230:231 52:51 

 282 10 90 253 2:3 255:256 26:27 

 282 9 50 141 15:16 156:157 125:126 

 282 9 60 169 12:13 181:182 101:102 

 282 9 70 197 9:10 206:207 75:76 

 282 9 80 225 6:7 231:30 50:51 

 282 9 90 253 3:4 256:257 25:26 

 282 8 50 141 17:18 156:157 123:124 

 282 8 60 169 14:15 183:184 99:98 

 282 8 70 197 10:11 207:208 74:75 

 282 8 80 225 7:8 232:233 49:50 

 282 8 90 253 3:4 256:257 25:26 

 282 7 50 141 20:21 161:162 120:121 

 282 7 60 169 16:17 185:186 95:96 

 282 7 70 197 12:13 204:205 77:78 

 282 7 80 225 8:9 233:234 48:49 

 282 7 90 253 4:5 257:258 24:25 

 

DS2 192 10 40 76 11:12 87:88 104:105 

 192 10 50 96 9:10 105:106 86:87 

 192 10 60 115 7:8 122:123 69:70 

 192 10 70 134 5:8 139:140 52:53 

 192 9 40 76 12:13 88:89 103:104 

 192 9 50 96 10:11 106:107 85:86 

 192 9 60 115 8:9 123:124 68:69 

 192 9 70 134 6:7 140:141 51:52 

 192 8 40 76 14:15 90:91 101:102 

 192 8 50 96 12 108:109 83:84 

 192 8 60 115 9:10 124:125 67:68 

 192 8 70 134 7:8 141:142 50:51 

 664 

 665 

The symbol (:) between numbers implies when splitting the lines across the traits some traits might 666 

have the first value and others have the second value. Splitting of lines across the traits was 667 

repeated 50 times. DS1 includes 282 NDSU pea lines while DS2 includes 192 USDA accessions. 668 

 669 
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 670 

Supplementary Figure 1: Allocation of lines to 10 traits in DS1 (A and B) and DS2 (C and D) 671 

respectively.  In A and C, the green section corresponds to 155 and 87 lines in DS1 and DS2 672 

with phenotypic data for all traits using partially balanced phenotyping. While the red 673 

implies un-phenotyped lines across traits in which the genetic value will be predicted.  The 674 

B and D are sparse phenotyping strategy, each column represents a trait and the green 675 

sections correspond to 14 and 11 lines in DS1 and DS2 unique to each trait while the light 676 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487944doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487944
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

green section denotes 141 and 76 lines (Approx. 50% of 282 lines in DS1 and 40% 192 lines 677 

in DS2) common to all traits.   678 

 679 

 680 
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