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Abstract 15 

Despite the clear potential of livestock models of human functional variants to provide 16 

important insights into the biological mechanisms driving human diseases and traits, 17 

their use to date has been limited. Generating such models via genome editing is 18 

costly and time consuming, and it is unclear which variants will have conserved effects 19 

across species. In this study we address these issues by studying naturally occurring 20 

livestock models of human functional variants. We show that orthologues of over 1.6 21 

million human variants are already segregating in domesticated mammalian species, 22 

including several hundred previously directly linked to human traits and diseases. 23 

Models of variants linked to particular phenotypes, including metabolomic disorders 24 
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and height, have been preferentially maintained across species, meaning studying the 25 

genetic basis of these phenotypes is particularly tractable in livestock. Using machine 26 

learning we demonstrate it is possible to identify human variants that are more likely 27 

to have an existing livestock orthologue, and, importantly, we show that the effects of 28 

functional variants are often conserved in livestock, acting on orthologous genes with 29 

the same direction of effect. Consequently, this work demonstrates the substantial 30 

potential of naturally occurring livestock carriers of orthologues of human functional 31 

variants to disentangle their functional impacts. 32 

 

Introduction 33 

Animal models are widely used across the biological sciences. From the development 34 

of vaccines and use as models of human diseases, to addressing fundamental 35 

questions about human biology. Importantly animal models provide the ability to test 36 

the effect of manipulating key variables in a controlled fashion, in ways that are not 37 

possible in human populations. For example, by altering the genome via genome 38 

editing. The introduction of variants thought to be functional in humans into animal 39 

models enables a range of studies, from the characterization of their downstream 40 

impacts on the expression of genes, to how different alleles respond to different 41 

interventions such as drug treatments.  42 

 

By far the most widely used mammalian animal models are rodents, due to their ease 43 

of handling and short generation times. But rodent models have several limitations. 44 

Most importantly humans and rodents are physiologically very different, with the 45 

pathogenesis of diseases often differing substantially between the species. This has 46 

been proposed as a key driver of why less than 8% of cancer studies that are based 47 
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on animal models result in a clinical trial (Käser, 2021). Furthermore, the sizes of 48 

rodent organs poorly match those of humans, and it is difficult to serially sample rodent 49 

models due to their smaller size. Although the use of primate models can overcome 50 

many of these limitations their use is limited by both cost and ethical considerations 51 

(Käser, 2021). For these reasons livestock species have been proposed as more 52 

effective animal models in many scenarios (Meurens et al., 2012; Ziegler et al., 2016). 53 

Pigs in particular have a similar size, physiology and anatomy to humans (Walters & 54 

Prather, 2013), and have been shown to have more similar gene expression patterns 55 

to humans than rodents (Sjöstedt et al., 2020). As a result they are increasingly used 56 

in translational research, from toxicology testing of pharmaceuticals to the 57 

development of transgenic models of human diseases ranging from cystic fibrosis and 58 

diabetes to neurodegenerative disorders (Lunney et al., 2021). However, livestock 59 

models of human functional genetic variants have major drawbacks: they are 60 

expensive and time-consuming to generate. As well as the substantial time and costs 61 

associated with generating and implanting the genome edited embryos, it is necessary 62 

to maintain the mothers through long pregnancies in areas suitable for genetically 63 

modified animals, with no prospects of recouping the costs through selling the animals 64 

afterwards. There are also further ethical considerations to such transgenic projects, 65 

with the public often skeptical of the merits of artificially introducing human variants 66 

into other species. 67 

 

Therefore, despite the clear merits of being able to assay the effects of human 68 

functional variants in livestock models, transgenic experiments come with several 69 

obstacles. Even among mice, the number of truly “humanized” models, i.e., where the 70 

directly orthologous mouse base or sequence has been altered to match that in 71 
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humans, is low. Traditionally transgenic mouse models involve the random insertion 72 

of transgenes into the genome, meaning they lose their wider genomic context and 73 

potential impacts on downstream functions and mechanisms (F. Zhu et al., 2019). To 74 

properly model human functional variants, the same changes need to be made at 75 

orthologous locations, with both alleles present among the animal model.  76 

 

A relatively under-explored alternative to the de novo generation of animal models is 77 

the study of natural orthologues of human functional variants. The 1000 bulls project 78 

alone identified over 84 million cattle single nucleotide polymorphisms (Hayes & 79 

Daetwyler, 2019), meaning approximately 1 in every 32 bases in the cattle genome is 80 

polymorphic. This though is potentially an underestimate of the expected probability 81 

of a human variant having a cattle orthologue, as polymorphisms are known to be 82 

dependent on the underlying sequence. For example, CpG sites are known to be 83 

susceptible to deamination, likely raising the probability of such sites being 84 

polymorphic across species. This suggests there are potentially many natural 85 

orthologues of human functional variants, meaning the effect of these variants can be 86 

studied in large mammalian models, potentially at scale, without resorting to 87 

transgenic approaches. Supporting this idea, although rare in the literature, some 88 

examples of functional variants being found naturally across different mammalian 89 

species have already been reported. For example, a missense change linked to coat 90 

colour found segregating among both dogs and water buffalo (Dutta et al., 2020). In 91 

recent work, non-naturally occurring coding changes in mice and zebrafish were 92 

compared to these found in humans, with orthologues of human pathogenic Clinvar 93 

variants shown to more likely also to lead to a detectable phenotypic change in 94 

zebrafish than other variants (Pir et al., 2022). To date there has though been little 95 
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genome-wide study of the natural orthologues of human functional variants and the 96 

conservation of their effects across mammals. In part this has resulted from the fact 97 

that the precise functional variant underlying most human quantitative trait loci and 98 

genome-wide association loci have been unknown. However, high resolution 99 

functional datasets and fine-mapping approaches have begun to disentangle 100 

causative variants from those simply in linkage disequilibrium (Broekema et al., 2020; 101 

Schaid et al., 2018).  102 

 

Studying the impact of these functional variants has the potential to inform our 103 

understanding of phenotypes beyond just humans. This is because livestock species 104 

are not only good models for humans but the reverse is also true. Substantially more 105 

biological data and insights have been generated for humans than livestock, and 106 

characterizing how human functional variants effect corresponding phenotypes in 107 

livestock may provide insights into how to improve the production and health of 108 

domesticated animals. For example, the genetic basis of stature in cattle has already 109 

been shown to have parallels of that in humans (Bouwman et al., 2018), and better 110 

understanding functional variants linked to height could provide potential avenues for 111 

adjusting livestock body size. 112 

 

The aim of this study was, therefore, to characterize the extent to which natural 113 

orthologues of human variants are found in domesticated species. Using machine 114 

learning we characterize the features associated with the presence of orthologues 115 

across species, investigate the presence of functional variants linked to diseases and 116 

traits across mammals, and determine where their effects on downstream phenotypes 117 

are conserved. We highlight how orthologues of human functional variants are likely a 118 
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valuable resource to better understand the genetic basis of both human and livestock 119 

phenotypes. 120 

 

Results 121 

 122 

Extensive sharing of variants across species 123 

 124 

To investigate how often the same variants are found across species, we compared 125 

the 78 million human SNPs identified in the 1000 genomes cohort of ~2500 diverse  126 

Individuals (The 1000 Genomes Project Consortium et al., 2015) to the variants 127 

identified in cohorts of 477 cattle (Dutta et al., 2020) and 409 pigs (C. Li et al., 2021). 128 

In total 35 and 34 million of the human variants could be mapped to an orthologous 129 

location in the pig and cattle genome, respectively (Figure 1A). Of these 3.7 and 3.0% 130 

overlapped an orthologous variant segregating in one of these other species, with 55.4  131 

 
Figure 1. Frequency of variant sharing across species. (A) Number of human (1000 genomes) SNPs that 

have a SNP at the orthologous location in each other species. Counts are broken down into where the SNPs 

have the same alleles across species (same site and alleles) or simply coincide, i.e. irrespective of allele 

change. The inset shows the number of orthologous SNPs expected in larger cohorts when extrapolating the 

curves. (B) The number of human variants overlapping a variant found in one or more other species with a 

matching allele change. 
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and 55.8% of these showing the exact same allele change. Consequently over 1.1 132 

million human variants have a direct orthologue in at least one of these two livestock 133 

cohorts. Intersecting the same human polymorphisms with variants in cohorts of two 134 

further domesticated species, 722 dogs (Plassais et al., 2019) and 81 water buffalo 135 

(Dutta et al., 2020),  revealed that 1,654,806 are found in at least one of these four 136 

mammalian cohorts (Figure 1B).    137 

 

The number of variants shared across cohorts from different species is expected to be 138 

a function of the number of samples in each cohort. To characterize this relationship 139 

we randomly down-sampled the pig and cattle cohorts and recalculated the observed 140 

overlap with the total set of human variants. As shown in Figure 1A the number of 141 

variants overlapping the human dataset had not plateaued for either species, 142 

suggesting larger cohorts would continue to identify even more orthologues of human 143 

variants. For example, extrapolating the results to 5000 samples in corresponding 144 

cohorts suggests over 840,000 pig and 1,000,000 cattle orthologues of human variants 145 

would potentially be detected (Figure 1A). As expected sample diversity/relatedness 146 

is also an important factor with more diverse cohorts leading to more orthologous 147 

variants being identified (Supplementary Figure 1). This suggests exact orthologues 148 

of several million human variants are naturally segregating among livestock species. 149 
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Figure 2. The characteristics of human variants with livestock orthologues. The genomic distribution of 

1,397,362 human variants is shown (698,681 human variants with orthologues in cattle and an equally sized random 

sample of 698,681 human variants without orthologues in cattle). (A) Number of variants with or without orthologues 

by their observed allele changes (reference > alternative). (B) Number of SNPs with different 5-mer flanking 

sequences among variants with or without orthologues. Each circle represents a 5-mer flanking sequence with a 

specific base at a certain position, and the circle color indicates whether the specific base is C/G or A/T. The black 

dashed line represents parity, i.e., where the number of SNPs in the positive dataset equals the number of SNPs in 

the negative dataset. All the 5-mer sequences are significantly different between the groups at a P value less than 

2.2x10-16 (Chi-Squared test). (C) Density plots of distances of variants with or without orthologues to processed 

pseudogenes and snoRNAs (plot restricted to within 10kb). Distances of variants to processed pseudogenes and 

snoRNAs are different between groups at P values less than 3.2x10-5 (Two-sample Kolmogorov-Smirnov test). (D) 

Density plot of distance between variants with or without orthologues to chromatin regions marked by H3K9ac in 

the human H9 cell line (plot restricted to within 10kb). Distance to these regions is different between groups at P 

value less than 1.8x10-3 (Two-sample Kolmogorov-Smirnov test). 
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Modelling the distribution of shared variants across the genome 150 

 

Using 1589 different annotations (Table 1), including sequence conservation, 151 

chromatin context, and the distance to genome features such as genes, we compared 152 

the genomic distribution of human variants that do and do not have livestock 153 

orthologues in these cohorts. Several factors were observed to be associated with the 154 

probability of a human SNP having a livestock orthologue, including their distance to 155 

known genes and chromatin, and sequence context. For example, C to T changes are 156 

enriched among the variants with orthologues, with the hypermutability of CpG sites 157 

increasing the chance of the same change occurring across lineages (Figure 2A). 158 

More generally, human changes with a G:C base pair within their 5-mer flanking 159 

sequence are more likely to have a cattle orthologue than those with an A:T base pair 160 

at the same position (Figure 2B). A notable exception to this is where a guanine is 161 

found 5 prime of the human SNP site, with such changes less likely to have an 162 

orthologous SNP at the same position in cattle (Figure 2B). Variants with orthologues 163 

are also more likely to be enriched near specific genes such as processed 164 

pseudogenes and snoRNA, and around certain chromatin marks (Figures 2C, D). 165 

 

We investigated the extent to which it is possible to use these genomic annotations to 166 

predict whether a human variant will have an orthologue in a livestock species. To do 167 

this, we used 140,000 human variants with or without a cattle orthologue and trained 168 

three tree-based machine learning models (Random forest, XGBoost and CatBoost, 169 

see methods) on the 1589-human genomic features (Table 1). To compare the 170 

performance of these models at discriminating human variants with and without cattle 171 

orthologues we tested the models on a further 60,000 human variants with the same 172 
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split that had not been included in the original training data. As shown in Figure 3A, 173 

CatBoost outperformed the other models with an area under the receiver operating 174 

characteristics (AUC) score of 0.69, an accuracy of 0.64 and an F1 score of 0.70. 175 

These results suggest that the genomic annotations of the variants contain 176 

discriminating information that makes it possible to identify which human variants have 177 

a higher probability of having an orthologue in another species. 178 

 

Models trained on human variants with orthologues in other species, such as pig, could 179 

predict the presence of orthologues in these other species with similar accuracies as 180 

the cattle specific models (Figure 3B+C). Likewise models trained on human variants 181 

with orthologues in given species were largely as accurate at predicting orthologues 182 

in completely different species (Figure 3D). This suggests the features associated with 183 

orthologous variants are fundamental across mammals. 184 

 

Comparison of the top 30 most important features of the three different modelling 185 

approaches shown in Figure 3A found that the allele change, 5-mer flanking sequence 186 

and conservation score (phyloP100way) were consistently three important features 187 

(Figure 3E). Figure 3F shows the top 30 most important features of the cross-species 188 

model, i.e. trained using human variants with an orthologue in any of the tested 189 

livestock species, and how their values affect the predictions of the model. Sequence 190 

conservation is the most important variable, with human variants in less-conserved 191 

regions more likely to have an orthologue in another species. This is consistent with 192 

mutations in these regions less often being removed, increasing the probability of the 193 

same change occurring in different mammalian lineages. As well as the type of base 194 

change the flanking sequence disproportionately contributes to the model 195 
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performance, with a G base at the position immediately downstream of the 196 

polymorphic site (NNNGN) associated with an increased probability of the same 197 

change being observed in the other species, consistent with the preferential 198 

deamination of CpG sites. 199 

200 

Figure 3. Machine learning models of orthologous variants. (A) Receiver operating characteristic (ROC) curves 201 

of Random Forest, XGBoost and CatBoost models trained and tested using human variants with and without 202 

orthologues in cattle. The numbers in the legend are area under the receiver operating characteristics (AUC) scores 203 

of the different models. AUC reflects a model’s general ability of distinguishing between the classes. The table 204 

below the plot is the summary statistics of the experiment. (B) ROC curves and summary statistics of CatBoost 205 

models trained and tested using human variants with and without orthologues in cattle; pig; pig or cattle; pig, cattle, 206 

dog or water buffalo (cross species). (C) ROC curves and summary statistics of CatBoost models trained using 207 

human variants with and without orthologues in cattle; pig or cattle; pig, cattle, dog or water buffalo, but tested 208 

using human variants with and without orthologues in cattle. (D) ROC curves and summary statistics of CatBoost 209 
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models trained using human variants with and without orthologues in pig; water buffalo; pig or cattle, and tested 210 

using human variants with and without orthologues in water buffalo. (E) Feature heatmap of CatBoost, XGBoost, 211 

Random Forest models trained and tested using human variants with and without orthologues in cattle. Thirty 212 

important features are included in the figure, with lighter color indicating greater importance. (F) SHAP summary 213 

plot (Lundberg & Lee, 2017) of the CatBoost model trained using human variants with and without orthologues 214 

found in any of cattle, pig, dog and water buffalo. Features are ranked in descending order according to their 215 

importance on the left. The color represents low (in blue) and high (in red) value of the feature and the effect of 216 

their values on the output of the model is reflected by their positions on the x-axis. 217 

 

Animal models of human pathogenic variants 218 

 

Consequently, over a million human variants have a livestock orthologue. The 219 

modelling results highlight that these disproportionately fall in less conserved genomic 220 

regions, raising the question as to how many naturally occurring livestock models of 221 

human pathogenic variants exist. To characterize specifically how many human 222 

pathogenic mutations are segregating in other livestock species we first extracted 223 

70,083 SNPs from the human Clinvar (Landrum et al., 2018) database labelled as 224 

“pathogenic” or “likely pathogenic”. Being mostly found in conserved coding regions, 225 

the overwhelming majority (99.4% and 94.3%) of these variants could be successfully 226 

mapped to an orthologous position in the Cow (BosTau9) and Pig (SusScr3) genomes. 227 

Using the data from the same cow and pig cohorts we identified how often these 228 

variants overlapped an orthologous variant in one of these other species. In total 1126 229 

Clinvar variants overlapped a variant in the cow dataset and 673 in the pig cohort, of 230 

which 222 and 181 respectively also showed the exact same allele change observed 231 

in humans. In agreement with the modelling results, these numbers differ from those 232 

expected from the background numbers. Not only is the number of Clinvar variants 233 

with an orthologue in one of these livestock species substantially lower than expected 234 
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given the number of all human variants with an orthologue in pig or cattle, but also 235 

where a variant does segregate at the orthologous position it is less likely to show the 236 

same allele change. In total Clinvar variants are approximately three times less likely 237 

to have a variant at the orthologous position in either pig or cattle than expected from 238 

the frequencies in the 1000 genomes cohort, and approximately seven times less likely 239 

of having one displaying the same allele change (Supplementary Figure 2). These 240 

 

Figure 4. Conservation of impacts of orthologues of Clinvar variants. (A) The conservation of impact of 

genic orthologous variants across human and cattle where variants show the same allele change. The width of 

each ribbon indicates the number of variants with the given combination of consequences across the two species. 

Orthologous pairs of variants with conserved impacts on a protein are coloured blue. (B) The same as A but for 

human-pig orthologous variants. (C) Conservation of impact of variants across human and cattle where their 

locations are orthologous but they show different allele changes. (D) The same as C but for human-pig 

orthologous variants. The underlying data for all plots are provided in Supplementary Table 1. 
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results are consistent with these changes being deleterious as indicated, and selection 241 

preferentially removing them across species. 242 

 243 

Orthologous variants, even with the same allele change, may not have the same 244 

impact on genes, if for example the gene structure and codons have changed between 245 

species. As shown in Figure 4A, 76% of the 92 cattle orthologues of human Clinvar 246 

variants leading to a missense change show the same missense change across both 247 

species. A further 15% are missense in both species but involving different amino acid 248 

changes. Only 4.3% of the human missense variants are predicted to be synonymous 249 

in cattle, suggesting the consequence of human missense changes is most often 250 

conserved across these mammals, with similar patterns observed in pigs (Figure 4B). 251 

However, of 95 human Clinvar variants predicted to lead to the introduction of a stop 252 

codon, only 23% also lead to a stop gained change in cattle, with the majority (60%) 253 

predicted to just lead to an amino acid change due to a difference in the codon 254 

between species. This may represent a true difference in the impact of these variants 255 

between species, but may also sometimes reflect the comparatively poor annotation 256 

of gene isoforms in livestock species. Of note, 27 cattle and 19 pig variants lead to the 257 

same protein impact as their orthologue in humans despite involving a different allele 258 

change (Figures 4C and D). Consequently, although rare, variants do not necessarily 259 

need to show the same allele change to have a conserved impact. 260 

 

These data highlight that there are existing animal models available for at least several 261 

hundred human Clinvar variants, including those linked to a variety of important 262 

phenotypes such as cancers and Parkinson’s disease (Supplementary Table 2). 263 

Interestingly, Clinvar variants linked to certain traits are more likely to be found across 264 
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species. This includes those linked to biotinidase deficiency (Chi-squared test P < 265 

1x10-7), neurofibromatosis (P=1.4x10-6) and glycogen storage in cattle (P=0.0004) and 266 

factor VII deficiency in pigs (P < 1x10-7). Of 23 known human biotinidase deficiency 267 

variants, four (17%) have a direct orthologue showing the same allele change in cattle. 268 

This is despite only 1.5% of all lifted Clinvar variants having a cattle orthologue. All 269 

four of these variants are missense SNPs showing the same amino acid change in 270 

both species, with one of the mutations having risen to a minor allele frequency of 22% 271 

in cattle despite being found at a frequency of only 0.002% in humans, meaning 272 

studying its impact may be easier in cattle populations. Supplemental biotin is often 273 

fed to cattle as it is thought to improve hoof health and increase milk production (Lean 274 

& Rabiee, 2011) and these variants are consequently also strong candidate functional 275 

variants for further investigations for improvement of these cattle traits. 276 

 

Animal models of common variants of polygenic diseases and traits 277 

 

We next investigated whether there are potential existing livestock models of common 278 

human variants linked to polygenic diseases and traits. To do this, we obtained 2240 279 

fine-mapped SNPs linked to 47 different traits in the UK biobank cohort (Weissbrod et 280 

al., 2020). In total 58 of these variants had a direct orthologue in either pigs or cattle. 281 

Interestingly variants linked to height in humans were significantly more likely to have 282 

a direct orthologue in cattle than other traits, with over a quarter of variants (11 out of 283 

43) that were found in both species with the same alleles being linked to this phenotype 284 

(Figure 5, Supplementary Table 3). This is compared to only 13.6% (341 out of 2513) 285 

of the variants successfully mapped between the species being linked to this trait (two-286 

tailed Fisher’s exact test P=0.040). Of these 11 variants, 3 are missense changes 287 
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(rs154001, rs61735104, rs79485039), with each leading to the same amino acid 288 

change in both species. These amino acid changes fall in FGFR3, KIAA1614 and  289 

 290 

Figure 5. Orthologues of fine-mapped variants linked to traits in the UK Biobank. All 2240 fine-mapped UK 291 

biobank variants were lifted over to the cattle genome and the number that overlapped a variant in the cattle 292 

genome with and without the same alleles were determined. The proportion of all lifted variants that were 293 

associated with a given trait is strongly correlated with the original proportion of fine-mapped variants linked to that 294 

trait (green circles).  However, variants with an orthologous cow variant are disproportionately associated with 295 

height, and in particular those with matching alleles in both species (orange circles). Circles corresponding to the 296 

same trait are connected by vertical grey segments, with the trait indicated above for those traits with at least 55 297 

fine-mapped variants. 298 

FBN2, with a further gene, FOXM1, having a variant (rs28990715) at orthologous 299 

positions in both species that leads to the same amino acid change despite having 300 

different allele changes. 10 of the 11 human variants with cattle orthologues were in 301 

the Gene Atlas UK Biobank (Canela-Xandri et al., 2018) results and are together, 302 

under certain assumptions, associated with a predicted 2.7cm variation in human 303 

height. This corresponds to around ~1/3 of a standard deviation of the human heights 304 

in the UK Biobank cohort. The FGFR3 change alone is associated with a ~1cm 305 
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difference in standing height between opposing homozygotes. Mutations in FGFR3 306 

underlie 99% of cases of human achondroplasia that affects bone development and 307 

leads to short stature, but the role of this gene in cattle stature is less well 308 

characterized (Wilkin et al., 1998). Potentially, in part, because all 11 variants are rare 309 

in cattle (10 with a frequency of less than 1%, with 1 with a frequency of 6%) and would 310 

be unlikely to be detected in a standard cattle GWAS, but these variants are 311 

consequently strong candidate functional rare variants for contributing to variability in 312 

cattle height due to their strong associations with this trait in humans that could be 313 

exploited to alter cattle stature.  314 

 315 

Figure 6. Conserved effects of regulatory variants across humans and livestock. (A) Quantile-quantile (Q-Q) 316 

plots of observed and expected cis-eQTL P values of cattle variants that are direct orthologues of human fine-317 

mapped regulatory variants. The blue points represent the observed and expected P values of the cattle variant’s 318 

association with the expression level of the cattle orthologue of the corresponding human gene in four cattle tissues 319 

irrespective of its allele change. The red points are the same after restricting to these variants exhibiting the same 320 

allele change as observed at the human SNP. The grey dashed line and grey ribbon represents the median and 321 

95% confidence interval obtained when randomly sampling the same number of variants as shown by the blue 322 

points from all cattle variants tested (irrespective if have a known human orthologous variant or not) 1000 times. 323 
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The line of parity (solid black) is also shown. This illustrates cattle orthologues of human fine-mapped regulatory 324 

variants are more likely to show evidence of also being linked to the orthologous gene’s expression across different 325 

tissues. (B) Comparison of the slopes (direction of effects) of eVariants across species. The slopes of human fine-326 

mapped regulatory variants (using caveman approach, top, or dap-g, bottom) were compared to the slopes 327 

observed for their orthologues if they also had a significant cattle GTEx association with the expression level of the 328 

orthologous gene in cattle. The slope represents the impact on the gene’s expression of increasing the dosage of 329 

the same allele in both species. Note the same eVariant can be found in multiple tissues and can therefore be 330 

represented multiple times in this plot. In total there are 77 and 106 human-cattle association pairs in the caveman 331 

and dapg plots, involving 36 and 57 distinct human eVariant-gene-tissue associations. The significant positive 332 

correlation remains if only one entry for each human eVariant-gene-tissue association is retained. This agreement 333 

in direction is seen despite not restricting to comparing the effects to the same tissues across species, i.e. the 334 

direction of effect is generally conserved across tissues as well as species.  335 

 

Conservation of regulatory variation 336 

 

Most variants linked to important complex phenotypes are thought to be regulatory 337 

rather than coding (Cano-Gamez & Trynka, 2020). To investigate whether regulatory 338 

variants are conserved across species we obtained the location of fine-mapped 339 

regulatory SNPs from the human GTEx (GTEx Consortium, 2020) dataset. These 340 

human regulatory variants had been fine mapped using three different approaches; 341 

CAVIAR (Hormozdiari et al., 2014), CaVEMaN (Brown et al., 2017) and DAP-G (Wen 342 

et al., 2017), and we took the superset of SNPs across all three. We then extracted 343 

the associations with orthologous genes of variants found at the orthologous location 344 

in cattle from the cattleGTEx project, who defined eQTLs across 23 different cattle 345 

tissues and cell types (Liu et al., 2021). In total 185 of the human-fine mapped variants 346 

had a matching cattle variant in the cattleGTEx data that had been tested against the 347 

same orthologous gene in at least one tissue. Ignoring the allele change of the variants 348 

this number increases to 391. As shown in Figure 6A, these cattle variants at the 349 
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orthologous position of the human fine-mapped variants are more likely to show an 350 

association (i.e. have a smaller P value) than randomly sampled gene-variant pairs 351 

from the cattleGTEx cohort. This suggests these variants are often regulatory across 352 

both species. Notably this was largely observed whether restricting the cattle variants 353 

to those showing the same allele change as the human variant or not, with only a slight 354 

enrichment of smaller P values among the former group in some tissues (Figure 6A). 355 

This suggests simply disrupting the same regulatory site may often be sufficient to 356 

affect the gene’s expression across species in many cases.  357 

 358 

Figure 7. Colocalization of eQTLs across humans and cattle. (A) The gene neighborhood of a shared eQTL 359 

rs115287948 across both humans and cattle. The gene regulated by the eQTL is indicated by a purple rectangle. 360 

(B) Strength of association of human variants with SIRPB1 expression levels in cultured fibroblasts tissue. The 361 

fine-mapped regulatory variant, rs115287948, with a cattle orthologue is represented by the purple diamond. Other 362 

variants are colored according to their linkage disequilibrium (𝑟𝑟2) with this variant. (C) Strength of association of 363 

the same human variants but in muscle tissue. (D) Strength of association of variants with SIRPB1 in cattle muscle 364 

tissue (mixed breeds). Each variant is plotted according to their orthologous position in the human genome and the 365 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487854
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

20 

variant with a fine-mapped orthologue in the human GTEx data is represented by the purple diamond. (E), (F), (G), 366 

same as (A), (B), (D) but for variant rs2230126 linked to the expression of TAF1C in different tissues. 367 

The direction of effect of conserved regulatory variants were more likely to be 368 

conserved across the two species (Figure 6B), i.e. the same alleles are associated 369 

with increased or decreased expression across species. This confirms that the effect 370 

of predicted functional variants appear often conserved. This is despite the different 371 

linkage disequilibrium patterns between the species, that may be expected to disrupt 372 

any conservation of direction of effects if these variants were not functional. 373 

 

Figure 7 shows examples of the colocalization of eQTLs across humans and cattle. 374 

rs115287948 is a missense variant in the SIRPA gene that was finemapped in the 375 

GTEx cohort as a causative regulatory variant (probability > 0.5) linked to the 376 

expression of SIRPB1 across a range of tissues including cultured fibroblasts and 377 

muscle (Figure 7A,B,C). A direct orthologue of this variant is also found at a co-378 

localised eQTL in cattle muscle (Figure 7D) displaying an association with the same 379 

gene with the same direction of effect. 380 

 

rs2230126 is a variant falling within an alternative promoter of TAF1C with which it is 381 

a fine-mapped human regulatory variant (probability > 0.95) in a range of tissues 382 

including subcutaneous adipose (Figure 7E,F). An orthologue of this variant is also 383 

found in cattle and is the lead eVariant for the same gene in Nellore muscle tissue 384 

(Figure 7G).  385 
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Figure 8. Enformer predictions for human and cattle. (A) The human gene neighborhood of variant rs10849334. 386 

Different isoforms of the genes are included in the plot. (B) Enformer predicted Cap Analysis Gene Expression 387 

(CAGE) tracks of variant rs10849334 in mast cells (the track showing the largest human alt-ref difference). The top 388 

track shows the position of the target variant in the human genome. The two tracks in the middle are the predicted 389 

CAGE levels for the reference and alternative alleles from Enformer when run on the human sequence. The bottom 390 

track shows the predicted difference between the CAGE levels from the reference and alternate sequences 391 

specifically at the shorter NINJ2 isoform. (C) Predicted CAGE tracks derived from the cattle sequences around the 392 

orthologous variant of rs10849334. The orthologous peaks at the TSSs of the longer NINJ2 transcripts in cattle 393 

and human are indicated by the blue linking bar. No CAGE peak is predicted at the TSS of the shorter isoform. 394 

 

We explored why some variants conserved in both species may not show evidence of 395 

impacting gene expression in cattle. Figure 8 illustrates predictions from the Enformer 396 

human deep learning model (Avsec et al., 2021), that predicts transcriptional potential 397 

and chromatin states from DNA sequence alone. As shown in Figure 8A,B, Enformer 398 

predicts that the alternate allele of the rs10849334 variant is associated with reduced 399 

expression, specifically of an alternate, shorter isoform of the NINJ2 gene. The 400 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.04.11.487854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487854
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

22 

predicted transcriptional potential of the TSS of longer isoforms of the NINJ2 gene are 401 

unaffected by this variant. When the orthologous cattle DNA segment is run through 402 

Enformer the predicted transcriptional potential of the TSS at these longer isoforms 403 

remains, but the CAGE peak at the promoter of the shorter isoform is completely 404 

abrogated. Consistent with this we could also not find any evidence of a cattle 405 

orthologue of this shorter isoform in the public databases. Consequently the lack of 406 

evidence of the cattle orthologue of rs10849334 affecting the expression of NINJ2 is 407 

potentially due to the human variant specifically regulating this shorter isoform, that is 408 

absent in cattle due to sequence divergence in this locus. 409 

 

In summary, although the effect of some variants do not lift over across species, 410 

potentially due to for example changes in the usage of isoforms between species, a 411 

range of human regulatory variants have orthologues in cattle that often have 412 

conserved effects and can consequently be used to provide insights into their 413 

mechanisms of gene regulation. 414 

 

 

Discussion 415 

 

In this study we have demonstrated how millions of orthologues of human variants 416 

exist in domesticated species, including hundreds of orthologues of fine-mapped 417 

functional variants linked to diseases and phenotypes. These are consequently readily 418 

accessible large animal models of important human variants, that can potentially be 419 

studied at scale without the time and costs associated with transgenic approaches. 420 

Importantly we show that orthologous regulatory variants most often have conserved 421 
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directions of effect across humans and cattle, suggesting their downstream effects can 422 

be effectively studied in these species. 423 

 

Variants shared across humans and domesticated species are not restricted to one 424 

type of trait, but are linked to a wide spectrum of phenotypes. From rare, monogenic 425 

disorders such as cystic fibrosis to highly polygenic traits such as height. However, 426 

variants associated with particular phenotypes are found across species more often 427 

than expected. For example, the 4 out of 23 variants associated with biotinidase 428 

deficiency that have a direct orthologue in cattle. It is in unlikely the co-occurrence of 429 

these variants is purely due to, for example, a higher mutation rate around the gene 430 

linked to this phenotype, as none of the other three species studied carry even one 431 

orthologue of these variants. This suggests there is a preferential overlap of variants 432 

linked to specific phenotypes, including more polygenic phenotypes such as height. 433 

These likely reflect selection to preferentially maintain such variants. This not only 434 

provides insights into the evolution of these species, but also potential candidate 435 

variants for livestock breeding programs. The increased number of human height 436 

associated variants with an orthologue in cattle likely reflects the selection for body 437 

size in domesticated animals. However, as these variants remain polymorphic, the 438 

selective sweep is incomplete, and they remain suitable targets for breeding programs. 439 

Although there would be potential ethical concerns of introducing human variants into 440 

livestock species to improve their production, the same is not true if the variant already 441 

exists in the species, as even editing the variant into another breed, would no longer 442 

come with the restrictions imposed on transgenic projects. Consequently, exploiting 443 

the large amount of data and studies on functional variants in humans, could 444 

potentially be leveraged to prioritise variants for testing their effects in livestock. 445 
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Despite the hundreds of orthologues of functional variants identified, this number is 446 

likely a substantial under-estimate of the true number of shared functional variants. 447 

This is because for a variant to be tied to a phenotype it needs to not only be at a 448 

sufficiently high frequency in the population to be discovered, but also with suitable 449 

data and patterns of linkage disequilibrium to be fine-mapped. However, most 450 

functional variants are, by their nature one or more of: rare, non-coding or in regions 451 

of elevated LD, and are therefore difficult to tie to a trait. Looking at the effects of rare 452 

variants across species may though help increase the pool of individuals in which to 453 

study their potential role. Likewise looking across species has the advantage that allele 454 

frequencies and linkage disequilibrium patterns can differ substantially and may, 455 

therefore, help in fine-mapping approaches. Extending this further, such approaches 456 

may help validate fine-mapping methods, for example by characterising which fine-457 

mapping approach better identifies variants whose impacts are subsequently shown 458 

to be conserved across species. This is illustrated by the comparison of fine-mapped 459 

regulatory variants, and their conserved direction of effect across species. Of the three 460 

fine-mapping approaches studied, CAVIAR fine-mapped variants showed the lowest 461 

conservation of effect direction. This may reflect where variants are not truly functional, 462 

with the different patterns of LD in the different species with the actual causative 463 

variant meaning their eQTL coefficients are less conserved. 464 

A caveat to such cross-species comparisons of regulatory variants is that not only can 465 

it be difficult to directly match tissues between species, but that power also generally 466 

differs due to differences in sample sizes. Consequently, the fact that a variant doesn’t 467 

also show evidence of being linked to a gene’s expression in another species doesn’t 468 

mean it is not a functional variant in both. Those variants we detect as being linked to 469 
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gene regulation across species are likely those that are regulatory in multiple tissues, 470 

increasing the probability of us detecting it’s association in at least one. 471 

It is likely that few if any human polymorphisms with orthologues in these mammalian 472 

species arose prior to the divergence of the respective species, and to still be 473 

polymorphic down the independent lineages. Rather they will have largely arisen 474 

independently in each. This is supported by the fact that despite there being millions 475 

of orthologues of human variants segregating in other mammals, few are found in 476 

more than one other species. Only twelve sites were polymorphic across the five 477 

studied mammals. Shared variants are simply most often found at sites with the 478 

highest mutation rates and lowest levels of purifying selection, and therefore reflect 479 

the increased chance of these sites mutating and not being purged from the population 480 

in both species. This indicates that the normalised presence or absence of orthologous 481 

variants may provide an alternate metric of the selective pressure on genomic regions, 482 

as illustrated by the depletion of orthologues of Clinvar variants across species. 483 

Consequently the study of orthologues of human functional variants can be used 484 

across a range of studies. From understanding the biological mechanisms linking 485 

variants to important downstream phenotypes, to providing potential targets for 486 

livestock breeding and genome editing programs as well as understanding the 487 

selection pressures on our species.  488 

 

Methods 489 

 

Genotype Datasets 490 
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Previously published and filtered genotype data for five different species was used in 491 

this study. The genome-wide set of 78 million human SNPs from 2,504 individuals was 492 

obtained from the 1000 genomes consortium (The 1000 Genomes Project Consortium 493 

et al., 2015). The dog genotypes from 722 individuals were obtained from Plassais et 494 

al (Plassais et al., 2019). The cattle and water buffalo genotypes of 477 and 79 495 

individuals, respectively, were obtained from Dutta et al (Dutta et al., 2020)., and the 496 

pig genotypes from across 409 individuals from the Genome Variation Map website 497 

(C. Li et al., 2021). All cohorts were subsequently restricted to biallelic SNPs only 498 

(cattle: 88,067,584; pig: 90,901,469; water buffalo: 37,682,631; dog: 73,906,017). For 499 

all sets of human variants, their positions were lifted to their orthologous positions in 500 

the pig (SusScr3), cattle (BosTau9) and dog (CanFam3) genomes using the UCSC 501 

liftover utility (Hinrichs et al., 2006) with chain files available from the UCSC website. 502 

For the water buffalo (Low et al., 2019), where no public  chain file exists, we used the 503 

nf-LO pipeline (Talenti & Prendergast, 2021) to perform the liftover. Sites that were 504 

lifted to more than one location were excluded. SNPs from other species were said to 505 

have the same allele change as human SNPs if found at the orthologous position with 506 

alleles that directly matched or that matched their complement. This therefore 507 

assumes the ancestral base in these conserved regions is the same across mammals. 508 

To test the impact of relatedness on the number of orthologous variants found in cattle, 509 

we used the relatedness2 (Manichaikul et al., 2010) parameter in vcftools (Danecek 510 

et al., 2011) to identify pairs of animals with a kinship coefficient greater than 0. 511 

Individuals in each pair were then iteratively removed till the kinship coefficient 512 

between all pairs of remaining animals was 0 or less. 513 

 

Clinvar and UK biobank analyses 514 
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The location of variants potentially linked to human health were downloaded from 515 

Clinvar (Landrum & Kattman, 2018), which contains SNPs linked to different human 516 

clinical phenotypes. Restricting this set to those labelled as “pathogenic” or “likely 517 

pathogenic” left 76,752 SNPs with likely functional consequences. Potentially 518 

functional variants linked to polygenic traits were obtained from Weissbrod et al. 519 

(Weissbrod et al., 2020). This study produced a list of 3281 fine-mapped, potentially 520 

functional variants associated with 47 complex traits of which 2240 were SNPs. The 521 

locations of these sets of SNPs were intersected with those from other species to 522 

identify those segregating in other mammals as described above. To test whether 523 

Clinvar variants linked to particular phenotypes are more likely to segregate in another 524 

species than expected, we used a Chi-squared test to examine whether the proportion 525 

of successfully lifted Clinvar variants linked to a particular phenotype that overlapped 526 

a variant with matching alleles was significantly higher than that observed across all 527 

other phenotypes. To test whether UK biobank variants lifted to the cattle genome 528 

were disproportionately associated with height a Fisher’s exact test was used, 529 

comparing the proportion of variants with an orthologous variant with the same alleles 530 

that were linked to human height versus the proportion of successfully lifted variants 531 

linked to the same trait. To examine the impact of these orthologous variants on genes 532 

in humans, pigs and cattle, the variants were annotated using the Ensembl REST API 533 

in R, recording just the most severe reported consequence in each case. 534 

 

Regulatory variant analyses 535 

The GTEx v8 fine-mapped results for CaVEMaN, DAP-G and CAVIAR were 536 

downloaded from the GTEx portal. Together these reported 5,341,519 distinct tissue-537 

gene-variant associations of which 2,145,167 could be lifted to an orthologous position 538 
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in the cow genome. Upon filtering out variants that did not have a minimum probability 539 

> 0.2 in at least one of the datasets, this number reduced to 230,991 associations. 540 

These associations were then intersected with the cattleGTEx data to identify where 541 

an orthologous variant was significantly associated with the corresponding 542 

orthologous gene. Nominal P values were obtained as described in the original 543 

cattleGTEx paper (Liu et al., 2021) and the human-cow gene orthologues were 544 

obtained from Ensembl version 103 (Yates et al., 2020). 545 

 

To examine whether cattle orthologues of human fine-mapped eVariants were more 546 

likely to show evidence of also being significantly associated with the expression level 547 

of the same gene, we extracted their corresponding P values from the cattleGTEx data 548 

by tissue. The distribution of these P values were then compared to the distributions 549 

of P values for the same tissue of the same number of variants sampled from the total 550 

cattleGTEx data 1000 times to produce the shaded confidence intervals in the Q-Q 551 

plots. 552 

 

To conservatively estimate false discovery rates for the cattle eQTLs we used the 553 

same random samples. For each real eQTL P value we divided the average number 554 

of tissue-specific P values across the 1000 samples that had a P value as small or 555 

smaller by the corresponding number within the variants that were orthologues of 556 

human fine-mapped regulatory variants. This therefore corresponds to the 557 

approximate probability of having sampled a P value as small or smaller from the 558 

background list of all variants tested in the cattleGTEx project. This is conservative as 559 

a large number of the variants in this background list are eVariants. Therefore, this 560 

FDR corresponds to the false discovery rate above and beyond that expected given 561 
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the number of regulatory variants in the background, and variants with a large FDR 562 

may still be regulatory variants. 563 

 

To investigate why some regulatory variants shared across human and cattle may not 564 

have conserved impact on gene expression in cattle, we used Enformer, a deep 565 

learning architecture designed for predicting how DNA sequence influences gene 566 

expression (Avsec et al., 2021). We loaded the trained Enformer model, made 567 

predictions for reference and alternative alleles of each shared regulatory variant in 568 

both human and cattle, and obtained 5,313 predicted genomic tracks for each variant. 569 

The effect of each variant was evaluated by the difference between the reference and 570 

alternative predictions. 571 

 

Variant annotation and modelling 572 

The genome-wide set of 78 million human SNPs were annotated with 1589 features 573 

across four categories (Table 1), including sequence conservation, variants position 574 

properties, VEP (McLaren et al., 2016) annotations and sequence context. For 575 

sequence conservation, we included 4 different conservation scores: 576 

phastCons100way, phastCons30way (Siepel et al., 2005), phyloP100way and 577 

phyloP30way (Pollard et al., 2010). We downloaded bigWig files of these conservation 578 

scores from the UCSC genome annotation database (Navarro Gonzalez et al., 2021) 579 

(hg38) and extracted the values at given positions using the pyBigWig python package 580 

(Ramírez et al., 2016). To fully capture the position characteristics of the variants, we 581 

calculated the distance between the variants and different genome elements. We 582 

obtained the location of CpG islands from the UCSC genome annotation database 583 

(Navarro Gonzalez et al., 2021), chromatin data (such as histone marks), TSS and 584 
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regulatory features (enhancer, promoter, CTCF binding site and TF binding site) from 585 

Ensembl (Yates et al., 2020) (version 103). We used bedtools (Quinlan & Hall, 2010) 586 

closest command to calculate distances to CpG islands and chromatin data. The 587 

ChIPpeakAnno (L. J. Zhu et al., 2010) R package was used for getting distances to 588 

the nearest TSS by biotype (only common biotypes were included, count >= 1000) 589 

and distances to various regulatory features. Then we used the VEP (McLaren et al., 590 

2016) command line tool to annotate the variants and get the allele frequencies and 591 

consequences of the variants. Instead of using Reference/Alternative alleles, we used 592 

Ancestral/Derived alleles for the allele change. The human ancestral genome (hg38) 593 

was downloaded from Ensembl (Yates et al., 2020) (version 103) and the bedtools 594 

(Quinlan & Hall, 2010) getfasta command was used to extract the ancestral base. To 595 

get the 5-mer flanking sequences centered on the target variants, we used the 596 

samtools (H. Li et al., 2009) faidx command.  597 

 

Using these genomic annotations as classification features, we trained machine 598 

learning models to predict whether a human variant has an orthologue in other 599 

livestock cohorts. Variants that have cattle orthologues (with matching alleles) were 600 

used as the positive data in the models while variants without orthologues, i.e., 601 

variants that can be lifted to the cow genome but no cattle polymorphism was found, 602 

were used as negative data. Similarly, we got positive and negative datasets for pig, 603 

water buffalo, the intersection of variants found across the cattle and pig cohorts, and 604 

the cross-species cohort (cattle, pig, dog and water buffalo). For the cross-species 605 

cohorts, variants with orthologues in any of the tested livestock species were used as 606 

positive data and variants without orthologues in all tested species were used as 607 
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negative data. To avoid class imbalance problems, we downsampled all negative 608 

datasets to the same sizes as the positive datasets for all models.  609 

  

The feature tables were pre-processed before being used for model training. Data with 610 

missing values (found for sequence conservation scores) were discarded as they only 611 

accounted for a small proportion (1.4%) of the whole dataset. Categorical features, 612 

i.e., chromosome, consequence, allele change and 5-mer flanking sequences were 613 

encoded using different encoding methods (see Table 1). To minimize the introduction 614 

of new feature columns into the feature table and make the encoding more meaningful, 615 

a self-defined binary encoding method was used for sequence context features. We 616 

defined a dictionary for 4 bases (A: 1000, C: 0100, G: 0010, T: 0001) and mapped 617 

each base in the sequences to the corresponding binary string. The final strings for 618 

the sequences were split into binary columns and replaced the original categorical 619 

features in the feature table. We constructed three tree-based machine learning 620 

models, Random Forest (Breiman, 2001), XGBoost (Chen & Guestrin, 2016) and 621 

CatBoost (Prokhorenkova et al., 2017) using the Scikit-learn (Pedregosa et al., 2011) 622 

Python package. Models were trained on Eddie (Edinburgh Compute and Data Facility 623 

Web Site, 2021), a compute cluster of the University of Edinburgh, and 2 64GB GPUs 624 

on Eddie were used to train the CatBoost models. To enable balanced comparisons, 625 

subsets (200,000 data in total, 100,000 of which was positive data and 100,000 626 

negative data) of the datasets for different species were used. Each subset was 627 

divided into a training set and test set at the ratio of 70% and 30%. We used 5-fold 628 

cross-validation to evaluate our models on the training sets. To improve the 629 

performance of the models, we used random search (Bergstra & Bengio, 2012) and 630 

manual tuning methods for hyper-parameter tuning.  631 
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Table 1 632 
  
Variant annotations and encoding methods 633 
 634 
 

Annotation Encoding  
method 

Number 
of 

features 

Number of 
columns 

after encoding 

Sequence 
conservation 

phastCons100way - 1 1 
phastCons30way - 1 1 

phyloP100way - 1 1 
phyloP30way - 1 1 

Variant 
position 
properties 

Distance to CpG 
island - 1 1 

Distance to chromatin 
data a 

- 1554 1554 

Distance to TSS b - 14 14 
Distance to regulatory 

features c  - 4 4 
Chromosome  One-hot encoding 1 22 

Variant position - 1 1 
Gene density (per 

megabase) 
- 1 1 

VEP 
annotations 

Consequence One-hot encoding 1 34 
Allele frequency d - 6 6 

Sequence 
context 

Allele change Self-defined encoding 1 8 
5-mer flanking 

sequence 
Self-defined encoding 1 20 

a  Distance to 1554 different chromatin data from Ensembl.  635 
b  Distance to TSSs within 14 common biotypes (frequent >= 1000). 636 
c  Regulatory features include enhancer, promoter, CTCF binding site, TF binding site. 637 
d A total of five allele frequencies from the 1000 genomes combined population and the African, 638 
American, East Asian, European and South Asian populations separately. 639 
  
 
 
 
 
Supplementary Figures 640 
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 641 
Supplementary Figure 1. The effect of cohort relatedness on the number of 642 

orthologues of human SNPs found in cattle. The red line shows the number of 643 

orthologues found when no filtering based on relatedness was applied to the cohort. 644 

The cyan lines show the effect of excluding from the cohort related animals so that all 645 

those remaining have a kinship coefficient (Manichaikul et al., 2010) with each other 646 

equal to or less than 0. 647 
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 648 
 

Supplementary Figure 2. The proportion of human variants that have a livestock 649 

orthologue by variant set. Although most Clinvar variants could be lifted to a position 650 

in the cow and pig genomes, fewer than expected had orthologues either with or 651 

without the same alleles. This likely reflects the strong selection against these 652 

changes.  653 
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