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1 Abstract14

Analyzing colocalization of single cells with heterogeneous molecular phenotypes is essential for15

understanding cell-cell interactions, cellular responses to external stimuli, and their biological func-16

tions in diseases and tissues. However, high-throughput methods for identifying spatial proximity at17

single-cell resolution are practically unavailable. Here, we introduce DeepCOLOR, a computational18

framework based on a deep generative model that recovers inter-cellular colocalization networks19

with single cell resolution by the integration of single cell and spatial transcriptomes. It segre-20

gates cell populations defined by the colocalization relationships and predicts cell-cell interactions21

between colocalized single cells. DeepCOLOR could identify plausible cell-cell interaction candi-22

dates in mouse brain tissues, human squamous cell carcinoma samples, and human lung tissues23

infected with SARS-CoV-2 by reconstructing spatial colocalization maps at single-cell resolution.24

DeepCOLOR is typically applicable to studying cell-cell interactions in any spatial niche. Our25
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newly developed computational framework could help uncover molecular pathways across single26

cells connected with colocalization networks.27

2 Introduction28

Single-cell analysis of transcriptome profiles has given rise to novel avenues for examining hetero-29

geneous cell populations. Such techniques demonstrate continuous cell states rather than classical30

discrete cell types [22,43]. The heterogeneous cell states observed via these techniques were shown31

to be crucial for elucidating mechanisms underlying disease development and prognosis [14, 21].32

Hence, it is important to understand the molecular mechanism involved in the transition between33

the cell states and their regulation. This heterogeneity can be attributed to the environmental cues34

obtained from surrounding cells [30], which is termed as cell-cell interaction (CCI). Environmen-35

tal cues facilitating CCI rely on heterogeneous molecular states of the surrounding cells (i.e. the36

expression of ligands and the stiffness of cells). Hence, to dissect the molecular basis of CCI, it37

is crucial to analyze colocalization patterns among single cells with heterogeneous molecular phe-38

notypes. However, the observed single-cell transcriptome loses the spatial context when analyzed39

using the available high-throughput methodology.40

Recently, spatial transcriptome observation technologies, such as spatial transcriptomics (ST)41

[44], Visium (10X Genomics), Slide-seq [41], and high-definition spatial transcriptomics [46], have42

enabled analysis of the entire transcriptome spatially. These technologies provide a unique oppor-43

tunity to characterize local niches with comprehensive molecular profiles. For example, Ji et al.44

utilized this technology to show that the unique population in squamous cell carcinoma is resident45

in the leading edges of the tumor [25]. In contrast, widely used high-throughput methods of spatial46

transcriptomics such as ST and Visium have limited capture rates (resulting in substantial spatial47

dropout that increases with higher resolution) and do not achieve single-cell resolution. In situ48

sequencing, MERFISH [49], seqFISH [17], and other in situ techniques allow spatial analysis at49

single-cell resolution. However, these techniques require high expertise in experimental technolo-50

gies and capture relatively fewer pre-specified genes than the sequence-based methodologies. These51

inherent limitations of current spatial transcriptome analysis techniques prevent the identification52

of interaction networks between heterogeneous cell populations involved in disease progression.53

Several computational methodologies have been developed to address this limitation by the54

integration with scRNA-seq observation. One major approach involves deconvolution of observations55
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at each spot of the spatial transcriptome with a cell-type expression profile [1, 6, 16, 29]. This56

approach reveals the spatial distribution of heterogeneous cell types, which have been identified57

in the scRNA-seq analysis. In contrast, cell type-based analyses have a limitation in that they58

can analyze colocalization only between predefined populations, which is highly dependent on the59

manually determined clustering resolution and does not necessarily correspond to the differences in60

the spatial distribution of the tissues. While a recent single-cell approach successfully revealed cell61

distribution across various spatial contexts [4], the methodology was not suitable for analyzing the62

colocalization network as it could estimate distinct spatial assignments among cells with almost the63

same profiles. Hence, a new computational approach is required for identifying the colocalization64

between heterogeneous cell states captured by scRNA-seq.65

DeepCOLOR is a deep learning framework for addressing the dual challenges of (1) recovering66

spatial contexts of single cells observed in scRNA-seq data and (2) revealing cell-cell interactions67

in spatial niches. DeepCOLOR was used to build a continuous neural network map from latent68

cell state space to each spot in the spatial transcriptome in order to enhance consistent mapping69

profiles between single cells with similar molecular profiles. This mapping technique did not rely70

on the fine-grained cell type preparation, which is the upper limit of the resolution for many of71

the existing deconvolution methods [1, 6, 16, 29], and revealed the spatial distribution of all single72

cells observed by scRNA-seq with high accuracy. A colocalization profile between two cells could be73

derived from the overlaps between the spatial distributions of individual cells, and clustering analysis74

of neighboring single-cell pairs could classify colocalized cell populations beyond the resolution at75

the cell type level. In addition, DeepCOLOR demonstrated the ability to predict ligand-mediated76

cell-to-cell communication by combining colocalization scores between cells, gene expression within77

cells, and prior knowledge of signal transduction and gene regulatory networks. These single cell78

colocalization-based analysis enabled us to extract and characterize the population which affected79

by environmental ques from surrounding cells with unprecedented specifity, which was potentially80

overlooked by predefined population-based colocalization analysis [2,36,37]. We used DeepCOLOR81

to reveal intercellular communication mechanisms in two complex tissues. This study could provide82

valuable insights regarding the application of DeepCOLOR as an analytical tool for studying cell-cell83

interactions in any spatial niche.84

3 Results85
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3.1 Methodology overview86

We developed DeepCOLOR, a deep generative model for colocalization representation, which uses87

scRNA-seq data as a reference cell population to deconvolve each spot of the spatial data and88

decipher the intercellular colocalization network across single cells in a spatial niche. The input to89

DeepCOLOR was scRNA-seq data along with spatial transcriptome data derived from the same90

tissue or region discerned based on currently available spot-wise spatial methods (Visium, ST,91

GeoMx, etc.). The following assumptions were made for the input: the two modalities share some92

subset of common genes, and the variations in the single-cell transcriptome cover the cell populations93

within the spatial niche. DeepCOLOR first transformed the transcriptome observation of each cell94

from scRNA-seq data into a latent cell state via encoding by a pre-trained neural network. It then95

optimized an objective function to maximize the likelihood for the probability model of the spatially96

distributed transcriptome observed in the spatial transcriptome data. DeepCOLOR then provided97

spatial distributions of each cell in the scRNA-seq data, which comprised information about single-98

cell localization, indicating the likelihood of the presence of all cells in the scRNA-seq data at each99

spot in the spatial transcriptome. This information enabled us to search for colocalized pairs of100

cells defined by the overlaps of spatial distributions. With its ability to smoothly map the learned101

latent representation of a single cell to a spatial spot, DeepCOLOR could (1) correct poor-quality102

spatial measurements attributed to technical variability such as spatial dropout; (2) estimate spatial103

distributions at the single-cell level independent of predefined labels such as cell types; (3) identify104

and classify cell colocalization pairs that exist in spatial niches; (4) identify differentially expressed105

genes in colocalized cell clusters; and (5) identify ligands involved in cellular communication between106

colocalized cell population.107

Technically, DeepCOLOR was based on latent representations of single cells derived from deep108

generative models and optimization via a stochastic gradient descent method. Unlike the conven-109

tional application of deep generative models to scRNA-seq data [18, 33], the optimization function110

involved the likelihood of the probabilistic model of gene expression in each spatial spot, which is111

assumed to be the weighted average of the transcriptome associated with latent cell states in the112

scRNA-seq dataset. DeepCOLOR modeled the difference in the technical capture rate for each113

gene when comparing scRNA-seq data and spatial transcriptome data and the abundance of each114

gene in the spatial transcriptome assuming correction terms for the sensitivity and contamina-115

tion of technical measurements . DeepCOLOR could then estimate a continuous mapping function116

that inferred the spatial distribution of single cells based on their latent cell states , thus obtain-117
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ing a consistent spatial distribution among single cells with similar molecular profiles. To further118

strengthen the consistency of the mapping function, we employed a stochastic gradient descent119

method using mini-batches of single cells. This formulation imposed a constraint: a subset of sin-120

gle cells obtained by down-sampling forms consistent spatial expression patterns, and hence cells121

with approximately the same latent representation would map to the same spatial location. Down-122

stream analysis of DeepCOLOR implemented single-cell colocalization clustering based on latent123

representations of cell pairs that were likely to colocalize, differential expression analysis in specific124

colocalized clusters based on the Willcox rank-sum test, and ligand activity analysis between colo-125

calized cell populations. DeepCOLOR has been implemented as a PyTorch module and is available126

at https://www.github.com/kojikoji/deepcolor.127

3.2 Accurate mapping with well-known spatial domains128

To validate our newly developed assignment methodology, we applied our mapping algorithm to a129

mouse visual cortex dataset [29]. First, we evaluated the similarity of the aggregated gene expression130

of single cells assigned to each spot with the original gene expression of the spot. We found that131

the expression was well correlated for genes with high expression even if the genes were not used132

for training of the generative model (Fig. 1-a in Supplementary) . Next, we validated whether133

the mapping patterns of single cells were consistent with the well-known anatomical structures. We134

found that the aggregated assignment of the excitatory neuronal subtypes associated with L2/L3135

layers (Ext L23) was enriched in the outer region compared to that of subtypes associated with136

L5/L6 layers (Ext L5 1 and Ext L56) (Fig. 2-a, b). In contrast, single cells within each layer137

were assigned to more specific regions compared with the aggregated spatial distribution of the138

predefined subtypes described above (Fig. 2-a, c). These results suggested that DeepCOLOR139

captured the molecular signatures of single cells obscured by clustering analysis and utilized them140

for reconstructing the spatial distribution of single cells. We also found that the assignments of141

single cells to a specific spot performed by DeepCOLOR were smooth on the latent cell state space142

of single cells (Fig. 2 in Supplementary) . This smooth assignment enabled us to capture the143

colocalization between single cells as the overlap of the estimated spatial distribution. We examined144

the colocalization scores for single-cell pairs across the excitatory neuronal subtypes associated with145

cortical layers to validate our approach to extract colocalized single-cell pairs. We found that a larger146

proportion of single-cell pairs across expected adjacent layers (among L2 and L3 or among L5 and147

L6) demonstrated high colocalization scores (cij > 1)than those across more distant layers (Fig. 2-148
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e). These results showed that our colocalization scoring methodologies were useful for identifying149

the adjacent cell population for every single cell.150

3.3 Comparison of accuracy based on the simulated data set151

3.3.1 Mapping accuracy for each single cell152

We evaluated the accuracy of spatial assignments with DeepCOLOR and other state-of-the-art153

methods, namely, Cell2location [29], and Tangram [4], based on the simulated dataset of the single-154

cell and spatial transcriptome. We generated these simulated datasets from a real dataset of squa-155

mous cell carcinoma (SCC) [25], assuming five combinations of spatially colocalized cell types. First,156

we evaluated the assignment amount of truly included single cells to the corresponding spots. We157

found that DeepCOLOR demonstrated larger assignments on truly included cells than that demon-158

strated by Cell2location and Tangram (Fig. 3-a). For Tangram, the assignment to the majority159

of truly included cells was close to 0, while there were a few truly included cells with larger assign-160

ments than the maximum assignment of DeepCOLOR. This is presumably because Tangram can161

assign only a few single cells to each spatial spot, and hence estimate distinctively different spatial162

distribution between single cells with almost the same gene expression profiles. Next, we evaluated163

the assignment accuracy by the recall of single cells in each spot for specified positive rates and164

found that the recall values of DeepCOLOR for various positive rates were higher than those of165

Cell2location and Tangram (Fig. 3-b). These results suggested that DeepCOLOR showed superior166

performance in reconstructing the spatial organization of the single-cell transcriptome without the167

navigation of cell-type annotation. In contrast, the accuracy of Cell2location was comparable to168

that of DeepCOLOR when the cell types used for colocalization in the simulation data set were169

identical to those used for estimation with Cell2location (Fig. 3-a,b,d,e in Supplementary) .170

This result indicates that the difference between the reference cell types for estimation and the cell171

subpopulation in colocalization patterns negatively affected the performance of spatial mapping in172

cell type-based methodologies. At the same time, DeepCOLOR retained the performance as it was173

not dependent on the reference cell type information. Next, we validated the ability of DeepCOLOR174

to extract colocalized cell populations. We calculated the averaged colocalization scores between175

two cell types and evaluated the accuracy of detecting truly colocalized cell-type pairs using the176

averaged scores. We found that DeepCOLOR detected the colocalized cell pairs more accurately177

than the other two methods (Fig. 3-c), (Fig. 3-c,f in Supplementary) . This result suggests178

that considering the spatial distribution without the cell type label, we extracted colocalized re-179
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lationships between subpopulations, which is not necessarily consistent with clustering results on180

scRNA-seq.181

3.4 Colocalization network underlying the tumor microenvironment182

The tumor microenvironment involves complex CCIs, which significantly affect the prognosis. Here,183

we applied DeepCOLOR to a dataset of squamous cell carcinoma [25] and explored the colocalization184

relationships between single cells obtained from the tumor microenvironment. We found that the185

imputed spatial expression patterns calculated from the transcriptome of the assigned single cells186

were correlated with the original expression patterns, even for genes that were not used for the187

assignment estimation (Fig. 1-b in Supplementary) . We also found that the expression patterns188

between marker genes for each cell type, CD3D and CD4 for CD4+ T cells and CD8A and GZMB189

for CD8+ T cells, were more consistent than the raw spatial expression patterns (Fig. 4 in190

Supplementary) . Furthermore, the reconstructed spatial expression patterns were smoother than191

the raw expression counts, while the estimation process did not assume any spatial architecture.192

These results suggest that DeepCOLOR performed a reasonable single cell assignment for this193

dataset. The estimated colocalization network among single cells showed that CD1c+ dendritic194

cells, ASDCs, and Langerhans cells colocalized with heterogeneous tumor keratinocytes referred to195

as tumor basal keratinocytes (TBKs), tumor differentiating keratinocytes (TDKs), tumor cycling196

keratinocytes (TCKs), and tumor-specific keratinocytes (TSKs) in the previous study (Fig. 4-a,197

b). All colocalized keratinocyte subpopulations were primarily distributed in spatial transcriptome198

clusters 7 and 4, the tumor-stromal boundary clusters. In contrast, the TDK and TBK populations199

distributed in spatial transcriptome cluster 8 demonstrated a low degree of colocalization with200

any other immune-related cell types and fibroblasts. In contrast, T cells demonstrated strong201

colocalization with the only subset of TCKs and were distributed only in spatial clusters 2 and202

11. These data suggested that several types of dendritic cells, which contribute to the induction203

of immune responses against tumors, were primarily distributed near the tumor-stromal boundary.204

In contrast, the T cell population was recruited to the restricted regions in this squamous cell205

carcinoma. We also noted that the TSK population had colocalized fibroblast populations, which206

are analyzed in the next section.207

Next, we sought to identify the candidates involved in mediating communication between colo-208

calized single cells. Here, we scored ligand activities from tumor subtypes against cells present in209

the microenvironment (See Methods section) (Fig. 4-c). We found that the TNC ligand activ-210
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ity derived from TSKs was the second-highest among the ligand activities against the fibroblast211

population. TNC expression of cancer cells adjacent to the stroma was reported to correlate with212

poor prognosis in breast cancer [24], and cultured fibroblasts with TNC treatment was reported213

to exhibit cancer associated fibroblast like phenotypes [28]. The highest ligand activity against T214

cell and macrophage populations was that of NMU initiated from TCKs; this was consistent with a215

previous report showing that NMU secreted by keratinocytes activates various immune cells such as216

lymphocytes and macrophages and that NMU is associated with tumorigenesis and metastasis [50].217

We similarly analyzed the signaling activity initiated from the tumor microenvironment against218

tumor keratinocytes (Fig. 4-d). We found that the CXCL9 activity against TSKs was within the219

fifth strongest ligand activities initiated from all macrophages, CLEC9A+ DCs, and LCs. CXCL9220

is reported to activate invasive and metastatic activities in lung cancer [13]. At the same time,221

higher CXCL9 expression is associated with tumor depths and positive bone invasion in oral cavity222

squamous cell carcinoma [8]. In contrast, the activity of INHBA initiated from fibroblasts to TSKs223

was the second most potent ligand activity observed. This observation is also consistent with a224

previous report showing that INHBA enhances invasion, proliferation, and growth of gastric cancer225

cells [10]. Since the candidates of molecular communication machinery observed in our analysis226

highlighted previously validated molecular communications, these results showed that exploring227

molecular communications based on single-cell colocalization was an effective approach to dissect228

the molecular basis underlying the formation of a microenvironment.229

3.4.1 Colocalized subpopulations of tumor cells and fibroblasts230

Previous analysis of molecular communications based on single-cell colocalization highlighted strong231

communications between TSKs and fibroblasts. Fibroblasts exhibit various molecular states, which232

are extensively studied using scRNA-seq technologies [13]. These states exert a significant effect on233

tumor prognosis [42]. Hence, it is valuable to explore the correlation between these molecular states234

and heterogeneous cancer cells, some of which demonstrated an invasive leading-edge phenotype in235

this sample and were termed TSKs in the original analysis. We extracted colocalized populations236

across fibroblasts and tumor keratinocyte populations including TSKs, based on the single-cell pair237

colocalization scores (see Methods section). We clustered the colocalized single-cell pairs based on238

the pair of latent representation and found that tumor cells of the paired cluster 0 had large overlaps239

with the TSK population (Fig. 5-a,b). Furthermore, we confirmed that the spot-wise product240

of spatial assignments between the colocalized populations were specifically enriched at the tumor-241

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2022. ; https://doi.org/10.1101/2022.04.10.487815doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.10.487815
http://creativecommons.org/licenses/by/4.0/


stromal boundary (Fig. 5-c), which is expected from the leading-edge molecular phenotype of the242

TSK population. To explore the molecular profiles of the fibroblast population in the paired cluster243

0, we analyzed differentially expressed genes in these populations compared to those observed in244

other fibroblasts (Fig. 5-d). These populations demonstrated a high expression of MMP14 associ-245

ated with processes involved in tumor progression, such as cancer cell invasion via degradation and246

remodeling of the extracellular matrix [20]. In contrast, INHBA, which was identified as a candidate247

for molecular communication machinery in a previous analysis, was the second most significantly248

expressed gene. Here, we also explored the expression patterns of INHBA and its dimer, activin A,249

in other biological specimens of squamous cell carcinoma by in situ hybridization and immunohis-250

tochemistry. We found that INHBA expression was enriched in tumor keratinocytes and fibroblasts251

located at tumor leading edges at both RNA (Fig. 5-e) and protein levels (Fig. 5-f). Enrichment252

analysis of positively regulated genes in these populations revealed that the expression of genes253

involved in glycolysis and hypoxia was upregulated in the TSK-colocalized fibroblast population,254

pair cluster 0 (P < 10−7 and P < 10−10, respectively). Since the glycolysis pathway is reported to255

be upregulated in many invasive cancers [19], this result further supports the colocalization of the256

fibroblast population with TSKs, which demonstrate an invasive leading-edge phenotype.257

3.4.2 Reproducibility analysis of ST and TCGA258

We investigated whether these patterns can be analyzed via spatial gene expression patterns de-259

rived from other observation technologies to validate the colocalization patterns between cancer260

cells and fibroblasts. In particular, we decomposed the spatial gene expression patterns observed261

in the same study by spatial transcriptomics (ST) into the same single-cell gene expression profiles262

obtained using DeepCOLOR. We extracted cancer cells which form colocalized pairs in ST decon-263

volution with fibroblasts that belong to the previously identified colocalization cluster 0 in Visium264

deconvolution. The recovered ST-colocalized tumor cells significantly overlapped with tumor cells265

that belonged to the colocalization cluster 0 (odds ratio 6.70). These results indicated that Deep-266

COLOR was able to reproducibly identify unique colocalization patterns between tumor cells and267

fibroblasts identified in Visium via another spatial transcriptome observation technique, ST. Next,268

we investigated whether this colocalized population is likely to co-occur across many patients and269

associated with the prognosis difference. The signature scores for the colocalized tumor cells and270

fibroblasts in the colocalization cluster 0 were positively correlated (Pearson’s correlation was 0.765)271

across the transcriptome of patients with SCC derived from TCGA (Fig. 5 in Supplementary)272
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. Furthermore, the signature scores of colocalized fibroblasts exhibited a strong association with273

worse overall survival (P = 0.0007) (Fig. 5-g). However, the association between the signature274

scores of the colocalized tumor cell population and worse overall survival was relatively moderate275

(P = 0.21) (Fig. 6 in Supplementary) . These findings indicate the identified colocalized pop-276

ulations between tumor cells and fibroblasts exist in various patients with SCC. Furthermore, the277

stronger association of the colocalized fibroblast population with prognosis indicates that the arrival278

of fibroblasts to this colocalization niche enhances the malignancy of the tumor.279

3.5 SARS-CoV-2280

3.5.1 Alveolar type II cells colocalized with macrophages in SARS-CoV-2 infection281

We next applied DeepCOLOR to another dataset of SARS-CoV-2 [12] composed of single-cell282

transcriptome observations and spot-wise transcriptome observations in lung tissues of SARS-CoV-283

2 patients. We estimated the quantitative assignment of single cells to the spots and reconstructed284

gene expression of the spots based on that of single cells assigned to the spots. The reconstructed285

expression patterns for the spots were well correlated with true expression patterns, even for genes286

that were not used for the estimation (Fig. 1-c in Supplementary) . When we visualized the287

colocalization between alveolar cells and surrounding cells, such as immune cells and fibroblasts,288

we found that a specific subpopulation of alveolar type II (AT2) cells, the abundance of which289

is primarily reduced in patients with severe COVID-19, demonstrated a remarkable colocalization290

with various cell types; this population was mainly distributed to spatial cluster 1 (Fig. 6-a). The291

spots belonging to spatial cluster 1 were mainly annotated as PanCK+ alveolar (38 of 59), which292

were associated with SARS-CoV-2 infection [23]. To quantify the molecular communication between293

the surrounding cells and alveolar cells, we calculated the ligand activity between surrounding cells294

and alveolar cells based on the estimated single-cell colocalization (Fig. 6-b). We found that the295

strongest ligand activity initiating from fibroblasts to AT2 cells was that of NAMPT, which plays296

an important role in the activation of the innate immune response [7] and is associated with the297

development of acute respiratory distress syndrome in lung injury [40]. The activity of PECAM1298

was the strongest activity initiating from monocytes to AT2 cells, while the expression level of299

PECAM1 was associated with the severity of COVID-19 [31]. We also found that the strongest300

ligand activity initiating from CD8+ T cells to AT2 cells was that of TNF, the expression level301

of which is also associated with disease severity and survival of patients with COVID-19 [11].302

These results showed that the colocalization-based ligand activity analysis discerned appropriate303
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candidates for molecular communication among patients with COVID-19. Next, we analyzed single-304

cell colocalization between epithelial cells and fibroblasts, dissecting the most potent ligand activity305

toward AT2. We extracted one of the colocalization clusters (cluster 0) with large overlap with306

AT2 cells (Fig. 6-c,d). We analyzed the gene expression profiles of the fibroblast population in307

the colocalization cluster and found that NAMPT, which demonstrated a strong ligand activity308

to AT2 cells, was the second most significantly enriched gene in the colocalized fibroblast cluster309

(Fig. 6-e). We also found that the pathway activity of oncostatin M, the expression of which was310

reported to be elevated in the serum of patients with COVID-19 [35], was significantly enriched311

(P < 10−4). At the same time, the most significantly upregulated gene was IL1R, the ligand of312

which is an important marker of severe symptoms among patients with COVID-19 [11]. These data313

suggest that the fibroblasts received molecular signals responsible for severe symptoms and acquired314

a molecular phenotype, contributing to the severity in patients with COVID-19.315

4 Discussion316

This article presents a new deep learning framework called DeepCOLOR, which enabled us to ana-317

lyze colocalization networks across single cells with deep molecular profiles captured by scRNA-seq.318

This new computational framework showed higher accuracy for mapping scRNA-seq observation319

to spot-level spatial transcriptome data and detecting colocalized cell populations than existing320

methods in simulation experiments and demonstrated a finer anatomical distribution than cell-type321

distribution due to its label-free approach. Furthermore, DeepCOLOR extracted plausible candi-322

dates involved in the molecular machinery underlying cell-cell communication and disease-associated323

colocalized populations in a squamous cell carcinoma dataset [25] and COVID-19 dataset [12]. In324

particular, DeepCOLOR highlighted the molecular communication machinery consistent with the325

disease phenotype in both datasets. Our analysis predicted that the expression of INHBA, asso-326

ciated with enhanced invasion, was enriched in fibroblasts colocalized with invasive tumor cells.327

This prediction was validated by detecting both protein and RNA expression in biological sam-328

ples independent from the dataset used for the estimation. These results highlight the significance329

of single-cell-level colocalization relationships for dissecting molecular communications underlying330

disease progression.331

Recently, spot-level spatial transcriptome observation is garnering significant interest and is332

being used for various biological systems, including the tumor microenvironment [32, 39]. While333
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these observations are useful for associating visualized tissue phenotypes with molecular pheno-334

types, it would be difficult to dissect a complex molecular process mediated across various cells.335

For this purpose, researchers developed many computational methodologies integrating the spa-336

tial transcriptome with corresponding scRNA-seq observations [1, 4, 6, 16, 29]. However, most of337

these methodologies relied on cell type labeling with scRNA-seq observations, which can be the338

upper resolution limit for spatial distribution analysis. Indeed, we showed that single cells could339

be spatially assigned to more specific regions compared with cell type mapping of the fine grained340

excitatory neuron populations. Furthermore, simulation experiments for the integration of single341

cell and spatial transcriptome showed that, for cell type based spatial deconvolution, the deviation342

between the true population structures and the assumed population structures induces an accuracy343

decay for both spatial assignment of single cells and prioritization of colocalization relationships.344

Hence, the label-free property of DeepCOLOR enabled us to capture the colocalization network of345

various cell populations, identifying niche environments with unprecedented accuracy.346

Cell-cell communications are crucial for not only normal development but also disease progression347

[3]. Indeed, many recent advancements in therapeutic strategies involve the perturbation of cell-348

cell communication [47]. Hence, computational methodologies inferring cell-cell communication are349

extensively developed by targeting scRNA-seq observations [5,15,26]. However, single-cell molecular350

profiles derived from scRNA-seq observation lose their spatial context. Adequate spatial proximity351

is an important factor contributing to the induction of cell-cell communication. We quantified ligand352

activity only between colocalized single-cell pairs, which are more likely to communicate with each353

other than randomly selected single-cell pairs. This analysis highlighted several pathways of cell-cell354

communication reported in previous studies and predicted novel molecular machinery involved in355

mediating communication between fibroblasts and invasive tumor cells, which was validated at the356

protein and RNA level.357

A major limitation of DeepCOLOR is that it deconvolutes all spatial transcriptome profiles into358

single-cell molecular profiles captured by scRNA-seq. Hence, if spatial transcriptome-specific cell359

populations do not exist in scRNA-seq, the deconvolution of spatial transcriptome spots, including360

the populations, would be unreliable. One possible solution for this issue would be assuming several361

pseudo inputs for scRNA-seq, which is optimizable and expected to be similar to the molecular362

profiles of the populations unobserved in scRNA-seq since such pseudo-inputs approach succeeded363

in capturing population structure as prior means in a variational auto encoder with VampPrior [45].364

The improvements on this issue would increase the reliability of DeepCOLOR for the unpaired365
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spatial transcriptome and single-cell transcriptome, even if the included cell populations of them366

could have some discrepancy.367

Recent advancements in the observation of the single-cell transcriptome with other modali-368

ties, such as open chromatin and the proteome, are opening new avenues to analyze the cross-talk369

between the different layers of biological processes at the omics scale [9, 34]. For cell-cell commu-370

nication, protein signals from other cells alter the epigenetic profiles of the nucleus and change the371

transcription kinetics of various genes, which generate molecular signals for communicating with372

other cells through the protein layer. Hence, the application of DeepCOLOR to such multimodal373

single omics data with spatial transcriptome is expected to produce a concrete basis for detecting374

molecular changes in various layers induced by CCI. Finally, we anticipate that our newly devel-375

oped computational framework could be utilized for uncovering molecular pathways via different376

molecular layers and single-cell colocalization networks.377

5 Methods378

5.1 Data preprocessing and downstream analysis379

Using ’scanpy’ Python package [48], we excluded single cells and spatial spots which expressed fewer380

genes than 500 genes or more mitochondrial genes than 5% of total expression. We conducted and381

visualized UMAP embeddings of the latent cell states of single cells using ’scanpy’. We also utilized382

’scanpy’ for clustering spatial transcriptome data by the Leiden clustering algorithm with default383

parameters.384

5.2 Spatial mapping of single cells using a neural network385

To quantify the expected contribution of every single cell in scRNA-seq for determining all spatial386

spots in the spatial transcriptome, we employed a probabilistic model for the spatial transcriptome387

observation, given the expected contribution of all single cells observed in the scRNA-seq anal-388

ysis. We estimated the contribution by maximizing the likelihood of the probabilistic model for389

observation of the spatial transcriptome. However, the naive formulation of this problem can lead390

to overfitting due to the numerous independent parameters. We employed a continuous mapping391

function from a latent representation of a single cell to a spatial spot to overcome this limitation.392

This formulation imposed a constraint on the mapping in that single cells with almost the same393

molecular profiles were mapped similarly. This constraint was enhanced by the stochastic gradient394
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descent, where down-sampled single cells were used to calculate the likelihood gradient. This section395

introduces a variational autoencoder (VAE) for obtaining a stochastic latent representation of the396

single cells, the probabilistic model of the spatial transcriptome, and the optimization procedure.397

5.2.1 Derivation of the stochastic latent representation of the single cell transcriptome398

We utilized a variational auto encoder (VAE) for deriving latent representations for single cell399

transcriptome observations. We defined the generative model of scRNA-seq observation of the cell400

c, xc ∈ RG as shown below:401

Pθ(xc, zc) = P (zc)
G∏
g=1

Pθ(xc,g|zc, α(sc)
g )

Pθ(xc,g|zc, α(sc)
g ) = NegativeBinomial(xc,g|fθ(zc)g, α(sc)

g )

P (zc) = Normal(zc|0, I)

where G is the number of genes, z ∈ RM is a latent cell state and fθ : RM −→ RG is a decoder402

neural network described in Supplementary Table 1 and α
(sc)
g is the dispersion parameter of the403

gene g. We approximated the posterior distribution of latent representation P (zc|xc) ∝ P (xc, zc)404

using the Gaussian distribution as shown below:405

qφ(zc|xc) = Normal(zc|µφ(xc), σ
2
φ(xcI))

where µφ, σ
2
φ : RG −→ RD are encoder neural networks described in Supplementary Table 1. To406

approximate the true posterior distribution appropriately, we maximized the evidence lower bound407

(ELBO) for θ and φ, which is defined as follows:408

ELBO(X) =
N∑
c=1

Eqφ(zc|xc)[logPθ(xc|zc, α(sc)
g )]−DKL[qφ(zc|xc)|P (zc)]

where X = (x1, . . . , xN )T and N is the total number of cells. We maximized this ELBO using the409

Adam optimizer implemented with a learning rate of 0.0004 for 500 epochs.410

5.2.2 Probabilistic model of spatial transcriptome data411

We assumed that the expression of gene g at spatial spot s, es,g follows a negative binomial distri-412

bution as shown below:413

P (es,g|µθ,θ′,s,g, α(sp)
g ) = NegativeBinomial(es,g|µθ,θ′,s,g, α(sp)

g )
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where µθ,θ′,s,g is the unobserved expression level of the gene g at spot s and α
(sp)
g is the dispersion414

parameter of the gene g. To attribute the spatial expression profile to the expression profile observed415

using scRNA-seq, we constructed an expected contribution of cell state z for spot s as a continuous416

function implemented by neural network mθ′(z)s described in Supplementary Table 1. Using417

the mapping function, we modeled µθ,θ′,s,g as the weighted average of the scRNA-seq expression418

profile, given the following approximated posterior distribution of the latent cell states:419

µθ,θ′,s,g =

∫
dzqφ(z|X)rgmθ′(z)sfθ(z)g + lg

qφ(z|X) =
1

N

N∑
c=1

qφ(z|xc)

where qφ(z|X) is the posterior distribution of a latent cell state, given the total scRNA-seq data420

set X, rg is the gene-wise technical capturing ratio of spatial transcriptome observation compared421

to that of scRNA-seq, and lg is the gene-wise shift parameter that is assumed to represent ambient422

RNA in the spatial transcriptome data. Since the exact integration in equation X is not feasible, we423

calculated the stratified Monte Carlo approximation of the posterior distribution as shown below:424

µθ,θ′,s,g ≈
1

N

N∑
c=1

rgmθ′(zc)sfθ(zc)g + lg

zc ∼ qφ(z|xc).

5.2.3 Stochastic optimization for smooth mapping function425

To derive the mapping function optimized for the data, we maximized the log likelihood426

L =
∑
s,g

logP (es,g|µs,g, α(sp)
g ). (1)

Since the computational complexity of the mean parameter defined above is proportional to the427

number of cells, we calculated and optimized the likelihood for spatial transcriptome observation428

with the mean parameter for mini-batches of single cells, M :429

P (es,g|µMθ,θ′,s,g, α(sp)
g ) = NegativeBinomial(es,g|µMθ,θ′,s,g, α(sp)

g )

µMθ,θ′,s,g =
1

‖M‖

C∑
c∈M

rgmθ′(zc)sfθ(zc)g + lg.

This downsampling for single cells imposed a constraint on the mapping function in that the random430

subsets of single cells could reconstruct consistent expression profiles of spatial observations. Hence,431

the mapping function was expected to be enhanced for estimating similar mapping profiles for single432
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cells with similar latent representation. To optimize this stochastic likelihood, we utilized Adam433

implemented in PyTorch with a learning rate of 0.0004 for 500 epochs. For this optimization, we434

did not used randomly selected 2% of cells and 10% of genes for testing the accuracy. We also note435

that we did not update the parameters of θ and φ so that the encoder and decoder networks keep436

the information on single-cell expression profiles.437

5.3 Colocalization analysis based on spatial mapping438

5.3.1 Construction of the expected colocalization matrix439

DeepCOLOR could estimate the contribution of every single cell to each spot mθ′(zc)s. We utilized440

this property for the analysis of colocalization among single cells. First, to filter out single cells that441

were not mapped well, we excluded cells whose cumulative values of total contribution
∑

smθ′(zc)s442

were lower than 0.05. Next, we normalized the spatial distribution for each cell so that the sum-443

mation for all spots was equal to 1, Âc,s =
mθ′ (zc)s∑
smθ′ (zc)s

. We calculated the colocalization matrix as444

a product of the normalized spatial distribution and its transpose:445

C = ÂÂT .

Here, the element of the colocalization at ith row and jth column represents the colocalization score446

between cell i and cell j. We calculated the log ratio of the scores to that observed between two447

cells that were uniformly mapped to each spatial spot:448

L = log2NsC

where Ns is the number of spots in the spatial transcriptome. We selected all colocalization pairs i, j449

whose Li,j exceeded 1. This criterion for the colocalization pair corresponds to the case where pairs450

were localized together with a probability of two times higher than that observed when uniformly451

distributed across all spots.452

5.3.2 Ligand activity between colocalized single cells453

To dissect the molecular machinery involved in mediating cell-cell communication, we combined454

the ligand-target regulatory potential implemented within Nichenet with the expression profiles of455

colocalized cell pairs [5], representing how strongly existing knowledge supports the influence of the456

ligand on the expression of the target gene in other cells, with the detection of ligand expression of457
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colocalized cells. We calculated the receiver scores for ligands l as follows:458

Ac,l =
∑
g

Wl,gH(g, X̃c, p)

where Wl,g is a ligand–target regulatory potential value of Nichenet [5], H(i, x, p) = I(xi > qp(x)),459

qp(x) is the p quantile of vector x and X̃ is the scaled expression that was calculated using the460

‘scanpy.pp.scale‘ function implemented in the Scanpy package after resampling 500 cells per every461

cell cluster to be analyzed [48]. We calculated the colocalized ligand activity of l from single cell462

cluster k to k′:463

Bk,k′,l =
∑

c∈Ck,c′∈C′
k

I(Lc,c′ > 1)H(c, A∗,l, 0.9)H(c, X̃∗,l, 0.9).

where Ck is R resampled single cells of cluster k (R = 500 in this study) and X̃∗,l and A∗,l denotes464

l-th column vector of X and A. The colocalized ligand activity Bk,k′,l corresponds to the expected465

number of colocalized cell pairs with high ligand expression and high ligand activity between the466

cell types.467

5.3.3 Clustering colocalized pairs of single cells468

We derived the latent representation of colocalized pairs described above as the summation of the469

single-cell latent representations, which were derived from a VAE of scRNA-seq pc,c′ = zc + zc′ .470

We extracted the colocalized pairs between two clusters of single cells subjected to colocalization471

analysis. We clustered the latent representation of colocalized pairs using the Leiden algorithm472

implemented in Scanpy with resolution parameter 0.1. This clustering of the latent representations473

of colocalized pairs segregated the subpopulation of colocalized pairs with similar molecular profiles.474

5.3.4 Differentially expressed gene analysis of colocalization clusters475

To characterize the molecular profiles of single cells that belonged to specific colocalization clusters,476

we conducted a differentially expressed gene (DEG) analysis between single cells in the colocalization477

clusters and the other single cells that belonged to the same single cell clusters. We used the478

Wilcoxon rank-sum test with Benjamini-Hochberg multiple test correction for this DEG analysis,479

implemented in the Scanpy dataset. For gene enrichment analysis, we conducted Fisher’s exact test480

for gene sets recorded in IMPaLA [27].481
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5.3.5 TCGA analysis of the correlation and the survival date association of colocalized482

population signatures483

To determine whether the identified colocalized population was also colocalized across samples, we484

analyzed the correlation between the signature scores of both populations in the TCGA dataset.485

We used FPKM values of RNA-seq data obtained in 1993 from squamous cell carcinoma samples to486

calculate the population signature scores. The signature score for each sample was calculated using487

the mean z-scores of log FPKM values plus 1 of population-specific genes. The population-specific488

genes with up-or down-regulated expression were defined as genes with adjusted p-values smaller489

than 0.01 and log2 fold changes larger than 1 or smaller than -1, as observed in DEG analysis490

for each population. We excluded overlapped genes for the calculation of signature scores. We491

evaluated Pearson’s correlation between the signature scores for both populations. The association492

between survival date and these scores and gene expression levels was analyzed using R package493

survival after stratification into the top 20% and bottom 20% of scores and expression levels.494

5.4 Simulation of the spatial transcriptome495

To evaluate the performance of DeepCOLOR in the spatial assignment of the single-cell transcrip-496

tome and detection of colocalized populations, we conducted a simulation of the spatial transcrip-497

tome from reference scRNA-seq data similar to the simulation method implemented in [29]. First,498

we separated the scRNA-seq population into two randomly selected subpopulations for simulation499

and training, defined as C(s) and C(t), respectively. Next, we assumed R = 10 regions, each com-500

posed of randomly selected clusters from K clusters of scRNA-seq data derived by ‘scanpy.tl.leiden‘501

with specified resolution parameters. We determined the abundance of region r in spot s as502

πs,r ∼ Dirichlet( 1
R). The composition of cluster k in region r was ρ̃ where ρ̃r,k =

tr,kρr,k∑K
k′=1 tr,k′ρr,k′

,503

tr,k ∼ Bernoulli(K
′

K ), ρr,k ∼ Uniform(0, 1) and K ′ = 5. Combining these two hierarchical composi-504

tions, we calculated the expected abundance of single cells c of the simulation dataset in each spot505

s as follows:506

Wc,s ∼ Poisson(pc,s)

ps,c =
1

Nk

∑
r

πs,rρr,k

where c belongs to cluster k, and Nk represents the number of cells in cluster k used for the507

simulation dataset. We simulated the spatial gene expression of gene g at spot s from the weighted508

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2022. ; https://doi.org/10.1101/2022.04.10.487815doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.10.487815
http://creativecommons.org/licenses/by/4.0/


average of single cell expression profile X:509

ss,g = Poisson(λ(s)s,g)

λ(s)s,g =
∑
c∈C(s)

Ws,cXc,g.

For evaluation, we assigned the weight values of cell c in the simulation dataset to the nearest510

neighbor cell in the training dataset N (s,t)(c), based on 30 dimensional PCA-coordinates of their511

expression profiles. Hence, the assignment of cell c′ of the training population in spot s is512

W ′s,c′ =
∑
c∈C(s)

I(c′ = N (s,t)(c))Ws,c.

5.4.1 Evaluating spatial assignment of single cells513

For the evaluation of spatial assignment, we calculated the recall of the training cells that were most514

similar to simulation cells included in each spot515

Recall(p)s =
1∑

c′∈C(t) I(W ′s,c′ > 0)

∑
c′∈C(t)

H(c′, Ŵs, 1− p)I(W ′s,c′ > 0)

where p is the specified positive rate and Ŵs,c is the estimated assignment of cells c in spot s.516

5.4.2 Evaluating detection of colocalized cell populations517

For the detection of colocalized populations, we evaluated the detection accuracy of cluster pairs518

belonging to the same region. As a predictor, we calculated the mean colocalization scores across519

cell pairs within each cluster pair:520

C̃k,k′ =
1

|C(t)
k ||C

(t)
k′ |

∑
c∈C(t)

k ,c′∈C(t)

k′

Cc,c′ .

5.4.3 Comparison with other methods521

We compared the performance of DeepCOLOR with that of existing computational methodologies522

for deconvolving spot-wise spatial transcriptomes, namely, Cell2location [29], and Tangram [4].523

For both methodologies, we used default parameters used in the evaluation experiments. Since524

Cell2location provides cluster-wise abundance for each spot, we deconvolved the weights into every525

single cell equally for performance evaluation.526
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5.5 Human skin squamous cell carcinoma samples and histological analysis527

Surgically resected skin samples from patients with squamous cell carcinoma were obtained at528

Nagoya University Hospital. This study was approved by the Ethics Committee of Nagoya Uni-529

versity, Graduate School of Medicine. Human tissues were fixed in 10 % neutral-buffered formalin,530

dehydrated, and embedded in paraffin. Immunohistochemical analysis was performed using anti-531

Activin A antibody (Novus Biologicals, Centennial, CO, USA) as previously described [38]. In532

situ hybridization (ISH) analysis was performed by RNAscope technology (RNAscope 2.5 HD De-533

tection Kit; Advanced Cell Diagnostics, Newark, CA, USA). Briefly, human tissue sections were534

baked in an oven at 60°C for 1 h, deparaffinized, and incubated with H2O2 solution for 10 min535

at room temperature. The slides were boiled in target-retrieval solution for 3 min in a pressure536

cooker (SR-MP300; Panasonic, Kadoma, Japan) and incubated with protease solution for 30 min537

at 40°C. The slides were then incubated with the relevant probe (human INHBA, NM 002192.4,538

region 337-3141; Advanced Cell Diagnostics) for 3 h at 40°C in a dry oven (HybEZ II Hybridization539

System; Advanced Cell Diagnostics), followed by successive incubation with Amp1-6 reagents. The540

staining was visualized with 3,3’-diaminobenzidine, followed by counterstaining with hematoxylin.541

Two independent pathologists evaluated the human tissues subjected to ISH and hematoxylin and542

eosin (H&E) staining.543

5.6 Data and code availability544

We derived combined spatial and single-cell transcriptome datasets from Gene Expression Omnibus545

(Mouse brain cortex dataset: , SCC dataset: GSE144240, and SARS-CoV2 dataset: GSE171668).546

Codes for our analysis, including DeepCOLOR, are available at https://www.github.com/kojikoji/deepcolor.547
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Figure 1: Schematic representation of the workflow of DeepCOLOR DeepCOLOR takes

single cell and spatial transcriptome as traning inputs and reconstruct spatial distribution and

denoised expression profile from noisy single cell observation. Using spatial distribution, we can

evaluate colocalization relationships between single cells and identify colocalization network, prox-

imal ligand-receptor communication and colocalized cell-pair clusters.
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Figure 2: Single-cell decomposition in a mouse cortex dataset a, UMAP representation

of VAE-derived latent states of the single-cell transcriptome. Total (top) and layered excitatory

neurons (bottom) are displayed. Black dots in the excitatory neuron panel represent single cells dis-

played in c. b, Spatial assignment of the sub-clusters of three-layered excitatory neurons (Ext L23,

Ext L5 1, Ext L56). c, Spatial assignment of single cell randomly sampled from three-layered exci-

tatory neuron sub-clusters (Ext L23, Ext L5 1, Ext L56). d, Spatial visualization of clustering on

the spatial transcriptome. e, Visualization of colocalized single-cell pairs (black line) in layered ex-

citatory neurons. Inner layer dots represent a subclass of each single cell. The outer dots represent

the most assigned spatial clusters for single cells.
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Figure 3: Performance comparison of simulated data a, Enrichment of estimated assignment

of single cells originally assigned during simulation. b, Recall of originally assigned single cells for

a specified positive rate. c, ROC curves for detecting cluster pairs belonging to the same region as

colocalized population pairs. The resolution parameter of clustering used for the simulation was set

to 1.5.
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Figure 4: Single-cell decomposition and CCI analysis of an SCC dataset a, Spatial visu-

alization of clustering on the spatial transcriptome. b, Visualization of colocalized single-cell pairs

(black line) between tumor keratinocytes and immune or stromal cells. Inner layer dots represent

the types of single cells. The outer dots represent the most assigned spatial clusters for single

cells. c, Ligand activity initiating from tumor keratinocytes to immune or stromal cells. d, Ligand

activity initiating from immune or stromal cells to tumor keratinocytes. The widths of the lines

correspond to the ligand activity scores in c and d. We have only displayed ligands with the top 5

input or output values for each stromal or immune cell type.
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Figure 5: Identification of fibroblast populations colocalized with TSKs a, UMAP repre-

sentation of VAE-derived latent states of the single-cell transcriptome of tumor keratinocytes and

fibroblasts. b, Colocalization cluster 0 in UMAP representation. c, Spatial distribution of colocal-

ization cluster 0. The spatial distribution was calculated by the summation of assignment products

between cells in the colocalization cluster. d, Differential gene expression analysis of fibroblasts be-

longing to colocalization cluster 0 compared to that of the remaining fibroblast population. e and

f, Representative histological images of skin squamous cell carcinoma of two patients. H&E (upper

panels in e and f) and ISH with an INHBA-specific antisense probe (lower panels in e) or immuno-

histochemical staining with anti-activin A antibody (middle and lower panels in f) in the same area

in serial sections. Boxed areas in the middle panels in e are presented as magnified images in the

lower panels. INHBA-positive cancer cells are indicated by red arrowheads and INHBA-positive or

activin A-positive cancer-associated fibroblasts are indicated by blue arrowheads. g, Kaplan-Meier

plot of the survival rate for patients with SCC with high and low signature scores of fibroblasts

belonging to colocalization cluster 0 (top and bottom 20%) in TCGA dataset.
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Figure 6: Single-cell decomposition and CCI analysis of a COVID-19 dataset a, Visu-

alization of colocalized single-cell pairs (black line) between alveolar cells and immune or stromal

cells. Inner layer dots represent the types of single cells. The outer dots represent the most assigned

spatial clusters for single cells. b, Ligand activity initiating from immune or stromal cells to alveo-

lar cells. The widths of the lines correspond to the ligand activity scores. We have only displayed

ligands with the top 5 input or output values for each stromal or immune cell type in b. c, UMAP

representation of VAE-derived latent states of the single-cell transcriptome of epithelial cells and

fibroblasts. d, Colocalization cluster 0 in UMAP representation. e, Differential gene expression

analysis of fibroblasts belonging to colocalization cluster 0 compared to that of the rest of fibroblast

populations.
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