

¹ Single-cell colocalization analysis using a deep generative model

² Yasuhiro Kojima^{1,*}, Shinji Mii², Shuto Hayashi¹, Haruka Hirose¹, Masato Ishikawa⁴,
³ Masashi Akiyama³, Atsushi Enomoto², and Teppei Shimamura^{1,*}

⁴ ¹Department of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya,
⁵ Aichi, Japan.

⁶ ²Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi,
⁷ Japan.

⁸ ³Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya,
⁹ Aichi, Japan.

¹⁰ ⁴Department of Computational Biology and Medical Sciences, Graduate School of Frontier
¹¹ Sciences, The University of Tokyo, Kashiwa, Chiba, Japan

¹² ^{*}Corresponding author

¹³ March 22, 2022

¹⁴ **1 Abstract**

¹⁵ Analyzing colocalization of single cells with heterogeneous molecular phenotypes is essential for
¹⁶ understanding cell-cell interactions, cellular responses to external stimuli, and their biological func-
¹⁷ tions in diseases and tissues. However, high-throughput methods for identifying spatial proximity at
¹⁸ single-cell resolution are practically unavailable. Here, we introduce DeepCOLOR, a computational
¹⁹ framework based on a deep generative model that recovers inter-cellular colocalization networks
²⁰ with single cell resolution by the integration of single cell and spatial transcriptomes. It segre-
²¹ gates cell populations defined by the colocalization relationships and predicts cell-cell interactions
²² between colocalized single cells. DeepCOLOR could identify plausible cell-cell interaction candi-
²³ dates in mouse brain tissues, human squamous cell carcinoma samples, and human lung tissues
²⁴ infected with SARS-CoV-2 by reconstructing spatial colocalization maps at single-cell resolution.
²⁵ DeepCOLOR is typically applicable to studying cell-cell interactions in any spatial niche. Our

26 newly developed computational framework could help uncover molecular pathways across single
27 cells connected with colocalization networks.

28 2 Introduction

29 Single-cell analysis of transcriptome profiles has given rise to novel avenues for examining hetero-
30 geneous cell populations. Such techniques demonstrate continuous cell states rather than classical
31 discrete cell types [22, 43]. The heterogeneous cell states observed via these techniques were shown
32 to be crucial for elucidating mechanisms underlying disease development and prognosis [14, 21].
33 Hence, it is important to understand the molecular mechanism involved in the transition between
34 the cell states and their regulation. This heterogeneity can be attributed to the environmental cues
35 obtained from surrounding cells [30], which is termed as cell-cell interaction (CCI). Environmen-
36 tal cues facilitating CCI rely on heterogeneous molecular states of the surrounding cells (i.e. the
37 expression of ligands and the stiffness of cells). Hence, to dissect the molecular basis of CCI, it
38 is crucial to analyze colocalization patterns among single cells with heterogeneous molecular phe-
39 notypes. However, the observed single-cell transcriptome loses the spatial context when analyzed
40 using the available high-throughput methodology.

41 Recently, spatial transcriptome observation technologies, such as spatial transcriptomics (ST)
42 [44], Visium (10X Genomics), Slide-seq [41], and high-definition spatial transcriptomics [46], have
43 enabled analysis of the entire transcriptome spatially. These technologies provide a unique oppor-
44 tunity to characterize local niches with comprehensive molecular profiles. For example, Ji et al.
45 utilized this technology to show that the unique population in squamous cell carcinoma is resident
46 in the leading edges of the tumor [25]. In contrast, widely used high-throughput methods of spatial
47 transcriptomics such as ST and Visium have limited capture rates (resulting in substantial spatial
48 dropout that increases with higher resolution) and do not achieve single-cell resolution. In situ
49 sequencing, MERFISH [49], seqFISH [17], and other in situ techniques allow spatial analysis at
50 single-cell resolution. However, these techniques require high expertise in experimental technolo-
51 gies and capture relatively fewer pre-specified genes than the sequence-based methodologies. These
52 inherent limitations of current spatial transcriptome analysis techniques prevent the identification
53 of interaction networks between heterogeneous cell populations involved in disease progression.

54 Several computational methodologies have been developed to address this limitation by the
55 integration with scRNA-seq observation. One major approach involves deconvolution of observations

56 at each spot of the spatial transcriptome with a cell-type expression profile [1, 6, 16, 29]. This
57 approach reveals the spatial distribution of heterogeneous cell types, which have been identified
58 in the scRNA-seq analysis. In contrast, cell type-based analyses have a limitation in that they
59 can analyze colocalization only between predefined populations, which is highly dependent on the
60 manually determined clustering resolution and does not necessarily correspond to the differences in
61 the spatial distribution of the tissues. While a recent single-cell approach successfully revealed cell
62 distribution across various spatial contexts [4], the methodology was not suitable for analyzing the
63 colocalization network as it could estimate distinct spatial assignments among cells with almost the
64 same profiles. Hence, a new computational approach is required for identifying the colocalization
65 between heterogeneous cell states captured by scRNA-seq.

66 DeepCOLOR is a deep learning framework for addressing the dual challenges of (1) recovering
67 spatial contexts of single cells observed in scRNA-seq data and (2) revealing cell-cell interactions
68 in spatial niches. DeepCOLOR was used to build a continuous neural network map from latent
69 cell state space to each spot in the spatial transcriptome in order to enhance consistent mapping
70 profiles between single cells with similar molecular profiles. This mapping technique did not rely
71 on the fine-grained cell type preparation, which is the upper limit of the resolution for many of
72 the existing deconvolution methods [1, 6, 16, 29], and revealed the spatial distribution of all single
73 cells observed by scRNA-seq with high accuracy. A colocalization profile between two cells could be
74 derived from the overlaps between the spatial distributions of individual cells, and clustering analysis
75 of neighboring single-cell pairs could classify colocalized cell populations beyond the resolution at
76 the cell type level. In addition, DeepCOLOR demonstrated the ability to predict ligand-mediated
77 cell-to-cell communication by combining colocalization scores between cells, gene expression within
78 cells, and prior knowledge of signal transduction and gene regulatory networks. These single cell
79 colocalization-based analysis enabled us to extract and characterize the population which affected
80 by environmental cues from surrounding cells with unprecedented specificity, which was potentially
81 overlooked by predefined population-based colocalization analysis [2, 36, 37]. We used DeepCOLOR
82 to reveal intercellular communication mechanisms in two complex tissues. This study could provide
83 valuable insights regarding the application of DeepCOLOR as an analytical tool for studying cell-cell
84 interactions in any spatial niche.

85 **3 Results**

86 3.1 Methodology overview

87 We developed DeepCOLOR, a deep generative model for colocalization representation, which uses
88 scRNA-seq data as a reference cell population to deconvolve each spot of the spatial data and
89 decipher the intercellular colocalization network across single cells in a spatial niche. The input to
90 DeepCOLOR was scRNA-seq data along with spatial transcriptome data derived from the same
91 tissue or region discerned based on currently available spot-wise spatial methods (Visium, ST,
92 GeoMx, etc.). The following assumptions were made for the input: the two modalities share some
93 subset of common genes, and the variations in the single-cell transcriptome cover the cell populations
94 within the spatial niche. DeepCOLOR first transformed the transcriptome observation of each cell
95 from scRNA-seq data into a latent cell state via encoding by a pre-trained neural network. It then
96 optimized an objective function to maximize the likelihood for the probability model of the spatially
97 distributed transcriptome observed in the spatial transcriptome data. DeepCOLOR then provided
98 spatial distributions of each cell in the scRNA-seq data, which comprised information about single-
99 cell localization, indicating the likelihood of the presence of all cells in the scRNA-seq data at each
100 spot in the spatial transcriptome. This information enabled us to search for colocalized pairs of
101 cells defined by the overlaps of spatial distributions. With its ability to smoothly map the learned
102 latent representation of a single cell to a spatial spot, DeepCOLOR could (1) correct poor-quality
103 spatial measurements attributed to technical variability such as spatial dropout; (2) estimate spatial
104 distributions at the single-cell level independent of predefined labels such as cell types; (3) identify
105 and classify cell colocalization pairs that exist in spatial niches; (4) identify differentially expressed
106 genes in colocalized cell clusters; and (5) identify ligands involved in cellular communication between
107 colocalized cell population.

108 Technically, DeepCOLOR was based on latent representations of single cells derived from deep
109 generative models and optimization via a stochastic gradient descent method. Unlike the conven-
110 tional application of deep generative models to scRNA-seq data [18, 33], the optimization function
111 involved the likelihood of the probabilistic model of gene expression in each spatial spot, which is
112 assumed to be the weighted average of the transcriptome associated with latent cell states in the
113 scRNA-seq dataset. DeepCOLOR modeled the difference in the technical capture rate for each
114 gene when comparing scRNA-seq data and spatial transcriptome data and the abundance of each
115 gene in the spatial transcriptome assuming correction terms for the sensitivity and contamina-
116 tion of technical measurements . DeepCOLOR could then estimate a continuous mapping function
117 that inferred the spatial distribution of single cells based on their latent cell states , thus obtain-

118 ing a consistent spatial distribution among single cells with similar molecular profiles. To further
119 strengthen the consistency of the mapping function, we employed a stochastic gradient descent
120 method using mini-batches of single cells. This formulation imposed a constraint: a subset of sin-
121 gle cells obtained by down-sampling forms consistent spatial expression patterns, and hence cells
122 with approximately the same latent representation would map to the same spatial location. Down-
123 stream analysis of DeepCOLOR implemented single-cell colocalization clustering based on latent
124 representations of cell pairs that were likely to colocalize, differential expression analysis in specific
125 colocalized clusters based on the Wilcoxon rank-sum test, and ligand activity analysis between colo-
126 calized cell populations. DeepCOLOR has been implemented as a PyTorch module and is available
127 at <https://www.github.com/kojikoji/deepcolor>.

128 3.2 Accurate mapping with well-known spatial domains

129 To validate our newly developed assignment methodology, we applied our mapping algorithm to a
130 mouse visual cortex dataset [29]. First, we evaluated the similarity of the aggregated gene expression
131 of single cells assigned to each spot with the original gene expression of the spot. We found that
132 the expression was well correlated for genes with high expression even if the genes were not used
133 for training of the generative model (**Fig. 1-a in Supplementary**) . Next, we validated whether
134 the mapping patterns of single cells were consistent with the well-known anatomical structures. We
135 found that the aggregated assignment of the excitatory neuronal subtypes associated with L2/L3
136 layers (Ext_L23) was enriched in the outer region compared to that of subtypes associated with
137 L5/L6 layers (Ext_L5_1 and Ext_L56) (**Fig. 2-a, b**). In contrast, single cells within each layer
138 were assigned to more specific regions compared with the aggregated spatial distribution of the
139 predefined subtypes described above (**Fig. 2-a, c**). These results suggested that DeepCOLOR
140 captured the molecular signatures of single cells obscured by clustering analysis and utilized them
141 for reconstructing the spatial distribution of single cells. We also found that the assignments of
142 single cells to a specific spot performed by DeepCOLOR were smooth on the latent cell state space
143 of single cells (**Fig. 2 in Supplementary**) . This smooth assignment enabled us to capture the
144 colocalization between single cells as the overlap of the estimated spatial distribution. We examined
145 the colocalization scores for single-cell pairs across the excitatory neuronal subtypes associated with
146 cortical layers to validate our approach to extract colocalized single-cell pairs. We found that a larger
147 proportion of single-cell pairs across expected adjacent layers (among L2 and L3 or among L5 and
148 L6) demonstrated high colocalization scores ($c_{ij} > 1$)than those across more distant layers (**Fig. 2-**

149 e). These results showed that our colocalization scoring methodologies were useful for identifying
150 the adjacent cell population for every single cell.

151 **3.3 Comparison of accuracy based on the simulated data set**

152 **3.3.1 Mapping accuracy for each single cell**

153 We evaluated the accuracy of spatial assignments with DeepCOLOR and other state-of-the-art
154 methods, namely, Cell2location [29], and Tangram [4], based on the simulated dataset of the single-
155 cell and spatial transcriptome. We generated these simulated datasets from a real dataset of squa-
156 mous cell carcinoma (SCC) [25], assuming five combinations of spatially colocalized cell types. First,
157 we evaluated the assignment amount of truly included single cells to the corresponding spots. We
158 found that DeepCOLOR demonstrated larger assignments on truly included cells than that demon-
159 strated by Cell2location and Tangram (Fig. 3-a). For Tangram, the assignment to the majority
160 of truly included cells was close to 0, while there were a few truly included cells with larger assign-
161 ments than the maximum assignment of DeepCOLOR. This is presumably because Tangram can
162 assign only a few single cells to each spatial spot, and hence estimate distinctively different spatial
163 distribution between single cells with almost the same gene expression profiles. Next, we evaluated
164 the assignment accuracy by the recall of single cells in each spot for specified positive rates and
165 found that the recall values of DeepCOLOR for various positive rates were higher than those of
166 Cell2location and Tangram (Fig. 3-b). These results suggested that DeepCOLOR showed superior
167 performance in reconstructing the spatial organization of the single-cell transcriptome without the
168 navigation of cell-type annotation. In contrast, the accuracy of Cell2location was comparable to
169 that of DeepCOLOR when the cell types used for colocalization in the simulation data set were
170 identical to those used for estimation with Cell2location (Fig. 3-a,b,d,e in Supplementary) .
171 This result indicates that the difference between the reference cell types for estimation and the cell
172 subpopulation in colocalization patterns negatively affected the performance of spatial mapping in
173 cell type-based methodologies. At the same time, DeepCOLOR retained the performance as it was
174 not dependent on the reference cell type information. Next, we validated the ability of DeepCOLOR
175 to extract colocalized cell populations. We calculated the averaged colocalization scores between
176 two cell types and evaluated the accuracy of detecting truly colocalized cell-type pairs using the
177 averaged scores. We found that DeepCOLOR detected the colocalized cell pairs more accurately
178 than the other two methods (Fig. 3-c), (Fig. 3-c,f in Supplementary) . This result suggests
179 that considering the spatial distribution without the cell type label, we extracted colocalized re-

180 lationships between subpopulations, which is not necessarily consistent with clustering results on
181 scRNA-seq.

182 3.4 Colocalization network underlying the tumor microenvironment

183 The tumor microenvironment involves complex CCIs, which significantly affect the prognosis. Here,
184 we applied DeepCOLOR to a dataset of squamous cell carcinoma [25] and explored the colocalization
185 relationships between single cells obtained from the tumor microenvironment. We found that the
186 imputed spatial expression patterns calculated from the transcriptome of the assigned single cells
187 were correlated with the original expression patterns, even for genes that were not used for the
188 assignment estimation (**Fig. 1-b in Supplementary**) . We also found that the expression patterns
189 between marker genes for each cell type, CD3D and CD4 for CD4+ T cells and CD8A and GZMB
190 for CD8+ T cells, were more consistent than the raw spatial expression patterns (**Fig. 4 in**
191 **Supplementary**) . Furthermore, the reconstructed spatial expression patterns were smoother than
192 the raw expression counts, while the estimation process did not assume any spatial architecture.
193 These results suggest that DeepCOLOR performed a reasonable single cell assignment for this
194 dataset. The estimated colocalization network among single cells showed that CD1c+ dendritic
195 cells, ASDCs, and Langerhans cells colocalized with heterogeneous tumor keratinocytes referred to
196 as tumor basal keratinocytes (TBKs), tumor differentiating keratinocytes (TDKs), tumor cycling
197 keratinocytes (TCKs), and tumor-specific keratinocytes (TSKs) in the previous study (**Fig. 4-a,**
198 **b**). All colocalized keratinocyte subpopulations were primarily distributed in spatial transcriptome
199 clusters 7 and 4, the tumor-stromal boundary clusters. In contrast, the TDK and TBK populations
200 distributed in spatial transcriptome cluster 8 demonstrated a low degree of colocalization with
201 any other immune-related cell types and fibroblasts. In contrast, T cells demonstrated strong
202 colocalization with the only subset of TCKs and were distributed only in spatial clusters 2 and
203 11. These data suggested that several types of dendritic cells, which contribute to the induction
204 of immune responses against tumors, were primarily distributed near the tumor-stromal boundary.
205 In contrast, the T cell population was recruited to the restricted regions in this squamous cell
206 carcinoma. We also noted that the TSK population had colocalized fibroblast populations, which
207 are analyzed in the next section.

208 Next, we sought to identify the candidates involved in mediating communication between colo-
209 calized single cells. Here, we scored ligand activities from tumor subtypes against cells present in
210 the microenvironment (See Methods section) (**Fig. 4-c**). We found that the TNC ligand activ-

211 ity derived from TSKs was the second-highest among the ligand activities against the fibroblast
212 population. TNC expression of cancer cells adjacent to the stroma was reported to correlate with
213 poor prognosis in breast cancer [24], and cultured fibroblasts with TNC treatment was reported
214 to exhibit cancer associated fibroblast like phenotypes [28]. The highest ligand activity against T
215 cell and macrophage populations was that of NMU initiated from TCKs; this was consistent with a
216 previous report showing that NMU secreted by keratinocytes activates various immune cells such as
217 lymphocytes and macrophages and that NMU is associated with tumorigenesis and metastasis [50].
218 We similarly analyzed the signaling activity initiated from the tumor microenvironment against
219 tumor keratinocytes (**Fig. 4-d**). We found that the CXCL9 activity against TSKs was within the
220 fifth strongest ligand activities initiated from all macrophages, CLEC9A+ DCs, and LCs. CXCL9
221 is reported to activate invasive and metastatic activities in lung cancer [13]. At the same time,
222 higher CXCL9 expression is associated with tumor depths and positive bone invasion in oral cavity
223 squamous cell carcinoma [8]. In contrast, the activity of INHBA initiated from fibroblasts to TSKs
224 was the second most potent ligand activity observed. This observation is also consistent with a
225 previous report showing that INHBA enhances invasion, proliferation, and growth of gastric cancer
226 cells [10]. Since the candidates of molecular communication machinery observed in our analysis
227 highlighted previously validated molecular communications, these results showed that exploring
228 molecular communications based on single-cell colocalization was an effective approach to dissect
229 the molecular basis underlying the formation of a microenvironment.

230 **3.4.1 Colocalized subpopulations of tumor cells and fibroblasts**

231 Previous analysis of molecular communications based on single-cell colocalization highlighted strong
232 communications between TSKs and fibroblasts. Fibroblasts exhibit various molecular states, which
233 are extensively studied using scRNA-seq technologies [13]. These states exert a significant effect on
234 tumor prognosis [42]. Hence, it is valuable to explore the correlation between these molecular states
235 and heterogeneous cancer cells, some of which demonstrated an invasive leading-edge phenotype in
236 this sample and were termed TSKs in the original analysis. We extracted colocalized populations
237 across fibroblasts and tumor keratinocyte populations including TSKs, based on the single-cell pair
238 colocalization scores (see Methods section). We clustered the colocalized single-cell pairs based on
239 the pair of latent representation and found that tumor cells of the paired cluster 0 had large overlaps
240 with the TSK population (**Fig. 5-a,b**). Furthermore, we confirmed that the spot-wise product
241 of spatial assignments between the colocalized populations were specifically enriched at the tumor-

242 stromal boundary (**Fig. 5-c**), which is expected from the leading-edge molecular phenotype of the
243 TSK population. To explore the molecular profiles of the fibroblast population in the paired cluster
244 0, we analyzed differentially expressed genes in these populations compared to those observed in
245 other fibroblasts (**Fig. 5-d**). These populations demonstrated a high expression of MMP14 associ-
246 ated with processes involved in tumor progression, such as cancer cell invasion via degradation and
247 remodeling of the extracellular matrix [20]. In contrast, INHBA, which was identified as a candidate
248 for molecular communication machinery in a previous analysis, was the second most significantly
249 expressed gene. Here, we also explored the expression patterns of INHBA and its dimer, activin A,
250 in other biological specimens of squamous cell carcinoma by *in situ* hybridization and immunohis-
251 tochemistry. We found that INHBA expression was enriched in tumor keratinocytes and fibroblasts
252 located at tumor leading edges at both RNA (**Fig. 5-e**) and protein levels (**Fig. 5-f**). Enrichment
253 analysis of positively regulated genes in these populations revealed that the expression of genes
254 involved in glycolysis and hypoxia was upregulated in the TSK-colocalized fibroblast population,
255 pair cluster 0 ($P < 10^{-7}$ and $P < 10^{-10}$, respectively). Since the glycolysis pathway is reported to
256 be upregulated in many invasive cancers [19], this result further supports the colocalization of the
257 fibroblast population with TSKs, which demonstrate an invasive leading-edge phenotype.

258 3.4.2 Reproducibility analysis of ST and TCGA

259 We investigated whether these patterns can be analyzed via spatial gene expression patterns de-
260 rived from other observation technologies to validate the colocalization patterns between cancer
261 cells and fibroblasts. In particular, we decomposed the spatial gene expression patterns observed
262 in the same study by spatial transcriptomics (ST) into the same single-cell gene expression profiles
263 obtained using DeepCOLOR. We extracted cancer cells which form colocalized pairs in ST decon-
264 volution with fibroblasts that belong to the previously identified colocalization cluster 0 in Visium
265 deconvolution. The recovered ST-colocalized tumor cells significantly overlapped with tumor cells
266 that belonged to the colocalization cluster 0 (odds ratio 6.70). These results indicated that Deep-
267 COLOR was able to reproducibly identify unique colocalization patterns between tumor cells and
268 fibroblasts identified in Visium via another spatial transcriptome observation technique, ST. Next,
269 we investigated whether this colocalized population is likely to co-occur across many patients and
270 associated with the prognosis difference. The signature scores for the colocalized tumor cells and
271 fibroblasts in the colocalization cluster 0 were positively correlated (Pearson's correlation was 0.765)
272 across the transcriptome of patients with SCC derived from TCGA (**Fig. 5 in Supplementary**)

273 . Furthermore, the signature scores of colocalized fibroblasts exhibited a strong association with
274 worse overall survival ($P = 0.0007$) (**Fig. 5-g**). However, the association between the signature
275 scores of the colocalized tumor cell population and worse overall survival was relatively moderate
276 ($P = 0.21$) (**Fig. 6 in Supplementary**) . These findings indicate the identified colocalized pop-
277 ulations between tumor cells and fibroblasts exist in various patients with SCC. Furthermore, the
278 stronger association of the colocalized fibroblast population with prognosis indicates that the arrival
279 of fibroblasts to this colocalization niche enhances the malignancy of the tumor.

280 **3.5 SARS-CoV-2**

281 **3.5.1 Alveolar type II cells colocalized with macrophages in SARS-CoV-2 infection**

282 We next applied DeepCOLOR to another dataset of SARS-CoV-2 [12] composed of single-cell
283 transcriptome observations and spot-wise transcriptome observations in lung tissues of SARS-CoV-
284 2 patients. We estimated the quantitative assignment of single cells to the spots and reconstructed
285 gene expression of the spots based on that of single cells assigned to the spots. The reconstructed
286 expression patterns for the spots were well correlated with true expression patterns, even for genes
287 that were not used for the estimation (**Fig. 1-c in Supplementary**) . When we visualized the
288 colocalization between alveolar cells and surrounding cells, such as immune cells and fibroblasts,
289 we found that a specific subpopulation of alveolar type II (AT2) cells, the abundance of which
290 is primarily reduced in patients with severe COVID-19, demonstrated a remarkable colocalization
291 with various cell types; this population was mainly distributed to spatial cluster 1 (**Fig. 6-a**). The
292 spots belonging to spatial cluster 1 were mainly annotated as PanCK+ alveolar (38 of 59), which
293 were associated with SARS-CoV-2 infection [23]. To quantify the molecular communication between
294 the surrounding cells and alveolar cells, we calculated the ligand activity between surrounding cells
295 and alveolar cells based on the estimated single-cell colocalization (**Fig. 6-b**). We found that the
296 strongest ligand activity initiating from fibroblasts to AT2 cells was that of NAMPT, which plays
297 an important role in the activation of the innate immune response [7] and is associated with the
298 development of acute respiratory distress syndrome in lung injury [40]. The activity of PECAM1
299 was the strongest activity initiating from monocytes to AT2 cells, while the expression level of
300 PECAM1 was associated with the severity of COVID-19 [31]. We also found that the strongest
301 ligand activity initiating from CD8+ T cells to AT2 cells was that of TNF, the expression level
302 of which is also associated with disease severity and survival of patients with COVID-19 [11].
303 These results showed that the colocalization-based ligand activity analysis discerned appropriate

304 candidates for molecular communication among patients with COVID-19. Next, we analyzed single-
305 cell colocalization between epithelial cells and fibroblasts, dissecting the most potent ligand activity
306 toward AT2. We extracted one of the colocalization clusters (cluster 0) with large overlap with
307 AT2 cells (**Fig. 6-c,d**). We analyzed the gene expression profiles of the fibroblast population in
308 the colocalization cluster and found that NAMPT, which demonstrated a strong ligand activity
309 to AT2 cells, was the second most significantly enriched gene in the colocalized fibroblast cluster
310 (**Fig. 6-e**). We also found that the pathway activity of oncostatin M, the expression of which was
311 reported to be elevated in the serum of patients with COVID-19 [35], was significantly enriched
312 ($P < 10^{-4}$). At the same time, the most significantly upregulated gene was IL1R, the ligand of
313 which is an important marker of severe symptoms among patients with COVID-19 [11]. These data
314 suggest that the fibroblasts received molecular signals responsible for severe symptoms and acquired
315 a molecular phenotype, contributing to the severity in patients with COVID-19.

316 4 Discussion

317 This article presents a new deep learning framework called DeepCOLOR, which enabled us to ana-
318 lyze colocalization networks across single cells with deep molecular profiles captured by scRNA-seq.
319 This new computational framework showed higher accuracy for mapping scRNA-seq observation
320 to spot-level spatial transcriptome data and detecting colocalized cell populations than existing
321 methods in simulation experiments and demonstrated a finer anatomical distribution than cell-type
322 distribution due to its label-free approach. Furthermore, DeepCOLOR extracted plausible candi-
323 dates involved in the molecular machinery underlying cell-cell communication and disease-associated
324 colocalized populations in a squamous cell carcinoma dataset [25] and COVID-19 dataset [12]. In
325 particular, DeepCOLOR highlighted the molecular communication machinery consistent with the
326 disease phenotype in both datasets. Our analysis predicted that the expression of INHBA, asso-
327 ciated with enhanced invasion, was enriched in fibroblasts colocalized with invasive tumor cells.
328 This prediction was validated by detecting both protein and RNA expression in biological sam-
329 ples independent from the dataset used for the estimation. These results highlight the significance
330 of single-cell-level colocalization relationships for dissecting molecular communications underlying
331 disease progression.

332 Recently, spot-level spatial transcriptome observation is garnering significant interest and is
333 being used for various biological systems, including the tumor microenvironment [32, 39]. While

334 these observations are useful for associating visualized tissue phenotypes with molecular phenotypes, it would be difficult to dissect a complex molecular process mediated across various cells.
335 For this purpose, researchers developed many computational methodologies integrating the spatial transcriptome with corresponding scRNA-seq observations [1, 4, 6, 16, 29]. However, most of
336 these methodologies relied on cell type labeling with scRNA-seq observations, which can be the
337 upper resolution limit for spatial distribution analysis. Indeed, we showed that single cells could
338 be spatially assigned to more specific regions compared with cell type mapping of the fine grained
339 excitatory neuron populations. Furthermore, simulation experiments for the integration of single
340 cell and spatial transcriptome showed that, for cell type based spatial deconvolution, the deviation
341 between the true population structures and the assumed population structures induces an accuracy
342 decay for both spatial assignment of single cells and prioritization of colocalization relationships.
343 Hence, the label-free property of DeepCOLOR enabled us to capture the colocalization network of
344 various cell populations, identifying niche environments with unprecedented accuracy.

345 Cell-cell communications are crucial for not only normal development but also disease progression
346 [3]. Indeed, many recent advancements in therapeutic strategies involve the perturbation of cell-
347 cell communication [47]. Hence, computational methodologies inferring cell-cell communication are
348 extensively developed by targeting scRNA-seq observations [5, 15, 26]. However, single-cell molecular
349 profiles derived from scRNA-seq observation lose their spatial context. Adequate spatial proximity
350 is an important factor contributing to the induction of cell-cell communication. We quantified ligand
351 activity only between colocalized single-cell pairs, which are more likely to communicate with each
352 other than randomly selected single-cell pairs. This analysis highlighted several pathways of cell-cell
353 communication reported in previous studies and predicted novel molecular machinery involved in
354 mediating communication between fibroblasts and invasive tumor cells, which was validated at the
355 protein and RNA level.

356 A major limitation of DeepCOLOR is that it deconvolutes all spatial transcriptome profiles into
357 single-cell molecular profiles captured by scRNA-seq. Hence, if spatial transcriptome-specific cell
358 populations do not exist in scRNA-seq, the deconvolution of spatial transcriptome spots, including
359 the populations, would be unreliable. One possible solution for this issue would be assuming several
360 pseudo inputs for scRNA-seq, which is optimizable and expected to be similar to the molecular
361 profiles of the populations unobserved in scRNA-seq since such pseudo-inputs approach succeeded
362 in capturing population structure as prior means in a variational auto encoder with VampPrior [45].
363 The improvements on this issue would increase the reliability of DeepCOLOR for the unpaired

366 spatial transcriptome and single-cell transcriptome, even if the included cell populations of them
367 could have some discrepancy.

368 Recent advancements in the observation of the single-cell transcriptome with other modalities,
369 such as open chromatin and the proteome, are opening new avenues to analyze the cross-talk
370 between the different layers of biological processes at the omics scale [9, 34]. For cell-cell commun-
371 ication, protein signals from other cells alter the epigenetic profiles of the nucleus and change the
372 transcription kinetics of various genes, which generate molecular signals for communicating with
373 other cells through the protein layer. Hence, the application of DeepCOLOR to such multimodal
374 single omics data with spatial transcriptome is expected to produce a concrete basis for detecting
375 molecular changes in various layers induced by CCI. Finally, we anticipate that our newly devel-
376 oped computational framework could be utilized for uncovering molecular pathways via different
377 molecular layers and single-cell colocalization networks.

378 5 Methods

379 5.1 Data preprocessing and downstream analysis

380 Using 'scipy' Python package [48], we excluded single cells and spatial spots which expressed fewer
381 genes than 500 genes or more mitochondrial genes than 5% of total expression. We conducted and
382 visualized UMAP embeddings of the latent cell states of single cells using 'scipy'. We also utilized
383 'scipy' for clustering spatial transcriptome data by the Leiden clustering algorithm with default
384 parameters.

385 5.2 Spatial mapping of single cells using a neural network

386 To quantify the expected contribution of every single cell in scRNA-seq for determining all spatial
387 spots in the spatial transcriptome, we employed a probabilistic model for the spatial transcriptome
388 observation, given the expected contribution of all single cells observed in the scRNA-seq anal-
389 ysis. We estimated the contribution by maximizing the likelihood of the probabilistic model for
390 observation of the spatial transcriptome. However, the naive formulation of this problem can lead
391 to overfitting due to the numerous independent parameters. We employed a continuous mapping
392 function from a latent representation of a single cell to a spatial spot to overcome this limitation.
393 This formulation imposed a constraint on the mapping in that single cells with almost the same
394 molecular profiles were mapped similarly. This constraint was enhanced by the stochastic gradient

395 descent, where down-sampled single cells were used to calculate the likelihood gradient. This section
 396 introduces a variational autoencoder (VAE) for obtaining a stochastic latent representation of the
 397 single cells, the probabilistic model of the spatial transcriptome, and the optimization procedure.

398 **5.2.1 Derivation of the stochastic latent representation of the single cell transcriptome**

399 We utilized a variational auto encoder (VAE) for deriving latent representations for single cell
 400 transcriptome observations. We defined the generative model of scRNA-seq observation of the cell
 401 $c, x_c \in \mathbb{R}^G$ as shown below:

$$\begin{aligned} P_\theta(x_c, z_c) &= P(z_c) \prod_{g=1}^G P_\theta(x_{c,g}|z_c, \alpha_g^{(sc)}) \\ P_\theta(x_{c,g}|z_c, \alpha_g^{(sc)}) &= \text{NegativeBinomial}(x_{c,g}|f_\theta(z_c)_g, \alpha_g^{(sc)}) \\ P(z_c) &= \text{Normal}(z_c|0, I) \end{aligned}$$

402 where G is the number of genes, $z \in \mathbb{R}^M$ is a latent cell state and $f_\theta: \mathbb{R}^M \rightarrow \mathbb{R}^G$ is a decoder
 403 neural network described in **Supplementary Table 1** and $\alpha_g^{(sc)}$ is the dispersion parameter of the
 404 gene g . We approximated the posterior distribution of latent representation $P(z_c|x_c) \propto P(x_c, z_c)$
 405 using the Gaussian distribution as shown below:

$$q_\phi(z_c|x_c) = \text{Normal}(z_c|\mu_\phi(x_c), \sigma_\phi^2(x_c I))$$

406 where $\mu_\phi, \sigma_\phi^2: \mathbb{R}^G \rightarrow \mathbb{R}^D$ are encoder neural networks described in **Supplementary Table 1**. To
 407 approximate the true posterior distribution appropriately, we maximized the evidence lower bound
 408 (ELBO) for θ and ϕ , which is defined as follows:

$$\text{ELBO}(X) = \sum_{c=1}^N E_{q_\phi(z_c|x_c)}[\log P_\theta(x_c|z_c, \alpha_g^{(sc)})] - D_{KL}[q_\phi(z_c|x_c)||P(z_c)]$$

409 where $X = (x_1, \dots, x_N)^T$ and N is the total number of cells. We maximized this ELBO using the
 410 Adam optimizer implemented with a learning rate of 0.0004 for 500 epochs.

411 **5.2.2 Probabilistic model of spatial transcriptome data**

412 We assumed that the expression of gene g at spatial spot s , $e_{s,g}$ follows a negative binomial distri-
 413 bution as shown below:

$$P(e_{s,g}|\mu_{\theta, \theta', s, g}, \alpha_g^{(sp)}) = \text{NegativeBinomial}(e_{s,g}|\mu_{\theta, \theta', s, g}, \alpha_g^{(sp)})$$

414 where $\mu_{\theta,\theta',s,g}$ is the unobserved expression level of the gene g at spot s and $\alpha_g^{(\text{sp})}$ is the dispersion
 415 parameter of the gene g . To attribute the spatial expression profile to the expression profile observed
 416 using scRNA-seq, we constructed an expected contribution of cell state z for spot s as a continuous
 417 function implemented by neural network $m_{\theta'}(z)_s$ described in **Supplementary Table 1**. Using
 418 the mapping function, we modeled $\mu_{\theta,\theta',s,g}$ as the weighted average of the scRNA-seq expression
 419 profile, given the following approximated posterior distribution of the latent cell states:

$$\begin{aligned}\mu_{\theta,\theta',s,g} &= \int dz q_{\phi}(z|X) r_g m_{\theta'}(z)_s f_{\theta}(z)_g + l_g \\ q_{\phi}(z|X) &= \frac{1}{N} \sum_{c=1}^N q_{\phi}(z|x_c)\end{aligned}$$

420 where $q_{\phi}(z|X)$ is the posterior distribution of a latent cell state, given the total scRNA-seq data
 421 set X , r_g is the gene-wise technical capturing ratio of spatial transcriptome observation compared
 422 to that of scRNA-seq, and l_g is the gene-wise shift parameter that is assumed to represent ambient
 423 RNA in the spatial transcriptome data. Since the exact integration in equation X is not feasible, we
 424 calculated the stratified Monte Carlo approximation of the posterior distribution as shown below:

$$\begin{aligned}\mu_{\theta,\theta',s,g} &\approx \frac{1}{N} \sum_{c=1}^N r_g m_{\theta'}(z_c)_s f_{\theta}(z_c)_g + l_g \\ z_c &\sim q_{\phi}(z|x_c).\end{aligned}$$

425 5.2.3 Stochastic optimization for smooth mapping function

426 To derive the mapping function optimized for the data, we maximized the log likelihood

$$L = \sum_{s,g} \log P(e_{s,g} | \mu_{s,g}, \alpha_g^{(\text{sp})}). \quad (1)$$

427 Since the computational complexity of the mean parameter defined above is proportional to the
 428 number of cells, we calculated and optimized the likelihood for spatial transcriptome observation
 429 with the mean parameter for mini-batches of single cells, M :

$$\begin{aligned}P(e_{s,g} | \mu_{\theta,\theta',s,g}^M, \alpha_g^{(\text{sp})}) &= \text{NegativeBinomial}(e_{s,g} | \mu_{\theta,\theta',s,g}^M, \alpha_g^{(\text{sp})}) \\ \mu_{\theta,\theta',s,g}^M &= \frac{1}{\|M\|} \sum_{c \in M}^C r_g m_{\theta'}(z_c)_s f_{\theta}(z_c)_g + l_g.\end{aligned}$$

430 This downsampling for single cells imposed a constraint on the mapping function in that the random
 431 subsets of single cells could reconstruct consistent expression profiles of spatial observations. Hence,
 432 the mapping function was expected to be enhanced for estimating similar mapping profiles for single

433 cells with similar latent representation. To optimize this stochastic likelihood, we utilized Adam
434 implemented in PyTorch with a learning rate of 0.0004 for 500 epochs. For this optimization, we
435 did not used randomly selected 2% of cells and 10% of genes for testing the accuracy. We also note
436 that we did not update the parameters of θ and ϕ so that the encoder and decoder networks keep
437 the information on single-cell expression profiles.

438 **5.3 Colocalization analysis based on spatial mapping**

439 **5.3.1 Construction of the expected colocalization matrix**

440 DeepCOLOR could estimate the contribution of every single cell to each spot $m_{\theta'}(z_c)_s$. We utilized
441 this property for the analysis of colocalization among single cells. First, to filter out single cells that
442 were not mapped well, we excluded cells whose cumulative values of total contribution $\sum_s m_{\theta'}(z_c)_s$
443 were lower than 0.05. Next, we normalized the spatial distribution for each cell so that the sum-
444 mation for all spots was equal to 1, $\hat{A}_{c,s} = \frac{m_{\theta'}(z_c)_s}{\sum_s m_{\theta'}(z_c)_s}$. We calculated the colocalization matrix as
445 a product of the normalized spatial distribution and its transpose:

$$C = \hat{A}\hat{A}^T.$$

446 Here, the element of the colocalization at i th row and j th column represents the colocalization score
447 between cell i and cell j . We calculated the log ratio of the scores to that observed between two
448 cells that were uniformly mapped to each spatial spot:

$$L = \log_2 N_s C$$

449 where N_s is the number of spots in the spatial transcriptome. We selected all colocalization pairs i, j
450 whose $L_{i,j}$ exceeded 1. This criterion for the colocalization pair corresponds to the case where pairs
451 were localized together with a probability of two times higher than that observed when uniformly
452 distributed across all spots.

453 **5.3.2 Ligand activity between colocalized single cells**

454 To dissect the molecular machinery involved in mediating cell-cell communication, we combined
455 the ligand-target regulatory potential implemented within Nichenet with the expression profiles of
456 colocalized cell pairs [5], representing how strongly existing knowledge supports the influence of the
457 ligand on the expression of the target gene in other cells, with the detection of ligand expression of

458 colocalized cells. We calculated the receiver scores for ligands l as follows:

$$A_{c,l} = \sum_g W_{l,g} H(g, \tilde{X}_c, p)$$

459 where $W_{l,g}$ is a ligand–target regulatory potential value of Nichenet [5], $H(i, x, p) = I(x_i > q_p(x))$,
460 $q_p(x)$ is the p quantile of vector x and \tilde{X} is the scaled expression that was calculated using the
461 ‘scanpy.pp.scale’ function implemented in the Scanpy package after resampling 500 cells per every
462 cell cluster to be analyzed [48]. We calculated the colocalized ligand activity of l from single cell
463 cluster k to k' :

$$B_{k,k',l} = \sum_{c \in C_k, c' \in C'_k} I(L_{c,c'} > 1) H(c, A_{*,l}, 0.9) H(c, \tilde{X}_{*,l}, 0.9).$$

464 where C_k is R resampled single cells of cluster k ($R = 500$ in this study) and $\tilde{X}_{*,l}$ and $A_{*,l}$ denotes
465 l -th column vector of X and A . The colocalized ligand activity $B_{k,k',l}$ corresponds to the expected
466 number of colocalized cell pairs with high ligand expression and high ligand activity between the
467 cell types.

468 5.3.3 Clustering colocalized pairs of single cells

469 We derived the latent representation of colocalized pairs described above as the summation of the
470 single-cell latent representations, which were derived from a VAE of scRNA-seq $p_{c,c'} = z_c + z_{c'}$.
471 We extracted the colocalized pairs between two clusters of single cells subjected to colocalization
472 analysis. We clustered the latent representation of colocalized pairs using the Leiden algorithm
473 implemented in Scanpy with resolution parameter 0.1. This clustering of the latent representations
474 of colocalized pairs segregated the subpopulation of colocalized pairs with similar molecular profiles.

475 5.3.4 Differentially expressed gene analysis of colocalization clusters

476 To characterize the molecular profiles of single cells that belonged to specific colocalization clusters,
477 we conducted a differentially expressed gene (DEG) analysis between single cells in the colocalization
478 clusters and the other single cells that belonged to the same single cell clusters. We used the
479 Wilcoxon rank-sum test with Benjamini-Hochberg multiple test correction for this DEG analysis,
480 implemented in the Scanpy dataset. For gene enrichment analysis, we conducted Fisher’s exact test
481 for gene sets recorded in IMPaLA [27].

482 **5.3.5 TCGA analysis of the correlation and the survival date association of colocalized**
483 **population signatures**

484 To determine whether the identified colocalized population was also colocalized across samples, we
485 analyzed the correlation between the signature scores of both populations in the TCGA dataset.
486 We used FPKM values of RNA-seq data obtained in 1993 from squamous cell carcinoma samples to
487 calculate the population signature scores. The signature score for each sample was calculated using
488 the mean z-scores of log FPKM values plus 1 of population-specific genes. The population-specific
489 genes with up-or down-regulated expression were defined as genes with adjusted p-values smaller
490 than 0.01 and log2 fold changes larger than 1 or smaller than -1, as observed in DEG analysis
491 for each population. We excluded overlapped genes for the calculation of signature scores. We
492 evaluated Pearson's correlation between the signature scores for both populations. The association
493 between survival date and these scores and gene expression levels was analyzed using R package
494 survival after stratification into the top 20% and bottom 20% of scores and expression levels.

495 **5.4 Simulation of the spatial transcriptome**

496 To evaluate the performance of DeepCOLOR in the spatial assignment of the single-cell transcriptome
497 and detection of colocalized populations, we conducted a simulation of the spatial transcriptome
498 from reference scRNA-seq data similar to the simulation method implemented in [29]. First,
499 we separated the scRNA-seq population into two randomly selected subpopulations for simulation
500 and training, defined as $C^{(s)}$ and $C^{(t)}$, respectively. Next, we assumed $R = 10$ regions, each composed
501 of randomly selected clusters from K clusters of scRNA-seq data derived by ‘scanpy.tl.leiden’
502 with specified resolution parameters. We determined the abundance of region r in spot s as
503 $\pi_{s,r} \sim \text{Dirichlet}(\frac{1}{R})$. The composition of cluster k in region r was $\tilde{\rho}$ where $\tilde{\rho}_{r,k} = \frac{t_{r,k}\rho_{r,k}}{\sum_{k'=1}^{K'} t_{r,k'}\rho_{r,k'}}$,
504 $t_{r,k} \sim \text{Bernoulli}(\frac{K'}{K})$, $\rho_{r,k} \sim \text{Uniform}(0, 1)$ and $K' = 5$. Combining these two hierarchical compositions,
505 we calculated the expected abundance of single cells c of the simulation dataset in each spot
506 s as follows:

$$W_{c,s} \sim \text{Poisson}(p_{c,s})$$
$$p_{s,c} = \frac{1}{N_k} \sum_r \pi_{s,r} \rho_{r,k}$$

507 where c belongs to cluster k , and N_k represents the number of cells in cluster k used for the
508 simulation dataset. We simulated the spatial gene expression of gene g at spot s from the weighted

509 average of single cell expression profile X :

$$\begin{aligned}s_{s,g} &= \text{Poisson}(\lambda_{s,g}^{(s)}) \\ \lambda_{s,g}^{(s)} &= \sum_{c \in C^{(s)}} W_{s,c} X_{c,g}.\end{aligned}$$

510 For evaluation, we assigned the weight values of cell c in the simulation dataset to the nearest
511 neighbor cell in the training dataset $N^{(s,t)}(c)$, based on 30 dimensional PCA-coordinates of their
512 expression profiles. Hence, the assignment of cell c' of the training population in spot s is

$$W'_{s,c'} = \sum_{c \in C^{(s)}} I(c' = N^{(s,t)}(c)) W_{s,c}.$$

513 5.4.1 Evaluating spatial assignment of single cells

514 For the evaluation of spatial assignment, we calculated the recall of the training cells that were most
515 similar to simulation cells included in each spot

$$\text{Recall}(p)_s = \frac{1}{\sum_{c' \in C^{(t)}} I(W'_{s,c'} > 0)} \sum_{c' \in C^{(t)}} H(c', \hat{W}_s, 1 - p) I(W'_{s,c'} > 0)$$

516 where p is the specified positive rate and \hat{W}_s is the estimated assignment of cells c in spot s .

517 5.4.2 Evaluating detection of colocalized cell populations

518 For the detection of colocalized populations, we evaluated the detection accuracy of cluster pairs
519 belonging to the same region. As a predictor, we calculated the mean colocalization scores across
520 cell pairs within each cluster pair:

$$\tilde{C}_{k,k'} = \frac{1}{|C_k^{(t)}||C_{k'}^{(t)}|} \sum_{c \in C_k^{(t)}, c' \in C_{k'}^{(t)}} C_{c,c'}.$$

521 5.4.3 Comparison with other methods

522 We compared the performance of DeepCOLOR with that of existing computational methodologies
523 for deconvolving spot-wise spatial transcriptomes, namely, Cell2location [29], and Tangram [4].
524 For both methodologies, we used default parameters used in the evaluation experiments. Since
525 Cell2location provides cluster-wise abundance for each spot, we deconvolved the weights into every
526 single cell equally for performance evaluation.

527 5.5 Human skin squamous cell carcinoma samples and histological analysis

528 Surgically resected skin samples from patients with squamous cell carcinoma were obtained at
529 Nagoya University Hospital. This study was approved by the Ethics Committee of Nagoya Uni-
530 versity, Graduate School of Medicine. Human tissues were fixed in 10 % neutral-buffered formalin,
531 dehydrated, and embedded in paraffin. Immunohistochemical analysis was performed using anti-
532 Activin A antibody (Novus Biologicals, Centennial, CO, USA) as previously described [38]. In
533 situ hybridization (ISH) analysis was performed by RNAscope technology (RNAscope 2.5 HD De-
534 tection Kit; Advanced Cell Diagnostics, Newark, CA, USA). Briefly, human tissue sections were
535 baked in an oven at 60°C for 1 h, deparaffinized, and incubated with H2O2 solution for 10 min
536 at room temperature. The slides were boiled in target-retrieval solution for 3 min in a pressure
537 cooker (SR-MP300; Panasonic, Kadoma, Japan) and incubated with protease solution for 30 min
538 at 40°C. The slides were then incubated with the relevant probe (human INHBA, NM_002192.4,
539 region 337-3141; Advanced Cell Diagnostics) for 3 h at 40°C in a dry oven (HybEZ II Hybridization
540 System; Advanced Cell Diagnostics), followed by successive incubation with Amp1-6 reagents. The
541 staining was visualized with 3,3'-diaminobenzidine, followed by counterstaining with hematoxylin.
542 Two independent pathologists evaluated the human tissues subjected to ISH and hematoxylin and
543 eosin (H&E) staining.

544 5.6 Data and code availability

545 We derived combined spatial and single-cell transcriptome datasets from Gene Expression Omnibus
546 (Mouse brain cortex dataset: , SCC dataset: GSE144240, and SARS-CoV2 dataset: GSE171668).
547 Codes for our analysis, including DeepCOLOR, are available at <https://www.github.com/kojikoji/deepcolor>.

548 6 Acknowledgement

549 This was supported by The Japan Society for the Promotion of Science (grant no. 20H04841,
550 20H04281, and 20K21832), The Japan Agency for Medical Research and Development (AMED)
551 (grant no. JP20ek0109488 and JP21wm0425007) and The Japan Science and Technology Agency
552 (JST) (Moonshot R&D, grant no. JPMJMS2025). The computational resource of AI Bridging
553 Cloud Infrastructure (ABCi) was provided by the National Institute of Advanced Industrial Science
554 and Technology (AIST), and SHIROKANE by the Human Genome Center, the University of Tokyo.

555 7 Author contributions

556 YK designed the study and performed software development and data analysis. SM and AE con-
557 ducted and supervised experiments. SH, HH and MI conducted software development and data
558 analysis. AE collected samples. TS designed and supervised the study.

559 References

560 [1] A. Andersson, J. Bergenstråhle, M. Asp, L. Bergenstråhle, A. Jurek, J. Fernández Navarro,
561 and J. Lundeberg. Single-cell and spatial transcriptomics enables probabilistic inference of
562 cell type topography. *Commun Biol*, 3(1):565, 2020. Alma Bergenstråhle, Joseph
563 Asp, Michaela Bergenstråhle, Ludvig Jurek, Aleksandra Fernández Navarro, José Lundeberg,
564 Joakim 2020/10/11.

565 [2] A. Andersson, L. Larsson, L. Stenbeck, F. Salmén, A. Ehinger, S. Z. Wu, G. Al-Eryani, D. Ro-
566 den, A. Swarbrick, Å Borg, J. Frisén, C. Engblom, and J. Lundeberg. Spatial deconvolution
567 of her2-positive breast cancer delineates tumor-associated cell type interactions. *Nat Com-
568 mun*, 12(1):6012, 2021. Alma Larsson, Ludvig Stenbeck, Linnea Salmén, Fredrik
569 Ehinger, Anna Wu, Sunny Z Al-Eryani, Ghamdan Roden, Daniel Swarbrick, Alex Borg, Åke
570 Frisén, Jonas Engblom, Camilla Lundeberg, Joakim 2021/10/16.

571 [3] Erick Armingol, Adam Officer, Olivier Harismendy, and Nathan E. Lewis. Deciphering cell–cell
572 interactions and communication from gene expression. *Nature Reviews Genetics*, 22(2):71–88,
573 2021.

574 [4] T. Biancalani, G. Scalia, L. Buffoni, R. Avasthi, Z. Lu, A. Sanger, N. Tokcan, C. R. Vander-
575 burg, Å Segerstolpe, M. Zhang, I. Avraham-Davidi, S. Vickovic, M. Nitzan, S. Ma, A. Subra-
576 manian, M. Lipinski, J. Buenrostro, N. B. Brown, D. Fanelli, X. Zhuang, E. Z. Macosko, and
577 A. Regev. Deep learning and alignment of spatially resolved single-cell transcriptomes with
578 tangram. *Nat Methods*, 18(11):1352–1362, 2021. Tommaso Biancalani, Gabriele Buffoni, Lorenzo Avasthi, Raghav Lu, Ziqing Sanger, Aman Tokcan, Neriman Vanderburg, Charles R Segerstolpe, Åsa Zhang, Meng Avraham-Davidi, Inbal Vickovic, Sanja Nitzan, Mor Ma, Sai Subramanian, Ayshwarya Lipinski, Michal Buenrostro, Jason Brown, Nik Bear Fanelli, Duccio Zhuang, Xiaowei Macosko, Evan Z Regev, Aviv 2021/10/30.

583 [5] R. Browaeys, W. Saelens, and Y. Saeys. Nichenet: modeling intercellular communication by
584 linking ligands to target genes. *Nat Methods*, 17(2):159–162, 2020. Browaeys, Robin Saelens,
585 Wouter Saeys, Yvan 2019/12/11.

586 [6] Dylan M. Cable, Evan Murray, Luli S. Zou, Aleksandrina Goeva, Evan Z. Macosko, Fei Chen,
587 and Rafael A. Irizarry. Robust decomposition of cell type mixtures in spatial transcriptomics.
588 *Nature Biotechnology*, 2021.

589 [7] Sara M. Camp, Ermelinda Ceco, Carrie L. Evenoski, Sergei M. Danilov, Tong Zhou, Ed-
590 die T. Chiang, Liliana Moreno-Vinasco, Brandon Mapes, Jieling Zhao, Gamze Gursoy, Mary E.
591 Brown, Djanybek M. Adyshev, Shahid S. Siddiqui, Hector Quijada, Saad Sammani, Elefthe-
592 ria Letsiou, Laleh Saadat, Mohammed Yousef, Ting Wang, Jie Liang, and Joe G. N. Garcia.
593 Unique toll-like receptor 4 activation by nampt/pbef induces nf κ b signaling and inflammatory
594 lung injury. *Scientific Reports*, 5(1):13135, 2015.

595 [8] Kai-Ping Chang, Chih-Ching Wu, Ku-Hao Fang, Chi-Ying Tsai, Yu-Liang Chang, Shiao-Chin
596 Liu, and Huang-Kai Kao. Serum levels of chemokine (c-x-c motif) ligand 9 (cxcl9) are associated
597 with tumor progression and treatment outcome in patients with oral cavity squamous cell
598 carcinoma. *Oral Oncology*, 49(8):802–807, 2013.

599 [9] Song Chen, Blue B. Lake, and Kun Zhang. High-throughput sequencing of the transcriptome
600 and chromatin accessibility in the same cell. *Nature Biotechnology*, 37(12):1452–1457, 2019.

601 [10] Zong-Lin Chen, Lu Qin, Xu-Bin Peng, Yu Hu, and Bo Liu. Inhba gene silencing inhibits
602 gastric cancer cell migration and invasion by impeding activation of the tgf- β signaling pathway.
603 *Journal of Cellular Physiology*, 234(10):18065–18074, 2019.

604 [11] Diane Marie Del Valle, Seunghee Kim-Schulze, Hsin-Hui Huang, Noam D. Beckmann, Sharon
605 Nirenberg, Bo Wang, Yonit Lavin, Talia H. Swartz, Deepu Madduri, Aryeh Stock, Thomas U.
606 Marron, Hui Xie, Manishkumar Patel, Kevin Tuballes, Oliver Van Oekelen, Adeeb Rahman, Pa-
607 tricia Kovatch, Judith A. Aberg, Eric Schadt, Sundar Jagannath, Madhu Mazumdar, Alexan-
608 der W. Charney, Adolfo Firpo-Betancourt, Damodara Rao Mendu, Jeffrey Jhang, David Reich,
609 Keith Sigel, Carlos Cordon-Cardo, Marc Feldmann, Samir Parekh, Miriam Merad, and Sacha
610 Gnjatic. An inflammatory cytokine signature predicts covid-19 severity and survival. *Nature
Medicine*, 26(10):1636–1643, 2020.

612 [12] Toni M. Delorey, Carly G. K. Ziegler, Graham Heimberg, Rachelly Normand, Yiming Yang, Åsa
613 Segerstolpe, Domenic Abbondanza, Stephen J. Fleming, Ayshwarya Subramanian, Daniel T.
614 Montoro, Karthik A. Jagadeesh, Kushal K. Dey, Pritha Sen, Michal Slyper, Yered H. Pita-
615 Juárez, Devan Phillips, Jana Biermann, Zohar Bloom-Ackermann, Nikolaos Barkas, Andrea
616 Ganna, James Gomez, Johannes C. Melms, Igor Katsyv, Erica Normandin, Pourya Naderi,
617 Yury V. Popov, Siddharth S. Raju, Sebastian Niezen, Linus T.-Y. Tsai, Katherine J. Sid-
618 dle, Malika Sud, Victoria M. Tran, Shamsudheen K. Vellarikkal, Yiping Wang, Liat Amir-
619 Zilberstein, Deepak S. Atri, Joseph Beechem, Olga R. Brook, Jonathan Chen, Prajan Divakar,
620 Phylicia Dorceus, Jesse M. Engreitz, Adam Essene, Donna M. Fitzgerald, Robin Fropf, Steven
621 Gazal, Joshua Gould, John Grzyb, Tyler Harvey, Jonathan Hecht, Tyler Hether, Judit Jané-
622 Valbuena, Michael Leney-Greene, Hui Ma, Cristin Mccabe, Daniel E. Mcoughlin, Eric M.
623 Miller, Christoph Muus, Mari Niemi, Robert Padera, Liiliu Pan, Deepti Pant, Carmel Pe'Er,
624 Jenna Pfiffner-Borges, Christopher J. Pinto, Jacob Plaisted, Jason Reeves, Marty Ross, Melissa
625 Rudy, Erroll H. Rueckert, Michelle Siciliano, Alexander Sturm, Ellen Todres, Avinash Waghray,
626 Sarah Warren, Shuting Zhang, Daniel R. Zollinger, Lisa Cosimi, Rajat M. Gupta, Nir Haco-
627 hen, Hanina Hibshoosh, Winston Hide, Alkes L. Price, Jayaraj Rajagopal, Purushothama Rao
628 Tata, Stefan Riedel, Gyongyi Szabo, Timothy L. Tickle, Patrick T. Ellinor, Deborah Hung,
629 Pardis C. Sabeti, Richard Novak, Robert Rogers, Donald E. Ingber, Z. Gordon Jiang, Dejan
630 Juric, Mehrtash Babadi, Samouil L. Farhi, Benjamin Izar, James R. Stone, et al. Covid-19
631 tissue atlases reveal sars-cov-2 pathology and cellular targets. *Nature*, 595(7865):107–113, 2021.

632 [13] Qiang Ding, Panpan Lu, Yujia Xia, Shuping Ding, Yuhui Fan, Xin Li, Ping Han, Jingmei Liu,
633 Dean Tian, and Mei Liu. Cxcl9: evidence and contradictions for its role in tumor progression.
634 *Cancer Medicine*, 5(11):3246–3259, 2016.

635 [14] Michael A. Durante, Daniel A. Rodriguez, Stefan Kurtenbach, Jeffim N. Kuznetsov, Mar-
636 garet I. Sanchez, Christina L. Decatur, Helen Snyder, Lynn G. Feun, Alan S. Livingstone,
637 and J. William Harbour. Single-cell analysis reveals new evolutionary complexity in uveal
638 melanoma. *Nature Communications*, 11(1), 2020.

639 [15] M. Efremova, M. Vento-Tormo, S. A. Teichmann, and R. Vento-Tormo. Cellphonedb: inferring
640 cell-cell communication from combined expression of multi-subunit ligand-receptor complexes.
641 *Nat Protoc*, 15(4):1484–1506, 2020. Efremova, Mirjana Vento-Tormo, Miquel Teichmann, Sarah
642 A Vento-Tormo, Roser 2020/2/28.

643 [16] M. Elosua-Bayes, P. Nieto, E. Mereu, I. Gut, and H. Heyn. Spotlight: seeded nmf regression to
644 deconvolute spatial transcriptomics spots with single-cell transcriptomes. *Nucleic Acids Res*,
645 49(9):e50, 2021. Elosua-Bayes, Marc Nieto, Paula Mereu, Elisabetta Gut, Ivo Heyn, Holger
646 2021/2/6.

647 [17] Chee-Huat Linus Eng, Michael Lawson, Qian Zhu, Ruben Dries, Noushin Koulena, Yodai
648 Takei, Jina Yun, Christopher Cronin, Christoph Karp, Guo-Cheng Yuan, and Long Cai.
649 Transcriptome-scale super-resolved imaging in tissues by rna seqfish+. *Nature*, 568(7751):235–
650 239, 2019.

651 [18] G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis. Single-cell rna-seq
652 denoising using a deep count autoencoder. *Nat Commun*, 10(1):390, 2019. Eraslan, Gökçen
653 Simon, Lukas M Mircea, Maria Mueller, Nikola S Theis, Fabian J 2019/1/25.

654 [19] Robert A. Gatenby and Robert J. Gillies. Glycolysis in cancer: A potential target for therapy.
655 *The International Journal of Biochemistry & Cell Biology*, 39(7-8):1358–1366, 2007.

656 [20] Jordi Gonzalez-Molina, Silvia Gramolelli, Zehuan Liao, Joseph W. Carlson, Päivi M. Ojala,
657 and Kaisa Lehti. Mmp14 in sarcoma: A regulator of tumor microenvironment communication
658 in connective tissues. *Cells*, 8(9):991, 2019.

659 [21] Laura González-Silva, Laura Quevedo, and Ignacio Varela. Tumor functional heterogeneity
660 unraveled by scRNA-seq technologies. *Trends in Cancer*, 6(1):13–19, 2020.

661 [22] Laleh Haghverdi, Maren Büttner, F Alexander Wolf, Florian Buettner, and Fabian J Theis.
662 Diffusion pseudotime robustly reconstructs lineage branching. *Nature Methods*, 13(10):845–848,
663 2016.

664 [23] Kun Han, Robert V. Blair, Naoki Iwanaga, Fengming Liu, Kasi E. Russell-Lodrigue, Zhong-
665 nan Qin, Cecily C. Midkiff, Nadia A. Golden, Lara A. Doyle-Meyers, Mohammad E. Kabir,
666 Kristin E. Chandler, Kellie L. Cutrera, Mi Ren, Christopher J. Monjure, Gabrielle Lehmicke,
667 Tracy Fischer, Brandon Beddingfield, Alanna G. Wanek, Angela Birnbaum, Nicholas J. Maness,
668 Chad J. Roy, Prasun K. Datta, Jay Rappaport, Jay K. Kolls, and Xuebin Qin. Lung expres-
669 sion of human angiotensin-converting enzyme 2 sensitizes the mouse to sars-cov-2 infection.
670 *American Journal of Respiratory Cell and Molecular Biology*, 64(1):79–88, 2021.

671 [24] A. Ishihara, T. Yoshida, H. Tamaki, and T. Sakakura. Tenascin expression in cancer cells and
672 stroma of human breast cancer and its prognostic significance. *Clin Cancer Res*, 1(9):1035–41,
673 1995. Ishihara, A Yoshida, T Tamaki, H Sakakura, T 1995/9/1.

674 [25] Andrew L. Ji, Adam J. Rubin, Kim Thrane, Sizun Jiang, David L. Reynolds, Robin M. Mey-
675 ers, Margaret G. Guo, Benson M. George, Annelie Mollbrink, Joseph Bergenstråhle, Ludvig
676 Larsson, Yunhao Bai, Bokai Zhu, Aparna Bhaduri, Jordan M. Meyers, Xavier Rovira-Clavé,
677 S. Tyler Hollmig, Sumaira Z. Aasi, Garry P. Nolan, Joakim Lundeberg, and Paul A. Khavari.
678 Multimodal analysis of composition and spatial architecture in human squamous cell carci-
679 noma. *Cell*, 182(2):497–514.e22, 2020.

680 [26] Suoqin Jin, Christian F. Guerrero-Juarez, Lihua Zhang, Ivan Chang, Raul Ramos, Chen-
681 Hsiang Kuan, Peggy Myung, Maksim V. Plikus, and Qing Nie. Inference and analysis of
682 cell-cell communication using cellchat. *Nature Communications*, 12(1), 2021.

683 [27] A. Kamburov, R. Cavill, T. M. Ebbels, R. Herwig, and H. C. Keun. Integrated pathway-level
684 analysis of transcriptomics and metabolomics data with impala. *Bioinformatics*, 27(20):2917–
685 8, 2011. Kamburov, Atanas Cavill, Rachel Ebbels, Timothy M D Herwig, Ralf Keun, Hector
686 C 2011/9/7.

687 [28] D. Katoh, Y. Kozuka, A. Noro, T. Ogawa, K. Imanaka-Yoshida, and T. Yoshida. Tenascin-c
688 induces phenotypic changes in fibroblasts to myofibroblasts with high contractility through the
689 integrin $\alpha v\beta 1$ /transforming growth factor β /smad signaling axis in human breast cancer. *Am
690 J Pathol*, 190(10):2123–2135, 2020. Katoh, Daisuke Kozuka, Yuji Noro, Aya Ogawa, Tomoko
691 Imanaka-Yoshida, Kyoko Yoshida, Toshimichi 2020/7/11.

692 [29] V. Kleshchevnikov, A. Shmatko, E. Dann, A. Aivazidis, H. W. King, T. Li, R. Elmentait,
693 A. Lomakin, V. Kedlian, A. Gayoso, M. S. Jain, J. S. Park, L. Ramona, E. Tuck, A. Arutyunyan,
694 R. Vento-Tormo, M. Gerstung, L. James, O. Stegle, and O. A. Bayraktar. Cell2location maps
695 fine-grained cell types in spatial transcriptomics. *Nat Biotechnol*, 2022. Kleshchevnikov, Vitalii
696 Shmatko, Artem Dann, Emma Aivazidis, Alexander King, Hamish W Li, Tong Elmentait,
697 Rasa Lomakin, Artem Kedlian, Veronika Gayoso, Adam Jain, Mika Sarkin Park, Jun Sung
698 Ramona, Lauma Tuck, Elizabeth Arutyunyan, Anna Vento-Tormo, Roser Gerstung, Moritz
699 James, Louisa Stegle, Oliver Bayraktar, Omer Ali 2022/1/15.

700 [30] Manu P. Kumar, Jinyan Du, Georgia Lagoudas, Yang Jiao, Andrew Sawyer, Daryl C. Drummond, Douglas A. Lauffenburger, and Andreas Raue. Analysis of single-cell rna-seq identifies cell-cell communication associated with tumor characteristics. *Cell Reports*, 25(6):1458–1468.e4, 2018.

704 [31] Linlin Li, Mingxiang Huang, Jianshan Shen, Yao Wang, Rui Wang, Cai Yuan, Longguang Jiang, and Mingdong Huang. Serum levels of soluble platelet endothelial cell adhesion molecule 1 in covid-19 patients are associated with disease severity. *The Journal of Infectious Diseases*, 223(1):178–179, 2021.

708 [32] T. Lohoff, S. Ghazanfar, A. Missarova, N. Koulena, N. Pierson, J. A. Griffiths, E. S. Bardot, C.-H. L. Eng, R. C. V. Tyser, R. Argelaguet, C. Guibentif, S. Srinivas, J. Briscoe, B. D. Simons, A.-K. Hadjantonakis, B. Göttgens, W. Reik, J. Nichols, L. Cai, and J. C. Marioni. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. *Nature Biotechnology*, 2021.

713 [33] R. Lopez, J. Regier, M. B. Cole, M. I. Jordan, and N. Yosef. Deep generative modeling for single-cell transcriptomics. *Nat Methods*, 15(12):1053–1058, 2018.

715 [34] Sai Ma, Bing Zhang, Lindsay M. Lafave, Andrew S. Earl, Zachary Chiang, Yan Hu, Jiarui Ding, Alison Brack, Vinay K. Kartha, Tristan Tay, Travis Law, Caleb Lareau, Ya-Chieh Hsu, Aviv Regev, and Jason D. Buenrostro. Chromatin potential identified by shared single-cell profiling of rna and chromatin. *Cell*, 183(4):1103–1116.e20, 2020.

719 [35] Olga A. Mass, Joseph Tuccinardi, Luke Woodbury, Cody L. Wolf, Bri Grantham, Kelsey Holdaway, Xinzhu Pu, Matthew D. King, Don L. Warner, Cheryl L. Jorcyk, and Lisa R. Warner. Bioactive recombinant human oncostatin m for nmr-based screening in drug discovery. *Scientific Reports*, 11(1), 2021.

723 [36] R. Melo Ferreira, A. R. Sabo, S. Winfree, K. S. Collins, D. Janosevic, C. J. Gulbronson, Y. H. Cheng, L. Casbon, D. Barwinska, M. J. Ferkowicz, X. Xuei, C. Zhang, K. W. Dunn, K. J. Kelly, T. A. Sutton, T. Hato, P. C. Dagher, T. M. El-Achkar, and M. T. Eadon. Integration of spatial and single-cell transcriptomics localizes epithelial cell-immune cross-talk in kidney injury. *JCI Insight*, 6(12), 2021. Melo Ferreira, Ricardo Sabo, Angela R Winfree, Seth Collins, Kimberly S Janosevic, Danielle Gulbronson, Connor J Cheng, Ying-Hua Casbon, Lauren Barwinska, Daria

729 Ferkowicz, Michael J Xuei, Xiaoling Zhang, Chi Dunn, Kenneth W Kelly, Katherine J Sutton,
730 Timothy A Hato, Takashi Dagher, Pierre C El-Achkar, Tarek M Eadon, Michael T 2021/5/19.

731 [37] R. Melo Ferreira, A. R. Sabo, S. Winfree, K. S. Collins, D. Janosevic, C. J. Gulbronson, Y. H.
732 Cheng, L. Casbon, D. Barwinska, M. J. Ferkowicz, X. Xuei, C. Zhang, K. W. Dunn, K. J. Kelly,
733 T. A. Sutton, T. Hato, P. C. Dagher, T. M. El-Achkar, and M. T. Eadon. Integration of spatial
734 and single-cell transcriptomics localizes epithelial cell-immune cross-talk in kidney injury. *JCI
735 Insight*, 6(12), 2021. Melo Ferreira, Ricardo Sabo, Angela R Winfree, Seth Collins, Kimberly S
736 Janosevic, Danielle Gulbronson, Connor J Cheng, Ying-Hua Casbon, Lauren Barwinska, Daria
737 Ferkowicz, Michael J Xuei, Xiaoling Zhang, Chi Dunn, Kenneth W Kelly, Katherine J Sutton,
738 Timothy A Hato, Takashi Dagher, Pierre C El-Achkar, Tarek M Eadon, Michael T 2021/5/19.

739 [38] Shinji Mii, Yoshiki Murakumo, Naoya Asai, Mayumi Jijiwa, Sumitaka Hagiwara, Takuya
740 Kato, Masato Asai, Atsushi Enomoto, Kaori Ushida, Sayaka Sobue, Masatoshi Ichihara, and
741 Masahide Takahashi. Epidermal hyperplasia and appendage abnormalities in mice lacking
742 cd109. *The American Journal of Pathology*, 181(4):1180–1189, 2012.

743 [39] Reuben Moncada, Dalia Barkley, Florian Wagner, Marta Chiodin, Joseph C. Devlin, Maayan
744 Baron, Cristina H. Hajdu, Diane M. Simeone, and Itai Yanai. Integrating microarray-based
745 spatial transcriptomics and single-cell rna-seq reveals tissue architecture in pancreatic ductal
746 adenocarcinomas. *Nature Biotechnology*, 38(3):333–342, 2020.

747 [40] Hector Quijada, Tadeo Bermudez, Carrie L. Kempf, Daniel G. Valera, Alexander N. Gar-
748 cia, Sara M. Camp, Jin H. Song, Evelyn Franco, Jessica K. Burt, Belinda Sun, Joseph B.
749 Mascarenhas, Kimberlie Burns, Amir Gaber, Radu C. Oita, Vivian Reyes Hernon, Christy
750 Barber, Liliana Moreno-Vinasco, Xiaoguang Sun, Anne E. Cress, Diego Martin, Zhonglin Liu,
751 Ankit A. Desai, Viswanathan Natarajan, Jeffrey R. Jacobson, Steven M. Dudek, Christian
752 Bime, Saad Sammani, and Joe G.N. Garcia. Endothelial enampt amplifies pre-clinical acute
753 lung injury: efficacy of an enampt-neutralising monoclonal antibody. *European Respiratory
754 Journal*, 57(5):2002536, 2021.

755 [41] Samuel G. Rodriques, Robert R. Stickels, Aleksandrina Goeva, Carly A. Martin, Evan Murray,
756 Charles R. Vanderburg, Joshua Welch, Linlin M. Chen, Fei Chen, and Evan Z. Macosko. Slide-
757 seq: A scalable technology for measuring genome-wide expression at high spatial resolution.
758 *Science*, 363(6434):1463–1467, 2019.

759 [42] Erik Sahai, Igor Astsaturov, Edna Cukierman, David G. Denardo, Mikala Egeblad, Ronald M.
760 Evans, Douglas Fearon, Florian R. Greten, Sunil R. Hingorani, Tony Hunter, Richard O.
761 Hynes, Rakesh K. Jain, Tobias Janowitz, Claus Jorgensen, Alec C. Kimmelman, Mikhail G.
762 Kolonin, Robert G. Maki, R. Scott Powers, Ellen Puré, Daniel C. Ramirez, Ruth Scherz-
763 Shouval, Mara H. Sherman, Sheila Stewart, Thea D. Tlsty, David A. Tuveson, Fiona M. Watt,
764 Valerie Weaver, Ashani T. Weeraratna, and Zena Werb. A framework for advancing our
765 understanding of cancer-associated fibroblasts. *Nature Reviews Cancer*, 20(3):174–186, 2020.

766 [43] Manu Setty, Vaidotas Kiseliov, Jacob Levine, Adam Gayoso, Linas Mazutis, and Dana Pe’Er.
767 Characterization of cell fate probabilities in single-cell data with palantir. *Nature Biotechnology*,
768 37(4):451–460, 2019.

769 [44] P. L. Ståhl, F. Salmén, S. Vickovic, A. Lundmark, J. F. Navarro, J. Magnusson, S. Giacomo, M. Asp, J. O. Westholm, M. Huss, A. Mollbrink, S. Linnarsson, S. Codeluppi, Å Borg, F. Pontén, P. I. Costea, P. Sahlén, J. Mulder, O. Bergmann, J. Lundeberg, and J. Frisén. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. *Science*, 353(6294):78–82, 2016. Ståhl, Patrik L Salmén, Fredrik Vickovic, Sanja Lundmark, Anna Navarro, José Fernández Magnusson, Jens Giacomo, Stefania Asp, Michaela Westholm, Jakub O Huss, Mikael Mollbrink, Annelie Linnarsson, Sten Codeluppi, Simone Borg, Åke Pontén, Fredrik Costea, Paul Igor Sahlén, Pelin Mulder, Jan Bergmann, Olaf Lundeberg, Joakim Frisén, Jonas 2016/7/2.

770 [45] Jakub Tomczak and Max Welling. Vae with a vampprior. In *International Conference on
771 Artificial Intelligence and Statistics*, pages 1214–1223. PMLR, 2018.

772 [46] S. Vickovic, G. Eraslan, F. Salmén, J. Klughammer, L. Stenbeck, D. Schapiro, T. Äijö, R. Bonneau, L. Bergensträhle, J. F. Navarro, J. Gould, G. K. Griffin, Å Borg, M. Ronaghi, J. Frisén, J. Lundeberg, A. Regev, and P. L. Ståhl. High-definition spatial transcriptomics for in situ tissue profiling. *Nat Methods*, 16(10):987–990, 2019. Vickovic, Sanja Eraslan, Gökcen Salmén, Fredrik Klughammer, Johanna Stenbeck, Linnea Schapiro, Denis Äijö, Tarmo Bonneau, Richard Bergensträhle, Ludvig Navarro, José Fernández Gould, Joshua Griffin, Gabriel K Borg, Åke Ronaghi, Mostafa Frisén, Jonas Lundeberg, Joakim Regev, Aviv Ståhl, Patrik L 2019/9/11.

788 [47] Alex D. Waldman, Jill M. Fritz, and Michael J. Lenardo. A guide to cancer immunotherapy:
789 from t cell basic science to clinical practice. *Nature Reviews Immunology*, 20(11):651–668, 2020.

790 [48] F. Alexander Wolf, Philipp Angerer, and Fabian J. Theis. Scanpy: large-scale single-cell gene
791 expression data analysis. *Genome Biology*, 19(1), 2018.

792 [49] Chenglong Xia, Jean Fan, George Emanuel, Junjie Hao, and Xiaowei Zhuang. Spatial transcriptome
793 profiling by merfish reveals subcellular rna compartmentalization and cell cycle-dependent
794 gene expression. *Proceedings of the National Academy of Sciences*, 116(39):19490–19499, 2019.

795 [50] Yuan Ye, Zongan Liang, and Luzheng Xue. Neuromedin u: potential roles in immunity and
796 inflammation. *Immunology*, 162(1):17–29, 2021.

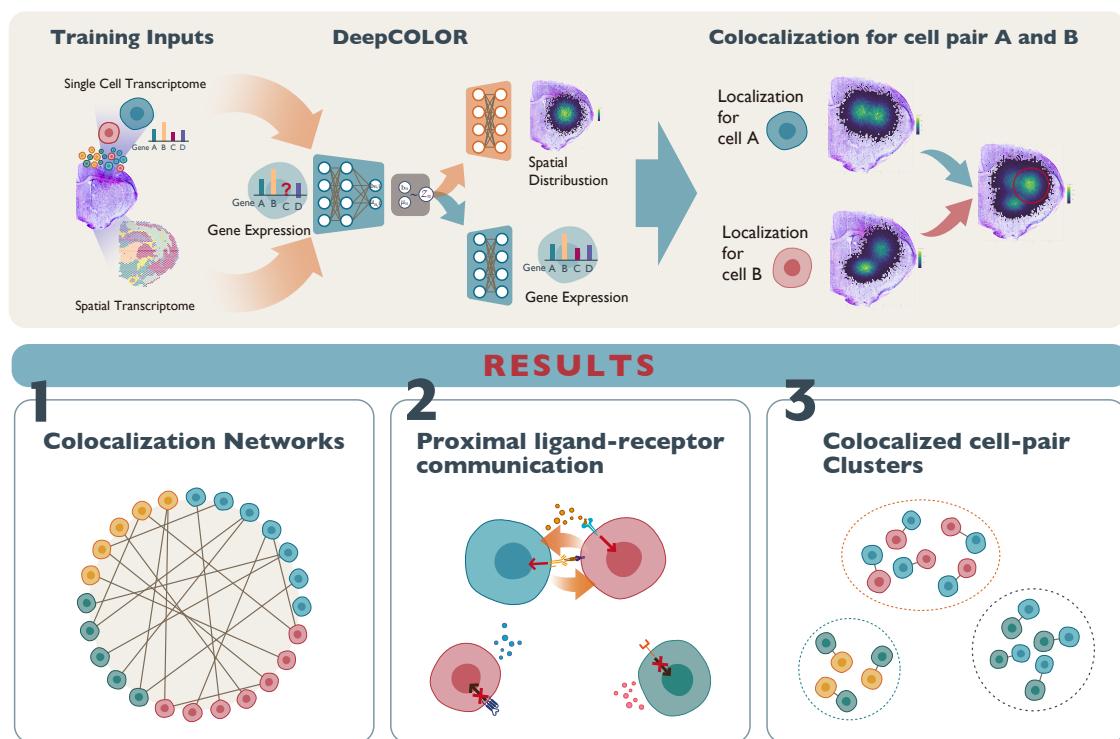


Figure 1: **Schematic representation of the workflow of DeepCOLOR** DeepCOLOR takes single cell and spatial transcriptome as training inputs and reconstruct spatial distribution and denoised expression profile from noisy single cell observation. Using spatial distribution, we can evaluate colocalization relationships between single cells and identify colocalization network, proximal ligand-receptor communication and colocalized cell-pair clusters.

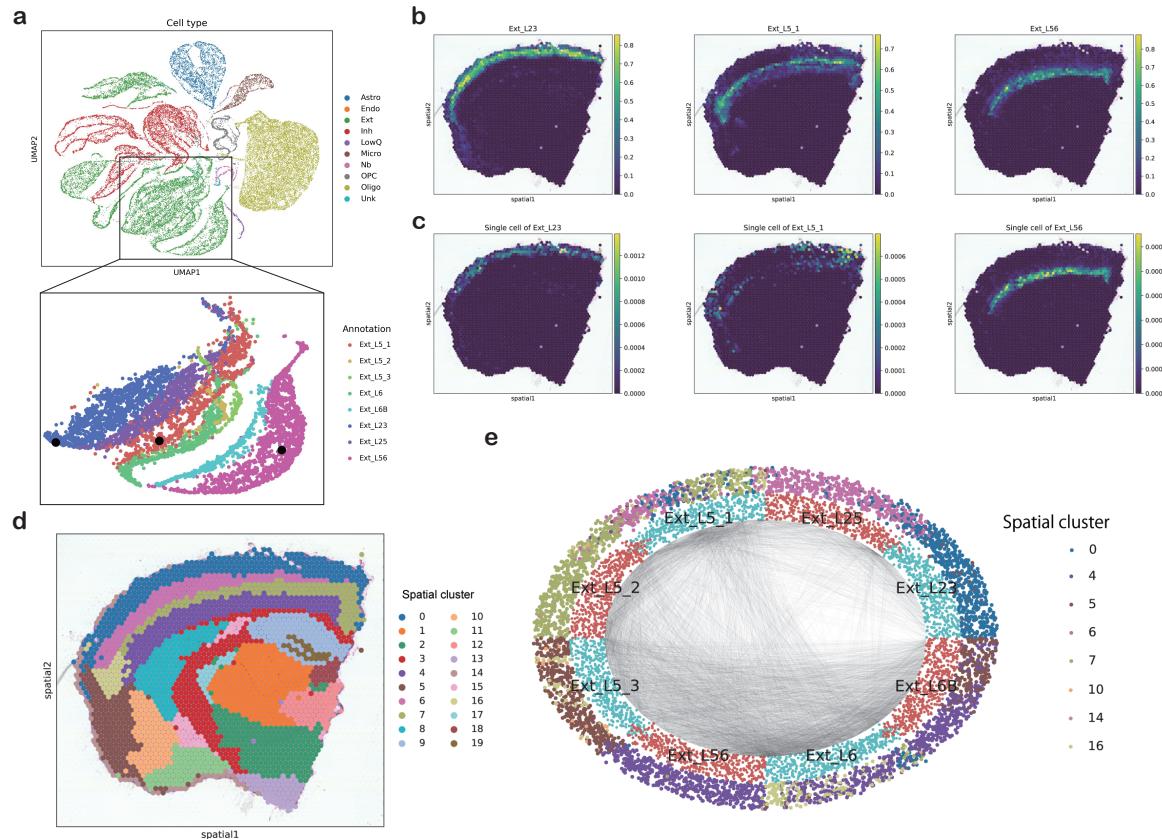


Figure 2: Single-cell decomposition in a mouse cortex dataset **a**, UMAP representation of VAE-derived latent states of the single-cell transcriptome. Total (top) and layered excitatory neurons (bottom) are displayed. Black dots in the excitatory neuron panel represent single cells displayed in **c**. **b**, Spatial assignment of the sub-clusters of three-layered excitatory neurons (Ext_L23, Ext_L5_1, Ext_L56). **c**, Spatial assignment of single cell randomly sampled from three-layered excitatory neuron sub-clusters (Ext_L23, Ext_L5_1, Ext_L56). **d**, Spatial visualization of clustering on the spatial transcriptome. **e**, Visualization of colocalized single-cell pairs (black line) in layered excitatory neurons. Inner layer dots represent a subclass of each single cell. The outer dots represent the most assigned spatial clusters for single cells.

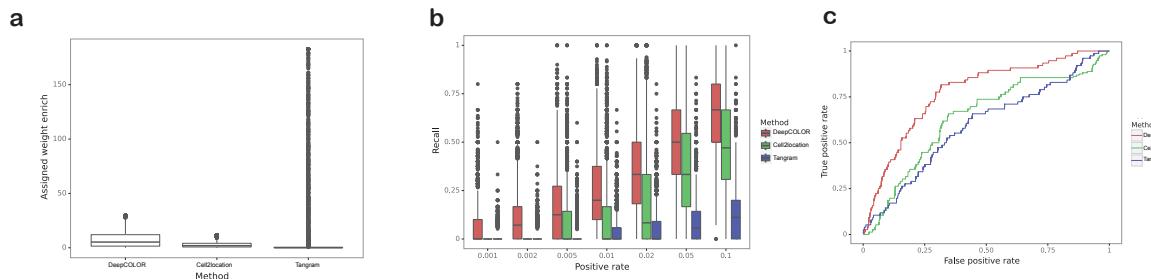


Figure 3: **Performance comparison of simulated data** **a**, Enrichment of estimated assignment of single cells originally assigned during simulation. **b**, Recall of originally assigned single cells for a specified positive rate. **c**, ROC curves for detecting cluster pairs belonging to the same region as colocalized population pairs. The resolution parameter of clustering used for the simulation was set to 1.5.

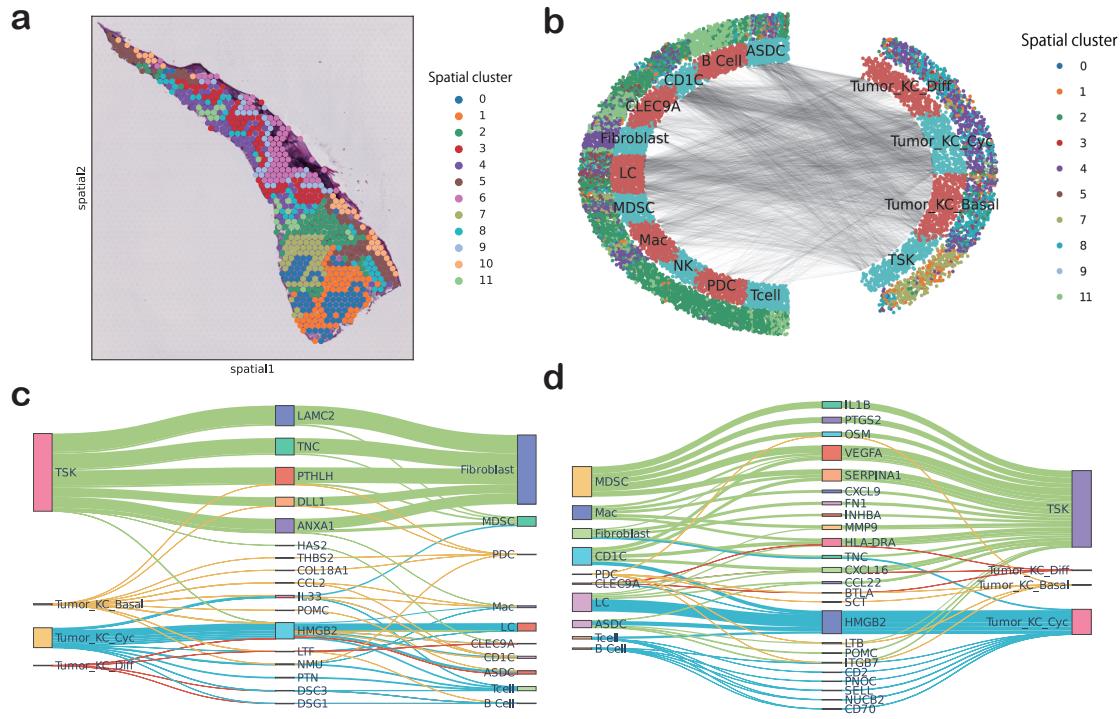


Figure 4: Single-cell decomposition and CCI analysis of an SCC dataset **a**, Spatial visualization of clustering on the spatial transcriptome. **b**, Visualization of colocalized single-cell pairs (black line) between tumor keratinocytes and immune or stromal cells. Inner layer dots represent the types of single cells. The outer dots represent the most assigned spatial clusters for single cells. **c**, Ligand activity initiating from tumor keratinocytes to immune or stromal cells. **d**, Ligand activity initiating from immune or stromal cells to tumor keratinocytes. The widths of the lines correspond to the ligand activity scores in **c** and **d**. We have only displayed ligands with the top 5 input or output values for each stromal or immune cell type.

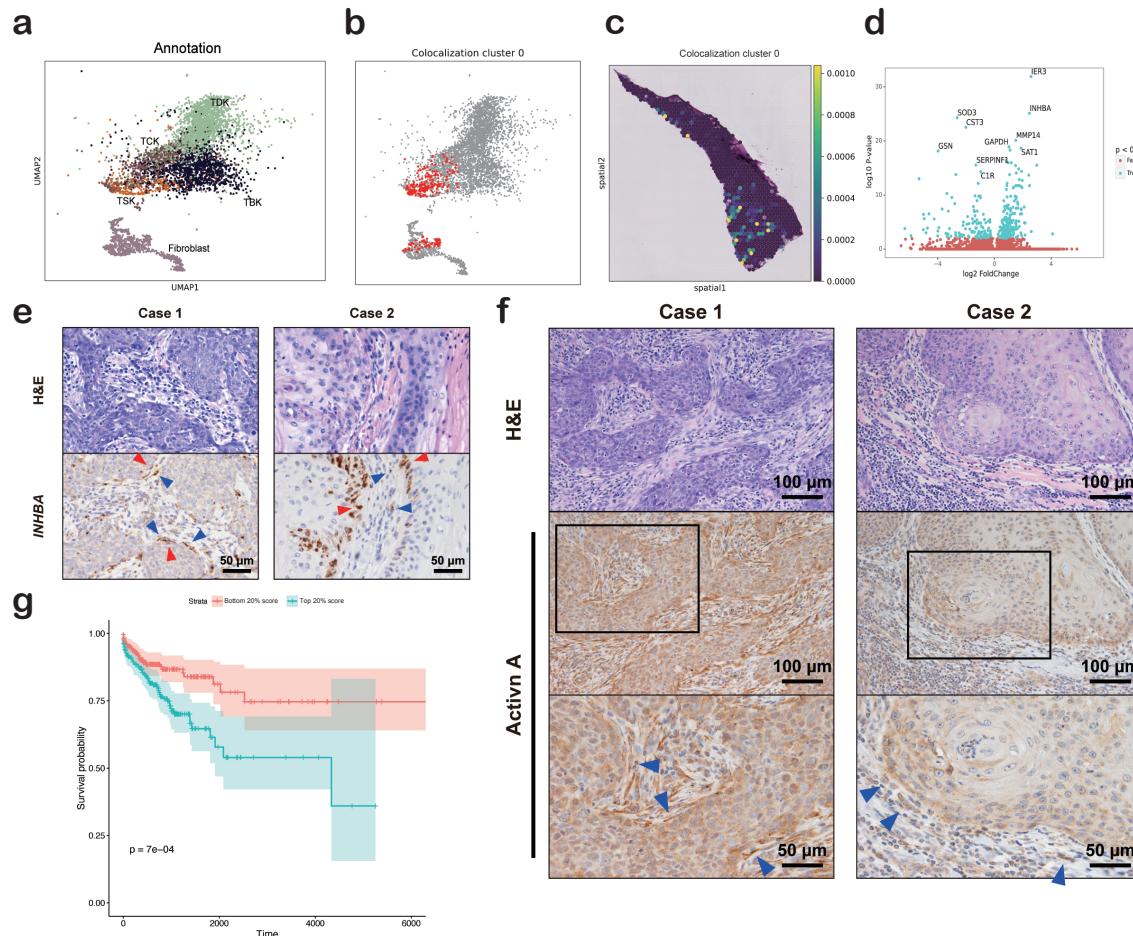


Figure 5: Identification of fibroblast populations colocalized with TSKs

a, UMAP representation of VAE-derived latent states of the single-cell transcriptome of tumor keratinocytes and fibroblasts. **b**, Colocalization cluster 0 in UMAP representation. **c**, Spatial distribution of colocalization cluster 0. The spatial distribution was calculated by the summation of assignment products between cells in the colocalization cluster. **d**, Differential gene expression analysis of fibroblasts belonging to colocalization cluster 0 compared to that of the remaining fibroblast population. **e** and **f**, Representative histological images of skin squamous cell carcinoma of two patients. H&E (upper panels in e and f) and ISH with an INHBA-specific antisense probe (lower panels in e) or immunohistochemical staining with anti-activin A antibody (middle and lower panels in f) in the same area in serial sections. Boxed areas in the middle panels in e are presented as magnified images in the lower panels. INHBA-positive cancer cells are indicated by red arrowheads and INHBA-positive or activin A-positive cancer-associated fibroblasts are indicated by blue arrowheads. **g**, Kaplan-Meier plot of the survival rate for patients with SCC with high and low signature scores of fibroblasts belonging to colocalization cluster 0 (top and bottom 20%) in TCGA dataset.

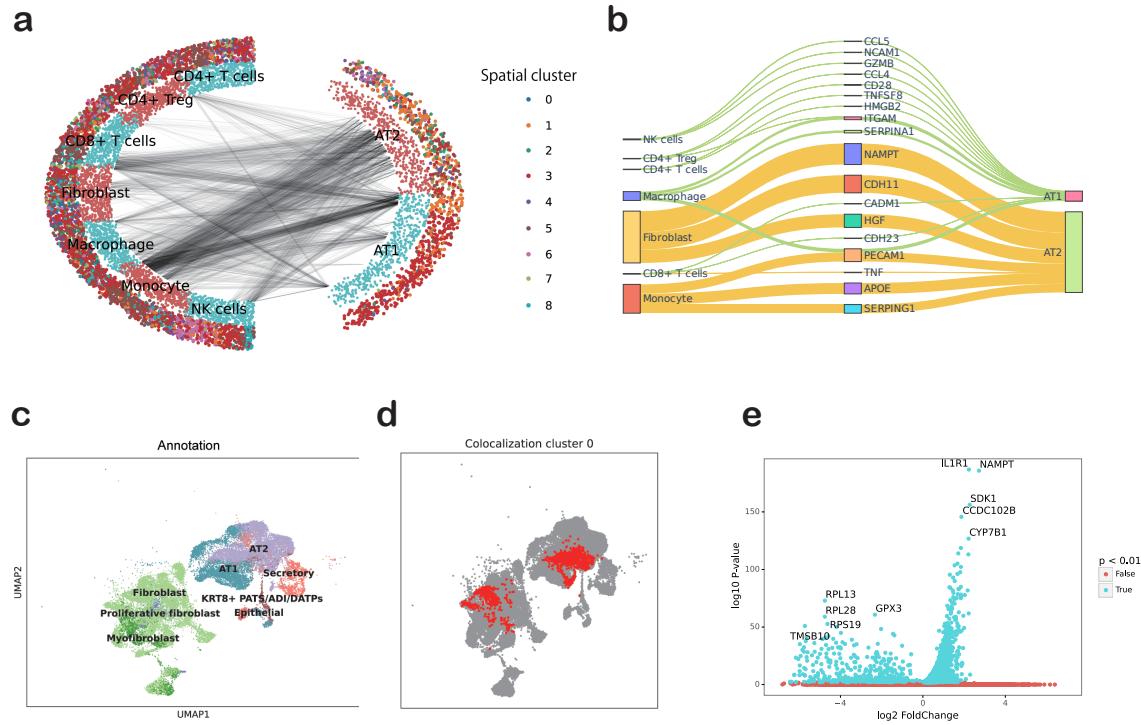


Figure 6: Single-cell decomposition and CCI analysis of a COVID-19 dataset

a, Visualization of colocalized single-cell pairs (black line) between alveolar cells and immune or stromal cells. Inner layer dots represent the types of single cells. The outer dots represent the most assigned spatial clusters for single cells. **b**, Ligand activity initiating from immune or stromal cells to alveolar cells. The widths of the lines correspond to the ligand activity scores. We have only displayed ligands with the top 5 input or output values for each stromal or immune cell type in **b**. **c**, UMAP representation of VAE-derived latent states of the single-cell transcriptome of epithelial cells and fibroblasts. **d**, Colocalization cluster 0 in UMAP representation. **e**, Differential gene expression analysis of fibroblasts belonging to colocalization cluster 0 compared to that of the rest of fibroblast populations.