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« 1 Abstract

Analyzing colocalization of single cells with heterogeneous molecular phenotypes is essential for

-
o

¢ understanding cell-cell interactions, cellular responses to external stimuli, and their biological func-

-

7 tions in diseases and tissues. However, high-throughput methods for identifying spatial proximity at

[

s single-cell resolution are practically unavailable. Here, we introduce DeepCOLOR, a computational

-

o framework based on a deep generative model that recovers inter-cellular colocalization networks

-

with single cell resolution by the integration of single cell and spatial transcriptomes. It segre-

N
=}

N

1 gates cell populations defined by the colocalization relationships and predicts cell-cell interactions
2  between colocalized single cells. DeepCOLOR. could identify plausible cell-cell interaction candi-
23 dates in mouse brain tissues, human squamous cell carcinoma samples, and human lung tissues

2 infected with SARS-CoV-2 by reconstructing spatial colocalization maps at single-cell resolution.

N

s DeepCOLOR is typically applicable to studying cell-cell interactions in any spatial niche. Our

N
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6 mnewly developed computational framework could help uncover molecular pathways across single

27 cells connected with colocalization networks.

» 2 Introduction

20 Single-cell analysis of transcriptome profiles has given rise to novel avenues for examining hetero-
30 geneous cell populations. Such techniques demonstrate continuous cell states rather than classical
a1 discrete cell types [22,43]. The heterogeneous cell states observed via these techniques were shown
32 to be crucial for elucidating mechanisms underlying disease development and prognosis [14}[21].
33 Hence, it is important to understand the molecular mechanism involved in the transition between
3¢ the cell states and their regulation. This heterogeneity can be attributed to the environmental cues
35 obtained from surrounding cells [30], which is termed as cell-cell interaction (CCI). Environmen-
36 tal cues facilitating CCI rely on heterogeneous molecular states of the surrounding cells (i.e. the
57 expression of ligands and the stiffness of cells). Hence, to dissect the molecular basis of CCI, it
38 is crucial to analyze colocalization patterns among single cells with heterogeneous molecular phe-
39 notypes. However, the observed single-cell transcriptome loses the spatial context when analyzed
a0 using the available high-throughput methodology.

a Recently, spatial transcriptome observation technologies, such as spatial transcriptomics (ST)
22 [44], Visium (10X Genomics), Slide-seq [41], and high-definition spatial transcriptomics [46], have
43 enabled analysis of the entire transcriptome spatially. These technologies provide a unique oppor-
a4 tunity to characterize local niches with comprehensive molecular profiles. For example, Ji et al.
45 utilized this technology to show that the unique population in squamous cell carcinoma is resident
s in the leading edges of the tumor [25]. In contrast, widely used high-throughput methods of spatial
a7 transcriptomics such as ST and Visium have limited capture rates (resulting in substantial spatial
ss  dropout that increases with higher resolution) and do not achieve single-cell resolution. In situ
s sequencing, MERFISH [49], seqFISH [17], and other in situ techniques allow spatial analysis at
so  single-cell resolution. However, these techniques require high expertise in experimental technolo-
51 gies and capture relatively fewer pre-specified genes than the sequence-based methodologies. These
52 inherent limitations of current spatial transcriptome analysis techniques prevent the identification
53 of interaction networks between heterogeneous cell populations involved in disease progression.

54 Several computational methodologies have been developed to address this limitation by the

55 integration with scRNA-seq observation. One major approach involves deconvolution of observations
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ss at each spot of the spatial transcriptome with a cell-type expression profile [1,/6,(16}29]. This
57 approach reveals the spatial distribution of heterogeneous cell types, which have been identified
ss in the scRNA-seq analysis. In contrast, cell type-based analyses have a limitation in that they
5o can analyze colocalization only between predefined populations, which is highly dependent on the
60 manually determined clustering resolution and does not necessarily correspond to the differences in
61 the spatial distribution of the tissues. While a recent single-cell approach successfully revealed cell
2 distribution across various spatial contexts [4], the methodology was not suitable for analyzing the
63 colocalization network as it could estimate distinct spatial assignments among cells with almost the
64 same profiles. Hence, a new computational approach is required for identifying the colocalization
65 between heterogeneous cell states captured by scRNA-seq.

66 DeepCOLOR is a deep learning framework for addressing the dual challenges of (1) recovering
&7 spatial contexts of single cells observed in scRNA-seq data and (2) revealing cell-cell interactions
68 in spatial niches. DeepCOLOR was used to build a continuous neural network map from latent
6o cell state space to each spot in the spatial transcriptome in order to enhance consistent mapping
70 profiles between single cells with similar molecular profiles. This mapping technique did not rely
71 on the fine-grained cell type preparation, which is the upper limit of the resolution for many of
72 the existing deconvolution methods [1,/6,[16,[29], and revealed the spatial distribution of all single
73 cells observed by scRNA-seq with high accuracy. A colocalization profile between two cells could be
74 derived from the overlaps between the spatial distributions of individual cells, and clustering analysis
75 of neighboring single-cell pairs could classify colocalized cell populations beyond the resolution at
76 the cell type level. In addition, DeepCOLOR demonstrated the ability to predict ligand-mediated
77 cell-to-cell communication by combining colocalization scores between cells, gene expression within
78 cells, and prior knowledge of signal transduction and gene regulatory networks. These single cell
79 colocalization-based analysis enabled us to extract and characterize the population which affected
g0 by environmental ques from surrounding cells with unprecedented specifity, which was potentially
a1 overlooked by predefined population-based colocalization analysis [2,36,37]. We used DeepCOLOR
g2 to reveal intercellular communication mechanisms in two complex tissues. This study could provide
83  valuable insights regarding the application of DeepCOLOR as an analytical tool for studying cell-cell

8¢ interactions in any spatial niche.

- 1 Results
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s 3.1 Methodology overview

87 We developed DeepCOLOR, a deep generative model for colocalization representation, which uses
ss SCRNA-seq data as a reference cell population to deconvolve each spot of the spatial data and
so decipher the intercellular colocalization network across single cells in a spatial niche. The input to
90 DeepCOLOR was scRNA-seq data along with spatial transcriptome data derived from the same
o1 tissue or region discerned based on currently available spot-wise spatial methods (Visium, ST,
o2 GeoMx, etc.). The following assumptions were made for the input: the two modalities share some
93 subset of common genes, and the variations in the single-cell transcriptome cover the cell populations
94 within the spatial niche. DeepCOLOR first transformed the transcriptome observation of each cell
os from scRNA-seq data into a latent cell state via encoding by a pre-trained neural network. It then
96 optimized an objective function to maximize the likelihood for the probability model of the spatially
o7 distributed transcriptome observed in the spatial transcriptome data. DeepCOLOR then provided
98 spatial distributions of each cell in the scRNA-seq data, which comprised information about single-
90 cell localization, indicating the likelihood of the presence of all cells in the scRNA-seq data at each
100 spot in the spatial transcriptome. This information enabled us to search for colocalized pairs of
101 cells defined by the overlaps of spatial distributions. With its ability to smoothly map the learned
102 latent representation of a single cell to a spatial spot, DeepCOLOR could (1) correct poor-quality
103 spatial measurements attributed to technical variability such as spatial dropout; (2) estimate spatial
14 distributions at the single-cell level independent of predefined labels such as cell types; (3) identify
105 and classify cell colocalization pairs that exist in spatial niches; (4) identify differentially expressed
16 genes in colocalized cell clusters; and (5) identify ligands involved in cellular communication between
107 colocalized cell population.

108 Technically, DeepCOLOR was based on latent representations of single cells derived from deep
100 generative models and optimization via a stochastic gradient descent method. Unlike the conven-
1o tional application of deep generative models to scRNA-seq data [18,|33], the optimization function
m involved the likelihood of the probabilistic model of gene expression in each spatial spot, which is
12 assumed to be the weighted average of the transcriptome associated with latent cell states in the
13 sScRNA-seq dataset. DeepCOLOR modeled the difference in the technical capture rate for each
14 gene when comparing scRNA-seq data and spatial transcriptome data and the abundance of each
15 gene in the spatial transcriptome assuming correction terms for the sensitivity and contamina-
16 tion of technical measurements . DeepCOLOR could then estimate a continuous mapping function

u7 that inferred the spatial distribution of single cells based on their latent cell states , thus obtain-
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us ing a consistent spatial distribution among single cells with similar molecular profiles. To further
1o strengthen the consistency of the mapping function, we employed a stochastic gradient descent
120 method using mini-batches of single cells. This formulation imposed a constraint: a subset of sin-
121 gle cells obtained by down-sampling forms consistent spatial expression patterns, and hence cells
122 with approximately the same latent representation would map to the same spatial location. Down-
123 stream analysis of DeepCOLOR implemented single-cell colocalization clustering based on latent
124 representations of cell pairs that were likely to colocalize, differential expression analysis in specific
125 colocalized clusters based on the Willcox rank-sum test, and ligand activity analysis between colo-
126 calized cell populations. DeepCOLOR has been implemented as a PyTorch module and is available

127 at https://www.github.com /kojikoji/deepcolor.

128 3.2 Accurate mapping with well-known spatial domains

120 To validate our newly developed assignment methodology, we applied our mapping algorithm to a
130 mouse visual cortex dataset [29]. First, we evaluated the similarity of the aggregated gene expression
131 of single cells assigned to each spot with the original gene expression of the spot. We found that
132 the expression was well correlated for genes with high expression even if the genes were not used
133 for training of the generative model (Fig. 1-a in Supplementary) . Next, we validated whether
134 the mapping patterns of single cells were consistent with the well-known anatomical structures. We
135 found that the aggregated assignment of the excitatory neuronal subtypes associated with L2/1.3
e layers (Ext_1.23) was enriched in the outer region compared to that of subtypes associated with
137 L5/L6 layers (Ext_L5.1 and Ext_L56) (Fig. [2}a, b). In contrast, single cells within each layer
138 were assigned to more specific regions compared with the aggregated spatial distribution of the
130 predefined subtypes described above (Fig. a, c). These results suggested that DeepCOLOR
1o captured the molecular signatures of single cells obscured by clustering analysis and utilized them
11 for reconstructing the spatial distribution of single cells. We also found that the assignments of
12 single cells to a specific spot performed by DeepCOLOR were smooth on the latent cell state space
13z of single cells (Fig. 2 in Supplementary) . This smooth assignment enabled us to capture the
144 colocalization between single cells as the overlap of the estimated spatial distribution. We examined
145 the colocalization scores for single-cell pairs across the excitatory neuronal subtypes associated with
s cortical layers to validate our approach to extract colocalized single-cell pairs. We found that a larger
17 proportion of single-cell pairs across expected adjacent layers (among L2 and L3 or among L5 and

us L6) demonstrated high colocalization scores (¢;; > 1)than those across more distant layers (Fig.
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1o e). These results showed that our colocalization scoring methodologies were useful for identifying

150 the adjacent cell population for every single cell.

151 3.3 Comparison of accuracy based on the simulated data set
152 3.3.1 Mapping accuracy for each single cell

153 We evaluated the accuracy of spatial assignments with DeepCOLOR and other state-of-the-art
15« methods, namely, Cell2location [29], and Tangram [4], based on the simulated dataset of the single-
155 cell and spatial transcriptome. We generated these simulated datasets from a real dataset of squa-
155 mous cell carcinoma (SCC) [25], assuming five combinations of spatially colocalized cell types. First,
157 we evaluated the assignment amount of truly included single cells to the corresponding spots. We
158 found that DeepCOLOR demonstrated larger assignments on truly included cells than that demon-
159 strated by Cell2location and Tangram (Fig. a). For Tangram, the assignment to the majority
160 of truly included cells was close to 0, while there were a few truly included cells with larger assign-
161 ments than the maximum assignment of DeepCOLOR. This is presumably because Tangram can
162 assign only a few single cells to each spatial spot, and hence estimate distinctively different spatial
163 distribution between single cells with almost the same gene expression profiles. Next, we evaluated
164 the assignment accuracy by the recall of single cells in each spot for specified positive rates and
165 found that the recall values of DeepCOLOR for various positive rates were higher than those of
16 Cell2location and Tangram (Fig. b). These results suggested that DeepCOLOR showed superior
167 performance in reconstructing the spatial organization of the single-cell transcriptome without the
168 navigation of cell-type annotation. In contrast, the accuracy of Cell2location was comparable to
160 that of DeepCOLOR when the cell types used for colocalization in the simulation data set were
170 identical to those used for estimation with Cell2location (Fig. 3-a,b,d,e in Supplementary) .
171 This result indicates that the difference between the reference cell types for estimation and the cell
12 subpopulation in colocalization patterns negatively affected the performance of spatial mapping in
173 cell type-based methodologies. At the same time, DeepCOLOR retained the performance as it was
174 not dependent on the reference cell type information. Next, we validated the ability of DeepCOLOR
175 to extract colocalized cell populations. We calculated the averaged colocalization scores between
176 two cell types and evaluated the accuracy of detecting truly colocalized cell-type pairs using the
177 averaged scores. We found that DeepCOLOR detected the colocalized cell pairs more accurately
178 than the other two methods (Fig. c), (Fig. 3-c,f in Supplementary) . This result suggests

179 that considering the spatial distribution without the cell type label, we extracted colocalized re-
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180 lationships between subpopulations, which is not necessarily consistent with clustering results on

181 SCRNA-seq.

12 3.4 Colocalization network underlying the tumor microenvironment

183 The tumor microenvironment involves complex CCls, which significantly affect the prognosis. Here,
164 we applied DeepCOLOR to a dataset of squamous cell carcinoma [25] and explored the colocalization
185 relationships between single cells obtained from the tumor microenvironment. We found that the
185 imputed spatial expression patterns calculated from the transcriptome of the assigned single cells
187 were correlated with the original expression patterns, even for genes that were not used for the
188 assignment estimation (Fig. 1-b in Supplementary). We also found that the expression patterns
180 between marker genes for each cell type, CD3D and CD4 for CD4+ T cells and CD8A and GZMB
1o for CD8+4 T cells, were more consistent than the raw spatial expression patterns (Fig. 4 in
11 Supplementary) . Furthermore, the reconstructed spatial expression patterns were smoother than
192 the raw expression counts, while the estimation process did not assume any spatial architecture.
103 These results suggest that DeepCOLOR performed a reasonable single cell assignment for this
104 dataset. The estimated colocalization network among single cells showed that CD1lc+ dendritic
105 cells, ASDCs, and Langerhans cells colocalized with heterogeneous tumor keratinocytes referred to
s as tumor basal keratinocytes (TBKs), tumor differentiating keratinocytes (TDKs), tumor cycling
w7 keratinocytes (TCKs), and tumor-specific keratinocytes (TSKs) in the previous study (Fig. [d}a,
s b). All colocalized keratinocyte subpopulations were primarily distributed in spatial transcriptome
190 clusters 7 and 4, the tumor-stromal boundary clusters. In contrast, the TDK and TBK populations
200 distributed in spatial transcriptome cluster 8 demonstrated a low degree of colocalization with
200 any other immune-related cell types and fibroblasts. In contrast, T cells demonstrated strong
202 colocalization with the only subset of TCKs and were distributed only in spatial clusters 2 and
203 11. These data suggested that several types of dendritic cells, which contribute to the induction
204 of immune responses against tumors, were primarily distributed near the tumor-stromal boundary.
205 In contrast, the T cell population was recruited to the restricted regions in this squamous cell
206 carcinoma. We also noted that the TSK population had colocalized fibroblast populations, which
207 are analyzed in the next section.

208 Next, we sought to identify the candidates involved in mediating communication between colo-
200 calized single cells. Here, we scored ligand activities from tumor subtypes against cells present in

20 the microenvironment (See Methods section) (Fig. [4kc). We found that the TNC ligand activ-
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2 ity derived from TSKs was the second-highest among the ligand activities against the fibroblast
212 population. TNC expression of cancer cells adjacent to the stroma was reported to correlate with
213 poor prognosis in breast cancer [24], and cultured fibroblasts with TNC treatment was reported
214 to exhibit cancer associated fibroblast like phenotypes [28]. The highest ligand activity against T
215 cell and macrophage populations was that of NMU initiated from TCKs; this was consistent with a
216 previous report showing that NMU secreted by keratinocytes activates various immune cells such as
217 lymphocytes and macrophages and that NMU is associated with tumorigenesis and metastasis [50].
218 We similarly analyzed the signaling activity initiated from the tumor microenvironment against
20 tumor keratinocytes (Fig. [4+d). We found that the CXCL9 activity against TSKs was within the
»o fifth strongest ligand activities initiated from all macrophages, CLEC9A+ DCs, and LCs. CXCL9
221 is reported to activate invasive and metastatic activities in lung cancer [13]. At the same time,
22 higher CXCL9 expression is associated with tumor depths and positive bone invasion in oral cavity
223 squamous cell carcinoma [§]. In contrast, the activity of INHBA initiated from fibroblasts to TSKs
24 was the second most potent ligand activity observed. This observation is also consistent with a
25 previous report showing that INHBA enhances invasion, proliferation, and growth of gastric cancer
26 cells [10]. Since the candidates of molecular communication machinery observed in our analysis
27 highlighted previously validated molecular communications, these results showed that exploring
28 molecular communications based on single-cell colocalization was an effective approach to dissect

20 the molecular basis underlying the formation of a microenvironment.

20 3.4.1 Colocalized subpopulations of tumor cells and fibroblasts

231 Previous analysis of molecular communications based on single-cell colocalization highlighted strong
232 communications between TSKs and fibroblasts. Fibroblasts exhibit various molecular states, which
233 are extensively studied using scRNA-seq technologies [13]. These states exert a significant effect on
234 tumor prognosis [42]. Hence, it is valuable to explore the correlation between these molecular states
235 and heterogeneous cancer cells, some of which demonstrated an invasive leading-edge phenotype in
236 this sample and were termed TSKs in the original analysis. We extracted colocalized populations
237 across fibroblasts and tumor keratinocyte populations including TSKs, based on the single-cell pair
238 colocalization scores (see Methods section). We clustered the colocalized single-cell pairs based on
230 the pair of latent representation and found that tumor cells of the paired cluster 0 had large overlaps
20 with the TSK population (Fig. [5fa,b). Furthermore, we confirmed that the spot-wise product

21 of spatial assignments between the colocalized populations were specifically enriched at the tumor-
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22 stromal boundary (Fig. c), which is expected from the leading-edge molecular phenotype of the
23 TSK population. To explore the molecular profiles of the fibroblast population in the paired cluster
24 0, we analyzed differentially expressed genes in these populations compared to those observed in
25 other fibroblasts (Fig. d). These populations demonstrated a high expression of MMP14 associ-
26 ated with processes involved in tumor progression, such as cancer cell invasion via degradation and
27 remodeling of the extracellular matrix [20]. In contrast, INHBA, which was identified as a candidate
28  for molecular communication machinery in a previous analysis, was the second most significantly
29 expressed gene. Here, we also explored the expression patterns of INHBA and its dimer, activin A,
250 in other biological specimens of squamous cell carcinoma by in situ hybridization and immunohis-
251 tochemistry. We found that INHBA expression was enriched in tumor keratinocytes and fibroblasts
22 located at tumor leading edges at both RNA (Fig. [5}e) and protein levels (Fig. [5}H). Enrichment
253 analysis of positively regulated genes in these populations revealed that the expression of genes
254 involved in glycolysis and hypoxia was upregulated in the TSK-colocalized fibroblast population,
255 pair cluster 0 (P < 1077 and P < 1070, respectively). Since the glycolysis pathway is reported to
26 be upregulated in many invasive cancers [19], this result further supports the colocalization of the

257 fibroblast population with TSKs, which demonstrate an invasive leading-edge phenotype.

»s  3.4.2 Reproducibility analysis of ST and TCGA

250 We investigated whether these patterns can be analyzed via spatial gene expression patterns de-
260 rived from other observation technologies to validate the colocalization patterns between cancer
261 cells and fibroblasts. In particular, we decomposed the spatial gene expression patterns observed
262 in the same study by spatial transcriptomics (ST) into the same single-cell gene expression profiles
263 obtained using DeepCOLOR. We extracted cancer cells which form colocalized pairs in ST decon-
264 volution with fibroblasts that belong to the previously identified colocalization cluster 0 in Visium
265 deconvolution. The recovered ST-colocalized tumor cells significantly overlapped with tumor cells
26 that belonged to the colocalization cluster 0 (odds ratio 6.70). These results indicated that Deep-
267 COLOR was able to reproducibly identify unique colocalization patterns between tumor cells and
28 fibroblasts identified in Visium via another spatial transcriptome observation technique, ST. Next,
260 we investigated whether this colocalized population is likely to co-occur across many patients and
a0 associated with the prognosis difference. The signature scores for the colocalized tumor cells and
2arn fibroblasts in the colocalization cluster 0 were positively correlated (Pearson’s correlation was 0.765)

212 across the transcriptome of patients with SCC derived from TCGA (Fig. 5 in Supplementary)
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a3 . Furthermore, the signature scores of colocalized fibroblasts exhibited a strong association with
2 worse overall survival (P = 0.0007) (Fig. [6}g). However, the association between the signature
a7 scores of the colocalized tumor cell population and worse overall survival was relatively moderate
a6 (P =0.21) (Fig. 6 in Supplementary) . These findings indicate the identified colocalized pop-
a7 ulations between tumor cells and fibroblasts exist in various patients with SCC. Furthermore, the
278 stronger association of the colocalized fibroblast population with prognosis indicates that the arrival

279 of fibroblasts to this colocalization niche enhances the malignancy of the tumor.

20 3.9 SARS-CoV-2
21 3.5.1 Alveolar type II cells colocalized with macrophages in SARS-CoV-2 infection

22 We next applied DeepCOLOR to another dataset of SARS-CoV-2 [12] composed of single-cell
283 transcriptome observations and spot-wise transcriptome observations in lung tissues of SARS-CoV-
284 2 patients. We estimated the quantitative assignment of single cells to the spots and reconstructed
285 gene expression of the spots based on that of single cells assigned to the spots. The reconstructed
286 expression patterns for the spots were well correlated with true expression patterns, even for genes
27 that were not used for the estimation (Fig. 1-c in Supplementary) . When we visualized the
288 colocalization between alveolar cells and surrounding cells, such as immune cells and fibroblasts,
250 we found that a specific subpopulation of alveolar type II (AT2) cells, the abundance of which
200 is primarily reduced in patients with severe COVID-19, demonstrated a remarkable colocalization
201 with various cell types; this population was mainly distributed to spatial cluster 1 (Fig. @-a). The
202 spots belonging to spatial cluster 1 were mainly annotated as PanCK+ alveolar (38 of 59), which
203 were associated with SARS-CoV-2 infection [23]. To quantify the molecular communication between
204 the surrounding cells and alveolar cells, we calculated the ligand activity between surrounding cells
25 and alveolar cells based on the estimated single-cell colocalization (Fig. [6}b). We found that the
206 strongest ligand activity initiating from fibroblasts to AT2 cells was that of NAMPT, which plays
207 an important role in the activation of the innate immune response [7] and is associated with the
208 development of acute respiratory distress syndrome in lung injury [40]. The activity of PECAM1
200 was the strongest activity initiating from monocytes to AT2 cells, while the expression level of
s0 PECAMI was associated with the severity of COVID-19 [31]. We also found that the strongest
s ligand activity initiating from CD8+ T cells to AT2 cells was that of TNF, the expression level
sz of which is also associated with disease severity and survival of patients with COVID-19 [11].

303 These results showed that the colocalization-based ligand activity analysis discerned appropriate

10
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s« candidates for molecular communication among patients with COVID-19. Next, we analyzed single-
305 cell colocalization between epithelial cells and fibroblasts, dissecting the most potent ligand activity
306 toward AT2. We extracted one of the colocalization clusters (cluster 0) with large overlap with
so7 AT2 cells (Fig. @-c,d). We analyzed the gene expression profiles of the fibroblast population in
38 the colocalization cluster and found that NAMPT, which demonstrated a strong ligand activity
30 to AT2 cells, was the second most significantly enriched gene in the colocalized fibroblast cluster
s (Fig. @-e). We also found that the pathway activity of oncostatin M, the expression of which was
su reported to be elevated in the serum of patients with COVID-19 [35], was significantly enriched
a2 (P < 107%). At the same time, the most significantly upregulated gene was IL1R, the ligand of
s13 - which is an important marker of severe symptoms among patients with COVID-19 [11]. These data
314 suggest that the fibroblasts received molecular signals responsible for severe symptoms and acquired

315 a molecular phenotype, contributing to the severity in patients with COVID-19.

a6 4  Discussion

sz This article presents a new deep learning framework called DeepCOLOR, which enabled us to ana-
318 lyze colocalization networks across single cells with deep molecular profiles captured by scRNA-seq.
319 This new computational framework showed higher accuracy for mapping scRNA-seq observation
320 to spot-level spatial transcriptome data and detecting colocalized cell populations than existing
31 methods in simulation experiments and demonstrated a finer anatomical distribution than cell-type
32 distribution due to its label-free approach. Furthermore, DeepCOLOR extracted plausible candi-
33 dates involved in the molecular machinery underlying cell-cell communication and disease-associated
s24  colocalized populations in a squamous cell carcinoma dataset [25] and COVID-19 dataset [12]. In
325 particular, DeepCOLOR highlighted the molecular communication machinery consistent with the
36 disease phenotype in both datasets. Our analysis predicted that the expression of INHBA, asso-
37 ciated with enhanced invasion, was enriched in fibroblasts colocalized with invasive tumor cells.
328 This prediction was validated by detecting both protein and RNA expression in biological sam-
320 ples independent from the dataset used for the estimation. These results highlight the significance
330 of single-cell-level colocalization relationships for dissecting molecular communications underlying
331 disease progression.

332 Recently, spot-level spatial transcriptome observation is garnering significant interest and is

333 being used for various biological systems, including the tumor microenvironment [32,39]. While

11
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334 these observations are useful for associating visualized tissue phenotypes with molecular pheno-
335 types, it would be difficult to dissect a complex molecular process mediated across various cells.
336 For this purpose, researchers developed many computational methodologies integrating the spa-
337 tial transcriptome with corresponding scRNA-seq observations [1,4,/6,/16,29]. However, most of
38 these methodologies relied on cell type labeling with scRNA-seq observations, which can be the
33 upper resolution limit for spatial distribution analysis. Indeed, we showed that single cells could
30 be spatially assigned to more specific regions compared with cell type mapping of the fine grained
31 excitatory neuron populations. Furthermore, simulation experiments for the integration of single
32 cell and spatial transcriptome showed that, for cell type based spatial deconvolution, the deviation
343 between the true population structures and the assumed population structures induces an accuracy
s« decay for both spatial assignment of single cells and prioritization of colocalization relationships.
s Hence, the label-free property of DeepCOLOR enabled us to capture the colocalization network of
a6 various cell populations, identifying niche environments with unprecedented accuracy.

347 Cell-cell communications are crucial for not only normal development but also disease progression
us  [3]. Indeed, many recent advancements in therapeutic strategies involve the perturbation of cell-
a9 cell communication [47]. Hence, computational methodologies inferring cell-cell communication are
30 extensively developed by targeting scRNA-seq observations [5,/15,26]. However, single-cell molecular
351 profiles derived from scRNA-seq observation lose their spatial context. Adequate spatial proximity
352 is an important factor contributing to the induction of cell-cell communication. We quantified ligand
353 activity only between colocalized single-cell pairs, which are more likely to communicate with each
s« other than randomly selected single-cell pairs. This analysis highlighted several pathways of cell-cell
355 communication reported in previous studies and predicted novel molecular machinery involved in
36 mediating communication between fibroblasts and invasive tumor cells, which was validated at the
357 protein and RNA level.

358 A major limitation of DeepCOLOR is that it deconvolutes all spatial transcriptome profiles into
350 single-cell molecular profiles captured by scRNA-seq. Hence, if spatial transcriptome-specific cell
30 populations do not exist in scRNA-seq, the deconvolution of spatial transcriptome spots, including
31 the populations, would be unreliable. One possible solution for this issue would be assuming several
32 pseudo inputs for scRNA-seq, which is optimizable and expected to be similar to the molecular
363 profiles of the populations unobserved in scRNA-seq since such pseudo-inputs approach succeeded
34 in capturing population structure as prior means in a variational auto encoder with VampPrior [45].

35 The improvements on this issue would increase the reliability of DeepCOLOR, for the unpaired
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366 spatial transcriptome and single-cell transcriptome, even if the included cell populations of them
37 could have some discrepancy.

368 Recent advancements in the observation of the single-cell transcriptome with other modali-
360 ties, such as open chromatin and the proteome, are opening new avenues to analyze the cross-talk
s between the different layers of biological processes at the omics scale [9,[34]. For cell-cell commu-
sn nication, protein signals from other cells alter the epigenetic profiles of the nucleus and change the
sz transcription kinetics of various genes, which generate molecular signals for communicating with
a3 other cells through the protein layer. Hence, the application of DeepCOLOR to such multimodal
374 single omics data with spatial transcriptome is expected to produce a concrete basis for detecting
375 molecular changes in various layers induced by CCI. Finally, we anticipate that our newly devel-
376 oped computational framework could be utilized for uncovering molecular pathways via different

377 molecular layers and single-cell colocalization networks.

w 5 Methods

s 5.1 Data preprocessing and downstream analysis

ss0  Using ’scanpy’ Python package [48], we excluded single cells and spatial spots which expressed fewer
;31 genes than 500 genes or more mitochondrial genes than 5% of total expression. We conducted and
32 visualized UMAP embeddings of the latent cell states of single cells using ’scanpy’. We also utilized
383 'scanpy’ for clustering spatial transcriptome data by the Leiden clustering algorithm with default

384 parameters.

s 5.2 Spatial mapping of single cells using a neural network

s 1o quantify the expected contribution of every single cell in scRNA-seq for determining all spatial
37 spots in the spatial transcriptome, we employed a probabilistic model for the spatial transcriptome
s observation, given the expected contribution of all single cells observed in the scRNA-seq anal-
30 ysis. We estimated the contribution by maximizing the likelihood of the probabilistic model for
300 observation of the spatial transcriptome. However, the naive formulation of this problem can lead
31 to overfitting due to the numerous independent parameters. We employed a continuous mapping
32 function from a latent representation of a single cell to a spatial spot to overcome this limitation.
303 This formulation imposed a constraint on the mapping in that single cells with almost the same

304 molecular profiles were mapped similarly. This constraint was enhanced by the stochastic gradient
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305 descent, where down-sampled single cells were used to calculate the likelihood gradient. This section
36 introduces a variational autoencoder (VAE) for obtaining a stochastic latent representation of the

307 single cells, the probabilistic model of the spatial transcriptome, and the optimization procedure.

s 5.2.1 Derivation of the stochastic latent representation of the single cell transcriptome

300 We utilized a variational auto encoder (VAE) for deriving latent representations for single cell
a0 transcriptome observations. We defined the generative model of scRNA-seq observation of the cell

w ¢, ze € RE as shown below:

G
Py(xc,2c) = P(Zc)HP(?(ch,g\Zc’agsc))
g=1
Py(wcglze, af) = NegativeBinomial(zc.g|fo(zc)g, @)
P(z.) = Normal(z|0,1)

w2 where G is the number of genes, z € RM is a latent cell state and fy: RM — R is a decoder
a3 mneural network described in Supplementary Table 1 and aésc) is the dispersion parameter of the
a4 gene g. We approximated the posterior distribution of latent representation P(z.|z.) o< P(x, z¢)

a5 using the Gaussian distribution as shown below:

46(2c|lwe) = Normal(ze|pg(e), 035(95@—7))

w6 Where fig, 03): RS — RP are encoder neural networks described in Supplementary Table 1. To
a7 approximate the true posterior distribution appropriately, we maximized the evidence lower bound

ws (ELBO) for 6 and ¢, which is defined as follows:

N
ELBO(X) = Y By, (z1[an) 108 Po(we|ze, oF)] — Dicr[g(ze|we) | P(2c)]
c=1

w0 where X = (z1,...,2x5)7 and N is the total number of cells. We maximized this ELBO using the

a0 Adam optimizer implemented with a learning rate of 0.0004 for 500 epochs.

a1 5.2.2 Probabilistic model of spatial transcriptome data

sz We assumed that the expression of gene g at spatial spot s, e, 4 follows a negative binomial distri-

413 bution as shown below:

P(esglpo,6 5,95 aéSp)) = NegativeBinomial(es 4|116,6/ 5.9, aéSp))
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sa where 1 ¢ 5 4 is the unobserved expression level of the gene g at spot s and aéSp) is the dispersion

a5 parameter of the gene g. To attribute the spatial expression profile to the expression profile observed
a6 using scRNA-seq, we constructed an expected contribution of cell state z for spot s as a continuous
a7 function implemented by neural network mg/(z)s described in Supplementary Table 1. Using
s the mapping function, we modeled ¢ s, as the weighted average of the scRNA-seq expression

a0 profile, given the following approximated posterior distribution of the latent cell states:
povoa = [ 1ol X)rgmo (2)afo(e)y + 1

1 N
wEAX) = =Y aslwe)
c=1

20 where gg(z|X) is the posterior distribution of a latent cell state, given the total scRNA-seq data
a1 set X, ry is the gene-wise technical capturing ratio of spatial transcriptome observation compared
22 to that of scRNA-seq, and [, is the gene-wise shift parameter that is assumed to represent ambient
a3 RNA in the spatial transcriptome data. Since the exact integration in equation X is not feasible, we

a4 calculated the stratified Monte Carlo approximation of the posterior distribution as shown below:

N
1
Ho.0's.9 = N Z rgmgr(ze)sfo(ze)g + g
c=1

Ze ~ qe(zlxe).

25 5.2.3 Stochastic optimization for smooth mapping function

226 'To derive the mapping function optimized for the data, we maximized the log likelihood
L= Z logP(€s,gl1ts,g5 a§8p))' (1)
S7g
a7 Since the computational complexity of the mean parameter defined above is proportional to the
s number of cells, we calculated and optimized the likelihood for spatial transcriptome observation

a0 with the mean parameter for mini-batches of single cells, M:

(SP))

P(esgltger s,g: al®?)) = NegativeBinomial(e; , g 5.0 g

g

C
S rgma(z)sfolze)g + L.

1
H ceM

M
Moo’ s, = I

430 This downsampling for single cells imposed a constraint on the mapping function in that the random
431 subsets of single cells could reconstruct consistent expression profiles of spatial observations. Hence,

42 the mapping function was expected to be enhanced for estimating similar mapping profiles for single
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a3 cells with similar latent representation. To optimize this stochastic likelihood, we utilized Adam
43¢ implemented in PyTorch with a learning rate of 0.0004 for 500 epochs. For this optimization, we
435 did not used randomly selected 2% of cells and 10% of genes for testing the accuracy. We also note
36 that we did not update the parameters of 8 and ¢ so that the encoder and decoder networks keep

437 the information on single-cell expression profiles.

s 5.3 Colocalization analysis based on spatial mapping
19 5.3.1 Construction of the expected colocalization matrix

s DeepCOLOR could estimate the contribution of every single cell to each spot mg/(z.)s. We utilized

a1 this property for the analysis of colocalization among single cells. First, to filter out single cells that

a2 were not mapped well, we excluded cells whose cumulative values of total contribution ) mg (zc)s

a3 were lower than 0.05. Next, we normalized the spatial distribution for each cell so that the sum-
mgr (2c)s

as  mation for all spots was equal to 1, flc,s = S g () We calculated the colocalization matrix as

a5 a product of the normalized spatial distribution and its transpose:
C=AA".

as Here, the element of the colocalization at ith row and jth column represents the colocalization score
a7 between cell ¢ and cell j. We calculated the log ratio of the scores to that observed between two

as  cells that were uniformly mapped to each spatial spot:
L =logy N;C

a9 where N; is the number of spots in the spatial transcriptome. We selected all colocalization pairs i, j
w0 whose L; j exceeded 1. This criterion for the colocalization pair corresponds to the case where pairs
a1 were localized together with a probability of two times higher than that observed when uniformly

a2 distributed across all spots.

3 5.3.2 Ligand activity between colocalized single cells

ssa To dissect the molecular machinery involved in mediating cell-cell communication, we combined
a5 the ligand-target regulatory potential implemented within Nichenet with the expression profiles of
a6 colocalized cell pairs [5], representing how strongly existing knowledge supports the influence of the

ss7 ligand on the expression of the target gene in other cells, with the detection of ligand expression of
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a5 colocalized cells. We calculated the receiver scores for ligands [ as follows:
Ay =Y WigH(g, Xe,p)
g

0 where W, is a ligand-target regulatory potential value of Nichenet [5], H(i,z,p) = I(x; > qp(x)),
a0 qp(x) is the p quantile of vector x and X is the scaled expression that was calculated using the
a1 ‘scanpy.pp.scale’ function implemented in the Scanpy package after resampling 500 cells per every
a2 cell cluster to be analyzed [48]. We calculated the colocalized ligand activity of [ from single cell

w3 cluster k to k'

By = Z I(Lew > 1)H(c, Avg,0.9)H(c, X, 1,0.9).
ceCk,c’eC,’v
ss  where Cy is R resampled single cells of cluster & (R = 500 in this study) and X*?l and A, ; denotes
a5 [-th column vector of X and A. The colocalized ligand activity By, ;s corresponds to the expected
a6 number of colocalized cell pairs with high ligand expression and high ligand activity between the

a7 cell types.

s 5.3.3 Clustering colocalized pairs of single cells

60 We derived the latent representation of colocalized pairs described above as the summation of the
a0 single-cell latent representations, which were derived from a VAE of scRNA-seq p.o = 2zc + 2.
an We extracted the colocalized pairs between two clusters of single cells subjected to colocalization
a2 analysis. We clustered the latent representation of colocalized pairs using the Leiden algorithm
a3 implemented in Scanpy with resolution parameter 0.1. This clustering of the latent representations

ara - of colocalized pairs segregated the subpopulation of colocalized pairs with similar molecular profiles.

a5 5.3.4 Differentially expressed gene analysis of colocalization clusters

476 'To characterize the molecular profiles of single cells that belonged to specific colocalization clusters,
a7 we conducted a differentially expressed gene (DEG) analysis between single cells in the colocalization
as  clusters and the other single cells that belonged to the same single cell clusters. We used the
a9 Wilcoxon rank-sum test with Benjamini-Hochberg multiple test correction for this DEG analysis,
a0 implemented in the Scanpy dataset. For gene enrichment analysis, we conducted Fisher’s exact test

a1 for gene sets recorded in IMPaLA [27].
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w2 5.3.5 TCGA analysis of the correlation and the survival date association of colocalized

483 population signatures

a8« To determine whether the identified colocalized population was also colocalized across samples, we
a5 analyzed the correlation between the signature scores of both populations in the TCGA dataset.
a6 We used FPKM values of RNA-seq data obtained in 1993 from squamous cell carcinoma samples to
as7 calculate the population signature scores. The signature score for each sample was calculated using
a8 the mean z-scores of log FPKM values plus 1 of population-specific genes. The population-specific
a9 genes with up-or down-regulated expression were defined as genes with adjusted p-values smaller
a0 than 0.01 and log2 fold changes larger than 1 or smaller than -1, as observed in DEG analysis
a1 for each population. We excluded overlapped genes for the calculation of signature scores. We
a2 evaluated Pearson’s correlation between the signature scores for both populations. The association
a3 between survival date and these scores and gene expression levels was analyzed using R package

s0a  survival after stratification into the top 20% and bottom 20% of scores and expression levels.

w5 5.4 Simulation of the spatial transcriptome

a6 To evaluate the performance of DeepCOLOR in the spatial assignment of the single-cell transcrip-
207 tome and detection of colocalized populations, we conducted a simulation of the spatial transcrip-
s tome from reference scRNA-seq data similar to the simulation method implemented in [29]. First,
a0 we separated the scRNA-seq population into two randomly selected subpopulations for simulation
soo and training, defined as C'®) and C'®), respectively. Next, we assumed R = 10 regions, each com-
so0  posed of randomly selected clusters from K clusters of scRNA-seq data derived by ‘scanpy.tl.leiden’

s02 with specified resolution parameters. We determined the abundance of region r in spot s as
tr,kﬂr,k

211;;:1 t'r,k/pr,k”

st ~ Bernoulli(%-), p,., ~ Uniform(0,1) and K’ = 5. Combining these two hierarchical composi-

503 Tgp Dirichlet(%). The composition of cluster k in region r was p where p,; =

s05  tions, we calculated the expected abundance of single cells ¢ of the simulation dataset in each spot

s06 S as follows:

We,s ~ Poisson(pe,s)

)

1
Psc = ]VICZT:WS,TPT,IC

so7  where ¢ belongs to cluster k, and N, represents the number of cells in cluster k used for the

s8  simulation dataset. We simulated the spatial gene expression of gene g at spot s from the weighted
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s00 average of single cell expression profile X:

Seg = Poisson()\g‘fg)
AL = Y WaeXey.
ceC)

s10 For evaluation, we assigned the weight values of cell ¢ in the simulation dataset to the nearest
s neighbor cell in the training dataset N (¢), based on 30 dimensional PCA-coordinates of their

si2 expression profiles. Hence, the assignment of cell ¢’ of the training population in spot s is

W= > I =N ()W,
ceC(s)

53 5.4.1 Evaluating spatial assignment of single cells

514 For the evaluation of spatial assignment, we calculated the recall of the training cells that were most

515 similar to simulation cells included in each spot

1
>eecw I(WE . >0)

Recall(p)s = Z H(d W, 1— p)I(W, . >0)

ceCc®

s16  where p is the specified positive rate and Ws,c is the estimated assignment of cells ¢ in spot s.

57 5.4.2 Evaluating detection of colocalized cell populations

si8 For the detection of colocalized populations, we evaluated the detection accuracy of cluster pairs
519 belonging to the same region. As a predictor, we calculated the mean colocalization scores across
520 cell pairs within each cluster pair:

CN’ch’ = |1 Z Cc,c’-

)~
Ck‘ HC / |C€C](€t),C/€C]S)

21 5.4.3 Comparison with other methods

52 We compared the performance of DeepCOLOR with that of existing computational methodologies
s23 for deconvolving spot-wise spatial transcriptomes, namely, Cell2location [29], and Tangram [4].
s24  For both methodologies, we used default parameters used in the evaluation experiments. Since
55 Cell2location provides cluster-wise abundance for each spot, we deconvolved the weights into every

56 single cell equally for performance evaluation.
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s7 5.5 Human skin squamous cell carcinoma samples and histological analysis

53  oSurgically resected skin samples from patients with squamous cell carcinoma were obtained at
s20  Nagoya University Hospital. This study was approved by the Ethics Committee of Nagoya Uni-
s3 versity, Graduate School of Medicine. Human tissues were fixed in 10 % neutral-buffered formalin,
s dehydrated, and embedded in paraffin. Immunohistochemical analysis was performed using anti-
si2 Activin A antibody (Novus Biologicals, Centennial, CO, USA) as previously described [38]. In
s33  situ hybridization (ISH) analysis was performed by RNAscope technology (RNAscope 2.5 HD De-
s tection Kit; Advanced Cell Diagnostics, Newark, CA, USA). Briefly, human tissue sections were
533  baked in an oven at 60°C for 1 h, deparaffinized, and incubated with H202 solution for 10 min
53 at room temperature. The slides were boiled in target-retrieval solution for 3 min in a pressure
ss7 cooker (SR-MP300; Panasonic, Kadoma, Japan) and incubated with protease solution for 30 min
s at 40°C. The slides were then incubated with the relevant probe (human INHBA, NM_002192.4,
s30  region 337-3141; Advanced Cell Diagnostics) for 3 h at 40°C in a dry oven (HybEZ II Hybridization
ss0  System; Advanced Cell Diagnostics), followed by successive incubation with Amp1-6 reagents. The
sa staining was visualized with 3,3’-diaminobenzidine, followed by counterstaining with hematoxylin.
s22 Two independent pathologists evaluated the human tissues subjected to ISH and hematoxylin and

si3 eosin (H&E) staining.

s« 5.6  Data and code availability

ses We derived combined spatial and single-cell transcriptome datasets from Gene Expression Omnibus
sas  (Mouse brain cortex dataset: , SCC dataset: GSE144240, and SARS-CoV2 dataset: GSE171668).
sa7 - Codes for our analysis, including DeepCOLOR, are available at https://www.github.com/kojikoji/deepcolor.
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Figure 1: Schematic representation of the workflow of DeepCOLOR DeepCOLOR takes
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denoised expression profile from noisy single cell observation. Using spatial distribution, we can
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Figure 2: Single-cell decomposition in a mouse cortex dataset a, UMAP representation
of VAE-derived latent states of the single-cell transcriptome. Total (top) and layered excitatory
neurons (bottom) are displayed. Black dots in the excitatory neuron panel represent single cells dis-
played in c. b, Spatial assignment of the sub-clusters of three-layered excitatory neurons (Ext_123,
Ext_L5_1, Ext_L56). ¢, Spatial assignment of single cell randomly sampled from three-layered exci-
tatory neuron sub-clusters (Ext_L23, Ext_L5_1, Ext_L56). d, Spatial visualization of clustering on
the spatial transcriptome. e, Visualization of colocalized single-cell pairs (black line) in layered ex-
citatory neurons. Inner layer dots represent a subclass of each single cell. The outer dots represent

the most assigned spatial clusters for single cells.
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Figure 3: Performance comparison of simulated data a, Enrichment of estimated assignment
of single cells originally assigned during simulation. b, Recall of originally assigned single cells for
a specified positive rate. ¢, ROC curves for detecting cluster pairs belonging to the same region as

colocalized population pairs. The resolution parameter of clustering used for the simulation was set

to 1.5.

31


https://doi.org/10.1101/2022.04.10.487815
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.10.487815; this version posted April 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Spatial cluster

) ° 0
Spatial cluster

0

spatial2
CR RN N XN N

HFEHO®ONOU R WN R

= o

°
e o o o o o o o o

spatiall

—THBS2
—COL18AL

Figure 4: Single-cell decomposition and CCI analysis of an SCC dataset a, Spatial visu-
alization of clustering on the spatial transcriptome. b, Visualization of colocalized single-cell pairs
(black line) between tumor keratinocytes and immune or stromal cells. Inner layer dots represent
the types of single cells. The outer dots represent the most assigned spatial clusters for single
cells. ¢, Ligand activity initiating from tumor keratinocytes to immune or stromal cells. d, Ligand
activity initiating from immune or stromal cells to tumor keratinocytes. The widths of the lines
correspond to the ligand activity scores in ¢ and d. We have only displayed ligands with the top 5

input or output values for each stromal or immune cell type.
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Figure 5: Identification of fibroblast populations colocalized with TSKs a, UMAP repre-
sentation of VAE-derived latent states of the single-cell transcriptome of tumor keratinocytes and
fibroblasts. b, Colocalization cluster 0 in UMAP representation. ¢, Spatial distribution of colocal-
ization cluster 0. The spatial distribution was calculated by the summation of assignment products
between cells in the colocalization cluster. d, Differential gene expression analysis of fibroblasts be-
longing to colocalization cluster 0 compared to that of the remaining fibroblast population. e and
f, Representative histological images of skin squamous cell carcinoma of two patients. H&E (upper
panels in e and f) and ISH with an INHBA-specific antisense probe (lower panels in e) or immuno-
histochemical staining with anti-activin A antibody (middle and lower panels in f) in the same area
in serial sections. Boxed areas in the middle panels in e are presented as magnified images in the
lower panels. INHBA-positive cancer cells are indicated by red arrowheads and INHBA-positive or
activin A-positive cancer-associated fibroblasts are indicated by blue arrowheads. g, Kaplan-Meier
plot of the survival rate for patients with SCC with high and low signature scores of fibroblasts

belonging to colocalization cluster 0 (top and bottom 20%) in TCGA dataset.
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Figure 6: Single-cell decomposition and CCI analysis of a COVID-19 dataset a, Visu-
alization of colocalized single-cell pairs (black line) between alveolar cells and immune or stromal
cells. Inner layer dots represent the types of single cells. The outer dots represent the most assigned
spatial clusters for single cells. b, Ligand activity initiating from immune or stromal cells to alveo-
lar cells. The widths of the lines correspond to the ligand activity scores. We have only displayed
ligands with the top 5 input or output values for each stromal or immune cell type in b. ¢, UMAP
representation of VAE-derived latent states of the single-cell transcriptome of epithelial cells and
fibroblasts. d, Colocalization cluster 0 in UMAP representation. e, Differential gene expression
analysis of fibroblasts belonging to colocalization cluster 0 compared to that of the rest of fibroblast

populations.
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