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Summary Paragraph 
 
MYCN amplification is the most frequent genetic driver in high-risk neuroblastoma (NB) and strongly associated 

with poor prognosis.1,2 The N-Myc transcription factor, which is encoded by MYCN, is a mechanistically validated, 

yet challenging target for NB therapy development.3,4 In normal neuronal progenitors, N-Myc undergoes rapid 

degradation, while in MYCN-amplified NB cells, Aurora kinase A (Aurora-A) binds to and stabilizes N-Myc, 

resulting in elevated protein levels.5,6 Allosteric Aurora-A inhibitors that displace N-Myc from binding can 

promote N-Myc degradation, but with limited efficacy.7-10 Here, we report a chemical approach to decrease N-

Myc levels through the targeted protein degradation of Aurora-A. A first-in-class Aurora-A/N-Myc degrader, 

HLB-0532259 (compound 4), was developed from a novel Aurora-A-binding ligand that engages the Aurora-

A/N-Myc complex. HLB-0532259 promotes the degradation of both Aurora-A and N-Myc with nanomolar 

potency and excellent selectivity and surpasses the cellular efficacy of established allosteric Aurora-A inhibitors. 

HLB-0532259 exhibits favorable pharmacokinetics properties and elicits tumor reduction in murine xenograft 

NB models. More broadly, this study delineates a novel strategy for targeting “undruggable” proteins that are 

reliant on accessory proteins for cellular stabilization.    
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The MYCN gene is a member of the MYC family and encodes the oncogenic transcription factor N-Myc. 

Deregulated expression of MYCN is associated with tumorigenesis of multiple human cancers.2,4,11 MYCN 

amplification is the major genetic driver in high-risk neuroblastoma (NB), and represents the strongest 

independent adverse prognostic factor in the clinic.1,2 Despite its critical role in NB, N-Myc remains challenging 

to target and represents a prototypical “undruggable” protein in drug discovery.3,4 To date, no N-Myc-targeting 

therapies are available for clinical use. 

 

In normal neuronal progenitors, N-Myc is a short-lived protein with a half-life of 30-50 mins.5 During the cell 

cycle, after sequential phosphorylation at S62 and T58 followed by dephosphorylation of S62, N-Myc is tightly 

controlled for proteasomal degradation in M-phase by the E3 ubiquitin ligase SCFFbxw7.12 However, N-Myc has 

a significantly prolonged half-life in MYCN-amplified NB cells that results in elevated steady-state protein levels.6 

The mechanism of stabilization is conferred by Aurora kinase A (Aurora-A) binding to the N-Myc/SCFFbxw7 

complex and interfering with SCFFbxw7-mediated ubiquitination on N-Myc. Moreover, N-Myc binds specifically 

to the active conformation of Aurora-A.6,13 Several allosteric Aurora-A inhibitors, such as MLN8237 (alisertib) 

and CD532, have been found to promote N-Myc degradation by distorting the active conformation of the kinase 

to disrupt the Aurora-A/N-Myc complex.7,8 However, these compounds function with a negative cooperativity 

against N-Myc, which may explain their limited efficacy when N-Myc is highly expressed.10,13 Results from 

recent phase II clinical trials showed an inferior response of MLN8237 in patients with MYCN-amplification 

status.9 Therefore, developing Aurora-A modulators with greater effects on N-Myc protein stability is urgently 

needed. 

 

Short hairpin RNA knockdown of Aurora-A significantly down-regulates N-Myc levels in MYCN-amplified NB.6 

Therefore, we explored the targeted protein degradation of Aurora-A as a novel chemical approach to destabilize 

N-Myc. We hypothesize that with Aurora-A being degraded, unbound N-Myc, even at high expression levels, 

will be rapidly eliminated through its native degradation pathway (Fig. 1a). We applied proteolysis-targeting 

chimera (PROTAC) technology to develop Aurora-A/N-Myc degraders. PROTACs are heterobifunctional 

molecules comprised of a recognition moiety for a protein of interest (POI) and an E3 ubiquitin ligase ligand 

connected via a chemical linker. By co-opting the ubiquitin-proteasome system (UPS), these molecules function 

through proximity induced polyubiquitination of the POI and subsequent proteasome-dependent degradation (Fig. 

1a).14,15 

 

Development of Aurora-A/N-Myc degraders 

We reasoned that current Aurora-A inhibitors were not optimal to develop selective Aurora-A/N-Myc degraders. 

First, most type I/DFG-in Aurora-A inhibitors binding to its active state suffer from poor selectivity against the 

homolog Aurora-B and/or other structurally related kinases.16 Second, type II/DFG-out Aurora-A inhibitors are 
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highly selective, but they are incompatible with the active conformation of Aurora-A when bound to N-Myc (i.e. 

negative cooperativity), suggesting PROTACs derived from these inhibitors would have limited efficacy at 

degrading the Aurora-A/N-Myc pool.13 Indeed, several MLN8237-based Aurora-A PROTACs have been reported 

recently, but no evidence demonstrates their capability in promoting N-Myc degradation.17-19  

 

To address this issue, a novel Aurora-A ligand was developed from the FDA-approved drug ribociclib (Fig. 1b, 

1), a highly selective inhibitor targeting Cyclin-dependent kinase 4/6 (CDK4/6).20 Chemical modifications of the 

pyridinylpiperazine moiety of ribociclib resulted in the discovery of ligand 2, which showed an approximate 

1000-fold increase of binding affinity against Aurora-A with a dissociation constant (Kd) value of 0.85 nM. Next, 

PROTAC 4 was developed by conjugating 2 through a hexyloxy linker with the widely used thalidomide, which 

targets cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase.21 4 maintained a strong 

affinity for Aurora-A (Kd = 6.3 nM) and exhibited an 8-fold selectivity against CDK4-CyclinD1 (Fig. 1b-c). N-

Methylation on the glutarimide group of thalidomide has been shown to abolish its binding to CRBN,22 and such 

modification yielded the inactive PROTAC 5 that shares similar binding and inhibitory profiles as 4 against 

Aurora-A and CDK4 (Fig. 1b-c and Extended Data Fig. 1a). The presence of the pyridine nitrogen in ribociclib 

(highlighted in red, Fig. 1b) is critical for its high CDK4/6 selectivity over other kinases.23 Installation of this 

nitrogen atom as shown in 3 is more detrimental to Aurora-A binding (~400-fold decrease) than CDK4-CyclinD1 

(14-fold decrease, Fig. 1b-c and Extended Data Fig. 1a). A similar design strategy was applied to 3 to develop 

another inactive PROTAC 6 (Fig. 1b). 5 and 6 were used in the following studies as controls as they show no or 

weak binding to CRBN and Aurora-A, respectively. 

 

When screened against a panel of 468 kinases at 1 µM concentration, ~160-fold above its Kd value against Aurora-

A, 4 displayed an excellent target selectivity with S(10) and S(1) scores of 0.015 and 0.002, respectively (Fig. 1d, 

and Extended data Fig. 1b). In particular, 4 has a 25-fold selectivity against Aurora-B (Kd = 160 nM). Other 

potential off-target kinases (Kd < 200 nM) include Aurora-C, CDK4, CDK9, EPHB6, and TrkA (Extended data 

Fig. 1c). 

 

4 is a potent Aurora-A degrader 

MYCN-non-amplified cancer cell lines were used initially to characterize 4 for degrading Aurora-A in the absence 

of N-Myc. A rapid degradation of Aurora-A with a short half-life (t1/2) of 2 h was observed in MCF-7 breast 

cancer cells after the treatment of 4 at 0.1 µM (Extended data Fig. 1d-e). After a 4 h treatment, the concentration 

of 4 needed to degrade half of the protein (DC50) for Aurora-A is 20.2 nM with a maximum level of degradation 

(Dmax) of 94%, while less effective CDK4 degradation was observed (Fig. 1e, and Extended data Fig. 1f-h). Of 

note, 4 displayed a lower activity in degrading Aurora-A at a high concentration (e.g. 2 µM), reflecting the 

characteristic “hook-effect” of a bifunctional degrader.14,15 Interestingly, the potency of 4 for Aurora-A 
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degradation showed only slight differences across cell lines with various CRBN levels, suggesting that effective 

degradation of Aurora-A can be achieved by PROTACs at a low fractional engagement of the E3 ligase due to 

their catalytic nature (Extended data Fig. 1i-j).14 Subsequent mechanistic studies validated that Aurora-A 

degradation by 4 requires concurrent target engagement of both Aurora-A and CRBN, and is indeed dependent 

on the activity of the UPS (Fig. 1f).  

 

2 & 4 binds to the AURKA/N-Myc complex 

After validating 4 as a bona fide Aurora-A degrader, we next assessed whether 2 and 4 show target engagement 

of the Aurora-A/N-Myc complex. Therefore, crystallography studies were first performed to probe the binding of 

the newly discovered Aurora-A ligands. 2 was successfully co-crystallized with the Aurora-A kinase domain at 

1.8 Å resolution and found to occupy the ATP-binding site (Fig. 2a). The 4-aminopyrimidine moiety of 2 forms 

two key H-bond interactions with the backbone of A213 on the hinge region of Aurora-A, and the oxygen atom 

of the N,N-dimethylamide group forms another critical H-bond with the catalytic K162 residue. In addition, the 

N-methyl amide on the benzene ring sits at the solvent-exposed site and forms H-bond networks with nearby 

hydrophilic residues via water molecules (Fig. 2b). A similar binding mode was observed with ligand 3. 

 

Aurora-A adopts an active DFG-in and αC-helix-in conformation when bound to N-Myc or the co-activator TPX2, 

while allosteric inhibitors, such as MLN8504 (a MLN8237 analogue) or CD532, induce a displacement of the 

αC-helix and disrupt the binding of N-Myc with Aurora-A. Interestingly, 2 stabilizes an inactive DFG-out 

conformation of Aurora-A (Fig. 2a), but unlike the crystal structures with MLN8504 or CD532, Aurora-A 

maintains a closed conformation (αC-helix-in) when bound to 2, similar to the conformation with N-Myc or VX-

680, a DFG-in inhibitor in the presence of TPX2 (Fig. 2c). In addition, allosteric inhibitors induce significant 

shifts of residues that directly interact with N-Myc, including K143, Y334, Q335 and Y338,13 and such 

conformational changes were not observed in the Aurora-A:2 co-crystal structure (Extended data Fig. 2c). Our 

previous studies have shown the structural plasticity of Aurora-A and its conformation may differ from the 

crystallized form when coupled with another binding partner (e.g., TPX2).24 Taken together, these findings 

suggest that 2 is a weak DFG-out binder and may not disrupt the structural features on Aurora-A required for N-

Myc binding. 

 

To test this hypothesis, we first performed a previously reported in vitro pull-down assay with recombinant 

Aurora-A protein and a biotinylated N-Myc peptide (residues 61-89).13 We found that ligand 2 showed 

significantly less competition against the N-Myc peptide than MLN8237 for binding Aurora-A (Extended data 

Fig. 3a-b). Next, a biolayer interferometry (BLI) ternary binding assay was used to quantify the interaction 

between 4 and the Aurora-A/N-Myc complex. Biotinylated N-Myc peptide was loaded onto streptavidin-coated 

biosensors and dipped into a solution containing recombinant Aurora-A. After washing off excess protein, the 
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preformed complex was dipped into a solution containing 4 to measure the association, then in buffer to measure 

the dissociation (Extended data Fig. 3c-d). Calculated affinity (Kd) of 4 for the Aurora-A/N-Myc complex was 

19.5 nM, which is in agreement with the binding affinity previously determined for the binary interaction between 

4 and Aurora-A (Fig. 2d-e). In contrast, titration of MLN8237 results in a concentration-dependent decrease in 

signal, demonstrating its ability to disrupt the Aurora-A/N-Myc interaction (Extended Fig. 3e). Furthermore, pull-

down experiments with 2-PEG3-Biotin and lysates from MYCN-amplified neuroblastoma SK-N-BE(2) cells 

showed the enrichment of both endogenous Aurora-A and N-Myc, indicating the target engagement of 2-PEG3-

Biotin to the Aurora-A/N-Myc complex (Fig. 2f). Following computational studies generated a model of the N-

Myc/Aurora-A/4/CRBN quaternary complex, which corroborated N-Myc binding does not compete with 4 

binding to Aurora-A (Extended Fig. 3f). Taken together, these data suggest the uncompetitive binding mode of 4 

with Aurora-A/N-Myc complex. 

 

4 degrades N-Myc in MYCN-amplified NB 

In MYCN-amplified NB SK-N-BE(2) cells, 4 induces rapid and potent degradation of Aurora-A with a 

concomitant N-Myc degradation (Fig. 3a, and Extended Data Fig. 4a-c). After 4 hours, the apparent DC50 values 

(DC50, app) for N-Myc were 179 nM and 229 nM in SK-N-BE(2) and Kelly cells, respectively (Fig. 3b-c, and 

Extended Data Fig. 4d). In contrast, inactive PROTAC 5 did not affect the protein levels of either Aurora-A or 

N-Myc (Extended Data Fig. 4e). Interestingly, N-Myc degradation did not occur until a substantial amount of 

Aurora-A (≥ 75%) had been degraded, suggesting near complete Aurora-A degradation (i.e. a high Dmax value) is 

required to degrade N-Myc. This was further validated by a washout experiment, in which both Aurora-A and N-

Myc were depleted first by 4. After replacing 4 with fresh media, even a small portion of recovered Aurora-A 

could fully stabilize N-Myc to its steady-state level (Extended Data Fig. 4f). All previously reported Aurora-A 

PROTACs use MLN8237 as the Aurora-A binding portion, suggesting their limited access to Aurora-A pools that 

are coupled with other binding partners, such as TPX2 and N-Myc. This could potentially explain their relatively 

low Dmax values for Aurora-A and ineffectiveness in promoting N-Myc degradation (e.g., JB170, Extended Data 

Fig. 4g).17-19  

 

We further demonstrated that N-Myc degradation by 4 also requires target engagement of both Aurora-A and 

CRBN and depends on the activity of the UPS (Extended Data Fig. 5a). In MYCN-amplified NB cells, poly-

ubiquitinated N-Myc is rescued by the ubiquitin-specific protease 7 (USP7) through deubiquitylation,25 and co-

treatment with a selective USP7 inhibitor, FT671,26 indeed showed synergistic effects with 4 for degrading N-

Myc (Extended Data Fig. 5b-c). Furthermore, in MYCN-non-amplified NB cells, 4 did not degrade the homolog 

c-Myc despite potent Aurora-A degradation, suggesting its activity for degrading N-Myc depends on the 

regulatory mechanism of Aurora-A (Extended Data Fig. 5d). Taken together, these findings validate the 
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hypothesized mode-of-action model of 4, in which N-Myc is degraded via its native degradation pathway after 

Aurora-A depletion (Fig. 1a). 

 

With its novel mechanism, 4 outperformed MLN8237 and CD532 to induce more potent N-Myc degradation in 

a head-to-head comparison experiment (Fig. 3d, and Extended Data Fig. 5e). An established hallmark for selective 

Aurora-A inhibition over Aurora-B is an initial increase of phosphorylated histone H3 (p-H3) at lower 

concentrations of inhibitors, followed by a drastic reduction at higher concentrations.8,27 4 significantly 

upregulated p-H3 levels spanning a broad range of concentrations, indicating its high in cellulo selectivity for 

Aurora-A over Aurora-B (Fig. 3d, and Extended Data Fig. 5e). Additionally, consistent with previous studies, 

MLN8237 treatment leads to abnormal high expression of Aurora-A, which in turn could potentially lower its 

expected efficacy to destabilize N-Myc.28 In contrast, treatment with degrader 4 maintained low levels of Aurora-

A despite upregulated transcription similarly as MLN8237 (Fig. 3d-e, and Extended Data Fig. 5e-f). These data 

suggest the additional advantage of Aurora-A degradation over inhibition for destabilizing N-Myc. Of note, 4 did 

not affect MYCN mRNA levels, suggesting the decreased N-Myc protein levels is not due to its transcriptional 

inhibition (Fig. 3e, and Extended Data Fig. 5f).  

 

To assess the proteome-wide degradation selectivity of 4, we performed a quantitative multiplexed proteomic 

analysis using Tandem Mass Tag (TMT) isobaric labeling tags. More than 6000 protein IDs were quantified in 

this study, and Aurora-A and N-Myc were found among the most significantly downregulated group (Fig. 3f). 

Most other proteins that were downregulated ≥ 35% belong to either N-Myc or Aurora-A associated genes, such 

as the 60S ribosomal subunits (Extended Data Fig. 5g).29,30 Despite its in vitro binding to several other kinases to 

various degrees (Extended data Fig. 1c), 4 did not result in significant decrease of their protein levels (Fig. 3f, 

green spots). The high selectivity over these kinases was also confirmed by immunoblotting in both NB and non-

NB cells (Fig. 3g, and Extended Data 5h).  

 

4 for treating MYCN-amplified NB 

Aurora-A is a key regulator of p53 homeostasis in TP53 wild-type (TP53wt) cells through its kinase activity, while 

stabilizing N-Myc in a kinase-independent manner (i.e., scaffolding function).6,31 Treatment with 4 in TP53wt 

IMR-32 cells significantly stabilized p53, along with decreased Aurora-A and N-Myc. Similar effects were 

observed for their respective downstream signaling components, such as increased p21Cip1 and decreased Cyclin 

D levels (Fig. 4a-b). The effects of 4 on the p53 pathway was also confirmed in another TP53wt cell line, MCF-7 

(Extended Data Fig. 6a). Control 5, which only inhibits Aurora-A kinase activity but not its scaffolding function, 

increased p53 and p21 (albeit with a lower potency than 4) but did not affect N-Myc and Cyclin Ds (Extended 

Data Fig. 6b). Moreover, in IMR-32 cells, 4 upregulated the transcriptional levels of CDKN1A (encoding p21Cip1) 
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and PLK2, two p53 target genes, and downregulated MAD2L1, a direct target gene of N-Myc (Extended Data Fig. 

6c). In line with these studies, in TP53 mutant cell lines SK-N-BE(2) and Kelly, 4 only decreased the levels of 

N-Myc and Cyclin Ds but did not affect p53 levels despite Aurora-A degradation (Extended Data Fig. 6d-e). 

Collectively, these data indicated the on-target effects of 4 modulating p53 and N-Myc pathways through Aurora-

A degradation.  

 

MYCN-amplified NB cells underwent apoptosis after the treatment of 4, indicated by the cleavage of PARP-1 and 

Caspase-3 (Fig. 4c). 4 also exhibited potent cytotoxicity against a panel of MYCN-amplified NB cells with IC50 

values ranging from 20.1 nM to 131 nM (Fig. 4d and Extended Data Fig. 6f). However, 4 was much less effective 

in the MYCN-non-amplified NB cell line SK-N-AS, which is known to be resistant against Aurora-A knockdown 

(Extended Data Fig. 6f).6 Notably, the inactive PROTAC 5 is less potent at inducing apoptosis and exhibits much 

lower cytotoxicity than 4 (Fig. 4c-d, Extended Data Fig. 6f). 

 

Pharmacokinetic studies in CD-1 male mice showed that 4 has a long half-life and a high total drug exposure after 

10 mg/kg dosing via intraperitoneal (IP) injection (Fig. 4e). We next evaluated the in vivo anti-tumor efficacy of 

4 in a xenograft mice model of MYCN-amplified neuroblastoma. We found that IP treatment of 4 every 2 days or 

every 3 days significantly delayed the growth of SK-N-BE(2) tumors engrafted into the subcutaneous flanks of 

nude mice (Fig. 4f). Nine days after the onset of treatment, the mice injected every 3 days showed substantial 

tumor regression (mean = 50.8 mm3), and the mice injected every 2 days demonstrated a moderate reduction in 

tumor volume (mean = 124.9 mm3), compared to the vehicle treated mice (mean = 374.4 mm3, Fig. 4g). 

 

Conclusion 

MYCN amplification in neuroblastoma patients is strongly associated with disease aggressiveness and low 

survival rates.1,2 Aurora-A stabilizes N-Myc in MYCN-amplified NB cells and genetic knockdown of Aurora-A 

decreases N-Myc protein levels.6 Based on this genetic validation, we report a chemical strategy to degrade N-

Myc through the targeted protein degradation of Aurora-A. We first developed a novel Aurora-A-targeting ligand 

2 with high affinity and specificity. Elaboration of 2 to heterobifunctional degrader 4 resulted in a compound with 

strong Aurora-A engagement that is not competitive with N-Myc binding. Furthermore, 4 is highly effective in 

degrading N-Myc and distinguished from other reported Aurora-A degraders developed from the competitive 

modulator MLN8237,17-19 which possess comparatively low maximum degradation levels (Dmax) of Aurora-A 

that failed to result in the concomitant degradation of N-Myc. Our data support our working hypothesis that 

Aurora-A-binding ligands that are not competitive with N-Myc binding are required. The first-in-class Aurora-

A/N-Myc degrader 4 induces a rapid and potent degradation of both Aurora-A and N-Myc in neuroblastoma cells. 

Additional studies demonstrate that 4 exhibits a high degradation selectivity, on-target modulating effects, and 

therapeutic potential against in vitro and in vivo neuroblastoma models. Taken together, this study provides a 
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novel lead compound for neuroblastoma therapy development and demonstrates that “undruggable” proteins, 

such as N-Myc, may be modulated through the degradation of their regulatory binding partners.  
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Figure 1 | Discovery of novel Aurora-A degraders. A, Conceptual model of N-Myc depletion through targeted protein 
degradation of Aurora-A (AURKA). Fbxw7: the substrate receptor of the SCFFbxw7 E3 ubiquitin ligase. b, Discovery of 
novel Aurora-A ligands 2 and 3, and Aurora-A PROTACs 4, 5, and 6 through chemical modifications of the CDK4/6 
inhibitor 1 (ribociclib).  c, Binding affinity (Kd) for Aurora-A and CDK4-Cyclin D1. Data are the average of two independent 
biological replicates. d, The KINOMEscan TREEspot map demonstrating the selectivity profiles of 4 against a panel of 468 
kinases. See Extended Data Fig. 1a for a full spectrum including atypical, mutant, lipid, and pathogen kinases. e, 4 induces 
the degradation of Aurora-A but not CDK4 in MCF-7 cells. Representative figure, n = 4. See Extended Data Fig. 1f for the 
degradation curves. f, Mechanistic studies of Aurora-A degradation by 4 in MCF-7 cells after 4 h. Representative figure, n 
= 3. Thalidomide: a CRBN ligand; MG-132: a proteasome inhibitor; MLN4924: a neddylation inhibitor that blocks the 
function of Cullin ring E3 ligases. For the competition set-up (the four lanes on the right side), cells were pre-treated with 
2, thalidomide, MG-132 or MLN4924 for 1 h, respectively, before adding 4 (0.1 µM) for additional 4 h.  
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Figure 2 | 2 and 4 bind to Aurora-A/N-Myc complex. a-b, The co-crystal structure of 2 with Aurora-A 122-403 (PDB: 
To Be Provided). Ligand 2 is shown in cyan, activation loop in red, DFG motif in orange, and residues that form H-bond 
with 2 in green. c, Angle between α-Cs of T33, E308 and A172 of Aurora-A8 when co-crystallized with N-Myc peptide 
(PDB: 5G1X, grey), 2 (PDB: XXX, cyan), VX-680 (PDB: 3E5A, orange), MLN8504 (PDB: 2WTV, blue) and CD532 
(PDB: 4J8M, green). Values in the parenthesis indicate the angle difference from the Aurora-A/N-Myc conformation. d-e, 
BLI ternary binding assay with 4 binding to the biotinylated N-Myc peptide/Aurora-A complex. n = 2. f, Chemical structure 
of 2-PEG3-Biotin and representative figure of the enrichment of endogenous Aurora-A and N-Myc in SK-N-BE(2) cell 
lysates with 2-PEG3-Biotin. n = 3. 
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Figure 3 | 4 induces N-Myc degradation in MYCN-amplified NB cells. a, Concomitant degradation of Aurora-A and N-
Myc by 4 in SK-N-BE(2) cells after 4 h and 24 h. n = 3. b-c, Degradation curves of 4 for Aurora-A and N-Myc in SK-N-
BE(2) and Kelly cell lines after 4 h. Dashed boxes indicate the concentration range where N-Myc degradation starts. See 
Extended Data Figure 3 for DC50 and Dmax values. n = 3. Degradation curves represent mean ± s.e.m. d, Head-to-head 
comparison of 4 with MLN8237 and CD532 for their effects on the protein level changes of Aurora-A, N-Myc, p-H3 in 
SK-N-BE(2) cells after 24 h. n = 3. e, Relative mRNA levels of AURKA and MYCN in SK-N-BE(2) cells after the treatment 
with 4, MLN8237, or a BET inhibitor JQ1 for 24 h by RT-qPCR. n = 3. Bars represent mean ± s.d.  **p < 0.01, ***p < 
0.001, ****P < 0.0001. f, Scatter plot showing changes in protein abundance in SK-N-BE(2) cells with 4  (0.4 µM) versus 
DMSO control after 4 h treatment by TMT-based quantitative proteomic profiling. Significant changes were assessed by 
background-based t-test in Proteome Discoverer with the log2 fold change on the y-axis, and negative log10 p values on the 
x-axis from two independent biological replicates. See Supplementary Table 3 for a full list of identified proteins. g. 
Immunoblotting of Aurora-A, N-Myc, and other kinases in SK-N-BE(2) and Kelly cells after the treatment with 4 for 4 h. 
n = 3.  
 

75

50

37

SK-N-BE(2) (4 h) SK-N-BE(2) (24 h)
 0     0.05   0.1     0.2    0.5    1.0  0     0.05   0.1     0.2    0.5    1.0

AURKA

4 (µM)

N-Myc

ȕ�$FWLQ

a

d

f g

e

b c

&RQFHQWUDWLRQ��Q0)

5
HO
DW
LY
H�
DE
XQ
GD
QF
H

.HOO\�ZLWK�4 (4 h)

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2 $XURUD�A
N-Myc

$XURUD�A
N-Myc

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

&RQFHQWUDWLRQ��Q0)

5
HO
DW
LY
H�
DE
XQ
GD
QF
H

6.�1�%(����ZLWK�4 (4 h)

SK-N-BE(2) (4 h) .HOO\����K�
 0      12      37    111    333   1000 0      12      37    111    333  1000

AURKA

N-Myc

AURKB

CDK4

CDK6

CDK9

ȕ�$FWLQ

4��Q0�

50

75

37

37

37

50

50

15

15

75

50

37

  0    0.037 0.11  0.33  1.0   0    0.037 0.11  0.33   1.0   0    0.037 0.11  0.33   1.0

CD5324 MLN8237

AURKA

&RQF����0�

N-Myc

p-H3

H3

ȕ�$FWLQ

SK-N-BE(2) (24 h)

AURKA MYCN
0.0

0.5

1.0

1.5

2.0

2.5

3.0

5
HO
DW
LY
H�
P
5
1

A�
OH
YH
O

DMSO
4 (0.1 µM) 
4 (0.4 µM) 
MLN8237 (1.0 µM) 
JQ1 (1.0 µM) 

Qs QsQs

SK-N-BE(2) (24 h)

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

-2
-1

0
1

2

 

 
y = 0.64 (56% upregulated)

y = -0.64 (35% downregulated)

-log10(p-value)

4�
'
0
62

��O
Rg

2�I
RO
G�
FK
DQ
JH

)

p = 0.001AURKA

MYCN

NSA2

AURKB

CDK13

PI4KB

CDK6

CDK9CDK4

6052 proteins

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.09.487756doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.09.487756
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 4 | In vitro and in vivo therapeutic effects of 4 for NB. a-b, 4 upregulates tumor suppressor proteins p53 and 
p21Cip1, and downregulates oncoproteins N-Myc and CyclinDs in TP53wt IMR-32 cells after 24 h. n = 3. c, Immunoblotting 
of the cleaved PARP-1 and cleaved Caspase-3 as apoptotic markers after the treatment with 4 and 5 for 24 h in IMR-32 
cells. n = 3. d, Cytotoxicity of 4 and 5 in SK-N-BE(2) and IMR-32 cells by Alamar Blue assay. n =3. e, Pharmacokinetic 
profiling of 4 in CD-1 male mice via intraperitoneal injection. Data represent mean ± s.d. from four mice in each dosing 
group. f-g, SK-N-BE(2) tumor growth in female nude mice treated with 4 via intraperitoneal injection every 2 or 3 days, or 
vehicle every 2 days. Bars represent mean ± s.d. *p < 0.05, ***p < 0.001. 
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Extended data Figure 1 | Discovery of novel Aurora-A degraders. a, Kinase inhibitory activities (IC50) against Aurora-
A and CDK4-Cyclin D1. Staurosporine: a potent and broad-spectrum protein kinase inhibitor as a positive control. Data are 
the average of two independent biological replicates. b. Full spectrum of the KINOMEscan TREEspot map demonstrating 
the selectivity profiles of 4 against a panel of 468 kinases. See Supplementary Table 2 for a full list of kinases tested. c, The 
binding affinity (Kd) and kinase inhibitory activities (IC50) of compound 4 for kinase targets with %Control <20% from the 
KINOMEscan. Data are the average of two independent biological replicates. d-e, 4 (0.1 µM) induces a potent and selective 
degradation of Aurora-A in a time-dependent manner in MCF-7 cells. Figure d is a representative figure of four biological 
replicates. f, Degradation curves of Aurora-A and CDK4 corresponding to Fig. 1e. g-h, 4 induced the degradation of Aurora-
A and CDK4 in MCF-7 cells after 24 h. n = 2. i-j, Aurora-A degradation by 4 in three cell lines that have different CRBN 
expression levels. n = 3. Degradation curves/bars represent mean ± s.e.m from aggregated data. *p < 0.05, **p < 0.01. 
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Extended data Figure 2 | Superposition of Aurora-A structures when co-crystallized with N-Myc or inhibitors. a, 
Aurora-A structure with N-Myc peptide (PDB: 5G1X, grey); b, Aurora-A/N-Myc vs Aurora-A/MLN8504 (PDB: 2WTV, 
blue); c, Aurora-A/N-Myc vs Aurora-A/CD532 (PDB: 4J8M, green); d, Aurora-A/N-Myc vs Aurora-A/CCT137690 (PDB: 
2X6E, pink); e, Aurora-A/N-Myc vs Aurora-A/2 (PDB: To Be Provided, cyan); f, Aurora-A/2 vs Aurora-A/MLN8504; g, 
Aurora-A/2 vs Aurora-A/CD532; h, Aurora-A/2 vs Aurora-A/CCT137690. Key residues on Aurora-A that directly interacts 
with N-Myc peptide are highlighted in orange. CCT137690: a DFG-in Aurora-A inhibitor bound to the active state of 
Aurora-A.  
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Extended data Figure 3 | Biophysical assays to demonstrate the target engagement of 2 and 4 binds with the Aurora-
A/N-Myc. a-b. In vitro pull-down assay with recombinant Aurora-A and biotinylated N-Myc 61-89 peptide. n = 2. Bars 
represent mean ± s.d. **p < 0.01, ***p < 0.001. c-d. The set-up and workflow of the BLI ternary binding assay. e, BLI 
ternary binding assay with MLN8237 shows the disruption of the biotinylated N-Myc peptide/Aurora-A complex. n = 2. f. 
Computational modeling of the N-Myc/4/Aurora-A/CRBN complex. The peptide from N-Myc is shown in red, Aurora-A 
in blue, 4 in green, and CRBN in orange.  
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Extended data Figure 4 | 4 induces N-Myc degradation in MYCN-amplified NB cells. a, 4 (0.4 µM) time-dependently 
induces the degradation of Aurora-A and N-Myc in SK-N-BE(2) cells. n = 3. b-c, Concomitant degradation of Aurora-A 
and N-Myc by 4 in IMR-32 cells (c) and Kelly cells (d) after 4 h and 24 h. n = 3. d, DC50 and Dmax values from Figures 2b 
and 2c, data are average of three biological replicates. e, Inactive PROTAC 5 did not affect the protein levels of Aurora-A 
and N-Myc in SK-N-BE(2) cells after 24 h. n = 4. f, Washout experiment in SK-N-BE(2). Cells were pre-treated with 4 for 
4 h, and the moment when replaced with fresh media was marked as 0 h. Cell lysates were collected at the following 
indicated time points. n = 3. g, JB170 induced Aurora-A degradation with a low Dmax, and did not degrade N-Myc in SK-
N-BE(2) and IMR-32 cell lines after 24 h. n = 3.    
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Extended data Figure 5 | 4 induces N-Myc degradation in MYCN-amplified NB cells. a, Mechanistic studies of N-Myc 
degradation by 4 after 4 h. For the two lanes on the right side, cells were pre-treated with MG-132 (1.0 µM) or MLN4924 
(0.5 µM) for 1 h before adding 4 (0.1 µM) for another 4 h. n = 3. b-c, Synergistic effects on N-Myc degradation through 
co-treatment of 4 with FT671 (10 µM) for 24 h in IMR-32 cells. n = 3. Degradation curves (c) represent mean ± s.e.m. d, 4 
induces degradation of Aurora-A but not c-Myc in MYCN-non-amplified NB SH-SY5Y and SK-N-AS cells after 4 h. n = 
3. e, Head-to-head comparison of 4 with MLN8237 and CD532 for their effects on the protein level changes of Aurora-A, 
N-Myc, p-H3 in IMR-32 cells after 24 h. n = 3. f, Relative mRNA levels of AURKA and MYCN in IMR-32 cells after the 
treatment with 4, MLN8237, or a BET inhibitor JQ1 for 24 h by RT-qPCR. n = 3. Bars represent mean ± s.d.  *p < 0.05, 
***p < 0.001, ****P < 0.0001. g, Protein targets that were decreased by > 35% from the TMT-based quantitative proteomic 
profiling of 4 in Figure 3f. h, Immunoblotting of Aurora-A and other kinases in non-NB MCF-7 and Huh7 cells after the 
treatment with 4 for 4 h and 24 h. n = 3. 
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Extended Data Figure 6 | In vitro and in vivo therapeutic effects of 4 for NB. a. 4 upregulates tumor suppressor proteins 
p53 and p21Cip1 in TP53wt MCF-7 cells after 24 h. n = 3. b. Immunoblotting of the signaling components in the p53 and N-
Myc pathways after the treatment with the inactive PROTAC 5 in IMR-32 cells after 24 h. n = 3. c, Relative mRNA levels 
of CDKN1A and PLK2 as p53 targeting genes, and MAD2L1 as a N-Myc direct target gene in IMR-32 cells after 24 h. n = 
3. *p < 0.05, **p < 0.01, ****P < 0.0001. d-e, Immunoblotting of the signaling components in the p53 and N-Myc pathways 
after the treatment with 4 in TP53 mutant SK-N-BE(2) and Kelly cell lines after 24 h. n = 3. f. Cytotoxicity of compounds 
in MYCN-amplified and MYCN-non-amplified NB cells. n = 3. Data represent mean ± s.d.  
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