

1 **Improvement of Gene Delivery and Mutation Efficiency in the CRISPR-Cas9 Wheat**
2 (*Triticum aestivum* L.) **Genomics System via Biolistics**
3

4 **Jaclyn Tanaka¹, Bastian Minkenberg^{1,*}, Snigdha Poddar^{1,2}, Brian Staskawicz^{1,3},**
5 **Myeong-Je Cho^{1,✉}**

6 **Abstract**

7 Discovery of the CRISPR-Cas9 gene editing system revolutionized the field of plant genomics.
8 Despite advantages in ease of designing gRNA and the low cost of the CRISPR-Cas9 system,
9 there are still hurdles to overcome in low mutation efficiencies, specifically in hexaploid wheat. In
10 conjunction with gene delivery and transformation frequency, the mutation rate bottleneck has the
11 potential to slow down advancements in genomic editing of wheat. In this study, nine
12 bombardment parameter combinations using three gold particle sizes and three rupture disk
13 pressures were tested to establish optimal stable transformation frequencies in wheat. Utilizing
14 the best transformation protocol and a knockout cassette of the phytoene desaturase gene, we
15 subjected transformed embryos to four temperature treatments and compared mutation
16 efficiencies. The use of 0.6 μ m gold particles for bombardment increased transformation
17 frequencies across all delivery pressures. A heat treatment of 34°C for 24 hours resulted in the
18 highest mutation efficiency with no or minimal reduction in transformation frequency. The 34°C
19 treatment produced two M₀ mutant events with albino phenotypes, requiring biallelic mutations in
20 all three genomes of hexaploid wheat. Utilizing optimal transformation and heat treatment
21 parameters greatly increases mutation efficiency and can help advance research efforts in wheat
22 genomics.

23
24 (1) Innovative Genomics Institute, University of California, Berkeley, CA, USA,

25 (2) Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA,

26 (3) Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA

27 *Present address: Inari Agriculture, Inc., Cambridge, MA, USA

28
29 ✉ Corresponding author: e-mail: mjcho1223@berkeley.edu

30
31
32 **Keywords:** wheat, transformation, biolistics, microparticle size, rupture disk pressure, high
33 temperature, genome editing, phytoene desaturase gene (PDS), albino phenotype

35 **Introduction**

36

37 Wheat is grown on more land than any other crop and is the second most produced grain in the
38 world behind maize. It serves as a staple food worldwide, accounting for a fifth of globally
39 consumed calories (<http://www.fao.org/faostat/en>). It is an important source of carbohydrates and
40 is the leading source of vegetable-based protein in the human diet. World trade for wheat is
41 greater than all other grains combined, which in effect has a great impact on global food security.
42 With looming changes to the environment brought on by climate change as well as a growing
43 global population, the need to address issues such as drought, yield and disease in wheat is
44 critical. Our ability to edit wheat to produce more robust plants that can take on changing
45 environmental landscapes and societal needs is imperative.

46 Bread wheat is genetically hexaploid (Hart 1983) which makes breeding more complicated
47 than other cereals such as rice and maize as a result of the triple genomes. Traditionally, wheat
48 has been bred by crossing two lines by hand and subsequently segregating progeny for the
49 desired traits. This task is time consuming and takes multiple generations to achieve the
50 necessary genetic composition due to the hexaploid nature of wheat. It can take years for a wheat
51 cultivar to be established for commercial use through traditional breeding.

52 More modern development of wheat varieties is obtained through indirect or direct gene
53 transfer, typically via *Agrobacterium* and particle bombardment, respectively. Through
54 *Agrobacterium*-mediated transformation, selected genes are transferred from bacteria to plant
55 cells via disarmed *Agrobacterium* vectors (Smith and Hood 1995) and whole plants are then
56 generated through tissue culture. *Agrobacterium*-mediated transformation has been well
57 established in a variety of crops and is advantageous for intact transfer of larger DNA fragments
58 (Dai et al. 2001). Although *Agrobacterium*-mediated transformation can result in high instances
59 of single-copy events and intact T-DNA delivery, it lacks consistency across species, genotypes
60 and tissue types especially in more recalcitrant varieties (Smith and Hood 1995; Hu et al. 2003).
61 This specificity limits the ability for impact across multiple crops or cultivars in addition to more
62 regulatory hurdles involved with the transfer of *Agrobacterium* binary backbone.

63 Conversely, particle bombardment is a method of direct gene transfer in which DNA is
64 precipitated onto gold particles and delivered onto plant tissue using high pressure Helium gas
65 (Klein et al. 1988; Vain et al. 1993; Lemaux et al. 1996; Finer et al. 2000). In this system there are
66 multiple factors that can be adjusted to optimize DNA delivery such as the size of gold particles,
67 amount of gold particles, delivery pressure, amount of DNA and distance from the plant tissue.
68 We chose to use particle bombardment as our gene delivery system because it is less species-

69 and genotype-dependent and vector construction is simpler. Although particle bombardment can
70 have higher instances of multiple copy events, the copies are often located on the same locus
71 allowing for easy segregation out in future generations. Choi et al. (2002) showed that 18 out of
72 19 independent transgenic barley events generated via bombardment had transgene integration
73 at a single locus. In addition, since particle bombardment is a form of direct gene delivery it is a
74 mechanism that is unregulated and can result in a more streamlined regulatory process.

75 In the forefront of genetic engineering today is gene editing and CRISPR (Doudna and
76 Charpentier 2014). The CRISPR-Cas9 gene editing system is widely used for improvement of
77 various field crops (Bortesi and Fischer 2015). The system allows researchers to utilize short
78 repeats of endogenous DNA in the plant genome derived from bacteriophages to identify specific
79 locations in the genome for gene editing. In conjunction with these DNA repeats, the Cas9 protein
80 is programmed to cut double-stranded DNA in precise locations and allows for site-specific editing
81 within the plant genome. The ability to make site-specific gene edits in a plant gives this
82 technology an advantage over traditional genetic modification methods that randomly insert DNA.
83 The CRISPR-Cas9 system allows for not only the insertion of new DNA into the plants but also
84 the deletion or silencing of single genes within the genome that can confer a variety of
85 advantageous phenotypes.

86 Mutation efficiencies using the CRISPR-Cas9 system vary widely across monocot
87 species. Rice mutation efficiencies are generally higher compared to wheat mutation efficiencies
88 (Feng et al. 2013; Howells et al. 2018; Liu et al. 2019; Zhang et al. 2019). In addition, mutation
89 efficiencies are largely impacted by the individual components of a construct. The proper selection
90 of promoters to drive expression of Cas9 and sgRNAs can increase expression levels and
91 ultimately positively impact mutation efficiency in transformed plants. In addition, testing sgRNA
92 sequence efficiency *in vivo* before stable transformation is critical for maximizing mutation
93 efficiency (Poddar et al. 2020). Even the sequence of Cas9 protein can affect mutation efficiency,
94 through codon optimization and the presence or absence of introns (Grützner et al. 2021). At the
95 plant level, mutation efficiency is dependent on establishing an effective tissue culture protocol
96 which is predominantly reliant on identifying a good starting explant. Another approach to increase
97 mutation efficiency in plants is the effect of temperature treatments. The effect of temperature
98 treatments on mutation efficiencies has been proven in mammalian cell culture (Xiang et al. 2017).
99 The CRISPR-Cas9 system was established on a principle derived from *Streptococcus pyogenes*
100 adaptive immunity to viruses (Doudna and Charpentier 2014). *S. pyogenes* grows the most
101 dynamically at 40°C (Panos and Cohen 1964). It is reasonable to expect that the Cas9 protein
102 will be more efficient at higher temperatures. Recent studies have reported positive effects of

103 temperature treatment on editing efficiency in *Arabidopsis*, citrus, rice and wheat plants (LeBlanc
104 et al. 2018; Malzahn et al. 2019; Milner et al. 2020).

105 The phytoene desaturase gene (PDS) is commonly applied as a demonstration of
106 experimental mutation efficiencies due to its visual phenotype and wide conservation across
107 species. The PDS gene is involved in the carotenoid synthesis pathway (Bartley and Scolnik
108 1995) in plants. A recessive mutation, or knockout, of the PDS gene disrupts the formation of β -
109 carotene and confers a visual albino phenotype (Qin et al. 2007). The PDS knockout has been
110 demonstrated in a range of species including, but not limited to, *Arabidopsis* (Qin et al. 2007), rice
111 (Zhang et al. 2014), banana (Naim et al. 2018), cassava (Odipio et al. 2017) and melon
112 (Hooghvorst et al. 2019). However, the PDS knockout, albino phenotype, has not been previously
113 reported in M_0 hexaploid wheat because it is likely to require biallelic mutations on all six loci of
114 the three genomes.

115 Finding a good combination of these factors to increase CRISPR mutation efficiency in
116 wheat is a valuable tool for facilitating the production of robust wheat cultivars that can withstand
117 the effects of climate change faster than other approaches. In this study, we establish parameters
118 for particle bombardment that result in improved transformation frequencies, as well as
119 subsequent temperature treatments to increase mutation efficiencies in hexaploid wheat. We also
120 report the successful generation of PDS triple recessive mutant events in the M_0 generation
121 displaying the albino phenotype. In addition, we demonstrate the albino phenotype in M_1 and M_2
122 progeny plants derived from an edited event with monoallelic and biallelic mutations in the 3
123 different genomes.

124
125

126 **Materials and Methods**

127

128 **Plant Material**

129 Seeds of *Triticum aestivum* L. cv. Fielder were sown weekly and grown in growth chambers under
130 16-hr days at 24°C, and 8-hr nights at 15°C. Light levels were set to approximately 130 $\mu\text{mol m}^{-2}$
131 s^{-1} at head height. Immature spikes were harvested 10-14 days post flowering with an immature
132 embryo (IE) sized 1.7-2.2 mm. Immature spikes were collected up to 5 days pre bombardment
133 and stored at 4-6°C. One day prior to bombardment, immature seeds were harvested from
134 immature spikes and surface-sterilized using 20% (v/v) bleach (8.25% sodium hypochlorite) plus
135 one drop of Tween 20 for 15 minutes before triple rinsing with sterile water. IEs were then isolated
136 and placed scutellum side up on DBC3 medium (Cho et al. 1998) and incubated at 26°C overnight.

137

138 **Plasmids**

139 Plasmids, pAct1IHPT-4, pAct1IDsRED and pRGE610-PDS-PS2, were used for transformation
140 (Fig. 1). pAct1IHPT-4 (Cho et al. 1998) and pAct1IDsRED contain hygromycin
141 phosphotransferase (*hpt*) and *DsRED* genes, respectively, each under control of the rice actin 1
142 promoters, its intron (*act1I*) and the nos 3' terminator (Figs. 1A and B). pRGE610-PDS-PS2
143 contains Cas9 gene and gRNA cassettes (Fig. 1C) and was made using the following steps. First,
144 the wheat U6 promoter with blue-white screening cassette was amplified from pTaU6-sgRNA (gift
145 from Daniel Voytas) with primers TaU6Lac-*Hind*III-F (5'-
146 TAAAGGAACCAATTCACTGACTGGAT-3') and TaU6Lac-*Sbf*I-R (5'-
147 GCCCTGCAGGTCTAGATATCTCGAGGGTACCAAAGT-3'). pRGE32 (gift from Yinong
148 Yang, Addgene ID 63159) was digested with *Sbf*I and *Hind*III to release the original sgRNA
149 cassette. Then, the PCR fragment from the first step was ligated into the digested pRGE32
150 backbone to create pRGE610. Next, two fragments from pGTR (gift from Yinong Yang, Addgene
151 ID 63143) were amplified. The first fragment, product of TaU6-L5AD-*Btg*ZI-F (5'-
152 CGGGTCTCACTTGGCGATGTCTTGGTCTGCTTGACAAAGCACCAGTGG-3') and PDS-PS2-
153 gR (5'-TAGGTCTCAAGGTGGTCATTGCACCAGCCGGG-3'), contained a tRNA and the first half
154 of the sgRNA spacer PS2 with 4 bp overhangs on each site to enable Golden Gate assembly with
155 the second fragment. The second fragment, product of PDS-PS2-gF (5'-
156 CGGGTCTCCACCTCTTTCAGCGTTTAGAGCTAGAA-3') and L3AD-*Btg*ZI-R (5'-
157 TAGGTCTCCAAACGCGATGGAGCGACAGCAAACAAAAAAAGCACCGACTCG-3'),
158 contained the second half of PS2 followed by the sgRNA scaffold and overhangs for Golden Gate
159 assembly on each site. The NEB® Golden Gate Assembly Kit (Bsal-HF®v2) was used to combine
160 both fragments. The resulting product was used as template for primers TaU6-S5AD-*Btg*ZI-F (5'-
161 CGGGTCTCACTTGGCGATGTCTTGGTCTGCTTG-3') and S3AD-*Btg*ZI-R (5'-
162 TAGGTCTCCAAACGCGATGGAGCGACAGCAAAC-3') to yield enough of the Golden Gate
163 assembly product for digestion with *Btg*ZI. The *Btg*ZI digested product was then ligated into the
164 *Bsal* digested backbone of pRGE610, to finally create pRGE610-PDS-PS2.

165

166 **Stable Transformation via Particle Bombardment**

167 Immature embryos, isolated from immature spikes (Fig. 2A) and pre-incubated at 26°C overnight,
168 were used for bombardment. On the day of bombardment, IEs were placed on top of a 40 mm
169 filter paper on a plate of DBC3 osmoticum medium containing mannitol and sorbitol (0.2 M each)
170 (Fig. 2B, Cho et al. 2000). Four hours after treatment with osmoticum, IEs were bombarded using

171 Bio-Rad PDS-1000/He particle gun (Fig. 2C) as previously described (Lemaux et al. 1996; Cho
172 et al. 2000) with modifications. Two milligrams of gold particles (0.4, 0.6 and 1.0 μm) were coated
173 with 5 μg of a mixture of pAct1IHPT4 and pAct1IDsRED or pAct1IHPT4 and pRGE610-PDS-PS2
174 at a 1:2 ratio. Each particle prep was resuspended in 85 μL of 100% EtOH and 7.5 μL was spread
175 onto the center of a macrocarrier inside of a macrocarrier holder. The particle preps were used
176 for bombardment with a Bio-Rad PDS-1000/He biolistic device (Bio-Rad, Hercules, CA) at 3
177 different delivery pressures (650, 900 and 1100 psi). Each plate of IEs was bombarded twice per
178 treatment. After bombardment, IEs were transferred from filter paper to the exposed media and
179 incubated overnight at 26°C in dim light (10-30 $\mu\text{mol m}^{-2} \text{s}^{-1}$). Sixteen hr post bombardment, IEs
180 were transferred to DBC3 medium and incubated at 26°C for 1 wk in dim light. Following the
181 resting period, IEs went through 3 rounds of selection via DBC3 media containing 30 mg/l
182 hygromycin B, each round of selection lasting 3 wk (Fig. 2D). After the third round of selection,
183 regeneration was initiated using DBC6 media (Cho et al. 2015) containing 30 mg/l hygromycin B
184 and incubated at 26°C in high light (90 $\mu\text{mol m}^{-2} \text{s}^{-1}$) and subcultured every 3 wk. Once shoots
185 were approximately 0.5-3.0 cm in height (Fig. 2E), shoots were transferred to WR rooting media
186 for root formation. Plantlets were then transferred to soil once they had enough shoots to support
187 transplant to soil (Fig. 2F).

188

189 ***Temperature Treatment of Bombardeed Immature Embryos***

190 Bombarded IEs were subjected to varying heat treatments of 26°C, 30°C, 34°C and 37°C 4 days
191 post bombardment for 24 hr, incubated in Heratherm Compact Microbiological Incubators
192 (Thermo Scientific, Cat# 50125590, Grand Island, NY).

193 Non-bombarded IEs with temperature treatments were tested for tissue culture response.
194 The IEs were isolated onto DBC3 medium and incubated for 1 day. The following day they were
195 placed on DBC3 osmoticum medium for 20 hours to replicate the same treatment as bombarded
196 IEs. The IEs were then transferred back to DBC3 medium for 3 days and then split up and treated
197 with heat treatments of 26°C, 30°C, 34°C and 37°C for 24 hours. IEs were allowed to grow and
198 proliferate into callus for 5 weeks at which point the callus in each plate was collectively weighed
199 for comparison.

200

201 ***Fluorescent visualization***

202 Fluorescent images of IEs, calli and plantlets of transgenic Fielder events were visualized with a
203 fluorescent Leica M165 FC stereomicroscope, equipped with Leica DFC7000 T (JH Technologies,
204 Fremont, CA), using two microscopic filters, brightfield and ET DSR with 545 nm excitation and

205 620 nm emission. The microscope is linked to a camera imaging software, Leica Application Suite
206 version 4.9, which was used to capture the fluorescent images. Screening of fluorescent activity
207 was measured at different magnifications.

208

209 ***Detection of Transgenes and CRISPR/Cas9 Mutations***

210 Genomic DNA was extracted from leaf tissue following a CTAB extraction method (Murray and
211 Thompson 1980). The *hpt*, *dsRED*, and *Cas9* transgenes were confirmed by PCR using sequence
212 specific primers (Table S1). Amplifications were performed in a 25- μ L reaction with DreamTaq
213 PCR Master Mix (2X) (Thermo Fisher Scientific, Grand Island, NY) as described (Jones et al.
214 2022). For each PCR reaction, 23 μ L were loaded onto a 0.8% agarose gel for electrophoresis.

215 For detection of PDS mutations, a fragment within range of the desired mutation was
216 targeted via homoallele specific primers across each genome (Table S1) and amplified by PCR.
217 The amplified PCR product was cut, and DNA was extracted from gel samples using the Qiagen
218 QIAquick Gel Extraction Kit (QIAGEN, Chatsworth, CA). The purified DNA samples were used for
219 Sanger sequencing. Mutation efficiency was calculated as the number of mutated unique events
220 per treatment divided by the total number of events regenerated from the same treatment.

221

222 ***M1 Mutation screening***

223 Mutation line PC14A containing monoallelic mutations in the A and D genomes and a
224 heterozygous biallelic mutation in the B genome was chosen for next generation progeny
225 screening. M₁ IEs sized 2.0-3.0 mm were harvested from the M₀ plant. IEs were surface sterilized
226 with 20% bleach plus one drop of Tween 20 for 15 minutes. Sterilized IEs were triple rinsed with
227 sterile water to remove excess bleach. IEs were then excised and placed on WR medium
228 scutellum side down for germination. Once plantlets germinated, progeny were visually assessed
229 for phenotype and sampled for genotyping and mutation analysis.

230

231

232 **Results and Discussion**

233

234 ***Optimization of Particle Bombardment Parameters for Plant Transformation***

235

236 ***Gold Particle Size and Transformation Frequency***

237 The DsRED visual marker was used to assess the particle bombardment parameters and stable
238 transformation frequencies. Transient DsRED expression driven by the rice actin 1 promoter and

239 its intron was initially detected 1 day after particle bombardment of wheat (cv. Fielder) IEs and
240 was clear 2 to 3 days post bombardment (Fig. 3A). DsRED-expressing sectors were formed (Fig.
241 3B), and stably transformed plantlets were generated 6-8 weeks and 10-12 weeks post
242 bombardment, respectively (Figs. 3C and D).

243 Three gold particle sizes, 0.4 μm , 0.6 μm and 1.0 μm , were tested to compare their effects
244 on transformation frequency. The size and weight of the individual particles has an effect on its
245 ability to physically deliver DNA to the plant cell. It was observed that the 0.6 μm gold particles
246 performed best in transformation frequency across all delivery pressures with an average
247 frequency of 22.6% (Table 1). The 0.4 μm particles performed second best but with an average
248 transformation frequency of 10.7% that measured well below that of 0.6 μm . However, the 1.0
249 μm particles resulted in the lowest average transformation frequency of 9.0%. In our study, we
250 used the same weight of gold particles and the same amount of DNA per prep, meaning that the
251 larger-sized particles will have fewer particles than the smaller-sized ones. Theoretically, 1.0 μm
252 particles have 4.5-fold and 16.7-fold less number of particles per weight than 0.6 μm and 0.4 μm
253 particles, respectively, because gold particle volume (weight) is calculated as $(4/3)\pi r^3$ (r = radius)
254 (Fig. 3A). Therefore, the use of 1.0 μm gold particles resulted in a lower transformation frequency
255 likely due to a smaller number of particles per bombardment compared to 0.6 μm particles (Table
256 1). In addition, the large particles can damage the cells beyond their ability to recover and
257 subsequently negatively affects regeneration of transgenic plants. However, our results from the
258 0.4 μm vs 0.6 μm comparison showed that transformation frequency (22.6%) with 0.6 μm particles
259 was 2.1-fold higher than that (10.7%) with 0.4 μm particles (Table 1), even though the number of
260 0.6 μm particles were 3.7-fold less than that of 0.4 μm particles (Fig. 3). This is possibly due to
261 the smaller amount of DNA coated onto 0.4 μm particles or reduced capability of 0.4 μm particles
262 to penetrate the target cells of IEs, compared to 0.6 μm particles.

263 The theoretical calculation of the surface area of a sphere ($4\pi r^2$) shows us that gold
264 particle size positively correlates to surface area (Fig 3B). As the diameter, or radius, of a gold
265 particle increases so does the surface area of the sphere. This means that particle size alters the
266 DNA-holding capacity of a single particle. From 0.4 μm to 1.0 μm diameters, the surface area
267 increases by 6.25-fold. In our study, we used the same weight of gold particles and the same
268 amount of DNA per prep, meaning theoretically the 1.0 μm gold particles can hold 6.25-fold more
269 DNA than the 0.4 μm particles allowing for a higher percentage of DNA delivery upon impact with
270 the plant cells. Our data supports this theory, indicating that co-expression efficiency increases
271 as particle diameter increases. Co-expression efficiency is calculated as the number of events
272 visually expressing dsRED over the total number of events generated using hygromycin selection.

273 The 1.0 μm particle size had the highest co-expression efficiency of 46.9%, 0.6 μm in the
274 middle with 32.4% and 0.4 μm was the lowest with a co-expression efficiency of 14.3% (Table
275 2S). However, when optimizing transformation, 1.0 μm was not selected as a candidate due to
276 its low transformation frequency regardless of its high DNA delivery performance.
277

278 *Delivery Rupture Pressure and Transformation Efficiency*

279 Different species and tissue types can require different rupture pressures to optimize
280 transformation frequency. We tested three rupture pressures, 650 psi, 900 psi and 1100 psi for
281 each of the three particle sizes (Table 1). For the 0.4 μm particle size, both the 650 psi and 900
282 psi resulted in higher transformation frequencies of 12.9% and 13.6%, respectively, compared to
283 1100 psi (7.7%). Rupture pressures of 650 psi, 900 psi and 1100 psi resulted in similar
284 frequencies for the 0.6 μm particle size at 24.3%, 21.6% and 21.9%, respectively. The 1.0 μm
285 particle size resulted in the lowest transformation frequencies of 7.9%, 9.0% and 10.3% for the
286 650 psi, 900 psi and 1100 psi rupture pressures. In analyzing this data, we found that a 650 psi
287 rupture pressure was optimal for both the 0.4 μm and 0.6 μm particle sizes while 1100 psi was
288 optimal for the 1.0 μm particle size. However, given the low transformation frequencies, 1.0 μm
289 at any rupture pressure is not recommended.

290 Initially, we hypothesized that the smaller the particle size, the higher the rupture pressure
291 would need to be to maximize delivery of the particles to the tissue. However, we found that even
292 using the smallest particle size, 0.4 μm , at the lowest pressure of 650 psi was optimal. The 1.0
293 μm particle size is larger and heavier and performs better at 1100 psi leaving us to conclude that
294 a higher pressure is required to deliver larger particles to the plant tissue, indicating that larger-
295 sized gold particles may have more resistance for penetrating the plant cells
296

297 **Optimization of Mutation Efficiency in PDS Gene-Edited Wheat**

298

299 *High Temperature Treatments and Mutation Efficiency*

300 Although the Cas9 protein may be most active and efficient at 40°C, the plant cells cannot survive
301 a prolonged exposure to such a high temperature (Panos and Cohen 1964). The key to finding
302 the optimal temperature is one that satisfies both protein and plant. We initiated heat treatment
303 tissue culture experiments testing callus growth of 10 Fielder embryos on standard DBC3 media
304 after DBC3 osmoticum treatment with a temperature range of 26°C, 30°C, 34°C and 37°C for 1
305 day to monitor tissue morphology over time. To quantify the effect of heat treatment on the callus
306 tissue, we weighed the tissue 35 days post isolation. Evaluation of the callus tissue weight from

307 each treatment allowed us to quantify the effects of heat treatment. Both the 30°C and 34°C heat
308 treatments weighed similar to the control without heat treatments at 1.59 g and 1.70 g,
309 respectively, while the control of 26°C weighed 1.66 g (Table 2). This demonstrated that plant
310 cells are capable of long-term normal to accelerated growth after subjection to a slightly increased
311 temperature for a short period of time. The 37°C plate, however, grew at a slower rate, weighing
312 in at only 1.37 g. This indicates that higher temperatures even for short periods of time negatively
313 affects tissue growth over time in addition to tissue quality. Negative effects on the tissue growth
314 rate and tissue quality will impact transformation frequencies and thus mutation efficiencies of
315 experiments.

316 We designed our PDS mutation efficiency experiment to confirm the effects of heat
317 treatment on mutation efficiency in plants on a significant scale side by side with our dsRED + hpt
318 transformation frequency experiment. We chose our bombardment parameters based on the data
319 set with the most promising transient dsRED expression and transformation efficiency. We used
320 0.6 μ m at 2 different rupture pressures, 650 psi and 1100 psi and tested a total of 4 temperature
321 treatments 26°C, 30°C, 34°C and 37°C for 24 hours, 4 days post bombardment (Table 3). We
322 expected to see higher mutation frequencies at higher temperatures because of previously
323 reported increased Cas9 activity at higher temperatures consistent with previous studies testing
324 22°C, 28°C, 32°C and 37°C in rice protoplasts, maize plants and *Arabidopsis* (LeBlanc et al 2018;
325 Malzahn et al. 2019). In the Mazahn study (2019), temperatures between 28°C and 32°C proved
326 to increase the Cas9 activity *in vivo*. However, their mutation efficiencies were reported via
327 production of M₁ mutants via heat treatment of M₀ maize plants containing Cas9 and gRNA;
328 transgenic plantlets were not produced via transformation in rice. Similarly, in the LeBlanc study
329 (2018), *Arabidopsis* and citrus plants were treated with four, 30-hr exposures to 37°C during the
330 vegetative growth stage as opposed to the control of 22°C. In their experiment, loss of GFP
331 expression in the transgenic plantlets conferred mutation. They reported an increase in mutation
332 frequencies in comparison to their control as well, recording 12% GFP expression in plantlets
333 treated with 37°C as compared to the control at 89% GFP expressing plantlets. Exposing
334 transformed embryos to heat a heat treatment of 28.5°C was also previously reported in wheat,
335 resulting in increased mutation efficiencies as compared to a control temperature of 25.5°C
336 (Milner et al 2020). Heat-treated embryos were exposed to 28.5°C for the entirety of the callus
337 selection phase, totaling 40 days, while the controls were exposed to 28.5°C for 12 days and
338 subsequently grown at 25.5°C for the remaining 28 days of the callus phase. We included 34°C
339 as a treatment in our experiment because it is the temperature at which harvested seed is treated
340 pre-germination. It is the highest temperature that minimally affects tissue morphology and

341 survival, allowing plant cells to regenerate full M₀ plantlets (Table 2) while the Cas9 protein is able
342 to function at a temperature more closely aligned with its bacterial origin allowing for higher protein
343 activity. In this study, we found that regardless of bombardment parameters, a 34°C heat
344 treatment has the most drastic positive effect on mutation efficiency up to 3.68-fold higher than
345 any other temperature (Table 3). Heat treatment of 34°C for both rupture pressures, 650 psi and
346 1100 psi with a particle size of 0.6 µm the mutation frequency at the transgenic event levels were
347 17.2% and 36.8% respectively. All other heat treatments for the same bombardment parameters
348 were comparable. For the 650 psi and 1100 psi rupture pressure, mutation efficiencies measured
349 6.1% and 10.0% for the 26°C treatment, 12.0% and 18.2% for the 30°C temperature and finally
350 11.8% and 12.5% for the 37°C temperature, respectively. There was a trend of having higher
351 mutation efficiencies at 1100 psi than 650 psi (Table 3). As a result of this data, we can conclude
352 that 34°C is the optimal temperature at which both the plant and overexpressed Cas9/gRNA can
353 operate to achieve the highest mutation efficiency. The longer incubation at 34°C still remains to
354 be further evaluated for tissue culture response and mutation efficiency.

355 Through the use of heat treatments, we were able to obtain a variety of M₀ mutant
356 genotypes within single genomes as well as across multiple genomes. In the M₀ generation,
357 75.0% (18/24) of the mutants produced were single genome mutations, 12.5% (3/24) were two
358 genome mutations and the remaining 12.5% (3/24) were triple mutants (Table 4). Of the three
359 triple-mutants, PK3A, PK6A and PC14A, the first two events contain biallelic mutations across all
360 three genomes resulting in the PDS knockout albino phenotype; all mutations were out of frame.
361 (Fig. 5; Tables 4 and 5). In order to obtain the albino PDS phenotype, biallelic mutations in all
362 three genomes or mutations on all 6 loci are required (Table 5). To our knowledge, this is the first
363 report of generating wheat plants with the albino PDS phenotype at the M₀ level. Previous studies
364 have achieved M₀ triple-mutant knockouts but were not able to achieve a phenotype in the M₀
365 generation (Wang et al. 2014). Abe et al. (2019) also generated triple-mutation knockouts on the
366 *TaQsd1* gene for inhibition of preharvest sprouting in the M₁ generation by crossing a M₀ triple-
367 mutant consisting of two biallelic mutations and one monoallelic mutation to WT fielder and
368 segregating in future generations. Both of our M₀ biallelic triple-mutants were derived from the
369 34°C heat treatment, supporting the hypothesis that heat treating transformed material increases
370 the activity of the Cas9 protein/gRNA resulting in higher mutation efficiencies. In order to
371 demonstrate the albino phenotype in M₁ progeny plants derived from a PDS gene-edited event,
372 we used event PC14A having heterozygous monoallelic mutations on both A and D genomes and
373 a heterozygous biallelic mutation on the B genome (Table 4). M₁ progeny from 2 out of 28
374 germinated seedlings of PC14A demonstrated the albino phenotype and showed a 15:1

375 segregation pattern (Fig. 6; Table 6). Genotyping analysis of these 2 albino phenotype events
376 resulted in homozygous biallelic mutations on both A and D genomes and a heterozygous biallelic
377 mutation on B genome (Table 6) confirming that the albino phenotype requires biallelic mutations
378 across all three genomes. In addition, M_2 progeny from all 3 M_1 lines tested, PC14A-13, PC14A-
379 24 and PC14A-27 with homozygous biallelic mutations on 2 genomes and a heterozygous
380 monoallelic mutation on the remaining 1 genome (Table 6), showed a 3:1 segregation ratio of
381 green and albino PDS phenotype (Table 7). All M_2 progeny plants showing albino PDS phenotype
382 had homozygous biallelic mutations on all 3 genomes (Table 7).

383 In conclusion, we improved transformation efficiencies in Fielder across all tested delivery
384 pressures using 0.6 μ m gold particles for bombardment. We successfully demonstrated an
385 increase in mutation efficiency using heat treatments post bombardment. A heat treatment of
386 34°C for 24 hours post bombardment resulted in the highest mutation frequency and derived an
387 albino PDS phenotype in the M_0 generation of 2 mutant events, which requires biallelic mutations
388 in all three genomes of hexaploid wheat. Utilizing optimal transformation parameters and a 34°C
389 heat treatment greatly increases mutation efficiency in hexaploid wheat and can help advance
390 research efforts in wheat genomics. The results in this study can be applied to optimize the
391 transformation frequency and improve mutation efficiency in other crop species.

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

408 **Table 1.** Stable transformation frequency of wheat cv. Fielder at T₀ plant level using different
409 bombardment parameters

410 Stable transformation frequencies for the three combinations of gold particle size and
411 bombardment rupture pressure. a) Column 1 shows the transformation frequencies for 0.4 µm
412 gold particles at rupture pressures of 650 psi, 900 psi and 1100 psi as well as the total
413 transformation frequency of 0.4 µm as a whole. b) Column 2 shows the transformation frequencies
414 for 0.6 µm gold particles at rupture pressures of 650 psi, 900 psi and 1100 psi as well as the total
415 transformation frequency of 0.6 µm as a whole. c) Column 3 shows the transformation frequencies
416 for 1.0 µm gold particles at rupture pressures of 650 psi, 900 psi and 1100 psi as well as the total
417 transformation frequency of 1.0 µm as a whole.

418

Transformation frequency*	DsRED + HPT											
	0.4 um ^a				0.6 um ^b				1.0 um ^c			
	650 psi	900 psi	1100 psi		650 psi	900 psi	1100 psi		650 psi	900 psi	1100 psi	
Transformation frequency*	12.9%	13/101	11.8%	13/110	7.7%	9/117	24.3%	25/103	21.6%	24/111	21.9%	25/114
	10.7% (35/328)				22.6% (74/328)				9.0% (32/354)			

419 *Transformation frequency: (# events/# IEs bombarded) x 100%

420

421

422

423

424

Table 2. Effect of temperature treatment on callus tissue quality and growth in wheat

425 Tissue culture heat treatment data. Table expressing the results of a 1-day osmoticum treatment
426 followed by a 1-day temperature treatment of 10 embryos each and the final weight of the tissue
427 after 35 days of callus induction expressed in grams.

428

Temperature Treatment	Tissue Quality	Tissue Growth (g)
26°C	+++++	1.66
30°C	++++	1.59
34°C	+++(+)	1.70
37°C	+	1.37

429

430 **Table 3.** Mutation efficiency with four different temperature and two bombardment rupture
431 pressure treatments in wheat.

432 Summary of experimental factors with associated mutation efficiencies and transformation
433 frequencies for each data set. a) Temperature treatment - 1 day temperature treatment at stated
434 temperature, 4 days post bombardment. b) Transformation frequency at T_0 plant level - calculated
435 as the number of transgenic events produced divided by the total number of embryos bombarded.
436 c) Mutation efficiency at transgenic event level - calculated as the total number of mutation events
437 divided by the total number of transgenic events. d) Mutation efficiency at donor embryo level -
438 calculated as the total number of mutation events divided by the total number of embryos
439 bombarded.

440

Temperature treatments ^a	Bombardment parameters	# embryos bombarded	# transgenic events	Transformation frequency at T_0 plant level ^b	# mutation events	Mutation efficiency at transgenic event level ^c	Mutation efficiency at donor embryo level ^d
26°C	0.6 μ m 650 psi	219	33	15.1%	2	6.1%	0.9%
	0.6 μ m 1100 psi	130	20	15.4%	2	10.0%	1.5%
Subtotal		349	53	15.2%	4	7.5%	1.1%
30°C	0.6 μ m 650 psi	220	25	11.4%	3	12.0%	1.4%
	0.6 μ m 1100 psi	131	11	8.4%	2	18.2%	1.5%
Subtotal		351	36	10.3%	5	13.9%	1.4%
34°C	0.6 μ m 650 psi	221	29	13.1%	5	17.2%	2.3%
	0.6 μ m 1100 psi	131	19	14.5%	7	36.8%	5.3%
Subtotal		352	48	13.6%	12	25.0%	3.4%
37°C	0.6 μ m 650 psi	223	17	7.6%	2	11.8%	0.9%
	0.6 μ m 1100 psi	131	8	6.1%	1	12.5%	0.8%
Subtotal		354	25	7.1%	3	12.0%	0.8%

441

442

443

444

445

446

447

448

449

450

451

452 **Table 4.** Mutation patterns and phenotypes in genome-edited wheat events generated by four
 453 different temperature and two bombardment rupture pressure treatments
 454

Temperature treatments	Bombardment parameters	Event name	Mutation			Phenotype
			A genome	B genome	D genome	
26°C	0.6 µm 650 psi	PI9A	WT	WT	^a 1-bp in	Green
		PI22A	WT	^a 1-bp del	WT	Green
	0.6 µm 1100 psi	PA1C	WT	Mutation	WT	Green
		PA11A	^a 1-bp del	WT	WT	Green
30°C	0.6 µm 650 psi	PJ3A	WT	^c 5-bp del	WT	Green
		PJ7B	WT	WT	^a 1-bp in	Green
		PJ33A	WT	^a 1-bp in (1-bp rep)	WT	Green
	0.6 µm 1100 psi	PB9C	WT	WT	^a 1-bp in	Green
34°C	0.6 µm 650 psi	PB10A	WT	WT	mutation	Green
		PK3A	^c 2-bp del	^c 19-bp del	^b 4-/4-bp del	Albino
		PK5A	^a 17-bp del	^b 3-/8-bp del	WT	Green
		PK6A	^b 1-bp in/13-bp del	^b 5-bp del (1-bp rep) /5-bp del	^b 1-bp in/4-bp del	Albino
		PK7A	WT	WT	^c 3-bp del	Green
	0.6 µm 1100 psi	PK20B	Mutation	WT	WT	Green
		PC4C	WT	WT	^a 1-bp in (1-bp rep)	Green
		PC5A	WT	^a 13-bp del	^b 2-bp in/1-bp del	Green
		PC6A	^a 5-bp del	Mutation	WT	Green
		PC6B	WT	Mutation	WT	Green
		PC8C	WT	^a 2-bp in	WT	Green
		PC11A	WT	WT	^a 1-bp in	Green
37°C	0.6 µm 650 psi	PC14A	^a 8-bp del	^b 1-/4-bp del	^a 1-bp in	Green
		PL1B	WT	^b 3-bp del/8-bp del	WT	Green
	0.6 µm 1100 psi	PL6A	WT	^a 3-bp del	WT	Green
		PD5A	WT	^a 1-bp in	WT	Green

WT: wild-type

^aheterozygous monoallelic

^bheterozygous biallelic

^chomozygous biallelic

455

456

457

458

459

460

461

462

463

464 **Table 5.** Molecular analysis of M₀ PDS knockout plantlets showing albino phenotype
465 Molecular analysis of 2 albino phenotype PDS mutation events indicating biallelic mutations
466 across all genomes and sequence.

467

Albino PDS Event	Genome	Mutation type	Sequence	Biallelic mutation on all 3 genomes
PK3A	A	homozygous biallelic	ATGACCACCTTCTTT AGCAGG TATGTC	2-bp deletion
		homozygous biallelic	AT GG TATGTC	19-bp deletion
	D	heterozygous biallelic	ATGACCACCTTCT AGCAGG TATGTC	4-bp deletion
			ATGACCACCTTCTTT AGG TATGTC	4-bp deletion
PK6A	A	heterozygous biallelic	ATGACCACCTTCTTTCAAGCAGG T TATGTC	1-bp insertion
			ATGACCAC GG TATGTC	13-bp deletion
	B	heterozygous biallelic	ATGACCACCTT T AGCAGG TATGTC	5-bp deletion/1 bp (C>T) replacement
			ATGACCACCTTC AGCAGG TATGTC	5-bp deletion
	D	heterozygous biallelic	ATGACCACCTTCTTT C GAGCAGG TATGTC	1-bp insertion
			ATGACCACCTTC AGCAGG TATGTC	4-bp deletion

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490 **Table 6.** Phenotype and molecular analysis of M₁ progeny plants derived from of PC14A
491 PC14A is an M₀ event with heterozygous monoallelic mutations in the A and D genomes and a
492 heterozygous biallelic mutations in the B genome.

493

M ₁ progeny	A genome	B genome	D genome	Phenotype
PC14A-1	WT	homo (1 bp del)	WT	green
PC14A-2	WT	hetero*	hetero	green
PC14A-3	homo (8 bp del)	homo (4 bp del)	hetero	green
PC14A-4	homo (8 bp del)	hetero*	homo (1b in)	albino
PC14A-5	hetero	homo (1 bp del)	hetero	green
PC14A-6	hetero	homo (1 bp del)	WT	green
PC14A-7	hetero	hetero*	hetero	green
PC14A-8	homo (8 bp del)	hetero*	homo (1b in)	albino
PC14A-9	homo (8 bp del)	hetero*	hetero	green
PC14A-10	hetero	homo (1 bp del)	hetero	green
PC14A-11	WT	hetero*	hetero	green
PC14A-12	hetero	homo (4 bp del)	hetero	green
PC14A-13	hetero	homo (1 bp del)	homo (1b in)	green
PC14A-14	hetero	hetero*	WT	green
PC14A-15	??	homo (1 bp del)	hetero	green
PC14A-16	hetero	hetero*	hetero	green
PC14A-17	homo (8 bp del)	homo (4 bp del)	WT	green
PC14A-18	WT	hetero*	hetero	green
PC14A-19	homo (8 bp del)	hetero*	hetero	green
PC14A-20	hetero	hetero*	hetero	green
PC14A-21	WT	homo (1 bp del)	hetero	green
PC14A-22	hetero	hetero*	homo (1b in)	green
PC14A-23	hetero	hetero*	hetero	green
PC14A-24	hetero	homo (4 bp del)	homo (1b in)	green
PC14A-25	WT	hetero*	WT	green
PC14A-26	WT	homo (4 bp del)	homo (1b in)	green
PC14A-27	homo (8 bp del)	homo (1 bp del)	hetero	green
PC14A-28	hetero	homo (4 bp del)	hetero	green

494 *hetero biallelic

495

496

497

498

499 **Table 7.** Phenotype and molecular analysis of M₂ progeny plants derived from of three M₁ PC14A
500 lines. PC14A-13 and PC14A-24 are M₁ progeny lines derived from PC14A. Both lines have
501 homozygous biallelic mutations on both B and D genomes and a heterozygous monoallelic
502 mutation on the A genome while PC14A-27 is M₁ progeny line with homozygous biallelic
503 mutations on both A and B genomes and a heterozygous monoallelic mutation on the D genome
504 (A) Plant phenotype of M₂ progeny plants derived from three M₁ PC14A lines. (B) Genotype of M₂
505 PDS albino plants derived from three M₁ PC14A lines.

506 (A)

M ₁ progeny	Segregation ratio of M ₂ progeny plants (green: albino)
PC14A-13	13: 2*
PC14A-24	11: 4*
PC14A-27	11: 5*

511 *Analyses using a χ^2 -test indicate that
512 the segregation ratios of progeny plants
513 for GFP were not significantly different
514 from 3:1 (at $\alpha = 0.05$)

(B)

M ₁ progeny	A genome	B genome	D genome	Phenotype
PC14A-13-1	homo (8 bp del)	homo (1 bp del)	homo (1b in)	albino
PC14A-13-2	homo (8 bp del)	homo (1 bp del)	homo (1b in)	albino
PC14A-24-1	homo (8 bp del)	homo (4 bp del)	homo (1b in)	albino
PC14A-24-2	homo (8 bp del)	homo (4 bp del)	homo (1b in)	albino
PC14A-24-3	homo (8 bp del)	homo (4 bp del)	homo (1b in)	albino
PC14A-24-4	homo (8 bp del)	homo (4 bp del)	homo (1b in)	albino
PC14A-27-1	homo (8 bp del)	homo (1 bp del)	homo (1b in)	albino
PC14A-27-2	homo (8 bp del)	homo (1 bp del)	homo (1b in)	albino
PC14A-27-3	homo (8 bp del)	homo (1 bp del)	homo (1b in)	albino
PC14A-27-4	homo (8 bp del)	homo (1 bp del)	homo (1b in)	albino
PC14A-27-5	homo (8 bp del)	homo (1 bp del)	homo (1b in)	albino

518 **Figure Legends**

519
520 **Figure 1.** Schematic diagrams of three transformation vectors used for wheat transformation and
521 gene editing. (A) pAct1IHPT-4 is a 5,870-bp plasmid containing hygromycin phosphotransferase
522 (HPT) driven by the OsAct1 promoter and its intron. (B) pAct1IDsRED is a 5,139-bp plasmid
523 containing DsRED driven by the OsAct1 promoter and its intron. (C) pRGE-PDS-PS2 is a 10,122-
524 bp plasmid containing 2 gene cassettes where gRNA is driven by the Tau6 promoter and Cas9
525 driven by OsUbi10 promoter.

526
527 **Figure 2.** Stable wheat transformation via biolistics. (B) Harvest immature wheat spikes 10-14
528 days post-anthesis. (B) Isolate immature embryos sized 1.7-2.2 mm and place on osmoticum
529 medium for 4 hours. (C) Shoot gold particles with gene gun and desired gold particle size and
530 rupture disc pressure (D) Plant tissue is subjected to three rounds of callus induction media
531 containing selection, subculturing every 3 weeks (E) Larger callus pieces derived from a single
532 immature embryos are broken up and placed on regeneration medium for shoot formation (F)

533 Plantlets that are at least 1 cm in height are transferred to rooting medium in Phytatrays and
534 grown to size until they can be transferred to soil.

535

536 **Figure 3.** DsRED expression in different tissue types in transgenic wheat. (A) Transient DsRED
537 expression and brightfield of an immature wheat embryo 3 days post bombardment. (B) The
538 formation of a DsRED sector growing 6-8 weeks post bombardment compared with brightfield
539 image of the same sector. (C) A stable transformation showing DsRED expression in leaf tissue
540 in comparison to a wild-type control. (D) A stably transformed DsRED plantlet 10-12 weeks post
541 bombardment under fluorescence and brightfield.

542

543 **Figure 4.** Volume (Weight) and surface area of different gold particle sizes. Different gold particles
544 are capable of holding different quantities of DNA. (A) The diameter of a sphere directly affects
545 the number of gold particles by weight. As diameter increases, the number of gold particles in a
546 fixed weight decreases. The smaller the gold particle the more particles will be available to be
547 coated in DNA for each bombardment prep. (B) Larger diameter directly affects surface area of
548 each particle. The larger the diameter, the greater the surface area. The difference in diameter
549 between 0.4 μ m to 1.0 μ m results in a 6.25-fold increase in surface area. This means that larger
550 particles are capable of holding a greater amount of DNA.

551

552 **Figure 5.** Triple biallelic knockout mutants showing albino phenotype. Photos depicting albino
553 PDS triple biallelic mutants in plates as well as in Phytatrays. Both albino events #1 and #2
554 produced as a result of the 34°C 1-day heat treatment, shown in plate and Phytatray.

555

556 **Figure 6.** Phenotype of M₁ progeny plants derived from event PC14A with monoallelic and biallelic
557 mutations in the 3 different genomes. M₁ progeny segregation from PC14A which contained two
558 monoallelic mutations and 1 biallelic mutation. Photo of 2 albino M₁ progeny of the 28 total
559 plantlets (red arrows).

560

561

562

563 **Supplementary Information**

564

565 **Table S1.** Primer sets used for selection of transgenic plants and for mutation in genome-edited
566 plants

567

568

569 **Table S2.** Microcarrier size effect on DsRED co-expression efficiency

570

571

572

573

574 **Figure S1.** Microcarrier size effect on transient DsRED expression and genome editing efficiency

575 (A) Photos were taken for transient DsRED expression 3 days post bombardment. (B) Sanger

576 sequencing was performed to detect mutations in all 3 genomes of each transgenic event.

577

578

579

580

581

582

583

584 **Acknowledgements**

585 We are grateful to Dr. Juliana Matos and Dominick Tucker for, the pAct1IDsRED plasmid and
586 plant care in the growth chambers and greenhouse, respectively.

587

588

589 **Funding**

590 This work was supported by the IGI of the University of California at Berkeley.

591

592

593 **Compliance with ethical standards**

594 **Conflict of interest** The authors declare that they have no conflict of interest.

595

596

597

598

599

600

601

602 **References**

603

604 Abe F, Haque E, Hisano H, Tanaka T, Kamiya Y, Mikami M, Kawaura K, Endo M, Onishi K,
605 Hayashi T, Sato K (2019) Genome-edited triple-recessive mutation alters seed dormancy in
606 wheat. *Cell Rep* 28: 1362-1369. <https://doi.org/10.1016/j.celrep.2019.06.090>

607

608 Bartley GE, Scolnik PA (1995) Plant carotenoids: pigments for photoprotection, visual attraction,
609 and human health. *Plant Cell* 7: 1027–38. <https://doi.org/10.1105/tpc.7.7.1027>

610

611 Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond.
612 *Biotechnol Adv* 33: 41–52. <https://doi.org/10.1016/j.biotechadv.2014.12.006>

613

614 Cho M-J, Jiang W, Lemaux PG (1998) Transformation of recalcitrant barley cultivars through
615 improvement of regenerability and decreased albinism. *Plant Sci* 138: 229–244.
616 [https://doi.org/10.1016/S0168-9452\(98\)00162-9](https://doi.org/10.1016/S0168-9452(98)00162-9)

617

618 Cho M-J, Ha CD, Lemaux PG (2000) Production of transgenic tall fescue and red fescue plants
619 by particle bombardment of mature seed-derived highly regenerative tissues. *Plant Cell Rep* 19:
620 1084-1089. <https://doi.org/10.1007/s002990000238>

621

622 Cho M-J, Banh J, Yu M, Kwan J, Jones TJ (2015) Improvement of *Agrobacterium*-mediated
623 transformation frequency in multiple modern elite commercial maize (*Zea mays* L.) inbreds by
624 media modifications. *Plant Cell Tiss Organ Cult* 121: 519-529. <https://doi.org/10.1007/s11240-015-0721-7>

626

627 Choi HW, Lemaux PG, Cho M-J (2002) Use of fluorescence in situ hybridization for gross mapping
628 of transgenes and screening for homozygous plants in transgenic barley (*Hordeum vulgare* L.).
629 *Theor Appl Genet* 106: 92-100. <https://doi.org/10.1007/s00122-002-0997-y>

630

631 Dai S, Zhang P, Marmey P, Zhang S, Tian W, Chen S, Beachy R, Fauquet C (2001) Comparative
632 analysis of transgenic plants obtained by *Agrobacterium*-mediated transformation and particle
633 bombardment. *Mol Breed* 7:25–33. <https://doi.org/10.1023/A:1009687511633>

634

635 Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with
636 CRISPR-Cas9. *Science* 346: 1258096. <https://doi.org/10.1126/science.1258096>

637

638 Feng Z, Zhang B, Ding W et al. (2013) Efficient genome editing in plants using a CRISPR/Cas
639 system. *Cell Res* 23: 1229–1232. <https://doi.org/10.1038/cr.2013.114>

640

641 Finer JJ, Finer KR, Ponappa T (2000) Particle bombardment mediated transformation. In:
642 Hammond J, McGarvey P, Yusibov V (eds) *Plant Biotechnology. Current Topics in Microbiology*
643 and *Immunology*, vol 240. Pages 59-80, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60234-4_3

645

646 Grützner R, Martin P, Hom C, Mortensen S, Cram EJ, Lee-Parsons C, Stuttmann J, Marillonnet
647 S (2021) High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple
648 introns. *Plant Communications*, Volume 2, Issue 2, 100135, ISSN 2590-3462.
649 <https://doi.org/10.1016/j.xplc.2020.100135>

650

651 Hart, G. (1983) Hexaploid Wheat (*Triticum aestivum* L. em Thell). *Developments in plant genetics*
652 and *breeding*, Elsevier, Volume 1, Part B, Pages 35-56, ISSN 0168-7972.
653 <https://doi.org/10.1016/B978-0-444-42227-9.50006-8>

654

655 Hooghvorst I, López-Cristoffanini C, Nogués S (2019) Efficient knockout of phytoene desaturase
656 gene using CRISPR/Cas9 in melon. *Sci Rep* 9: 17077. <https://doi.org/10.1038/s41598-019-53710-4>

658

659 Howells RM, Craze M, Bowden S, Wallington EJ (2018) Efficient generation of stable, heritable
660 gene edits in wheat using CRISPR/Cas9. *BMC Plant Biol* 18: 215.
661 <https://doi.org/10.1186/s12870-018-1433-z>

662

663 Hu T, Metz S, Chay C et al. (2003) *Agrobacterium*-mediated large-scale transformation of wheat
664 (*Triticum aestivum* L.) using glyphosate selection. *Plant Cell Rep* 21: 1010–1019.
665 <https://doi.org/10.1007/s00299-003-0617-6>

666

667 Jones J, Zhang E, Tucker D, Daniel R, Gomez M, Dahlbeck D, Garcia C, Marelli J-P, Livingstone
668 D, Schnell R, Staskawicz B, Cho M-J (2022) Screening of cultivars for tissue culture response

669 and establishment of genetic transformation in a high-yielding and disease-resistant cultivar of
670 *Theobroma cacao*. In Vitro Cell Dev Biol-Plant 58: 133-145. <https://doi.org/10.1007/s11627-021-10205-0>

671

672

673 Klein TM, Fromm M, Weissinger A, Tomes D, Schaff S, Sletten M & Sanford JC (1988) Transfer
674 of foreign genes into intact maize cells with high-velocity microprojectiles. Proc Natl Acad Sci 85:
675 4305-4309. <https://doi.org/10.1073/pnas.85.12.4305>

676

677 LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish VF, Jacob Y (2018) Increased
678 efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J 93: 377-
679 386. <https://doi.org/10.1111/tpj.13782>

680

681 Lemaux PG, Cho M-J, Louwerse J, Williams R, Wan Y (1996) Bombardment-mediated
682 transformation methods for barley. Bio-Rad US/EG Bulletin 2007 p1-6.

683

684 Liu H, Wang K, Jia Z, Gong Q, Lin Z, Du L, Pei X, Ye X (2019) Efficient induction of haploid plants
685 in wheat by editing of TaMTL using an optimized *Agrobacterium*-mediated CRISPR system. J Exp
686 Bot 71, 1337-1349. <https://doi.org/10.1093/jxb/erz529>

687

688 Malzahn AA, Tang X, Lee K, Ren Q, Sretenovic S, Zhang Y, Chen H, Kang M, Bao Y, Zheng X
689 et al. (2019) Application of CRISPR-Cas12a temperature sensitivity for improved genome editing
690 in rice, maize, and *Arabidopsis*. BMC Biol 17: 9. <https://doi.org/10.1186/s12915-019-0629-5>

691

692 Milner MJ, Craze M, Hope MS, Wallington EJ (2020) Turning up the temperature on CRISPR:
693 Increased temperature can improve the editing efficiency of wheat using CRISPR/Cas9. Front
694 Plant Sci, 11. <https://doi.org/10.3389/fpls.2020.583374>

695

696 Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic
697 Acids Res 8: 4321-4325. <https://doi.org/10.1093/nar/8.19.4321>

698

699 Naim F, Dugdale B, Kleidon J, Brinin A, Shand K, Waterhouse P, Dale J (2018) Gene editing the
700 phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Res 27: 451-
701 460. <https://doi.org/10.1007/s11248-018-0083-0>

702

703 Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R and Taylor NJ (2017) Efficient CRISPR/Cas9
704 genome editing of phytoene desaturase in cassava. *Front Plant Sci* 8: 1780.
705 <https://doi.org/10.3389/fpls.2017.01780>

706

707 Panos C, Cohen B (1964) Growth rates of *Streptococcus pyogenes* and derived L form at various
708 temperatures. *J Bacteriol* 87: 1242–1243. <https://doi.org/10.1128/jb.87.5.1242-1243.1964>

709

710 Poddar S, Tanaka J, Cate JHD, Staskawicz B, Cho M-J (2020) Efficient isolation of protoplasts
711 from rice calli with pause points and its application in transient gene expression and genome
712 editing assays. *Plant Methods* 16: 151 <https://doi.org/10.1186/s13007-020-00692-4>

713

714 Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu L-J (2007). Disruption of phytoene desaturase
715 gene results in albino and dwarf phenotypes in *Arabidopsis* by impairing chlorophyll, carotenoid,
716 and gibberellin biosynthesis. *Cell Res* 17: 471–482. <https://doi.org/10.1038/cr.2007.40>

717

718 Smith RH, Hood EH (1995) *Agrobacterium tumefaciens* transformation of monocotyledons. *Crop
719 Sci* 35: 301–309. <https://doi.org/10.2135/cropsci1995.0011183X003500020001x>

720

721 Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C (2014) Simultaneous editing of three
722 homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. *Nat
723 Biotechnol* 32: 947–951. <https://doi.org/10.1038/nbt.2969>

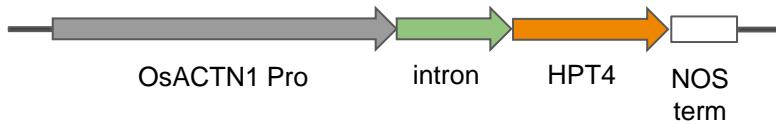
724

725 Vain P, Keen N, Murillo J, Rathus C, Nemes C, Finer JJ (1993) Development of the particle inflow
726 gun. *Plant Cell Tiss Organ Cult* 33: 237-246. <https://doi.org/10.1007/BF02319007>

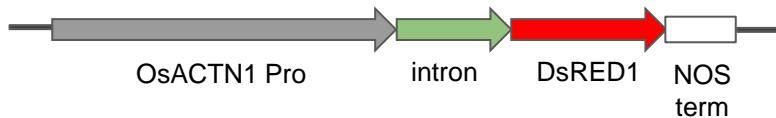
727

728 Xiang G, Zhang X, An C, Cheng C, Wang H (2017) Temperature effect on CRISPR-Cas9
729 mediated genome editing. *J Genet Genomics*, 44: 199–205.
730 <https://doi.org/10.1016/j.jgg.2017.03.004>.

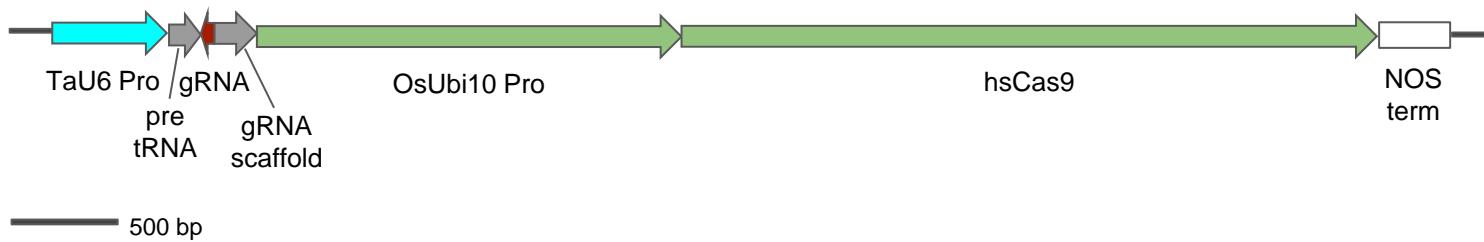
731

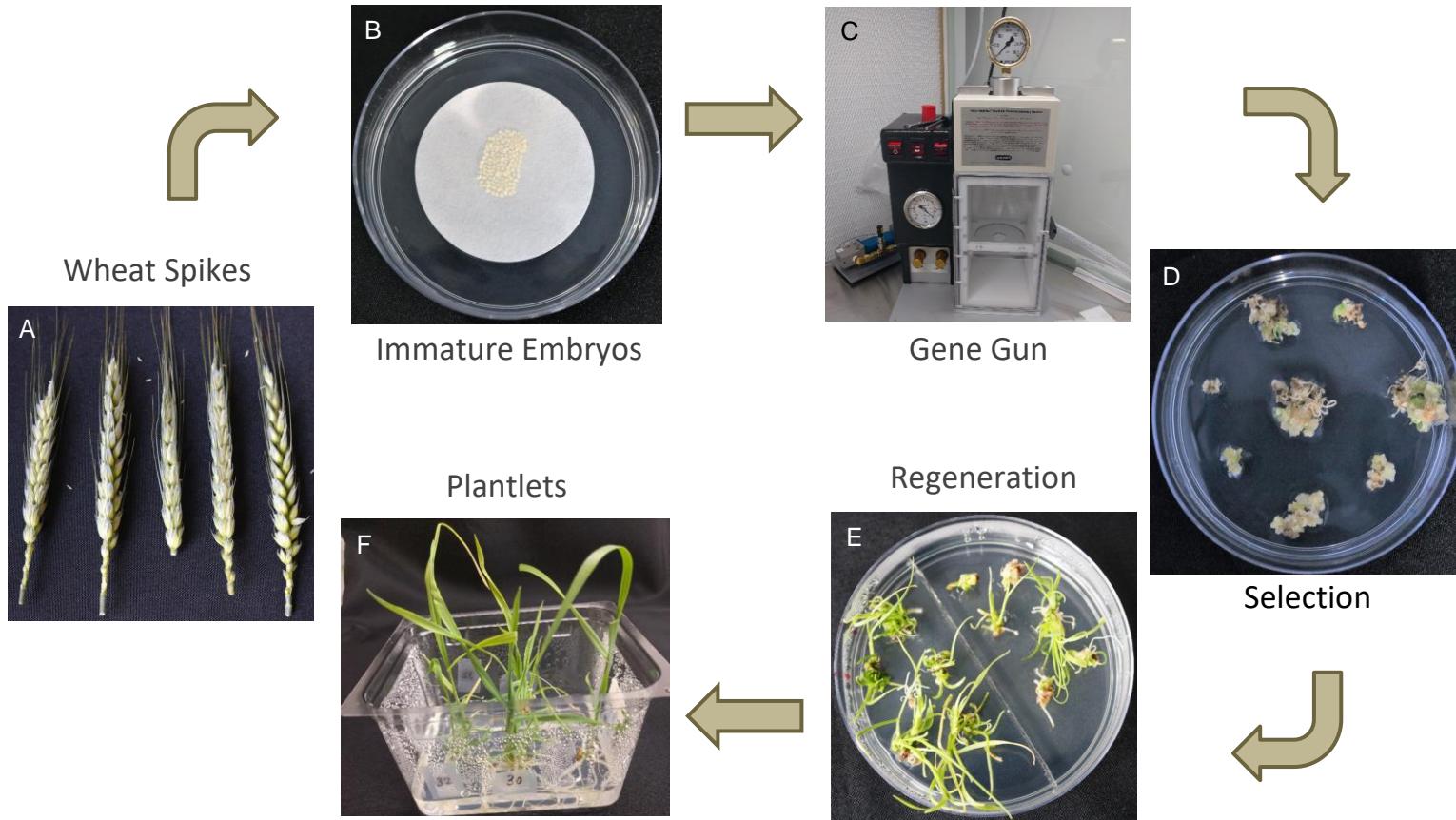

732 Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu J-K
733 (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in
734 rice in one generation. *Plant Biotechnol J* 12: 797–807. <https://doi.org/10.1111/pbi.12200>

735


736 Zhang Z, Hua L, Gupta A, Tricoli D, Edwards K J, Yang B, Li W (2019). Development of an
737 *Agrobacterium*-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol J 17:
738 1623–1635. <https://doi.org/10.1111/pbi.13088>

739


(A) pAct1IHPT-4

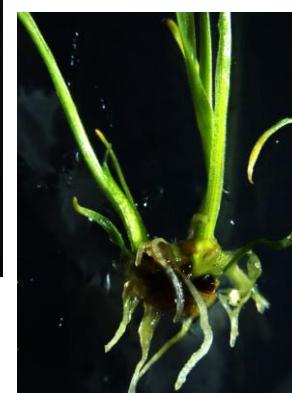
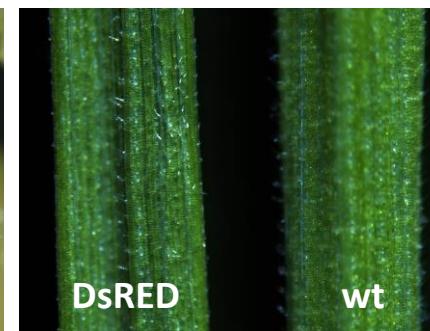
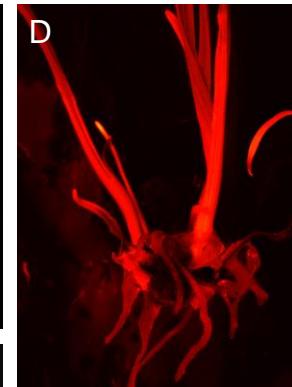

(B) pAct1IDsRED

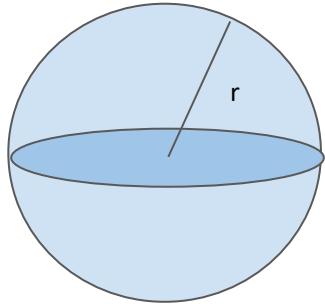
(C) pRGE-PDS-PS2

Figure 1.



Figure 2.




Transient DsRED expression
3 d post bombardment


DsRED sector formation
6-8 wks post bombardment

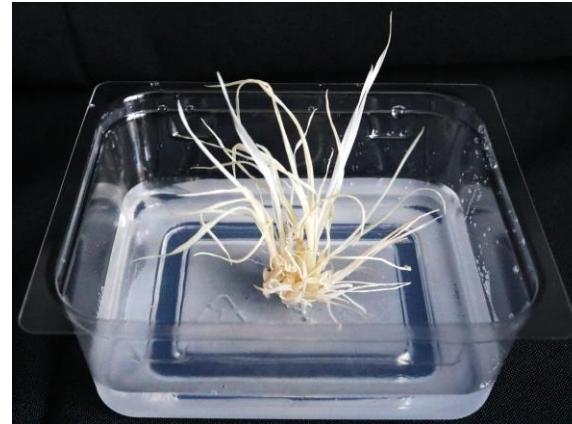
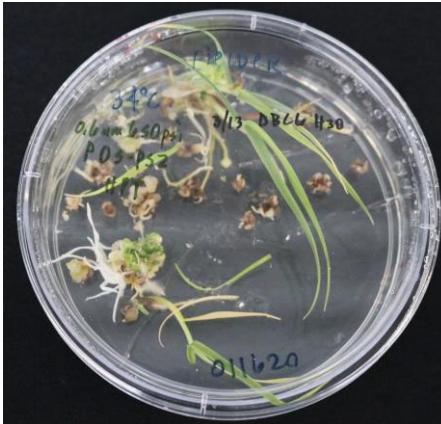
Transgenic DsRED plantlet production
10-12 wks post bombardment

Figure 3.

(A) Larger diameter microcarriers confer a smaller # of microcarriers per weight (wt)

$$\text{Volume} = (4/3)\pi r^3$$

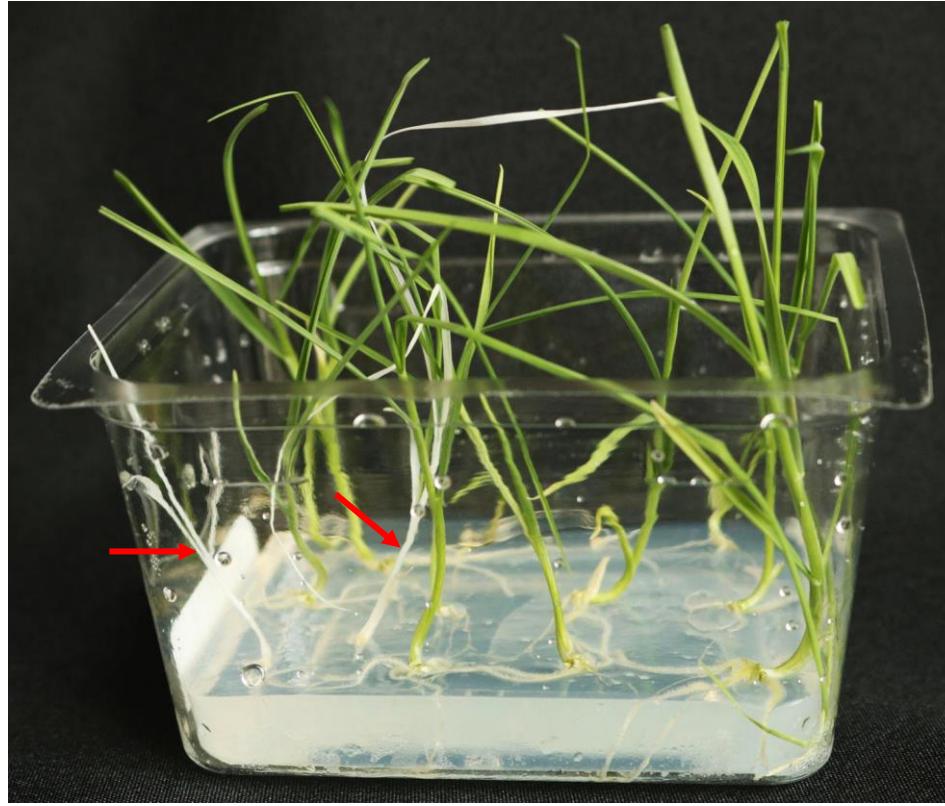
Microcarrier Diameter	0.4 μm	0.6 μm	1.0 μm
Volume	0.27 μm^3	0.90 μm^3	4.17 μm^3
Relative Volume (wt)	0.06	0.22	1
Relative # of microcarriers/wt	16.7	4.5	1



(B) Larger diameter microcarriers confer more surface area of each microcarrier

$$\text{Surface Area} = 4\pi r^2$$

Microcarrier Diameter	0.4 μm	0.6 μm	1.0 μm
Surface Area	2.01 μm^2	4.52 μm^2	12.56 μm^2
Relative Surface Area	0.16	0.36	1

Figure 4.


Albino event #1
(PK3A)

Albino event #2
(PK6A)

Figure 5.

Figure 6.