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Abstract 
Post-transcriptional regulation in multicellular organisms is mediated by microRNAs. However, the 
mechanisms that determine if a gene is regulated by miRNAs are poorly understood. Previous works 
focused mostly on miRNA seed matches and other features of the 3’-UTR of transcripts. These 
common approaches relied on knowledge of the miRNA families, and computational approaches still 
yield poor, inconsistent results, with many false positives. In this work, we present a different paradigm 
for predicting miRNA-regulated genes based on proteins. In a novel, automated machine learning 
framework, we use sequence as well as diverse functional annotations to train models on multiple 
organisms using experimentally validated data. We present insights from tens of millions of features 
extracted and ranked from different modalities. We show high predictive performance per organism 
and in generalization across species. We provide a list of novel predictions for Danio rerio (zebrafish) 
and Arabidopsis thaliana (mouse-ear cress). We compare genomic models, and observe that our 
protein model outperforms genomics, while a unified model improves on both. While most 
membranous and disease related proteins are regulated by miRNAs, we observe the G-protein coupled 
receptor (GPCR) family is an exception, being mostly unregulated by miRNAs, and we raise possible 
explanations for this. We further show that the evolutionary conservation among duplicated genes does 
not imply a coherence in miRNA regulation. We conclude that duplicated genes diverge in their 
tendency to be miRNA regulated. However, protein function is informative across species in predicting 
post-transcriptional miRNA regulation in living cells. 

 

Keywords: AI model, autoML, GPCR, machine learning, miRTarBase, paralogs, post transcriptional 
regulation, TargetScan. 
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1. Introduction 
MicroRNAs (miRNAs) post-transcriptionally regulate genes across all animals and plants. miRNAs 
are a class of short (~22 nucleotide) noncoding RNAs (ncRNAa). Mature miRNAs act via 
complementarity with their target mRNAs. This pairing takes place mostly in the 3'-UTR of the 
transcripts (Romero-Cordoba et al., 2014). In mammals, such binding leads to translational repression 
of the target and direct or indirect degradation of the miRNA-targeted transcript via deadenylation and 
decapping of its target (Valencia-Sanchez et al., 2006; O'Brien et al., 2018). miRNAs play key roles in 
a broad range of cellular processes and the response to changes in the environment (Leung and Sharp, 
2010). The miRNA profile is tissue-specific, and an indicator of cell identity. Their ability to maintain 
cell and tissue homeostasis is critical, with many miRNA genes implicated in human diseases such as 
metabolic, inflammatory, and neurodegenerative diseases (Vishnoi and Rani, 2017 11). In cancer 
samples, the miRNA composition changes along with the tumorigenic process. Therefore, the miRNA 
profile carries useful diagnostic and prognostic potential for tumor typing and patient survival.  

With the maturation of deep sequencing methodologies for small RNA identification, the number of 
reported mature miRNAs has drastically increased. The exhaustive catalog of miRNA (miRBase v. 22) 
(Kozomara et al., 2019) reports on 1917 genes that account for 2625 mature miRNAs from humans, 
and 1234 and 1978 genes and mature miRNAs from mice, respectively (Quillet et al., 2019). With a 
set of strict criteria imposed by miRBase, only a quarter of the listed miRNAs from humans are labeled 
with high confidence. Many of the rest have yet to be experimentally confirmed (Alles et al., 2019 2). 
From the standpoint of miRNA targets, it has been demonstrated that many human genes are under 
selective pressure to maintain miRNA pairings (Friedman et al., 2009). Despite an increase in the 
number of validated miRNAs, the estimated number of regulated genes remained between 60–80% of 
all human protein-coding genes (Sayed and Abdellatif, 2011 12; Huang et al., 2019 15). 

In the last 15 years, computational miRNA-target prediction algorithms and tools have been developed 
(Sethupathy et al., 2006 7; Yue et al., 2009 5; Riffo-Campos et al., 2016 6). Almost all of these 
predicting tools are based on features derived solely from the genomic sequence. Major features 
include seed complementary, evolution conservation, free energy, and the position of miRNA binding 
sites (MBS) at the 3’-UTR. Most tools suffer from a large number of false positives, poor accuracy and 
sensitivity, and show a great degree of inconsistency among them (Min and Yoon, 2010).  

High throughput methodologies (e.g., CLIP-seq, CLASH, CLEAR-seq) were used to conduct hundreds 
of experiments to infer miRNA-mRNA interactions (Li et al., 2014; Karagkouni et al., 2018). These 
experimental methods allowed us to assess the reliability of the different miRNA-mRNA prediction 
tools. In general, the match between the experimental results and the computational predicting methods 
is poor. Experimental observations (e.g., CLIP data) and sequence-derived information about miRNAs 
and mRNAs are used to determine whether a specific transcript is a genuine target of miRNAs. In this 
study, we address the question of whether a gene is a target of regulation by any miRNA based on their 
protein products, using a supervised machine learning approach. i.e., we predict if a protein is subject 
to direct regulation by “any” miRNA. The underlying notion is that the coding regions of most genes 
are under strong negative selection forces and potentially include information that determines the 
essentiality of a gene under miRNA regulation, irrespectively of a specific combination of miRNAs. 
We use miRTarBase 2020 (Huang et al., 2020) as an experimentally validated ground truth dataset. 
We trained the system using experimentally validated resources for human, mouse, and other model 
organisms and reached high performance on the task of predicting gene-miRNA interaction, using 
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primarily protein and minimal sequence level attributes. We included multimodal inputs from proteins 
and generalized across different species. We also evaluated genomic information, and compared it to 
the proteomic model, and a unified model that learns from both the gene and protein sequence. We 
present an in-depth analysis of both novel and established features, extracted automatically using an 
AI-assisted machine learning framework (SparkBeyond). We present a list of candidate miRNA gene 
predictions from less studied organisms. Our model highlights the value of information embedded in 
the functional proteome in revealing the complexity of regulation by miRNAs. 

2. Methods  
2.1. Database: miRNA-Target interactions  

We used miRTarBase 2020 (V9) as a gold standard for miRNA-Target interactions (MTIs) (Huang et 
al., 2020). miRTarBase compiled experimentally validated MTIs, mostly from mouse and human. The 
entire database collected 4.5M data points, based on CLIP-seq experiments, as evidence for human 
MTIs (covers ~3000 miRNAs and 17,400 genes), and 0.7M mouse MTIs (covers 2250 miRNAs and 
14,300 genes). It is used as a ground truth for training. The dataset was downloaded from miRTarBase 
2000 (Huang et al., 2020). The experimental results in miRTarBase 2020 (V9) have associated "weak" 
or "strong" evidence. Weak support refers to data collected from high-throughput experiments (e.g., 
CLIP-based NGS experiments, pSILAC proteomics), while strong evidence is compiled from targeted 
experiments such as quantitative RT-PCR (qRT-PCR), Western blots, and reporter assays. We defined 
a target as positive (i.e., miRNA regulated) by having "strong" experimental evidence or at least 2 
unique "weak evidence" experiments. The remaining genes from miRTarBase with a single "weak" 
experimental evidence were labeled as "likely positives" (0). These were treated as positives for the 
purposes of downstream analyses, unless otherwise stated. We note that excluding these “weakly 
labeled” samples improved modeling performance across all organisms (not shown). All other genes 
were marked as “negatives”, i.e., not targeted by the specific miRNAs (“-1”).  

2.2. Database: Proteome 

Proteins were downloaded from UniprotKB for all organisms analysed in this study. Only manually 
reviewed SwissProt proteins were used (Breuza et al., 2016), except for C. elegans, where all the 
proteins were used, after excluding fragmented sequences. Proteins annotated with no experimental 
evidence for their existence by UniProtKB-SwissProt were excluded, as by definition there could be 
no experimental evidence for their miRNA regulation. Altogether 45,846 proteins were analysed. We 
also analyzed the proteomes of Danio rerio (zebrafish) and Arabidopsis thaliana (mouse-ear cress).   

We identify genes with their matched proteins. Proteins from UniProtKB were mapped to the genes 
listed in miRTarBase, TargetScan and TreeFam according to their primary gene name. To connect 
genomics with protein identifiers, we mapped human genes by their primary gene name. For human 
proteins, 76% of the proteins were successfully and uniquely mapped across the different resources. A 
negligible amount of proteins with no primary gene name were dropped. 

2.3. Extracted features  

A wide range of metadata about each protein from UniprotKB was used as proteins’ features. These 
included the proteins’ amino acid sequence (e.g., amino acid composition, counts, n-grams), molecular 
weight, protein length, functional keywords (e.g., secreted, membranous), gene ontology (GO) 
annotations for all three branches: molecular function, cell localization and biological process), 
pharmaceutical uses, tissue specificity, protein family, post-translational modification, involvement in 
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disease, compositional bias, non-terminal residues and more. In addition to the information associated 
with the proteins by UniProtKB, we also derived engineered features based on the primary features. 
notably amino acid composition and k-mers, n-grams (e.g., combinations of keywords), counts of 
known annotations (Ofer and Linial, 2015).  

As a separated set, we extracted limited genomic data for the human proteome using the Biomart 
querying system of Ensembl (Yates et al., 2016). The derived features included: The length of the UTR 
(5’ and 3’), the counts of alternative splicing, chromosomal position, nucleotide counts, k-mers and 
their frequency, k-mer features extracted from the 3’-UTR genomic sequence, and transcript length. 

2.4. AutoML and feature extraction 

Feature extraction, engineering, selection (Ofer et al., 2021), and ML model selection, parameter tuning 
and training was performed using the SparkBeyond autoML framework (See 
patent/US20170017900A1). Previous work has shown the benefit autoML models, in order to 
comprehensively and automatically find possible predictive signals in complex data, including in 
biology and healthcare (Cohen et al., 2021). The system automatically extracts and ranks a wide range 
of compositional features from training data. The system applies hyperparameter tuning and evaluation 
of machine learning models. In this study, the SparkBeyond framework was applied to genomic, 
proteomic and annotation data. Across the different problem formulations, the system generated on 
average ~22 million candidate features per organism, prior to selection. A maximum of 300 features 
are selected and used for the machine learning models, based on the training data. Features include 
textual features (n-grams, k-mers, tokenization), counts, aggregations (e.g. max, min, average, decile), 
interactions (e.g. length of a sequence divided by weight), missing value imputations, similarities and 
more.  

We use RIG (Relative Information Gain) as a measure of feature importance. RIG refers to the 
information gain measured as a reduction in entropy produced from partitioning a set with attributes a 
and finding the optimal candidate that produces the highest value. 

 

where  is a random variable and  is the entropy of  given the value of attribute . It 
encapsulates both the uplift of a feature (the increase in a class's likelihood, given a binary partition 
induced by the feature), and the support (the number of samples covered by the feature). A feature with 
a high RIG is expected to be relevant for any model, given that it will have good support and lift. 
We report as final evaluation on a held-out test set, comprising 20% of the data. Note that the feature 
extraction, selection and model evaluation and tuning is performed only against a subset of the training 
data, to avoid the risk of overfitting and model leakage. To improve interpretability, we limited the 
system to prefer “simple” features, at a slight cost to performance. Features are ranked by their 
marginalized, non-redundant mutual information score, as well as a custom regularization scheme to 
favor semantically simpler features (i.e., less composite functions). Performance in human only data 
was based on 20% held out stratified collection of 3810 test samples. The protein sequence only model 
uses just the statistics from the primary sequence (e.g., length, n-grams, amino acid composition (Ofer 
et al., 2021)), without any of the additional annotations or metadata.  
We used standard definitions for the model performance including precision and recall. In addition we 
report accuracy = (TP + TN)/(P + N), and the F1-Score = 2 TP/(2 TP + FP + FN) using routine notations 
of T (true) and F (false), P (positive) and N (negative).  
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2.5. Software 

Data processing and analysis used the Python Pandas (VanderPlas, 2016), and Scikit-learn software 
packages (Raschka and Mirjalili, 2019).  

Code, figures and data available at: https://github.com/LinialLab/microRNA-Protein-Regulation. 

3. Results 

3.1. Problem definition 

In the context of cells and tissues, genes that respond to miRNA regulation comprise direct targets (i.e., 
miRNA binds to the 3’-UTR of a gene’s mRNA, affecting transcript stability and inhibiting translation) 
and indirect effects (e.g., miRNA that downregulates a transcription factor (TF), leading to attenuation 
of transcription of a set of TF-responsible genes). In addition, quantitative competition on miRNA 
binding sites, under the paradigm of ceRNA, indirectly causes a shift in target site occupancy (Lai et 
al., 2016). In this study, we question whether a coding gene is subject to direct regulation by any 
miRNA. To answer this question, we considered features from a complete set of validated proteins 
within each of the studied organisms (coined "reviewed proteome" by UniProtKB-SwissProt). Our 
problem setting was defined as binary classification, using supervised machine learning models. Scikit-
learn's linear logistic regression model was automatically selected as the best model across the different 
runs by the SparkBeyond autoML framework (see Methods), outperforming dozens of other attested 
architectures. Importantly, functional annotation provided by UniProtKB-SwissProt does not include 
miRNA-related knowledge, and potential target “leaks” were carefully excluded or filtered for (e.g. 
evidence levels for a gene’s transcript). 

We trained models on data and miRNA regulation annotations from different organisms. 
Supplementary Table S1 summarizes the data used for the studied organisms’ proteomes. We combine 
diverse protein functional annotations along with traditional sequence and biophysical features, as well 
as quantifying the relative contribution of universal genomic sequence-based features (i.e., not miRNA 
family specific). We identified key features that contribute to the models and suggest shared principles 
in miRNA regulation across species. 

3.2. Inconsistency in existing miRNA target predictions 

Existing tools for predicting miRNA-gene interactions demonstrate poor consistency between tools 
and major resources. It is anticipated that it is mostly due to the very large number of false positives. 
The question of what makes transcripts in any organism a good target could not be answered based on 
current tools (Min and Yoon, 2010). In an effort to reduce the flood of false positives, a statistical 
framework across different predicting algorithms was developed, with the notion that miRNAs work 
together in a commutative fashion (Balaga et al., 2012).  

Experimentally validated targets (as derived from miRTarBase 2020) are expected to be of higher 
quality and consistency, and thus are used as the "ground truth" annotations. However, such 
annotations suffer from inherent biases. For example, it is likely that highly expressed transcripts will 
be detected more often than lowly expressed ones. Similarly, miRNAs that are expressed under defined 
conditions might be underrepresented experimentally. Obviously, some organisms are studied more 
than others (e.g., human and mouse), resulting in a biased view of how many miRNA targets there are 
in most organisms. 
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Figure 1A illustrates the disparity in the fraction of genes predicted to be regulated by miRNAs (as 
predicted by TargetScan) and those experimentally validated (by miRTarBase). We illustrate the 
TargetScan (release 8.0) (McGeary et al., 2019) as a reference point. It provides a score for each pair 
based on genomic and biochemical models of miRNA binding specificity. However, the algorithm was 
mostly tuned as a miRNA-mRNA predicting tool for mammals. The discrepancy in the proteomes of 
D. rerio (zebrafish) and C. elegance (worm) emphasizes the unproportionate number of predictions by 
TargetScan in view of the shortage of experimentally validated observations. Figure 1B shows that 
this inconsistency is also detected in the number of confirmed miRNA genes. The proportion of 
confident miRNAs reported by miRBase reaches 70% of the entire miRNA gene list. In D. 
melanogaster, however, it is only 57% (out of a total of 258 genes, miRBase) (Supplemental Table 
S2). In humans, the fraction of confident miRNAs is only 26% (505 out of 1917 miRNA genes) and 
poor confidence miRNAs are those with minimal expression level or non-canonical stem-loop 
structure. 

 

FIGURE 1. miRNAs and regulated genes by species. (A) Number of proteins from UniProtKB/SwissProt 
reported as “reviewed proteome” (filtered as in Methods), the number of reported targets from mirTarBase as 
high confidence (by evolutionary conservation) reported by TargetScan, for 5 model organisms. The latter two 
targets include all proteins, not just SwissProt. (B). Number of miRNA stem-loop genes and mature miRNAs 
reported by miRBase, and the number of miRNA families from TargetScan for or the same model organisms as 
in (A).  

3.3.  Prediction of miRNA regulation across organisms 

For each organism, we trained a model on 80% of its curated proteins (proteome filtered collection, 
see Methods) and presented results on the disjointed remaining 20% test set. Labels (miRNA 
regulation/non-regulation) were derived from experimentally validated miRNA regulation data 
(miRTarBase 2020). We identified 76% of human genes and only 37% of mice as regulated (validated) 
genes, with lower rates for other organisms.  

Table 1 shows the performance of the protein models for different model organisms. Models were only 
based on annotated protein data. Model results are shown for the test set (which was not used in model 
training). The total number of instances is for data after filtering and removal of genes that failed in the 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.09.487727doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.09.487727
http://creativecommons.org/licenses/by-nd/4.0/


   

 
7 

mapping of primary gene names. The percentage of validated miRNA regulation refers to 
experimentally validated targets. The performance is presented according to the area under the receiver 
operating characteristic curve (rocAUC), precision, and recall (of the minority class) on the test set. 
We concluded that, despite the low coverage of annotated proteins in the fruit fly and worm proteomes, 
the machine learning-based model successfully characterized genes that are apparently regulated by 
miRNAs. It also emphasized the commonalities and differences in miRNA regulation across model 
organisms. 

Table 1 also tests whether the strict selection of the trained set for only curated and well-annotated 
proteins limits the performance of the miRNA-regulatory predictor. C.Elegans for example, has only 
a very small number of validated miRNA targets and reviewed proteins, limiting our ability to learn 
from this small intersection. To this end, we partitioned the C. elegans into two sets, the entire proteome 
(8,577) and a smaller reviewed set (a total of 2,106). We showed a substantial improvement in the 
rocAUC for models trained on the larger set, despite its lower quality annotation. In mammals, it has 
been shown that most genes are directly regulated (based on CLIP experiments). However, the extent 
of miRNA regulation in invertebrate organisms is unknown. 

Table 1: miRNA predictions per organisms  

Species Precision 
(%)a 

Recall 
(%)a 

Total 
proteins 

Validated as 
miRNA 
regulated (%) 

rocAUC 

H. sapiens 63.4 27.8 18,808 76.0 76.9 

M. musculus 57.1 37 16,355 37.0 67.6 

C. elegans (reviewed)  0 0 2,527 2.0 62.9 

C. elegans 
(all proteins) 

50 11 8,577 1.2 79.2 

D. malanogaster 33.3 10 3,140 1.5 67.5 

aPrecision, Recall values are for the predicted minority class, at default cutoff. 

3.4.  Generalizing between species 

In addition to models per organism, we evaluated the ability of the models and features to generalize 
between species. We trained a model on all human proteins and evaluated it using all mouse proteins 
as a test set, and vice versa (mouse to human; Table 2). We observe excellent stability, with 
performance dropping only slightly compared to a dedicated model trained on the species’ own data. 
This supports our use of the models to predict between different species, arguing that functional 
attributes generalize well between species.  

Table 2: miRNA predictions between organisms  

rocAUC score Trained on Human Trained on  
Mouse 

Evaluated on Human 76.9 64.6 

Evaluated on Mouse 75.0 67.6 
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3.5.  Protein features predict miRNA regulation 

We observed a number of predictive attributes that were consistent across different iterations, and even 
different organisms. There exist clear global attributes in favor (or disfavor) of miRNA regulation. 
Features were ranked according to the calculated RIG (relative information gain) values, with higher 
RIG implying lower uncertainty for the target under the feature’s induced partition, i.e., greater 
information about it (see Methods). A full ranked list of features and their statistical properties is in 
supplementary Table S1.  

A high RIG value encapsulates a high degree of confidence with strong statistical significance for the 
discrimination power (chi2 p-value <1.0E-04 on the test set). Figure 2 shows the partition of the top 
15 features with high uplift in discriminating for miRNA regulation (Figure 2A) and not being miRNA 
regulated (Figure 2B). For example, long protein length, identified with an optimal threshold of under 
349 amino acids long, with sequences shorter than this being 1.38-fold more likely to be being 
associated with a gene that is not regulated by miRNAs (marked as prediction = 0). In the case of 
protein length, there are no missing values (i.e., all proteins have a sequence from which length is 
derived). However, the support for other features is often very limited. For example, there are only 232 
proteins in the training set with the "sensory" keyword, which accounts for 2.4% of all proteins. For 
this selected set, the tendency to not be miRNA regulated is substantial (2.57-fold). Among the top 
features is membership in GPCR family 1 (associated with the olfactory receptors) which are 2.41 
times less likely to be regulated (Figures 2,3). Features directly associated with protein signaling, 
localization and stability, such as post translational modification and alternative splicing, are 
significant for predicting miRNA regulation. For example, proteins involved in the ubiquitination 
process ("ubl") are in favor of miRNA regulation (by 1.26-fold), suggesting that gene regulation may 
involve multiple regulatory mechanisms, including tagging for degradation. Other annotations (from 
Gene Ontology), such as subcellular location (e.g., cytosol, nucleoplasm) and interaction with RNAs 
(e.g. RNA binding or ribonucleoproteins) also contributed to the models’ success.  
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FIGURE 2. Selection of impactful features from the human protein model. (A) miRNA regulated, (B) not 
regulated by miRNA. The x-axis is the lift of features, relative to class prior baseline (~76% regulated, 24% not 
regulated). All above features have an uncorrected p-value at least under 0.0001, using a Chi2 test on the test 
data. Full list of features and statistics in supplementary Table S3, along with ranking by information gain (RIG). 
Note the different scale of the effect in A and B. CC: Cellular component branch of GO annotations.  

Features related to amino acid sequence composition were also informative, e.g., having more than a 
single methionine, or an especially high percentage of lysine (K). However, these characteristics are 
most likely a result of the underlying codon frequency (Supplemental Table S1), or relate to specific 
structural/functional families. We expect that some of these features may be confounded by the 
aforementioned higher-level functional properties.  

Table 3: Tissue specificity features 

Feature - tissue specificity  
Dominant 
prediction  RIGa Support (%) Lift 1b Lift 0b 

Contains "muscle" 1 0.012 13.22 1.19 0.55 

Contains "heart" 1   0.011 13.96 1.18 0.57 

Contains "brain" 1 0.008 17.48 1.14 0.67 

Contains "testis" 0 0.007 0.92 0.33 2.57 

aRelative information gain. bLift indicates the effect fold for the feature on the prediction of being (Lift 
1) and not being (Lift 0) miRNA regulated. 

Another notable set of features relates to tissue specificity. Table 3 shows the contributions of the 
different tissues and organs. This set of features aligns with the accepted notion that miRNA expression 
profiles are tissue-specific and effective at distinguishing between tissues (Rasnic et al., 2017). 
However, it is unknown whether some tissues are more amenable to regulation than others. Most tissue 
specificity features (Table 3) were in favor of miRNA regulation (prediction =1), contributing to the 
discriminative power by ~1.2-fold lift and a RIG of ~0.01. Interestingly, the testis was an exception, 
with a 2.6-fold effect against miRNA regulation. The statistical results (Table 3) were also validated 
by a Chi2-based hypothesis test, measuring the probability of observing a Chi2 deviation between the 
expected and observed labels of this extreme or greater (p-value), on the test set. All p-values were 
<0.001. 

3.6.  Functional groups coherence in miRNA regulation 

We tested functional groups according to the UniProtKB family relations. The most significant family 
groups, characterized by their average regulated fraction are shown (Figure 3). Examples with 
statistically significant statistics are listed. There are 475 protein kinases, of which 85% have been 
shown to be under miRNA regulation. The key signaling proteins of small GTPases (e.g., Ras, Rho) 
are also shown to be regulated (160 proteins, 92% are miRNA regulated). In other protein families, 
such as Histone H2A & H2B, none of the 17 proteins are regulated by miRNA. Supplementary Table 
S4 lists protein families along with their prediction statistics. 
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FIGURE 3. Protein families by mean percentage of miRNA regulation prediction of their members. Families 
defined by UniProtKB. Examples from human families are partitioned by the prior rate for miRNA regulation 
of 75% (dashed line). The p-value for each family member are marked by the two-sided binomial test. The most 
significant families (p-value <1E-6 are indicated) are listed, colored green and orange by their prediction as 0 
and 1, respectively. Supplementary Table S4 lists protein families along with their prediction statistics. 

3.7.  miRNA predictions in novel organisms 

We examined putative predictions for less annotated model organisms such as D. rario (zebrafish) and 
A.  thaliana (mouse-ear cress). 355 miRNA genes in zebrafish (216 high confidence by miRBase) and 
326 miRNAs in A. thaliana (177 high confidence by miRBase) were identified from genome and RNA-
seq experiments (Zhan and Lukens, 2010). However, these organisms have a low number of 
experimentally validated miRNA targets, with just 187 and 70 for D. rario and A. thaliana, 
respectively. This is despite a comparable fraction of their genes being regulated according to 
computational predictions (e.g., Figure 1A). We focused our analysis on the zebrafish and its 25,919 
known proteins as retrieved from TargetScanFish. We included in the prediction scheme all non-
fragmented proteins, irrespective of their annotation status. Our model, trained exclusively on 
annotated human genes, predicted miRNA regulation in 22,759 (87%) zebrafish genes, and 30,502 
(83%) mouse-ear cress genes. 

Compared to the validated shortlist of known miRNA targets, our "positive" predictions match the 
quantities observed in the well-studied humans and mice (~82%). Our results also have a better 
concordance with TargetScan labels (Pearson correlation = 0.11) than with the small, non-represented 
experimentally validated samples (Pearson correlation = 0.027), further hinting that to a large degree, 
genes that are likely miRNA candidates have not yet been validated. Filtering the putative 
TargetScanFish to include only candidates from conserved miRNA families yields similar, improved 
results with a correlation of 0.12, supporting the above hypothesis. Supplementary Table S5 lists all 
predictions for D. rario and A. thaliana. 

3.8.  Shared miRNA regulation by protein function 
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Our predictions suggest that miRNA regulation is prominent also in organisms lacking extensive 
experimental studies. The information provided to the predictor was restricted to proteomic and global 
functional information (see Methods). We list genes from D. rario that were strongly predicted to be 
under miRNA regulation scheme but lack experimental evidence. Supplementary Figure S1 shows 
few homologous genes of D. rario genes that share function with human and mouse and were also 
among the top predictions of miRNA regulation, with no known experimental evidence. For example, 
park7 gene shares 91.5% identity at the protein level between humans and mice, and is a clear homolog 
of park7 in zebrafish (with 83.1 and 81% sequence identity in human and mouse, respectively). 
However, applying TargetScan applied in a stringent mode for including only reliablly conserved 
miRNAs shows that while there is no miRNA binding site in mouse transcript 
(ENSMUST00000030805.8), and only a single miRNA binding site in human ENST00000493678.1 
transcript, but TargetScan predicts 13 different miRNAs (total of 18 binding sites) in the regulation of 
Park7 homolog (Maillard deglycase) from zebrafish. Additional examples include the important cancer 
driver genes pkd2 and apc (Supplementary Figure S1). 

Table 4 lists gene candidates with a high probability of being miRNA regulated in zebrafish but were 
not identified as such by TargetScanFish. Note that these highly predicted genes act in the nuclei during 
development, undergoing post translational modifications. However, the prediction score is not a direct 
outcome of a long 3’-UTR. As noted, this specific model did not use any genomic/ 3’-UTR length 
information. 

Table 4: Zebrafish miRNA predictions 

Gene name  
(primary ) 

Protein name 
(description) 

miRNA 
regulation 
score 

3’ UTR 
length 
(bp) 

UniprotKB Keywords 

hnrnpub 
 

Nuclear 
ribonucleoprotein U-like 
protein 

91.8 1789 
Methylation. Phosphoprotein. 
Ribonucleoprotein. Viral 
nucleoprotein. Virion 

   utp25 
 

U3 small nucleolar RNA-
associated protein 25 
homolog (UTP25 small 
subunit processor 
component) 

90.8 367 Developmental protein. Nucleus. 
Phosphoprotein.  

 
tbxta 
 

T-box transcription factor 
T-A (Brachyury protein 
homolog-A) (Zf-T-A) 

89.8 863 

Activator. DNA-binding. 
Developmental protein. Nucleus 
Transcription. Transcription 
regulation. Wnt signaling pathway 

 
ttn.1 
 
 

Titin, tandem duplicate 1 89.6 1,001 

ATP-binding. Coiled coil. Disulfide 
bond. Immunoglobulin domain. 
Kinase. Nucleotide-binding 
Repeat. Transferase 
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mib1 
 

RING-type E3 ubiquitin 
transferase (EC 
2.3.2.27) 

89.5 1,556 

ANK repeat. Cell membrane. 
Coiled coil. Cytoplasm. 
Cytoskeleton. Developmental 
protein. Membrane. Metal-binding. 
Notch signaling pathway Repeat. 
Transferase. Ubl conjugation 
pathway. Zinc-finger 

 

3.9.  Integrating genomic information into a unified model 

Most computational prediction tools and algorithms for miRNA-mRNA interactions are based on 
sequence pairing in the 3’-UTRs. We added an additional set of genomic features extracted from the 
gene’s summary statistics (length, CDS length, nucleotide composition), the 5’-UTR and 3’-UTR 
length, and the number of splicing variants. The performance of a model using only the genomic 
features was inferior to that of the protein-informed model (Figure 4). Note that our model does not 
consider the number of miRNA binding sites, rather it includes the 3’-UTR length (which is obviously 
associated with an increased probability of binding miRNAs). The model outperforms a naive boolean 
heuristic based on the existence of a 3’-UTR. The most important information at the genomic level is 
that a gene has a long sequence (e.g., total transcript length > 540 nt) and/or a long 3’-UTR. Another 
highly informative feature of a gene is its chromosome position (i.e., start and end). Specifically, genes 
located towards the "start" of the chromosome were less likely to be miRNA targets. Notably, none of 
the extracted genomic features relate to any information on specific miRNA sequences, the presence 
of a match with a seed, or energetic data on their pairing (e.g., n-grams complementary to a list of seeds 
were not included). Combining the modalities into a single, unified model outperformed any individual 
modality (Figure 4). 
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FIGURE 4. Comparing the rocAUC (Area Under the Receiver Operating Characteristic Curve) of different 
models on human data. Results shown for the test set (3810 samples, 75.8% miRNA regulated). “Protein” model 
includes functional annotations, keywords, primary sequence and protein families. “Protein sequence” model 
used only protein sequence and derived features. Unified model includes all protein and genomic features. For 
detailed performance see Supplementary Table S5.  

3.10.  Evolutionary related genes display regulation coherence 

We further tested whether genes that share evolutionary ancestry (i.e., orthologs) share miRNA 
regulation coherence. From a sequence perspective, the 3’-UTR is not under strong purifying selection 
across species, and in general, conservation is minimal among orthologs. To test the cases in which 
miRNA regulation has been specialized, we used TreeFam as a source for family relationship groups 
(Schreiber et al., 2014). There are 8,819 unique TreeFam families and 5,377 protein families in this 
data. The question we asked is whether genes that belong to the same family share miRNA regulation. 
We matched the TreeFam groups and UniProtKB-SwissProt defined protein families according to the 
primary gene names from the reviewed human proteome. About 90% (16,995) of the genes had a 
matching TreeFam gene family, and 72% had a matching protein family. We note that the remaining 
10% of genes that lacked a matching TreeFam family were twice as likely to be unregulated (49% 
unregulated vs. only 24% overall). The distribution of protein family sizes in humans is shown in 
Figure 5A. Note that the majority of families had only one member and thus lacked the notion of 
paralogs. A small number of proteins belong to multiple families. Figure 5B schematically describes 
the notion of paralogs.  

Within TreeFam families that consisted of at least 2 genes (11,356 genes), we tested the null 
hypothesis, for which there is no coherence in miRNA regulation in proteins belonging to the same 
paralogous groups. We found that 61% of TreeFam families, and 56% of protein families were coherent 
and split between the families that are all regulated (or not) by miRNAs. We further validated our 
hypothesis, that genes belonging to the same family tend to share the same regulation. The statistical 
test checked the greater success of assigning miRNA regulation according to the mode of each 
TreeFam family, for all proteins belonging to groups with at least 2 members. A one-sided ("greater 
than") binomial test yielded a p-value of 1e-61. 

3.11.  GPCRs are rarely regulated by miRNAs 

Most GPCRs are not regulated by miRNAs. We investigated whether this pattern holds true for all of 
the major GPCR families (470 proteins, 6 classes). In addition, we tested whether close paralogs of the 
GPCR within each class are coherent in their regulation mode of miRNA. Figure 5C shows the 
dendrogram of the Secretin subfamily with functional partition to receptor types (colored coded). We 
confirmed that there is no direct relation between the functional relationships and the regulation mode 
(e.g., CRFR1/2, VIPR1/2). The same phenomenon applied to Class T (Taste 2), where 7 out of 25 
(28%) are known to be regulated (Figure 5D). We conclude that the selective pressure to maintain the 
same regulation is weakened in duplicated genes, allowing for innovation and accelerated evolution 
that ultimately leads to a divergence in regulation. 
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FIGURE 5. miRNA regulation of human paralogs. (A) The count of protein family members (log2 scale) with 
the number of proteins belonging to a family (x-axis). The largest family with 470 members of G-protein coupled 
receptor (GPCR) is marked. (B) Schematic view of homologs and paralog of ancestor gene A. The duplication 
event prior to specialization defines paralogs. (C) Phylograms of the GPCR Class B1 (Secretin) with 15 gene 
paralogs with 9 regulated by miRNAs. The receptor groups are color coded (e.g., Glucagon receptor). (D) 
Members of GPCR of Class T (Taste 2) with 25 proteins, among them only 7 proteins were predicted as miRNA 
regulated (marked in green symbol) the rest of the proteins were predicted as not under miRNA regulation. The 
source of proteins in C and D and their annotation is according to GPCRdb (Pandy-Szekeres et al., 2022). The 
trees are generated from whole sequence phylogenetic trees within each GPCR class using unweighted pair 
group method with arithmetic mean (UPGMA, 10 replicates).  

4. Discussion 
In this study, we address the question of miRNA regulation as a binary problem of prediction without 
considering the binding capacity, sequence specificity of each of the miRNA individually or the nature 
of the regulation. The information we use is mainly derived from the protein sequence and its associated 
annotations. For example, we showed that proteins located in the membrane or the nucleus have a 
higher tendency to be regulated by miRNAs (Supplemental Table S1). 
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Experimental evidence on miRNA regulation is scarce and fragmented. Even in rats the number of 
stem-loop miRNA genes is only 40% of the number reported in mice, with only 323 miRNAs marked 
as high confidence. In this study, we provided a machine learning model that accurately predicts 
validated miRNA regulation in novel (to the model) organisms with minimal experimental results, 
without requiring known miRNA genes seeds (Table 4). We propose to use sequenced genomes to 
determine the proteome and elementary genomics properties for poorly studied organisms. The 
capacity of a trained model to transfer successfully across organisms is a key feature in building 
universal models, capable of covering all domains of life, as demonstrated in proteins language models 
(Ofer and Linial, 2015; Ofer et al., 2021). In addition, we anticipate that training on proteins from 
multiple proteomes will improve not only prediction of miRNA regulation but also related tasks 
(Brandes et al., 2022).  

Machine learning approaches were applied in the field of miRNAs for the prediction of miRNAs from 
genomic information, miRNA targets of both (Singh et al., 2017; Parveen et al., 2019). All these 
methods are based on the properties of the molecular complementarity of miRNA and miRNA binding 
sites. In contrast, the strength of the automated machine learning AI model is the extensive exploration 
of extremely high number of features (each of our models explored millions of features) from diverse 
sources, both validating previous discoveries and yielding potential novel insights. We tested the 
predictive model on unseen data (rather than on repeated sampling of the training set). The use of an 
entropy-based criterion (RIG, see Methods) highlighted informative features with high discriminatory 
power, stability and coverage. Discovery of novel sets of features that are not necessarily explainable 
by current knowledge, we expect to extract understanding on the biology. For example, we observed 
that the length of 5’-UTR, along with the length of the gene’s CDS were quite informative. Several 
examples confirmed that gene activation by miRNAs include binding to the 5′-UTR as shown for 
ribosomal proteins translation during amino acid starvation (Da Sacco and Masotti, 2012).  

Another feature that contributed to the performance of the model concerns the number of alternative 
variants at the tail of a gene (Müller et al., 2014). In our model, the combined features of alternative 
polyadenylation (APA) and tissue specificity (Table 3) reflect the importance of post transcriptional 
regulation of the 3’-UTR as over 50% of conserved miRNAs target sites reside downstream of the 
proximal polyadenylation site in mammalian genes (Ren et al., 2020). It was shown that many 3’-UTR 
APA variants are associated with genes expressed in specific tissues and conditions (Yang et al., 2022).   

We showed that a unified model, combining proteomic and genomic modalities outperformed other 
models (Figure 4). In future work, we hope to experiment with models using data from multiple species 
simultaneously. An additional benefit of proteome-based prediction in predicting miRNA in organisms 
lacking experimental data is with disease related orthologs. Among the top predictions in zebrafish are 
genes associated with human diseases including Parkinson’s disease (park7), cancer (apc, a known 
tumor suppresion gene) and kidney failure (pkd2). The shared regulation among protein families allows 
investigating human diseases through miRNA regulation orthologs in simpler model organisms (Chang 
and Mendell, 2007).  

In humans, GPCRs are the largest membranous family and represent ancient duplications and further 
diversification. The composition of GPCR in the plasma membrane of cells are tightly regulated in 
health and disease. Over 400 human GPCRs (excluding hundreds that are involved in olfaction) are 
divided into 6 functional classes that are responsible for sensing smell, taste, pain, mechanical stress, 
vision, but also aspects of adhesion and differentiation (Pándy-Szekeres et al., 2018). We showed that 
GPCRs are underregulated by miRNA. Protein families such as histones are not regulated by miRNAs 
and their 3’-UTR is extremely short. Members of the GPCR proteins have 3’-UTR with an average 
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length of 400-800 nucleotides, but still are mostly non-regulated by miRNAs. GPCRs act in almost 
every aspect of signal transduction and there are many levels of regulation that tune their activity 
including quantity, localization in the plasma membrane, recycling and endocytosis. We propose that 
translation regulation and attenuation of GPCR transcript stability by miRNAs do not contribute to the 
regulation of the GPCR superfamily.  

We further tested the sensitivity of our proteome-based models in alternative problem formulations. 
About 5% of the human coding genes are marked as protein receptors, including many of the GPCR 
family members. We therefore trained a model only on human receptor proteins (a total of 998 
proteins). Only 59% of these genes are known to be miRNA regulated (compared to 76% for the entire 
human proteome) The model reached a rocAUC of 84%, supporting the ability of the model to 
generalize, rather than merely predicting GPCRs as being unregulated. A top feature in this 
subpopulation was being involved in "olfaction", covering 23% of the receptors. 

Previous studies that sought shared properties among the miRNA regulated targets proposed that such 
targets are enriched in protein-protein interactions. However, large protein complexes are mostly 
excluded from miRNA regulation {Das, 2013 # 33). Inspecting the top features from the results of our 
unified model show that many of the miRNA regulated proteins participate in signal transduction, post 
translated modification, nucleic acid binding proteins (e.g., transcription factors) and cellular 
trafficking (e.g., small GTPase) (Figure 3). We also found that nucleosomes, ribosomes, and other 
stable complexes are not likely to be regulated by miRNAs.  

While protein functions are under purifying selection, miRNA binding sites at the 3’-UTR are fast 
evolving. It has been estimated that duplicated genes in humans are twice as likely to be miRNA targets. 
Moreover, paralogs on average have longer 3'-UTR relative to singletons {Li, 2008 #34} and the breath 
of regulation is greater among paralogs. Moreover, among duplicated genes that are within the same 
3D topological associated domain (TAD), the coordinated expression is lower than the average non-
related genes within TADs (Ibn-Salem et al., 2017). We show that protein families tend to display 
coherent behavior with respect to miRNA regulation, but this coherence is not visible at the level of 
pairs of paralogs (Figure 5).  

A number of works have proposed miRNA regulation as a novel and very recent evolutionary 
innovation: while this could explain the differences in amount of miRNA regulated genes species, it 
fails at explaining the disparity between experimental and computational predictions. A more 
parsimonious explanation is that experimental validation is lacking, and that additional, more stable 
computational methods, that can also generalize across taxa, are needed to prioritize targets. 

The role of non-coding RNA regulation to maintain cellular homeostasis applies in all organisms. We 
expect that a similar AI-based approach will be useful for creating a generalized model for post 
transcriptional regulation in living cells. Such an integrative model will use the features from miRNA 
regulation and extended to statistical features engineered and extracted from other long non-coding 
RNAs (lncRNAs), circular RNAs (circRNAs) and pseudogenes. 

Abbreviations 

AI, artificial intelligence; CLASH, cross-linking ligation and sequencing of hybrids; CLIP, cross-
linking and immunoprecipitation; GPCR, G-protein coupled receptor; miRNA, microRNA; ML, 
machine learning; ncRNA, noncoding RNA, rocAUC, area under the receiver operating characteristic 
curve; TAD, topological associated domain; UPGMA, unweighted pair group method with arithmetic 
mean; UTR, untranslated region. 
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Supplementary Material 

Supplementary Figure S1. TargetScanFish view of miRNA regulated prediction for disease related 
genes. Supplementary Table S1, Proteomes of model organisms ML predictions. Supplementary 
Table S2, Summary statistics of miRNA regulation by organism; Supplementary Table S3, Top 15 
features from protein annotations; Supplementary Table S4, Protein family miRNA prediction; 
Supplementary Table S5, Samples of zebrafish miRNA regulation prediction. 
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