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Abstract

Post-transcriptional regulation in multicellular organisms is mediated by microRNAs. However, the
mechanisms that determine if a gene is regulated by miRNAs are poorly understood. Previous works
focused mostly on miRNA seed matches and other features of the 3’-UTR of transcripts. These
common approaches relied on knowledge of the miRNA families, and computational approaches still
yield poor, inconsistent results, with many false positives. In this work, we present a different paradigm
for predicting miRNA-regulated genes based on proteins. In a novel, automated machine learning
framework, we use sequence as well as diverse functional annotations to train models on multiple
organisms using experimentally validated data. We present insights from tens of millions of features
extracted and ranked from different modalities. We show high predictive performance per organism
and in generalization across species. We provide a list of novel predictions for Danio rerio (zebrafish)
and Arabidopsis thaliana (mouse-ear cress). We compare genomic models, and observe that our
protein model outperforms genomics, while a unified model improves on both. While most
membranous and disease related proteins are regulated by miRNAs, we observe the G-protein coupled
receptor (GPCR) family is an exception, being mostly unregulated by miRNAs, and we raise possible
explanations for this. We further show that the evolutionary conservation among duplicated genes does
not imply a coherence in miRNA regulation. We conclude that duplicated genes diverge in their
tendency to be miRNA regulated. However, protein function is informative across species in predicting
post-transcriptional miRNA regulation in living cells.

Keywords: Al model, autoML, GPCR, machine learning, miRTarBase, paralogs, post transcriptional
regulation, TargetScan.
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1. Introduction

MicroRNAs (miRNAs) post-transcriptionally regulate genes across all animals and plants. miRNAs
are a class of short (~22 nucleotide) noncoding RNAs (ncRNAa). Mature miRNAs act via
complementarity with their target mRNAs. This pairing takes place mostly in the 3'-UTR of the
transcripts (Romero-Cordoba et al., 2014). In mammals, such binding leads to translational repression
of the target and direct or indirect degradation of the miRNA-targeted transcript via deadenylation and
decapping of its target (Valencia-Sanchez et al., 2006; O'Brien et al., 2018). miRNAs play key roles in
a broad range of cellular processes and the response to changes in the environment (Leung and Sharp,
2010). The miRNA profile is tissue-specific, and an indicator of cell identity. Their ability to maintain
cell and tissue homeostasis is critical, with many miRNA genes implicated in human diseases such as
metabolic, inflammatory, and neurodegenerative diseases (Vishnoi and Rani, 2017 11). In cancer
samples, the miRNA composition changes along with the tumorigenic process. Therefore, the miRNA
profile carries useful diagnostic and prognostic potential for tumor typing and patient survival.

With the maturation of deep sequencing methodologies for small RNA identification, the number of
reported mature miRNAs has drastically increased. The exhaustive catalog of miRNA (miRBase v. 22)
(Kozomara et al., 2019) reports on 1917 genes that account for 2625 mature miRNAs from humans,
and 1234 and 1978 genes and mature miRNAs from mice, respectively (Quillet et al., 2019). With a
set of strict criteria imposed by miRBase, only a quarter of the listed miRNAs from humans are labeled
with high confidence. Many of the rest have yet to be experimentally confirmed (Alles et al., 2019 2).
From the standpoint of miRNA targets, it has been demonstrated that many human genes are under
selective pressure to maintain miRNA pairings (Friedman et al., 2009). Despite an increase in the
number of validated miRNAs, the estimated number of regulated genes remained between 60—80% of
all human protein-coding genes (Sayed and Abdellatif, 2011 12; Huang et al., 2019 15).

In the last 15 years, computational miRNA-target prediction algorithms and tools have been developed
(Sethupathy et al., 2006 7; Yue et al., 2009 5; Riffo-Campos et al., 2016 6). Almost all of these
predicting tools are based on features derived solely from the genomic sequence. Major features
include seed complementary, evolution conservation, free energy, and the position of miRNA binding
sites (MBS) at the 3’-UTR. Most tools suffer from a large number of false positives, poor accuracy and
sensitivity, and show a great degree of inconsistency among them (Min and Yoon, 2010).

High throughput methodologies (e.g., CLIP-seq, CLASH, CLEAR-seq) were used to conduct hundreds
of experiments to infer miRNA-mRNA interactions (Li et al., 2014; Karagkouni et al., 2018). These
experimental methods allowed us to assess the reliability of the different miRNA-mRNA prediction
tools. In general, the match between the experimental results and the computational predicting methods
is poor. Experimental observations (e.g., CLIP data) and sequence-derived information about miRNAs
and mRNAs are used to determine whether a specific transcript is a genuine target of miRNAs. In this
study, we address the question of whether a gene is a target of regulation by any miRNA based on their
protein products, using a supervised machine learning approach. i.e., we predict if a protein is subject
to direct regulation by “any” miRNA. The underlying notion is that the coding regions of most genes
are under strong negative selection forces and potentially include information that determines the
essentiality of a gene under miRNA regulation, irrespectively of a specific combination of miRNAs.
We use miRTarBase 2020 (Huang et al., 2020) as an experimentally validated ground truth dataset.
We trained the system using experimentally validated resources for human, mouse, and other model
organisms and reached high performance on the task of predicting gene-miRNA interaction, using
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primarily protein and minimal sequence level attributes. We included multimodal inputs from proteins
and generalized across different species. We also evaluated genomic information, and compared it to
the proteomic model, and a unified model that learns from both the gene and protein sequence. We
present an in-depth analysis of both novel and established features, extracted automatically using an
Al-assisted machine learning framework (SparkBeyond). We present a list of candidate miRNA gene
predictions from less studied organisms. Our model highlights the value of information embedded in
the functional proteome in revealing the complexity of regulation by miRNAs.

2. Methods
2.1. Database: miRNA-Target interactions

We used miRTarBase 2020 (V9) as a gold standard for miRNA-Target interactions (MTIs) (Huang et
al., 2020). miRTarBase compiled experimentally validated MTIs, mostly from mouse and human. The
entire database collected 4.5M data points, based on CLIP-seq experiments, as evidence for human
MTTIs (covers ~3000 miRNAs and 17,400 genes), and 0.7M mouse MTIs (covers 2250 miRNAs and
14,300 genes). It is used as a ground truth for training. The dataset was downloaded from miRTarBase
2000 (Huang et al., 2020). The experimental results in miRTarBase 2020 (V9) have associated "weak"
or "strong" evidence. Weak support refers to data collected from high-throughput experiments (e.g.,
CLIP-based NGS experiments, pSILAC proteomics), while strong evidence is compiled from targeted
experiments such as quantitative RT-PCR (qRT-PCR), Western blots, and reporter assays. We defined
a target as positive (i.e., miRNA regulated) by having "strong" experimental evidence or at least 2
unique "weak evidence" experiments. The remaining genes from miRTarBase with a single "weak"
experimental evidence were labeled as "likely positives" (0). These were treated as positives for the
purposes of downstream analyses, unless otherwise stated. We note that excluding these “weakly
labeled” samples improved modeling performance across all organisms (not shown). All other genes
were marked as “negatives”, i.e., not targeted by the specific miRNAs (“-17).

2.2. Database: Proteome

Proteins were downloaded from UniprotKB for all organisms analysed in this study. Only manually
reviewed SwissProt proteins were used (Breuza et al., 2016), except for C. elegans, where all the
proteins were used, after excluding fragmented sequences. Proteins annotated with no experimental
evidence for their existence by UniProtKB-SwissProt were excluded, as by definition there could be
no experimental evidence for their miRNA regulation. Altogether 45,846 proteins were analysed. We
also analyzed the proteomes of Danio rerio (zebrafish) and Arabidopsis thaliana (mouse-ear cress).

We identify genes with their matched proteins. Proteins from UniProtKB were mapped to the genes
listed in miRTarBase, TargetScan and TreeFam according to their primary gene name. To connect
genomics with protein identifiers, we mapped human genes by their primary gene name. For human
proteins, 76% of the proteins were successfully and uniquely mapped across the different resources. A
negligible amount of proteins with no primary gene name were dropped.

2.3. Extracted features

A wide range of metadata about each protein from UniprotKB was used as proteins’ features. These
included the proteins’ amino acid sequence (e.g., amino acid composition, counts, n-grams), molecular
weight, protein length, functional keywords (e.g., secreted, membranous), gene ontology (GO)
annotations for all three branches: molecular function, cell localization and biological process),
pharmaceutical uses, tissue specificity, protein family, post-translational modification, involvement in
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disease, compositional bias, non-terminal residues and more. In addition to the information associated
with the proteins by UniProtKB, we also derived engineered features based on the primary features.
notably amino acid composition and k-mers, n-grams (e.g., combinations of keywords), counts of
known annotations (Ofer and Linial, 2015).

As a separated set, we extracted limited genomic data for the human proteome using the Biomart
querying system of Ensembl (Yates et al., 2016). The derived features included: The length of the UTR
(5’ and 3’), the counts of alternative splicing, chromosomal position, nucleotide counts, k-mers and
their frequency, k-mer features extracted from the 3’-UTR genomic sequence, and transcript length.

2.4. AutoML and feature extraction

Feature extraction, engineering, selection (Ofer et al., 2021), and ML model selection, parameter tuning
and training was performed wusing the SparkBeyond autoML framework (See
patent/US20170017900A1). Previous work has shown the benefit autoML models, in order to
comprehensively and automatically find possible predictive signals in complex data, including in
biology and healthcare (Cohen et al., 2021). The system automatically extracts and ranks a wide range
of compositional features from training data. The system applies hyperparameter tuning and evaluation
of machine learning models. In this study, the SparkBeyond framework was applied to genomic,
proteomic and annotation data. Across the different problem formulations, the system generated on
average ~22 million candidate features per organism, prior to selection. A maximum of 300 features
are selected and used for the machine learning models, based on the training data. Features include
textual features (n-grams, k-mers, tokenization), counts, aggregations (e.g. max, min, average, decile),
interactions (e.g. length of a sequence divided by weight), missing value imputations, similarities and
more.

We use RIG (Relative Information Gain) as a measure of feature importance. RIG refers to the
information gain measured as a reduction in entropy produced from partitioning a set with attributes a
and finding the optimal candidate that produces the highest value.

[G(T,a) = H(T) — H(T|a),IG(T, a) = H(T) — H(T)a),

where 7' is a random variable and H(Z'|a)H(T'|a) is the entropy of 7" given the value of attribute a. It
encapsulates both the uplift of a feature (the increase in a class's likelihood, given a binary partition
induced by the feature), and the support (the number of samples covered by the feature). A feature with
a high RIG is expected to be relevant for any model, given that it will have good support and lift.

We report as final evaluation on a held-out test set, comprising 20% of the data. Note that the feature
extraction, selection and model evaluation and tuning is performed only against a subset of the training
data, to avoid the risk of overfitting and model leakage. To improve interpretability, we limited the
system to prefer “simple” features, at a slight cost to performance. Features are ranked by their
marginalized, non-redundant mutual information score, as well as a custom regularization scheme to
favor semantically simpler features (i.e., less composite functions). Performance in human only data
was based on 20% held out stratified collection of 3810 test samples. The protein sequence only model
uses just the statistics from the primary sequence (e.g., length, n-grams, amino acid composition (Ofer
et al., 2021)), without any of the additional annotations or metadata.

We used standard definitions for the model performance including precision and recall. In addition we
report accuracy = (TP + TN)/(P + N), and the F1-Score = 2TP/(2TP + FP + FN) using routine notations
of T (true) and F (false), P (positive) and N (negative).
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2.5. Software

Data processing and analysis used the Python Pandas (VanderPlas, 2016), and Scikit-learn software
packages (Raschka and Mirjalili, 2019).

Code, figures and data available at: https://github.com/LinialLab/microRNA-Protein-Regulation.

3. Results
3.1. Problem definition

In the context of cells and tissues, genes that respond to miRNA regulation comprise direct targets (i.e.,
miRNA binds to the 3’-UTR of a gene’s mRNA, affecting transcript stability and inhibiting translation)
and indirect effects (e.g., miRNA that downregulates a transcription factor (TF), leading to attenuation
of transcription of a set of TF-responsible genes). In addition, quantitative competition on miRNA
binding sites, under the paradigm of ceRNA, indirectly causes a shift in target site occupancy (Lai et
al., 2016). In this study, we question whether a coding gene is subject to direct regulation by any
miRNA. To answer this question, we considered features from a complete set of validated proteins
within each of the studied organisms (coined "reviewed proteome" by UniProtKB-SwissProt). Our
problem setting was defined as binary classification, using supervised machine learning models. Scikit-
learn's linear logistic regression model was automatically selected as the best model across the different
runs by the SparkBeyond autoML framework (see Methods), outperforming dozens of other attested
architectures. Importantly, functional annotation provided by UniProtKB-SwissProt does not include
miRNA-related knowledge, and potential target “leaks” were carefully excluded or filtered for (e.g.
evidence levels for a gene’s transcript).

We trained models on data and miRNA regulation annotations from different organisms.
Supplementary Table S1 summarizes the data used for the studied organisms’ proteomes. We combine
diverse protein functional annotations along with traditional sequence and biophysical features, as well
as quantifying the relative contribution of universal genomic sequence-based features (i.e., not miRNA
family specific). We identified key features that contribute to the models and suggest shared principles
in miRNA regulation across species.

3.2. Inconsistency in existing miRNA target predictions

Existing tools for predicting miRNA-gene interactions demonstrate poor consistency between tools
and major resources. It is anticipated that it is mostly due to the very large number of false positives.
The question of what makes transcripts in any organism a good target could not be answered based on
current tools (Min and Yoon, 2010). In an effort to reduce the flood of false positives, a statistical
framework across different predicting algorithms was developed, with the notion that miRNAs work
together in a commutative fashion (Balaga et al., 2012).

Experimentally validated targets (as derived from miRTarBase 2020) are expected to be of higher
quality and consistency, and thus are used as the "ground truth" annotations. However, such
annotations suffer from inherent biases. For example, it is likely that highly expressed transcripts will
be detected more often than lowly expressed ones. Similarly, miRNAs that are expressed under defined
conditions might be underrepresented experimentally. Obviously, some organisms are studied more
than others (e.g., human and mouse), resulting in a biased view of how many miRNA targets there are
in most organisms.
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Figure 1A illustrates the disparity in the fraction of genes predicted to be regulated by miRNAs (as
predicted by TargetScan) and those experimentally validated (by miRTarBase). We illustrate the
TargetScan (release 8.0) (McGeary et al., 2019) as a reference point. It provides a score for each pair
based on genomic and biochemical models of miRNA binding specificity. However, the algorithm was
mostly tuned as a miRNA-mRNA predicting tool for mammals. The discrepancy in the proteomes of
D. rerio (zebrafish) and C. elegance (worm) emphasizes the unproportionate number of predictions by
TargetScan in view of the shortage of experimentally validated observations. Figure 1B shows that
this inconsistency is also detected in the number of confirmed miRNA genes. The proportion of
confident miRNAs reported by miRBase reaches 70% of the entire miRNA gene list. In D.
melanogaster, however, it is only 57% (out of a total of 258 genes, miRBase) (Supplemental Table
S2). In humans, the fraction of confident miRNAs is only 26% (505 out of 1917 miRNA genes) and
poor confidence miRNAs are those with minimal expression level or non-canonical stem-loop
structure.
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FIGURE 1. miRNAs and regulated genes by species. (A) Number of proteins from UniProtKB/SwissProt
reported as “reviewed proteome” (filtered as in Methods), the number of reported targets from mirTarBase as
high confidence (by evolutionary conservation) reported by TargetScan, for 5 model organisms. The latter two
targets include all proteins, not just SwissProt. (B). Number of miRNA stem-loop genes and mature miRNAs
reported by miRBase, and the number of miRNA families from TargetScan for or the same model organisms as
in (A).

3.3. Prediction of miRNA regulation across organisms

For each organism, we trained a model on 80% of its curated proteins (proteome filtered collection,
see Methods) and presented results on the disjointed remaining 20% test set. Labels (miRNA
regulation/non-regulation) were derived from experimentally validated miRNA regulation data
(miRTarBase 2020). We identified 76% of human genes and only 37% of mice as regulated (validated)
genes, with lower rates for other organisms.

Table 1 shows the performance of the protein models for different model organisms. Models were only
based on annotated protein data. Model results are shown for the test set (which was not used in model
training). The total number of instances is for data after filtering and removal of genes that failed in the
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mapping of primary gene names. The percentage of validated miRNA regulation refers to
experimentally validated targets. The performance is presented according to the area under the receiver
operating characteristic curve (rocAUC), precision, and recall (of the minority class) on the test set.
We concluded that, despite the low coverage of annotated proteins in the fruit fly and worm proteomes,
the machine learning-based model successfully characterized genes that are apparently regulated by
miRNAs. It also emphasized the commonalities and differences in miRNA regulation across model
organisms.

Table 1 also tests whether the strict selection of the trained set for only curated and well-annotated
proteins limits the performance of the miRNA-regulatory predictor. C.Elegans for example, has only
a very small number of validated miRNA targets and reviewed proteins, limiting our ability to learn
from this small intersection. To this end, we partitioned the C. elegans into two sets, the entire proteome
(8,577) and a smaller reviewed set (a total of 2,106). We showed a substantial improvement in the
rocAUC for models trained on the larger set, despite its lower quality annotation. In mammals, it has
been shown that most genes are directly regulated (based on CLIP experiments). However, the extent
of miRNA regulation in invertebrate organisms is unknown.

Table 1: miRNA predictions per organisms

Species Precision Recall Total Validated as | rocAUC
P (%)? (%) proteins | miRNA
regulated (%)

H. sapiens 63.4 27.8 18,808 76.0 76.9

M. musculus 57.1 37 16,355 37.0 67.6

C. elegans (reviewed) 0 0 2,527 2.0 62.9

C. elegans 50 11 8,577 1.2 79.2

(all proteins)

D. malanogaster 33.3 10 3,140 1.5 67.5

Precision, Recall values are for the predicted minority class, at default cutoff.
3.4. Generalizing between species

In addition to models per organism, we evaluated the ability of the models and features to generalize
between species. We trained a model on all human proteins and evaluated it using all mouse proteins
as a test set, and vice versa (mouse to human; Table 2). We observe excellent stability, with
performance dropping only slightly compared to a dedicated model trained on the species’ own data.
This supports our use of the models to predict between different species, arguing that functional
attributes generalize well between species.

Table 2: miRNA predictions between organisms

rocAUC score Trained on Human | Trained on
Mouse

Evaluated on Human 76.9 64.6

Evaluated on Mouse 75.0 67.6
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3.5. Protein features predict miRNA regulation

We observed a number of predictive attributes that were consistent across different iterations, and even
different organisms. There exist clear global attributes in favor (or disfavor) of miRNA regulation.
Features were ranked according to the calculated RIG (relative information gain) values, with higher
RIG implying lower uncertainty for the target under the feature’s induced partition, i.e., greater
information about it (see Methods). A full ranked list of features and their statistical properties is in
supplementary Table S1.

A high RIG value encapsulates a high degree of confidence with strong statistical significance for the
discrimination power (chi2 p-value <1.0E-04 on the test set). Figure 2 shows the partition of the top
15 features with high uplift in discriminating for miRNA regulation (Figure 2A) and not being miRNA
regulated (Figure 2B). For example, long protein length, identified with an optimal threshold of under
349 amino acids long, with sequences shorter than this being 1.38-fold more likely to be being
associated with a gene that is not regulated by miRNAs (marked as prediction = 0). In the case of
protein length, there are no missing values (i.e., all proteins have a sequence from which length is
derived). However, the support for other features is often very limited. For example, there are only 232
proteins in the training set with the "sensory" keyword, which accounts for 2.4% of all proteins. For
this selected set, the tendency to not be miRNA regulated is substantial (2.57-fold). Among the top
features is membership in GPCR family 1 (associated with the olfactory receptors) which are 2.41
times less likely to be regulated (Figures 2,3). Features directly associated with protein signaling,
localization and stability, such as post translational modification and alternative splicing, are
significant for predicting miRNA regulation. For example, proteins involved in the ubiquitination
process ("ubl") are in favor of miRNA regulation (by 1.26-fold), suggesting that gene regulation may
involve multiple regulatory mechanisms, including tagging for degradation. Other annotations (from
Gene Ontology), such as subcellular location (e.g., cytosol, nucleoplasm) and interaction with RNAs
(e.g. RNA binding or ribonucleoproteins) also contributed to the models’ success.
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FIGURE 2. Selection of impactful features from the human protein model. (A) miRNA regulated, (B) not
regulated by miRNA. The x-axis is the lift of features, relative to class prior baseline (~76% regulated, 24% not
regulated). All above features have an uncorrected p-value at least under 0.0001, using a Chi2 test on the test
data. Full list of features and statistics in supplementary Table S3, along with ranking by information gain (RIG).
Note the different scale of the effect in A and B. CC: Cellular component branch of GO annotations.

Features related to amino acid sequence composition were also informative, e.g., having more than a
single methionine, or an especially high percentage of lysine (K). However, these characteristics are
most likely a result of the underlying codon frequency (Supplemental Table S1), or relate to specific
structural/functional families. We expect that some of these features may be confounded by the
aforementioned higher-level functional properties.

Table 3: Tissue specificity features

Dominant
Feature - tissue specificity | prediction RIG? Support (%) | Lift 1° Lift O°
Contains "muscle" 1 0.012 13.22 1.19 0.55
Contains "heart" 1 0.011 | 4306 1.18 0.57
Contains "brain" 1 0.008 17.48 1.14 0.67
Contains "testis" 0 0.007 0.92 0.33 2,57

Relative information gain. PLift indicates the effect fold for the feature on the prediction of being (Lift
1) and not being (Lift 0) miRNA regulated.

Another notable set of features relates to tissue specificity. Table 3 shows the contributions of the
different tissues and organs. This set of features aligns with the accepted notion that miRNA expression
profiles are tissue-specific and effective at distinguishing between tissues (Rasnic et al., 2017).
However, it is unknown whether some tissues are more amenable to regulation than others. Most tissue
specificity features (Table 3) were in favor of miRNA regulation (prediction =1), contributing to the
discriminative power by ~1.2-fold lift and a RIG of ~0.01. Interestingly, the testis was an exception,
with a 2.6-fold effect against miRNA regulation. The statistical results (Table 3) were also validated
by a Chi2-based hypothesis test, measuring the probability of observing a Chi2 deviation between the
expected and observed labels of this extreme or greater (p-value), on the test set. All p-values were
<0.001.

3.6. Functional groups coherence in miRNA regulation

We tested functional groups according to the UniProtKB family relations. The most significant family
groups, characterized by their average regulated fraction are shown (Figure 3). Examples with
statistically significant statistics are listed. There are 475 protein kinases, of which 85% have been
shown to be under miRNA regulation. The key signaling proteins of small GTPases (e.g., Ras, Rho)
are also shown to be regulated (160 proteins, 92% are miRNA regulated). In other protein families,
such as Histone H2A & H2B, none of the 17 proteins are regulated by miRNA. Supplementary Table
S4 lists protein families along with their prediction statistics.
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FIGURE 3. Protein families by mean percentage of miRNA regulation prediction of their members. Families
defined by UniProtKB. Examples from human families are partitioned by the prior rate for miRNA regulation
of 75% (dashed line). The p-value for each family member are marked by the two-sided binomial test. The most
significant families (p-value <1E-6 are indicated) are listed, colored green and orange by their prediction as 0
and 1, respectively. Supplementary Table S4 lists protein families along with their prediction statistics.

3.7.  miRNA predictions in novel organisms

We examined putative predictions for less annotated model organisms such as D. rario (zebrafish) and
A. thaliana (mouse-ear cress). 355 miRNA genes in zebrafish (216 high confidence by miRBase) and
326 miRNAs in A. thaliana (177 high confidence by miRBase) were identified from genome and RNA-
seq experiments (Zhan and Lukens, 2010). However, these organisms have a low number of
experimentally validated miRNA targets, with just 187 and 70 for D. rario and A. thaliana,
respectively. This is despite a comparable fraction of their genes being regulated according to
computational predictions (e.g., Figure 1A). We focused our analysis on the zebrafish and its 25,919
known proteins as retrieved from TargetScanFish. We included in the prediction scheme all non-
fragmented proteins, irrespective of their annotation status. Our model, trained exclusively on
annotated human genes, predicted miRNA regulation in 22,759 (87%) zebrafish genes, and 30,502
(83%) mouse-ear cress genes.

Compared to the validated shortlist of known miRNA targets, our "positive" predictions match the
quantities observed in the well-studied humans and mice (~82%). Our results also have a better
concordance with TargetScan labels (Pearson correlation = 0.11) than with the small, non-represented
experimentally validated samples (Pearson correlation = 0.027), further hinting that to a large degree,
genes that are likely miRNA candidates have not yet been validated. Filtering the putative
TargetScanFish to include only candidates from conserved miRNA families yields similar, improved
results with a correlation of 0.12, supporting the above hypothesis. Supplementary Table S5 lists all
predictions for D. rario and A. thaliana.

3.8. Shared miRNA regulation by protein function
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Our predictions suggest that miRNA regulation is prominent also in organisms lacking extensive
experimental studies. The information provided to the predictor was restricted to proteomic and global
functional information (see Methods). We list genes from D. rario that were strongly predicted to be
under miRNA regulation scheme but lack experimental evidence. Supplementary Figure S1 shows
few homologous genes of D. rario genes that share function with human and mouse and were also
among the top predictions of miRNA regulation, with no known experimental evidence. For example,
park7 gene shares 91.5% identity at the protein level between humans and mice, and is a clear homolog
of park7 in zebrafish (with 83.1 and 81% sequence identity in human and mouse, respectively).
However, applying TargetScan applied in a stringent mode for including only reliablly conserved
miRNAs shows that while there is no miRNA binding site in mouse transcript
(ENSMUST00000030805.8), and only a single miRNA binding site in human ENST00000493678.1
transcript, but TargetScan predicts 13 different miRNAs (total of 18 binding sites) in the regulation of
Park7 homolog (Maillard deglycase) from zebrafish. Additional examples include the important cancer
driver genes pkd2 and apc (Supplementary Figure S1).

Table 4 lists gene candidates with a high probability of being miRNA regulated in zebrafish but were
not identified as such by TargetScanFish. Note that these highly predicted genes act in the nuclei during
development, undergoing post translational modifications. However, the prediction score is not a direct
outcome of a long 3’-UTR. As noted, this specific model did not use any genomic/ 3’-UTR length
information.

Table 4: Zebrafish miRNA predictions

Protein name miRNA ¥ UTR
Gene name (description) regulation | length UniprotKB Keywords
(primary ) P score (bp)
hnrnoub Nuclear Methylation. Phosphoprotein.
P ribonucleoprotein  U-like | 91.8 1789 Ribonucleoprotein. Viral
protein nucleoprotein. Virion
U3 small nucleolar RNA-
associated protein 25 .
utp25 homolog (UTP25 small | 90.8 367 Eﬁg:'oh%mfg‘tt:i'n protein. Nucleus.
subunit processor phop '
component)
_ Activator. DNA-binding.
T-box transcription factor .
tbxta T-A (Brachyury protein | 89.8 863 ?;Vn‘igﬁgg;]tal prOte.'rr:_én:ch;%ﬁgE
homolog-A) (Zf-T-A) . o .
regulation. Wnt signaling pathway
ATP-binding. Coiled coil. Disulfide
ttn.1 ", . bond. Immunoglobulin  domain.
Titin, tandem duplicate 1 89.6 1,001 Kinase. Nucleotide-binding
Repeat. Transferase
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ANK repeat. Cell membrane.

Coiled coil. Cytoplasm.

RING-type E3 ubiquitin Cytoskeleton. Developmental

mib1 transferase (EC | 89.5 1,556 protein. Membrane. Metal-binding.
2.3.2.27) Notch signaling pathway Repeat.

Transferase. Ubl  conjugation
pathway. Zinc-finger

3.9. Integrating genomic information into a unified model

Most computational prediction tools and algorithms for miRNA-mRNA interactions are based on
sequence pairing in the 3’-UTRs. We added an additional set of genomic features extracted from the
gene’s summary statistics (length, CDS length, nucleotide composition), the 5’-UTR and 3°-UTR
length, and the number of splicing variants. The performance of a model using only the genomic
features was inferior to that of the protein-informed model (Figure 4). Note that our model does not
consider the number of miRNA binding sites, rather it includes the 3’-UTR length (which is obviously
associated with an increased probability of binding miRNAs). The model outperforms a naive boolean
heuristic based on the existence of a 3’-UTR. The most important information at the genomic level is
that a gene has a long sequence (e.g., total transcript length > 540 nt) and/or a long 3’-UTR. Another
highly informative feature of a gene is its chromosome position (i.e., start and end). Specifically, genes
located towards the "start" of the chromosome were less likely to be miRNA targets. Notably, none of
the extracted genomic features relate to any information on specific miRNA sequences, the presence
of a match with a seed, or energetic data on their pairing (e.g., n-grams complementary to a list of seeds
were not included). Combining the modalities into a single, unified model outperformed any individual
modality (Figure 4).

Human Models ROC
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FIGURE 4. Comparing the rocAUC (Area Under the Receiver Operating Characteristic Curve) of different
models on human data. Results shown for the test set (3810 samples, 75.8% miRNA regulated). “Protein” model
includes functional annotations, keywords, primary sequence and protein families. “Protein sequence” model
used only protein sequence and derived features. Unified model includes all protein and genomic features. For
detailed performance see Supplementary Table SS.

3.10. Evolutionary related genes display regulation coherence

We further tested whether genes that share evolutionary ancestry (i.e., orthologs) share miRNA
regulation coherence. From a sequence perspective, the 3’-UTR is not under strong purifying selection
across species, and in general, conservation is minimal among orthologs. To test the cases in which
miRNA regulation has been specialized, we used TreeFam as a source for family relationship groups
(Schreiber et al., 2014). There are 8,819 unique TreeFam families and 5,377 protein families in this
data. The question we asked is whether genes that belong to the same family share miRNA regulation.
We matched the TreeFam groups and UniProtKB-SwissProt defined protein families according to the
primary gene names from the reviewed human proteome. About 90% (16,995) of the genes had a
matching TreeFam gene family, and 72% had a matching protein family. We note that the remaining
10% of genes that lacked a matching TreeFam family were twice as likely to be unregulated (49%
unregulated vs. only 24% overall). The distribution of protein family sizes in humans is shown in
Figure 5A. Note that the majority of families had only one member and thus lacked the notion of
paralogs. A small number of proteins belong to multiple families. Figure SB schematically describes
the notion of paralogs.

Within TreeFam families that consisted of at least 2 genes (11,356 genes), we tested the null
hypothesis, for which there is no coherence in miRNA regulation in proteins belonging to the same
paralogous groups. We found that 61% of TreeFam families, and 56% of protein families were coherent
and split between the families that are all regulated (or not) by miRNAs. We further validated our
hypothesis, that genes belonging to the same family tend to share the same regulation. The statistical
test checked the greater success of assigning miRNA regulation according to the mode of each
TreeFam family, for all proteins belonging to groups with at least 2 members. A one-sided ("greater
than") binomial test yielded a p-value of 1e-61.

3.11. GPCRs are rarely regulated by miRNAs

Most GPCRs are not regulated by miRNAs. We investigated whether this pattern holds true for all of
the major GPCR families (470 proteins, 6 classes). In addition, we tested whether close paralogs of the
GPCR within each class are coherent in their regulation mode of miRNA. Figure 5C shows the
dendrogram of the Secretin subfamily with functional partition to receptor types (colored coded). We
confirmed that there is no direct relation between the functional relationships and the regulation mode
(e.g., CRFR1/2, VIPR1/2). The same phenomenon applied to Class T (Taste 2), where 7 out of 25
(28%) are known to be regulated (Figure 5D). We conclude that the selective pressure to maintain the
same regulation is weakened in duplicated genes, allowing for innovation and accelerated evolution
that ultimately leads to a divergence in regulation.
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FIGURE 5. miRNA regulation of human paralogs. (A) The count of protein family members (log2 scale) with
the number of proteins belonging to a family (x-axis). The largest family with 470 members of G-protein coupled
receptor (GPCR) is marked. (B) Schematic view of homologs and paralog of ancestor gene A. The duplication
event prior to specialization defines paralogs. (C) Phylograms of the GPCR Class B1 (Secretin) with 15 gene
paralogs with 9 regulated by miRNAs. The receptor groups are color coded (e.g., Glucagon receptor). (D)
Members of GPCR of Class T (Taste 2) with 25 proteins, among them only 7 proteins were predicted as miRNA
regulated (marked in green symbol) the rest of the proteins were predicted as not under miRNA regulation. The
source of proteins in C and D and their annotation is according to GPCRdb (Pandy-Szekeres et al., 2022). The
trees are generated from whole sequence phylogenetic trees within each GPCR class using unweighted pair
group method with arithmetic mean (UPGMA, 10 replicates).

4. Discussion

In this study, we address the question of miRNA regulation as a binary problem of prediction without
considering the binding capacity, sequence specificity of each of the miRNA individually or the nature
of the regulation. The information we use is mainly derived from the protein sequence and its associated
annotations. For example, we showed that proteins located in the membrane or the nucleus have a
higher tendency to be regulated by miRNAs (Supplemental Table S1).
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Experimental evidence on miRNA regulation is scarce and fragmented. Even in rats the number of
stem-loop miRNA genes is only 40% of the number reported in mice, with only 323 miRNAs marked
as high confidence. In this study, we provided a machine learning model that accurately predicts
validated miRNA regulation in novel (to the model) organisms with minimal experimental results,
without requiring known miRNA genes seeds (Table 4). We propose to use sequenced genomes to
determine the proteome and elementary genomics properties for poorly studied organisms. The
capacity of a trained model to transfer successfully across organisms is a key feature in building
universal models, capable of covering all domains of life, as demonstrated in proteins language models
(Ofer and Linial, 2015; Ofer et al., 2021). In addition, we anticipate that training on proteins from
multiple proteomes will improve not only prediction of miRNA regulation but also related tasks
(Brandes et al., 2022).

Machine learning approaches were applied in the field of miRNAs for the prediction of miRNAs from
genomic information, miRNA targets of both (Singh et al., 2017; Parveen et al., 2019). All these
methods are based on the properties of the molecular complementarity of miRNA and miRNA binding
sites. In contrast, the strength of the automated machine learning AI model is the extensive exploration
of extremely high number of features (each of our models explored millions of features) from diverse
sources, both validating previous discoveries and yielding potential novel insights. We tested the
predictive model on unseen data (rather than on repeated sampling of the training set). The use of an
entropy-based criterion (RIG, see Methods) highlighted informative features with high discriminatory
power, stability and coverage. Discovery of novel sets of features that are not necessarily explainable
by current knowledge, we expect to extract understanding on the biology. For example, we observed
that the length of 5’-UTR, along with the length of the gene’s CDS were quite informative. Several
examples confirmed that gene activation by miRNAs include binding to the 5'-UTR as shown for
ribosomal proteins translation during amino acid starvation (Da Sacco and Masotti, 2012).

Another feature that contributed to the performance of the model concerns the number of alternative
variants at the tail of a gene (Miiller et al., 2014). In our model, the combined features of alternative
polyadenylation (APA) and tissue specificity (Table 3) reflect the importance of post transcriptional
regulation of the 3’-UTR as over 50% of conserved miRNAs target sites reside downstream of the
proximal polyadenylation site in mammalian genes (Ren et al., 2020). It was shown that many 3’-UTR
APA variants are associated with genes expressed in specific tissues and conditions (Yang et al., 2022).

We showed that a unified model, combining proteomic and genomic modalities outperformed other
models (Figure 4). In future work, we hope to experiment with models using data from multiple species
simultaneously. An additional benefit of proteome-based prediction in predicting miRNA in organisms
lacking experimental data is with disease related orthologs. Among the top predictions in zebrafish are
genes associated with human diseases including Parkinson’s disease (park7), cancer (apc, a known
tumor suppresion gene) and kidney failure (pkd2). The shared regulation among protein families allows
investigating human diseases through miRNA regulation orthologs in simpler model organisms (Chang
and Mendell, 2007).

In humans, GPCRs are the largest membranous family and represent ancient duplications and further
diversification. The composition of GPCR in the plasma membrane of cells are tightly regulated in
health and disease. Over 400 human GPCRs (excluding hundreds that are involved in olfaction) are
divided into 6 functional classes that are responsible for sensing smell, taste, pain, mechanical stress,
vision, but also aspects of adhesion and differentiation (Pandy-Szekeres et al., 2018). We showed that
GPCRs are underregulated by miRNA. Protein families such as histones are not regulated by miRNAs
and their 3’-UTR is extremely short. Members of the GPCR proteins have 3’-UTR with an average
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length of 400-800 nucleotides, but still are mostly non-regulated by miRNAs. GPCRs act in almost
every aspect of signal transduction and there are many levels of regulation that tune their activity
including quantity, localization in the plasma membrane, recycling and endocytosis. We propose that
translation regulation and attenuation of GPCR transcript stability by miRNAs do not contribute to the
regulation of the GPCR superfamily.

We further tested the sensitivity of our proteome-based models in alternative problem formulations.
About 5% of the human coding genes are marked as protein receptors, including many of the GPCR
family members. We therefore trained a model only on human receptor proteins (a total of 998
proteins). Only 59% of these genes are known to be miRNA regulated (compared to 76% for the entire
human proteome) The model reached a rocAUC of 84%, supporting the ability of the model to
generalize, rather than merely predicting GPCRs as being unregulated. A top feature in this
subpopulation was being involved in "olfaction", covering 23% of the receptors.

Previous studies that sought shared properties among the miRNA regulated targets proposed that such
targets are enriched in protein-protein interactions. However, large protein complexes are mostly
excluded from miRNA regulation {Das, 2013 # 33). Inspecting the top features from the results of our
unified model show that many of the miRNA regulated proteins participate in signal transduction, post
translated modification, nucleic acid binding proteins (e.g., transcription factors) and cellular
trafficking (e.g., small GTPase) (Figure 3). We also found that nucleosomes, ribosomes, and other
stable complexes are not likely to be regulated by miRNAs.

While protein functions are under purifying selection, miRNA binding sites at the 3’-UTR are fast
evolving. It has been estimated that duplicated genes in humans are twice as likely to be miRNA targets.
Moreover, paralogs on average have longer 3'-UTR relative to singletons {Li, 2008 #34} and the breath
of regulation is greater among paralogs. Moreover, among duplicated genes that are within the same
3D topological associated domain (TAD), the coordinated expression is lower than the average non-
related genes within TADs (Ibn-Salem et al., 2017). We show that protein families tend to display
coherent behavior with respect to miRNA regulation, but this coherence is not visible at the level of
pairs of paralogs (Figure 5).

A number of works have proposed miRNA regulation as a novel and very recent evolutionary
innovation: while this could explain the differences in amount of miRNA regulated genes species, it
fails at explaining the disparity between experimental and computational predictions. A more
parsimonious explanation is that experimental validation is lacking, and that additional, more stable
computational methods, that can also generalize across taxa, are needed to prioritize targets.

The role of non-coding RNA regulation to maintain cellular homeostasis applies in all organisms. We
expect that a similar Al-based approach will be useful for creating a generalized model for post
transcriptional regulation in living cells. Such an integrative model will use the features from miRNA
regulation and extended to statistical features engineered and extracted from other long non-coding
RNAs (IncRNAs), circular RNAs (circRNAs) and pseudogenes.

Abbreviations

Al, artificial intelligence; CLASH, cross-linking ligation and sequencing of hybrids; CLIP, cross-
linking and immunoprecipitation; GPCR, G-protein coupled receptor; miRNA, microRNA; ML,
machine learning; ncRNA, noncoding RNA, rocAUC, area under the receiver operating characteristic
curve; TAD, topological associated domain; UPGMA, unweighted pair group method with arithmetic
mean; UTR, untranslated region.

16


https://doi.org/10.1101/2022.04.09.487727
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.09.487727; this version posted April 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Supplementary Material

Supplementary Figure S1. TargetScanFish view of miRNA regulated prediction for disease related
genes. Supplementary Table S1, Proteomes of model organisms ML predictions. Supplementary
Table S2, Summary statistics of miRNA regulation by organism; Supplementary Table S3, Top 15
features from protein annotations; Supplementary Table S4, Protein family miRNA prediction;
Supplementary Table S5, Samples of zebrafish miRNA regulation prediction.
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