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33 Abstract

34  Immunoediting, which includes three temporally distinct stages, termed
35 elimination, equilibrium, and escape, has been proposed to explain the
36 interactions between cancer cells and the immune system during the evolution
37  of cancer. However the status of immunoediting in cancer remains unclear,
38 and the existence of neoantigen depletion signal in untreated cancer has been
39 debated. Here we developed a distribution pattern based method for
40 quantifying neoantigen mediated negative selection in cancer evolution. Our
41 method provides a robust and reliable quantification for immunoediting signal
42 in an individual cancer patient. The prevalence of immunoediting signal in
43 immunotherapy untreated cancer genome has been demonstrated with this
44  method. Importantly, the elimination and escape stages of immunoediting can
45  be quantified separately, tumor types with strong immunoediting-elimination
46 tend to have weak immunoediting-escape signal, and vice versa. Quantified
47  immunoediting-elimination signal predicts cancer immunotherapy clinical
48  response. Immunoediting quantification provides an evolutional perspective for
49  evaluating the antigenicity of neoantigen, and reveals a potential biomarker for
50 cancer precision immunotherapy.

51

52

53

54

55

56

57

58

59


https://doi.org/10.1101/2022.04.08.487711
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.08.487711,; this version posted April 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

60
61

62 Introduction

63 During cancer evolution, some genome DNA alterations can be positively
64 selected, such as driver mutations. Some genome alterations could posit a
65 deleterious effect, and consequently are negatively selected or depleted during
66  cancer evolution. Some (or the majority of) genome DNA alterations do not
67 have driving or deleterious effects on cancer, and follow a neutral evolution
68  pattern. The interactions between immune cells and tumor cells are reflected
69 as immunoediting, which could mediate the negative selection of DNA
70  alterations encoding high antigenicity (also known as neoantigenic mutations)
71 (1,2). Positively selected genome alterations can be readily detected in the
72 final mutation reservoir, however, the quantification of negative selection in
73 cancer evolution is still a significant challenge (3). The status of neoantigen
74  mediated negative selection in cancer evolution has been evaluated in several
75  studies, and controversial results have been reported (4-7).

76

77 Convincing cases of adaptive molecular evolution have been identified through
78 comparison of synonymous (silent; dS) and nonsynonymous (amino
79  acid-changing; dN) substitution rates in protein-coding DNA sequences. dN/dS
80 is the ratio between the rate of non-synonymous substitutions per
81 non-synonymous site and the rate of synonymous substitutions per
82 synonymous site. dN/dS method was originally developed to quantify the
83  molecular evolution from sequencing data (8,9). Recently, dN/dS method has
84 been applied in cancer evolution study (3). An important consideration in
85 dN/dS analysis is the selection of negative control regions. For example, a
86 recent study reported that neoantigen depletion signal is undetectable in the
87  pan-cancer dataset (5), however the selection of negative control region is
88 questionable (10). In addition, the percentage of depleted neoantigen could be

89 tiny, and this prohibits the accurate detection of negative selection signal
3


https://doi.org/10.1101/2022.04.08.487711
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.08.487711,; this version posted April 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

90 through dN/dS, especially in an individual cancer patient. Population genetics
91 based method has been used to identify the neutral pattern of cancer evolution,
92 this method is based on the assumption that the variant allele frequency (VAF)
93  within a tumor follows a characteristic power-law distribution in case of neutral
94  evolution (11,12). The detection of neutral evolution with this method has been
95 questioned (13,14), and its application in immune mediated negative selection
96 has not been fully established. In together, till now, the existence and the
97 degree of neoantigen mediated negative selection in human cancer remain
98 unclear.
99
100 It is known that immunoediting elimination can lead to the down-regulation of
101 cancer cell fraction (CCF) of antigenic mutation (15). To fully utilize the CCF
102  distribution information, here we build a new distribution pattern based method
103  for quantifying neoantigen mediated negative selection in an individual cancer
104  patient. With this new analysis framework, we demonstrate the pan-cancer
105  existence of neoantigen mediated negative selection signal. Shut down the
106  expression of antigenic mutations can be one way for tumor cells to escape the
107  surveillance of immune system, consequently the mRNA down-regulation
108  status of antigenic mutations can be a surrogate of immune escape. Thus the
109  elimination and escape phases of immunoediting can be quantified separately.
110 In total, this study not only provides a novel method for quantifying negative
111  selection in cancer evolution, but also reveals a potential biomarker for cancer
112 immunotherapy clinical response prediction.
113
114
115
116  Materials and Methods
117  Pan-cancer clinical and molecular data
118  The normalized gene-level RNA-seq data (TPM, transcripts per million) for 31

119 TCGA cohorts were downloaded from Xena (https://xenabrowser.net/ , dataset
4
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120 ID: tcga_RSEM_gene_tpm). Pre-compiled curated somatic mutations for
121 TCGA cohorts were downloaded from Xena (dataset ID:
122 GDC-PANCAN.mutect2_snv.tsv), and missense variants are selected for
123 downstream analysis (16,17). ABSOLUTE-annotated MAF file which contains
124  cancer cell fraction (CCF) information of mutations was downloaded from GDC
125 PanCanAtlas publications

126  (https://gdc.cancer.gov/about-data/publications/pancanatlas), and then we

127  used liftover function from R package “rtracklayer” to convert the hg37 genome
128  coordinates to hg38. Clinical data was obtained from GDC PanCanAtlas
129  publications. HLA typing data was downloaded from Thorsson et.al study (18).
130 The downloaded mutation data, HLA typing data and CCF values for TCGA
131 samples have also been validated with in house algorithm. Immune cell
132 infiltration data for all TCGA tumors was downloaded from ImmuneCellAl study
133 (19), which estimates the abundance of 24 immune cells comprised of 18
134  T-cell subtypes and 6 other immune cells. Other immune cell infiltration data
135 including CIBERSORT (abs mode), Quantiseq were obtained from the
136  TIMER2.0 study (20). For TCGA tumors which do not have HLA typing data in
137  the mutation data set (2404 samples), we downloaded raw bam files, and
138  performed HLA typing as described below. Driver mutation data was
139  downloaded from Bailey et al study (21). This study utilized three different
140  categories of tools to identify driver mutations: (1) tools distinguishing benign
141  versus pathogenic mutations based on sequence; (2) tools distinguishing
142  driver versus passenger mutations based on sequence; and (3) tools

143 identifying statistically significant three-dimensional clusters of missense
144  mutations (21). We keep mutations identified by =2 approaches as the final

145  high confident driver mutations, including 3437 unique mutations.
146
147  Somatic mutation calling

148  For the cancer immune checkpoint inhibitor therapy datasets, raw sequences

5
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149  were aligned to the reference human genome (hg38) using Burrows—Wheeler
150  Alignment (BWA) tool (22). Preprocessing followed the GATK4 best practices
151  workflow, including duplicate removal, base quality score recalibration.
152  Somatic mutations were identified on processed data using Mutect2 (23).
153  BCFtools was used to filter genome variants that passed all quality control
154  filters (24). The resulting VCF files were annotated by VEP and further
155  converted to MAF files by vcf2maf.pl (https://github.com/mskcc/vcf2Zmaf). The
156  MAF file was loaded into R, analyzed and visualized by Maftools (25).

157

158  Gene expression analysis

159  For the cancer immune checkpoint inhibitor therapy datasets, paired-end
160 RNA-seq data were processed using hisat2 (26) aligner on the basis of the
161  hg38 human genome assembly with default parameters. Then the aligned
162  SAM files were transformed to BAM files using samtools (27). Normalized RNA
163  expression values (TPM) were calculated by TPMCalculator (28).

164

165 Cancer cell fraction (CCF) calculation

166  We followed the GATK4 copy number analysis pipeline to get copy number
167  segment files. CCF information for each mutation was calculated based on
168  segment files and somatic mutation MAF files using ABSOLUTE software (29).
169  Briefly, read counts for each of the exome targets were collected from all
170 samples and calculated the coverage by count reads that overlap intervals
171 which were formed by padding the target regions. Each of the tumor samples
172 was compared to a panel of normal (PoN) controls for normalization and
173 denoising. The tool standardizes counts by the PoN median counts. The
174  normalization process includes log2 transformation and normalizing the counts
175 data to center around one. Then, the tool denoised the standardized copy
176  ratios using the principal components of the PoN. These normalized coverage
177  profiles were then segmented using Gaussian-kernel binary-segmentation

178  algorithm, which were fed into ABSOLUTE algorithm to determine CCF.
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179
180 HLA typing and neoantigen prediction

181  HLA genotyping was performed with Optitype (30), using default parameters.
182  Mutect2 mutation files were first transformed into VCF format by maf2vcf tools,
183 and we used NeoPredPipe to predict neoantigen (31). Single-nucleotide
184  variants leading to a single amino acid change are the focus of this study.
185  From the output results, if the IC50 of a novel peptide is less than 50, the
186  binding level is SB (strong binder, rank is less than 0.5%), and the expression
187 level (TPM) is greater than 1, then this peptide is labeled as neoantigen. A
188  mutation is considered antigenic if there is at least one peptide in all possible 8,
189 9, 10-mer peptides derived from the mutated site predicted as neoantigen. To
190 validate the major conclusion of our study, we also used additional MHCflurry
191 method implemented in pVACseq to predict neoantigen (32).

192

193  Enrichment Score calculation

194  The Kolmogorov—Smirnov (K-S) statistic can be used to quantify the distance
195 between two cumulative distributions. We constructed a K-S like statistic to
196 quantify the difference between the distribution of the CCF (or mRNA
197  expression) of antigenic mutations and non-antigenic mutations in each
198 sample.

199

200 ESccr quantification in individual cancer patient

200 We equally divided the whole CCF range (0-1) into 100 intervals (in
202  descending order) and assigned each interval a rank value (from 100 to 1). To
203 make the heavier weights on two tails of the rank distribution, we further

204 normalized the ranks (Eq. A):

+1 (A)

L
205 R =‘E—r

206 Where Ri is the normalized rank value, i is the interval index, L is the total

207  number of intervals (here L=100), and r is the original rank value.
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208
209 Then we counted the number of mutations lied in each interval (m (i)) and
210 assigned a value a(i) to each interval depending on mutation counts (m (i)) and

211 interval rank (R (i)) (Eq. B):

__mxR
212 ai—zme (B)

213 We can calculate the empirical cumulative distribution of random variable a (i)

214 by walking from top to bottom (Fig 2) (Eq. C):
215 F(n):Zq n=12,...,100 (C)

216  n s the total number of intervals, i is the interval index.

217

218  We then constructed two distributions for antigenic mutations (F_N(n)) and
219  non-antigenic mutations (F_M(n)) of an individual sample, respectively. Then

220 K-S like statistics can be obtained by taking distance (D(n)) of two distributions

221 (Eq. D):

222 D(n) = Fy(n)—Fy (n) (D)

223 Similar to GSVA (33), the enrichment score (ES) was defined as (Eq. E):

- ES=|D(n)"|~|D(n) | = max(©, D(n))—|min(0, D(r)) (E)

225  Where D(n)+ and D(n)-are the largest positive and negative random walk

226  deviations from zero, respectively.

227

228 ESgna quantification in individual cancer patient

229 For a sample, using to denote mRNA expression (TPM). To reduce the
230 influence of potential outliers, we first convert z to rank 2z, and normalize
231 further to r = |P/2 - Z| + 1, making the ranks symmetric around 1 (P is the
232 number of mutations in a sample), making the heavier weights on two tails of
233 the rank distribution. Then we got two cumulative distributions, for mutations

234  which are neoantigens (Eq. F):
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235 Dneo(S’i)_ ‘ ‘ (F
rieS,j<i ‘r ‘

reS

236  For mutations which are not neoantigens (Eq. G):

237 notneo(S I) = z (G)
rigS,j<i Z‘ ‘
E
238 Where S is the set of mutations which are neoantigens, the size of the set is Ps,
239 P is the number of mutations in a sample, r is normalized rank of mutations, i

240 and j are mutation index. Then we constructed a K-S like statistics (Eq. H):

241 T= Dneo(S’ i) - Dnotneo(S’ i) (H)

242

243  We transform the K-S like statistic into neoantigen enrichment score (ES) as
244  the difference between the largest positive and negative distribution deviations
245  from zero (Eq. I):

246 ES=max(Q,T)—|min@,T)| 0)

247

248  Estimation of significance level of ES.

249  We employed a permutation method to derive a null distribution to calculate p
250 value of the ES (ESccr or ESgna). FoOr each sample, the same number of
251 mutations as neoantigens are randomly selected from the mutation list and the
252 corresponding ES is calculated. This process is repeated 1000 times to get the
253  ES null distribution. The p value is calculated from the positive or negative

254  region of the empirical null distribution (Eq. J):

1 1000
—— > I(ES, 2ES) ES>0
o 1000 &
255 - 1 1000 ()
—— > I(ES, <ES) ES<0
11000 4

256  Where | is an indicator function.

257
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258  Neutral simulation

259  For each sample, we permute the neoantigen labeling (ie. randomly select the
260 same number of mutations as the actual neoantigen number in the selected
261 sample and label them as neoantigenic mutations) and calculate ES value. For
262 pan-cancer or cancer type dataset, we can obtain the same number of
263  simulated samples and corresponding ES values, then calculate the median
264 ES of these simulated samples. This process was repeated many times
265  (usually 2000 times) to get the simulated distribution of median ES. The actual
266 pan-cancer or cancer type median ES values are compared with this simulated
267  ES distribution, and p values are then reported.

268

269 Immune escape analysis

270  We consider the following immune escape mechanisms: 1, suppress the
271  transcription of genome alterations encoding high antigenicity (quantified as
272 ESgna); 2, antigen presentation pathway gene alterations; 3, PD-L1 or CTLA-4
273 overexpression; 4, loss of heterozygosity (LOH) on the HLA locus (34). Antigen
274  presentation pathway genes were selected based on the list of antigen
275 processing and presentation machinery (APM) from the Gene Ontology
276  Consortium (G0O:0002474) (35). Gene level non-silent mutation file was
277  downloaded from UCSC Xena. Immune checkpoint gene overexpression was
278  assessed using RNA-seq data. Normal expression values (in transcripts per
279  million mapped reads (TPM)) of PD-L1 and CTLA-4 were established from the
280 TCGA based on RNA-seq expression of the two genes in normal samples.
281  Checkpoint overexpression was called if either PD-L1 or CTLA-4 expression in
282 the tumor was higher than the mean plus two standard deviations of normal
283  expression. The HLA LOH status data was obtained from Li et al study (36). If
284  at least one HLA allele is subject to loss by LOH, then the sample is labeled as
285 HLALOH.

286

287 Cancer immunotherapy datasets analysis
10
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288 To investigate the predictive performance of the quantified
289  immunoediting-elimination signal in immune checkpoint inhibitor (ICI) therapy
290 clinical response prediction for individual patient, we searched for public ICI
291 datasets with available raw WES data and RNA-seq data. Three melanoma IClI
292 datasets have been identified for this study. The Hugo et al dataset was related
293 to anti-PD-1 therapy in metastatic melanoma (37). This dataset has 38
294 samples with WES data, 27 were also analyzed by RNA sequencing
295 (RNA-seq). The Riaz et al dataset was related to anti-PD-1therapy in
296 metastatic melanoma, and it has 64 samples with WES data, 51 with RNA-seq
297 (38). The Liu et al cohort includes melanoma patients treated with anti-PD1
298  antibody, it has 124 samples with WES data and 121 samples with RNA-seq
299  (39). All three melanoma studies used a very similar definition for clinical
300 endpoints. Clinical response for patients was defined by RECIST v1.1,
301 responding tumors were derived from patients who have complete or partial
302 responses (CR/PR) in response to anti-PD-1 therapy; non-responding tumors
303 were derived from patients who had progressive disease or stable disease
304 (PD/SD). We only chose pre- immunotherapy treatment samples for analysis.
305  Mutation calling, neoantigen prediction, expression quantified, CCF calculation
306 and ES calculation were performed as described above.

307

308 The performance of ESccr has been compared with 15 biomarkers reported to
309 have significant association with immune checkpoint inhibitor (ICI) response
310 (40), including tumor mutation burden (TMB), clonal TMB, indel mutation
311 burden (41), burden of indels escaping nonsense mediated decay (NMD) (42),
312 SERPINB3 mutations, CD274 (PD-L1) expression, CD38 expression, CD8A
313  expression, CXCL13 expression, CXCL9 expression, T cell inflamed gene
314  expression signature (43), IMPRES (44), CD8 T effector from the POPLAR
315 trial (45), cytolytic score, and UV signature. TMB was calculated as the
316  number of missense mutations per megabase; clonal TMB was measured as

317 missense mutations which CCF exceed 0.9. Indel mutation burden was
11
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318 calculated by the counts of frameshift indel mutation counts. The counts of
319 indels having no overlap with the nucleotides of NMD score > 0.52 was
320 considered as NMD-escape indel burden (40). T cell inflamed gene expression
321 signature (Ayer score) was calculated as average expression (TPM) of 18
322 genes (CD3D, IDO1, CIITA, CD3E, CCL5, GZMK, CD2, HLA-DRA, CXCL13,
323  IL2RG, NKG7, HLA-E, CXCR6, LAG3, TAGAP, CXCL10, STAT1, GZMB).
324 IMPRES values was calculated based on expression of 15 gene pairs. For
325 each gene pair gene_i/gene_j, using following formula to calculate gene pair

326 value (Eq. K):

Lexp (x) <exp; (X)

327 R ={ 0,otherwise (K)

328 For each sample, we can get a gene pairs value vector of length 15, and The
329 total number of ‘1’s in this vector denotes the sample’s IMPRES score (44).

330 CD8 T effector signature from the POPLAR trial was calculated as the average
331 expression (TPM) of 8 genes (CD8A, GZMA, GZMB, IFNy, EOMES, CXCLS9,

332 CXCL10, and TBX21). Cytolytic activity score (CYT) was calculated as the
333  geometric mean expression (TPM) of GZMA and PRFL1.

334

335 Stochastic branching process model for cancer evolution and power
336 analysis

337  The tumor evolution model constructed by Lakatos et al has been applied in
338 this study (15). In this model, tumor evolution was initiated by a single
339 transformed cell. At any simulation step, a cell is randomly selected and has
340 three events that could happen: birth (divide to produce two offspring), death
341  and waiting. For a birth event, new cells could acquire some new mutations
342  (counts are sampled from Poisson distribution) and each mutation can become
343  neoantigen as a specific probability. Under negative selection on neoantigen,
344 the death rate of cells could increase from do to di with neoantigen

345 accumulation. Selection strength (s) of neoantigen mediated negative

12
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346  selection can be calculated as (Eq. L):

b-d

(L)

0
348 nis the number of neoantigens in a cell, b is the birth rate (for simplicity, set
349  b=1) In addition, every mutation has a probability (pesc) to escape. Once a
350 mutation is escaped, the death rate of the cell which contains this mutation
351 decrease to basal death rate do. This simulation step continues until the
352  population reaches a pre-defined size. Similar to the original study (15), the
353  following parameters were applied: neoantigen probability p=0.1, birth rate
354  b=0.1, basal death rate dy=0.1, Poisson distribution parameter (mutation rate)
355 p=1, escape probability pesc=10° selection strength -0.25<s<0, final
356  population size popSize=10°. At each selection strength, we run the simulation
357 100 times. The model was implemented with Julia (v1.3.1, revised from the
358 original Julia code provided by Lakatos et.al).

359

360 Mutations harbored in at least 5 cells out of 10° were collected at the end of
361 each simulation and the CCF was calculated. To account for imperfect
362 sequencing measurements, CCF values were computed via a simulated
363  sequencing step introducing noise to these frequencies with the indicated read
364 depth. For a given read depth D, each frequency value f was substituted by a
365 new frequency " sampled from a binomial distribution with parameters D and f:
366 f'~Binom(D,f)/D . We filtered for mutations with f’ above 0 to discard mutations
367 that are not picked up due to limited detection power. In addition to sequencing
368 limitations, we also added different proportions of false positive neoantigen
369 when evaluating the power of detecting negative selection: we randomly
370 sampled nonantigenic mutations of simulated tumors (varied between 5 and
371 500% of the number of true neoantigen) that were falsely labeled as
372 neoantigen. To calculate the power of derivation from neutral VAF distribution
373 method (15), we used two side K-S test to detect the difference between the

374  VAF distribution of all mutations and neoantigenic mutations and reported K-S
13
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375  statistic and corresponding P value.

376

377  Statistical analysis

378  All statistical tests were performed using R statistical language. In all boxplots,
379 the center lines represent the median, low and upper box limits are the first
380 and third quartiles, respectively, and whiskers represent the values up to 1.5
381 times of the interquartile range. P values for comparisons between boxplots
382  were calculated by Wilcoxon rank sum test. Correlation and corresponding p
383 values were calculated by Pearson method using R function cor.test.
384  Kaplan-Meier survival analysis was performed using the R package “survival”
385  with log-rank test, and Cox-proportional hazard analysis was performed using
386 the R package “ezcox”. The cutoff value of ESccr in Kaplan-Meier overall
387 survival analysis was determined by surv_cutpoint function of “survminer”
388  package. R function ks.test was used to perform two-sided K-S test.

389

390 Software and data availability

391  Custom code for guantifying immunoediting-elimination and
392 immunoediting-escape are available in

393 https://github.com/XSLiuLab/Immunoediting/tree/main . All code required to

394  reproduce the analysis outlined in this manuscript, and R markdown analysis

395  report are available in https://xsliulab.github.io/Immunoediting/.

396

397

398

399

400 Results

401  Conceptual framework for the elimination and escape phases of cancer
402 immunoediting

403  The interactions between cancer cells and immune cells are manifested as

404 immunoediting, which consists of three sequential phases: elimination,
14
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405 equilibrium, and escape (1,2). In the elimination phase, tumor cells with
406 genome alterations encoding high antigenicity are partially or completely
407 eliminated by immune cells, and this leads to the down-regulation of the
408 cancer cell fraction (CCF) of genome alterations encoding high antigenicity
409  (Fig. 1A). In the escape phase, tumor cells escape the surveillance of immune
410  system through multiple mechanisms, including the following: 1. Suppress the
411  transcription or expression of genome alterations encoding high antigenicity; 2.
412  Antigen presentation pathway down-regulation; 3. Up-regulate the expression
413 of immune suppressive molecules, including PD-L1, CTLA-4, etc. (Fig. 1A).
414

415  The elimination phase of immunoediting will lead to the down-regulation of
416 CCF of neoantigenic mutations, and consequently this CCF down-regulation
417  status of neoantigenic mutations can reflect the strength of the elimination
418 phase of immunoediting. The mRNA down-regulation status of neoantigenic
419  mutations is a partial reflection of the strength of immunediting-escape phase.
420 Here we use TCGA pan-cancer dataset to investigate this immunoediting
421 signal. TCGA dataset includes 31 cancer types and 9511 samples with
422  available WGS or WES data and mRNA expression profiling (RNA-seq) data,
423 and neoantigenic genome alterations can be found in 9166 samples
424  (Supplementary Fig. S1) (46). In the following section we build a distribution
425  pattern based method to quantify the selection strength acting on the CCF or
426  mMRNA expression of neoantigenic mutation.

427

428 Method for quantifying neoantigen mediated negative selection

429  For each genome mutation, we have CCF and normalized mRNA expression
430 (transcripts per million, TPM) information. The antigenicity value of genome
431  mutation can be calculated as the possibility of the mutated peptide to be
432  presented by HLA type I, and mutated peptides with predicted HLA | binding
433  affinity (IC50) less than 50nM are labeled as neoantigens. A mutation was

434  considered neoantigenic if there was at least one peptide derived from the
15
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435 mutated sequence is predicted as neoantigen. The consequence of
436  immunoediting-elimination phase will lead to an unbalanced distribution of the
437  CCF of neoantigenic mutations (15), and this CCF distribution pattern of
438 genome alterations encoding antigenicity can reflect the selection strength of
439  immunoediting-elimination phase. This distribution enrichment status of CCF
440 was calculated following a similar principle of gene set variation analysis
441 (GSVA) or gene set enrichment analysis (GSEA), which was originally
442  developed in the estimation of the variation of pathway activity over a sample
443  population in an unsupervised manner (33,47).

444

445  The mutations in an individual sample or a cancer type as a whole, are ordered
446 by CCF or mRNA expression (TPM) as a ranked list L. The mutations with
447  antigenicity are defined as a set S. The goal of this analysis is to determine
448  whether the members of S are randomly distributed throughout L or primarily
449  found at the top or bottom. There are two key steps of this method (Fig. 1B):
450

451 1. Enrichment score (ES) calculation based on the distribution of neoantigen.
452  We calculate an ES that reflects the degree to which a set S is
453  overrepresented at the extremes (top or bottom) of the entire ranked list L. The
454  score is calculated by walking down the list L, increasing a running-sum
455  statistic when we encounter a mutation in S and decreasing it when we
456  encounter mutations not in S. The ES is calculated based on the maximum
457  deviations from zero during the random walk, it corresponds to a weighted
458  Kolmogorov—Smirnov (K-S) like statistic (see details in the Methods). The CCF
459  values of mutations are in the range of 0-1, and in TCGA dataset, the CCF
460  values of mutations do not show normal distribution, and many mutations have
461  CCF values equal to 1 (Supplementary Fig. S2). A fixed CCF rank from 1 to
462 100 has been constructed in the quantification of CCF distribution enrichment
463  status of neoantigenic mutation (ESccg). CCF distributions of neoantigenic and

464  non-neoantigenic mutations in TCGA cancer types are shown, an apparent
16
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465 shift in the CCF distribution of neoantigenic mutations compared with
466  non-neoantigenic mutations can be observed (Supplementary Fig. S3).

467

468 2. Estimation of the significance level of ES.

469  We estimate the statistical significance (nominal P value) of the ES by using a
470  permutation test procedure, this procedure permute the neoantigen labels and
471 recomputed the ES of each patient, and this generates a null distribution for
472  the ES. The P value of the observed ES is then calculated according to this
473 null distribution. For ES significance analysis in TCGA pan-cancer or individual
474  cancer type cohort level, the observed median ES value of the test cohort is
475  compared with the distribution of median ES values from 2000 simulations (Fig.
476  1C). The calculated P values are dependent on the mutation rank, and also the
477  number of total mutations and the number of antigenic mutations. Minimum
478  number of total mutations and antigenic mutations are required for confident
479  quantification of ES values (Supplementary Fig. S4).

480

481  Tumor cells can evolve multiple strategies to escape the surveillance of
482 immune system, and down-regulating the mRNA expression of neoantigenic
483  mutation is one of these strategies (Fig. 1A). Similar to CCF values, the mRNA
484  expression values of mutations are independent variables from antigenicity
485 IC50 values. Similar strategy can be applied to quantify this mRNA expression
486  down-regulation mediated immunoediting, and the resulting ESgna is a partial
487  reflection of the strength of immunoediting-escape signal (Fig. 1A and B).

488

489  The existence of significant immunoediting signal

490 Previous studies have debated the existence of neoantigen depletion signals
491 in cancer evolution. Van den Eynden J. et al. reported that neoantigen
492  depletion signal is undetectable in TCGA pan-cancer dataset (5). However as
493  pointed out in a preprint, their method for neoantigen depletion signal detection

494 is problematic, as the actual neoantigens with antigenicity are not located in
17
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495 their defined “HLA-binding regions” (10). We investigate the status of this
496 immunoediting signal with the new method developed in this study using
497 TCGA pan-cancer dataset. The antigenicity IC50 value is calculated based on
498 the mutated DNA sequence and HLA status, and the CCF information is
499  independently obtained from high-throughput sequencing. Mutation types do
500 not influence the CCF values, and the distribution of antigenicity is not
501 influenced by mutation types either. The antigenicity IC50 values are thus
502 independent variables from CCF values, and this is different from the
503 calculation of dN/dS, where the two variables dN, dS are interconnected and
504 are both significantly influenced by mutation types (3,48).

505

506 Since the variables (CCF and HLA binding IC50 status) are independent, we
507 use random simulation to generate a null distribution of EScce. For TCGA
508 pan-cancer or individual cancer type cohort, the median EScce values are
509 recorded after each simulation. The observed median ESccr values are
510 compared with the simulated EScce values. In TCGA pan-cancer cohort with at
511 least 1 neoantigenic and 1 subclonal mutation (CCF<0.6) (n=5900), the
512 observed ESccr is -0.017 (P=0.051) (Fig. 2A and D). In PAAD and LUAD, the
513 observed EScce values are significant lower compared with the random
514  simulations, suggesting the existence of immunoediting-elimination signal (Fig.
515 2A; Supplementary Fig. S5). Since some neoantigenic mutations can be
516  cancer drivers, which are known to undergo positive selection during the
517 evolution of cancer. Neoantigens that happen to be cancer drivers are not
518 undergoing immune based negative selection (Supplementary Fig. S6). In
519 TCGA pan-cancer cohort, when samples with neoantigenic and driver
520 mutations lying on the same gene are not included, the observed median
521  ESccr is -0.023 (n=5295, P=0.0055) (Fig. 2B and D). Several cancer types
522 including ACC, PAAD, UCEC, LUAD show significant low ESccr values (Fig.
523 2B; Supplementary Fig. S7). This data demonstrates the existence of

524  immunoediting-elimination signal in TCGA dataset.
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525
526  Similarly random simulations were performed to evaluate the significance of
527 the observed ESgna values. Compared with ESccr, the observed ESgna Show
528 much strongly significant difference when compared with the random
529 simulated values. In TCGA pan-cancer dataset with at least 1 neoantigenic
530 mutation and accompanied MRNA expression information (n=6974), the
531 observed ESgna =-0.048 (p<0.0005) (Fig. 2C and D). In the majority of cancer
532 types (including DLBC, CHOL, SARC, LUAD, PRAD, UCS, STAD, LGG, LUSC,
533 HNSC, OV, UCEC, BRCA, LIHC, READ, TGCT, KIRP), a significant low ESgna
534 values are observed (Fig. 2C; Supplementary Fig. S8). This study
535 demonstrates that the immunoediting escape through down-regulating the
536  expression of neoantigenic alteration is prevalent in human cancer (Fig. 2C).
537  Furthermore, the immunoediting-escape signal is more prevalent than the
538 immunoediting-elimination signal (Fig. 2A-C). This is in line with the fact that
539  clinically detectable tumors need to have immune escape capacity, and the
540 tumors with strong immunoediting-elimination signal may not have the chance
541  to become clinically apparent lesions.

542

543 Interestingly we observed that in cancer types with strong
544  immunoediting-elimination signal, a weak immunoediting-escape signal exist,
545 and vice versa (Fig. 2E and F). ESgrna signal is only a partial mechanism of
546  cancer immune escape, known additional mechanisms include overexpression
547 of immune checkpoint genes (for example PD-L1, CTLA-4), antigen
548  presentation pathway gene alterations, and loss of heterozygosity on the HLA
549 locus. Pan-cancer distributions of these immune escape mechanisms are
550 shown, and different cancer types show different proportion of tumors with
551 each specific immune escape mechanisms (Supplementary Fig. S9). When
552  TCGA samples are divided into two parts based on the existence of known
553 immune escape mechanisms, significant immune elimination signal (ESccr)

554 can only be observed in patients without immune escape mechanisms
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555  (Supplementary Fig. S10). ESccr values of patients without immune escape
556 mechanisms are significantly lower than patients with immune escape
557 mechanisms (Supplementary Fig. S11).

558

559  To further validate the immunoediting signal, we select different neoantigen
560  prediction cutoff, which increase the percentage of antigenic mutations from 9%
561 to 19%, and under this new situation, we still observe a significant
562 immunoediting elimination signal (EScce=-0.013, P=0.054), and also a more
563  significant ESgna signal (ESgna=-0.056, P<0.0005) (Supplementary Fig. S12).
564 When another neoantigen prediction tool MHCflurry is applied, a significant
565 immunoediting elimination signal (ESccr=-0.017, P=0.015) and ESgrna signal
566  (ESrna=-0.029, P<0.0005) can also be observed (Supplementary Fig. S13). In
567  pan-cancer or individual cancer type level, the immunoediting elimination and
568 escape signal exist, however in majority of cancer patients, both of
569 immunoediting-elimination and escape signals are weak or undetectable
570  (Supplementary Fig. S14 and Supplementary Fig. S15). Sufficient sequencing
571  depth is required for the detection of this immunoediting signal, and the
572 required sequencing depth is not reached in many TCGA samples.

573

574  Neoantigen enrichment score and immune negative selection strength
575 quantification

576 Recently, immune based negative selection has been simulated using a
577  stochastic branching process model (15). The neoantigen mediated negative
578  selection strength (s) is an inherent feature of each patient. However method
579  for accurately quantifying this immune based negative selection strength is still
580 lacking. Here we investigate the connections between neoantigen enrichment
581 score (ESccr) and immune negative selection strength s using a stochastic
582  branching cancer evolution model as previously described (15). For each fixed
583  selection strength s, the resulting ESccr was calculated (Fig. 3A and B). ESccr

584 show near linear correlation with s values (Fig. 3A). This analysis suggests
20
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585 that the quantified ESccr can be used to infer the immune selection strength in
586 patient. The median ESccr in TCGA datasets is -0.023, suggesting a median
587 immune negative selection strength s=-0.08 (Fig. 3A).

588

589  Proportional neoantigen burden measures the percentage of neoantigenic
590 mutations in individual sample or cancer types. Proportional neoantigen
591  burden was originally designed to compare the immune negative selection
592  strength between two or more samples (15). The baseline values of
593  proportional neoantigen burden cannot be obtained, and consequently
594  proportional neoantigen burden method could not be applied in quantifying the
595 strength of immune negative selection in individual cancer patient, or in
596 individual cancer type. Derivation from neutral VAF distribution (1/f
597 dependence of the cumulative VAF distribution) has been suggested to reflect
598 the selection status (11,15). However neutral VAF distribution method is not
599  suitable in negative selection quantification due to strict requirement in
600 sequencing depth and neoantigen prediction accuracy (Fig. 3C-F).

601

602 Pan-cancer features and correlations of immunoediting signal

603 Human cancer evolve over a long time interval, usually in decades. The
604 immunoediting-elimination signal quantified in this study suggests the
605 existence of an already happened neoantigen mediated tumor elimination
606  process. While the quantified immune cell infiltration level represent the
607  current immune response status. We calculated the immunoediting status in
608 TCGA pan-cancer datasets (Fig. 2A). The unbalanced distribution of CCF in
609  neoantigenic vs non-neoantigenic mutations quantified as ESccr could reflect
610 the status of neoantigen mediated tumor elimination. In tumors with detectable
611  immunoediting-elimination signal (ESccr<0, P<0.05), a slightly increased CD8"
612 T plus natural killer (NK) cell infiltration status compared with the remaining
613 samples were observed, and the difference does not reach statistical

614  significance (P=0.2) (Fig. 4A and B). The immune cell infiltration status was
21
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615 further evaluated using additional methods, such as CIBERSORT (49),
616  Quantiseq (50), similarly no significant difference can be observed in CD8" T
617 cell and regulatory T cell (Treg) cell levels, CD8"/Treg ratio between tumors
618  with and without ESccr signal (Supplementary Fig. S16, S17, S18). This data
619  suggests that historically happened immunoediting-elimination process may
620 not be reflected in the current immune cell infiltration status.

621

622 The down-regulation of antigenic mutation encoded mMmRNA is a partial
623 reflection of immunoediting-escape phase (Fig. 1A). Pan-cancer status of this
624 ESgna is shown, and different cancer types have different median ESgrna
625 scores (Fig. 2C). The immunoediting-escape signal quantified as ESgrna also
626 does not show a statistically significant difference between samples with
627 detectable immunoediting-escape signal (ESgrna<0, P<0.05) and the remaining
628 samples in CD8" T plus NK cell infiltration (Fig. 4C). Treg percentage appear
629 to be up-regulated in samples with detectable immunoediting-escape signal
630 (P=0.03) (Fig. 4D), while this up-regulated Treg signal can be reproduced with
631  Quantiseq analysis, but not CIBERSORT analysis (Supplementary Fig. S16,
632 S17, S18). These analyzes suggest that there are no strong and direct
633 connections between the immune cell infiltration status of present time point
634 and the immune escape signal that historically happened during the evolution
635  of tumor.

636

637 Quantified immunoediting-elimination signal predicts the clinical
638 response of cancer immunotherapy

639 Immunotherapy, represented by immune checkpoint inhibitors (ICl), is
640 transforming the treatment of cancer. However, only a small percentage of
641 patients show response to ICI, and effective biomarkers for ICI clinical
642 response prediction is still urgently needed (51). To investigate the predictive
643  performance of the quantified immunoediting-elimination signal (ESccg) in ICI

644  response prediction for individual patient, we searched for public ICI datasets
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645 with raw WES data and RNA-seq data available, and three melanoma ICI
646  datasets have been identified (37-39) (Supplementary Fig. S19).

647

648  We calculate the immunoediting-elimination signal (EScck) for each patient. In
649 univariate Cox proportional hazards regression analysis, quantified ESccr
650 value is significantly associated with cancer patients' survival (p=0.03), and
651 low EScce value (suggest the presence of high immunoediting-elimination
652 signal) is associated with improved ICI clinical response (Hazard ratio
653 (HR)=3.74, 95%CI=1.11-12.6) (Fig. 5A). Patients are divided into three groups
654 based on ESccr value, patients with the lowest ESccr values (indicate the
655 presence of immunoediting-elimination signal) show the best survival after ICI
656 (Fig. 5B). Fifteen additional biomarkers, including tumor mutational burden
657 (TMB), clonal TMB, indel mutation burden, burden of indels escaping
658 nonsense mediated decay (NMD), SERPINB3 mutation, PD-L1 expression,
659 CD38 expression, CD8A expression, CXCL13 expression, CXCL9 expression,
660 T cell inflamed gene signature, IMPRES, CD8 T effector, cytolytic score, UV
661  signature mentioned in Litchfield et al study have been evaluated and
662 compared with the ESccr (40). In these melanoma datasets, only ESccr and
663 UV signature show significant HR (Supplementary Fig. S20).

664

665 Logistic regression is the appropriate regression analysis to conduct when the
666  dependent variable is dichotomous (binary). Here we use logistic regression to
667 compare the efficiency of ESccr, TMB and neoantigenic mutation count in
668  predicting immunotherapy clinical response. Relationship between prognosis
669  (patients with clinical response or without clinical response) and ESccr, TMB
670 and neoantigenic mutation count was analyzed. The goodness of fit was
671  performed by Hosmer—Lemeshow test (H-L test). The H-L test P-value of TMB
672 is 0.051 (Fig. 5C, middle), close to 0.05, implicating the difference between
673  prediction and expectation is close to significant. The H-L test P-value of ESccr

674 is 0.771 (Fig. 5C, right), higher than the H-L test P-value of TMB and
23
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675 neoantigen count. This study suggests that the quantified
676  immunoediting-elimination signal can be biomarker for ICI clinical response
677  prediction. ICI clinical responses are known to be influenced by variables like
678 gender (52,53), When considering ICI type as a covariate, the HR of
679 ESccr=3.75, P=0.03; When considering gender as a covariate, the HR of
680 ESccr=3.96, P=0.09 (Supplementary Fig. S21). Based on this analysis, the
681 effects of ESccr is not influence by ICI type and gender, however more
682 samples are needed to further validated the clinical effects of EScce in ICI
683  clinical response prediction.

684

685

686

687 Discussion

688  Here we provide reliable evidence to demonstrate the pan-cancer existence of
689 immunoediting signal. Importantly, the elimination and escape phases of
690 immunoediting can be separately quantified with our method. Cancer types
691  with strong immunoediting elimination signal usually have low immunoediting
692 escape signal, and vice versa. Furthermore, the quantified immunoediting
693  elimination signal predict cancer immunotherapy clinical response.

694

695 This study provides an initial method to reliably quantify immunoediting signal
696 in individual cancer patient. To quantify the immunoediting signal for an
697 individual patient, at least one neoantigenic mutation is required. The
698 mechanisms employed by tumor cells to escape immune surveillance is very
699 complex, and the shutdown of the expression of neoantigen mutation is only
700 one of the mechanisms. In addition, the mRNA expression is the combination
701 of both wild type and mutated alleles. Lack of ESgna Signal does not mean that
702  the immune escape signal does not exist in the specific cancer or cancer types.
703  Usually neoantigens are believed to be able to mediate the negative selection

704  of cancer cells, the possibilities that some mutations could encode peptides
24
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705  suppressing the immune function cannot be ruled out. For example,
706 neoantigens that bind the TCR of Tregs, could have potential
707  immunosuppressive function (54).

708

709  The existence of neoantigen mediated negative selection status in untreated
710 cancer has been debated (4-7). Existing methods for negative selection study
711 include dN/dS and population genetics method. Rooney et al. use TCGA
712 pan-cancer CDS as the control sequence to calculate the expected neoantigen
713 number per non-silent mutation (Bpred/Npred), then the actual observed
714  neoantigen number per non-silent mutation (Bobs/Nobs) are compared with
715 Bpred/Npred (55). Since the pan-cancer CDS sequence has already been
716 immune edited, the neoantigen depletion signal reported in this study is
717  systematically underestimated. In addition, as pointed out by Van den Eynden
718 et al. There is HLA typing mistake in this study (5). Van den Eynden J. et al.
719  reported that neoantigen depletion signal is undetectable in untreated cancer
720 (5). This study selects the “non HLA-binding regions” as the control, and
721 compare the nonsynonymous vs synonymous mutation ratio (n/s) in
722 “HLA-binding regions” vs “non HLA-binding regions”. They did not identify any
723  difference in these two regions in regard to n/s using TCGA pan-cancer
724  dataset. However their method is problematic, as the actual neoantigen with
725 antigenicity are not located in their defined “HLA-binding regions” (10).
726  Martincorena et al. performed a comprehensive gene level evolution selection
727  study with dN/dS method, and reported significant neutral and positive
728  selection, but not negative selection in cancer genome (3). Since antigenicity
729  mutations occupy less than 5% of total mutations. In gene level, the selection
730 on neoantigen mutations is overshadowed by other driving or neutral
731  mutations. Neoantigen mediated negative selection not being observed in
732  gene-level does not mean the absence of immune based neoantigen depletion.
733  Zapata et al. investigated immune based negative selection with dN/dS

734  method (4). However same problem exists in the selection of control DNA
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735 sequence. Similar to Van den Eynden J. et al. CDS was divided into epitope
736  region and non-epitope region, dN/dS was compared in these two regions.
737  Since neoantigen with antigenicity are not necessarily located in the “epitope
738  region”, the results reported in this study is also questionable. Population
739  genetics model for neutral evolution has been proposed to detect neutral
740  evolution based on cumulative VAF distribution. For instance, a recent study
741  test the neutrality of cancer based on the VAF of mutations in a limited
742  subclonal frequency range (11). However, that test of neutrality has been
743 questioned, the frequency distribution of mutated alleles in a limited frequency
744  range is not an accurate statistic for detecting selection in cancer (13,14).
745  Furthermore the application of this population genetics method in neoantigen
746 mediated negative selection quantification in individual cancer patient has not
747  been established (15) (Fig. 3D and F).

748

749  The quantification of negative selection in cancer evolution has been a major
750  scientific challenge, the method developed here for neoantigen mediated
751  negative selection quantification could be instructive for the future design of
752  strategies for studying negative selection in cancer evolution. The existence of
753  neoantigen mediated negative selection has been demonstrated with our new
754  method. Importantly we observed a strong immunoediting-escape signal
755  reflected as the down-regulation of mMRNA encoded by neoantigenic mutations.
756  The quantification of immunoediting provides an evolutionary perspective for
757 the design of neoantigen vaccine for cancer therapy. The immune based
758  negative selection is an inherent feature of a cancer patient, the quantified
759  immunoediting signal can be used in cancer precision stratification, including
760 the clinical response prediction for cancer immunotherapy.

761

762

763

764
26


https://doi.org/10.1101/2022.04.08.487711
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.08.487711,; this version posted April 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

765 Acknowledgments

766  We thank ShanghaiTech University high performance computing public service
767  platform for computing services. We thank Haopeng Wang of ShanghaiTech
768  for critical discussion. We thank Raymond Shuter for editing the text. We thank
769  multi-omics facility, molecular cellular facility of ShanghaiTech University for
770  technical help. This work was supported by the national natural science
771 foundation of China (31771373), Shanghai science and technology
772  commission (21ZR1442400), and startup funding from ShanghaiTech
773 University.

774

775  Contributions

776  TW collected the data, developed the immunoediting quantification analysis
777  method and performed the computational analysis. GW participated in data
778  collection and preprocessing. XW patrticipated in neoantigen prediction. SW
779  help to build the method for immunoediting quantification. Xz, CW, WN, ZT, FC
780  participated in critical project discussion. XSL conceptualized the idea,
781  designed, supervised the study and wrote the manuscript.

782

783  Conflict of interest

784  The authors declare no competing interests.

785

786

787

788

789

790
791

792 Reference :

793 1. Schreiber RD, Old LJ, Smyth MJ. Cancer Immunoediting: Integrating Immunity's Roles in
794 Cancer Suppression and Promotion. Science 2011;331:1565-70

27


https://doi.org/10.1101/2022.04.08.487711
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.08.487711,; this version posted April 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

795 2. O'Donnell IS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based
796 immunotherapy. Nat Rev Clin Oncol 2019;16:151-67

797 3. Martincorena |, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al. Universal
798 Patterns of Selection in Cancer and Somatic Tissues. Cell 2017;171:1029-+

799 4. Zapata L, Pich O, Serrano L, Kondrashov FA, Ossowski S, Schaefer MH. Negative selection in
800 tumor genome evolution acts on essential cellular functions and the immunopeptidome.
801 Genome Biol 2018;19

802 5. Van den Eynden J, Jimenez-Sanchez A, Miller ML, Larsson E. Lack of detectable neoantigen
803 depletion signals in the untreated cancer genome. Nat Genet 2019;51:1741-+

804 6. Marty R, Kaabinejadian S, Rossell D, Slifker MJ, van de Haar J, Engin HB, et al. MHC-I
805 Genotype Restricts the Oncogenic Mutational Landscape. Cell 2017;171:1272-+

806 7. Claeys A, Luijts T, Marchal K, Van den Eynden J. Low immunogenicity of common cancer hot
807 spot mutations resulting in false immunogenic selection signals. Plos Genet 2021;17

808 8. Goldman N, Yang ZH. Codon-Based Model of Nucleotide Substitution for Protein-Coding
809 DNA-Sequences. Mol Biol Evol 1994;11:725-36

810 9. Yang ZH, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol
811 2000;15:496-503

812 10. Wang S, Wang X, Wu T, He Z, Li H, Sun X, et al. Revisiting neoantigen depletion signal in the
813 untreated cancer genome. bioRxiv 2020

814 11. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. Identification of neutral tumor
815 evolution across cancer types. Nat Genet 2016;48:238-44

816 12. Williams MJ, Werner B, Heide T, Curtis C, Barnes CP, Sottoriva A, et al. Quantification of
817 subclonal selection in cancer from bulk sequencing data. Nat Genet 2018;50:895-+

818 13. Tarabichi M, Martincorena I, Gerstung M, Leroi AM, Markowetz F, Spellman PT, et al. Neutral
819 tumor evolution? Nat Genet 2018;50:1630-3

820 14. McDonald TO, Chakrabarti S, Michor F. Currently available bulk sequencing data do not
821 necessarily support a model of neutral tumor evolution. Nat Genet 2018;50:1620-3

822 15. Lakatos E, Williams MJ, Schenck RO, Cross WCH, Househam J, Zapata L, et al. Evolutionary
823 dynamics of neoantigens in growing tumors. Nat Genet 2020;52:1057-+

824 16. Wang S, Liu X. The UCSCXenaTools R package: a toolkit for accessing genomics data from
825 UCSC Xena platform, from cancer multi-omics to single-cell RNA-seq. Journal of Open Source
826 Software 2019;4

827 17. Wang SX, Xiong Y, Zhao LF, Gu K, Li Y, Zhao F, et al. UCSCXenaShiny: an R/CRAN package for
828 interactive analysis of UCSC Xena data. Bioinformatics 2022;38:527-9

829 18. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang THO, et al. The Immune Landscape
830 of Cancer. Immunity 2018;48:812-+

831 19. Miao YR, Zhang Q, Lei Q, Luo M, Xie GY, Wang HX, et al. ImmuCellAl: A Unique Method for
832 Comprehensive T-Cell Subsets Abundance Prediction and its Application in Cancer
833 Immunotherapy. Adv Sci 2020;7

834 20. Li TW, Fu JX, Zeng ZX, Cohen D, LiJ, Chen QM, et al. TIMER2.0 for analysis of tumor-infiltrating
835 immune cells. Nucleic Acids Res 2020;48:W509-W14

836 21. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al.
837 Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 2018;173:371-+
838 22. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.

28


https://doi.org/10.1101/2022.04.08.487711
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.08.487711,; this version posted April 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

839 Bioinformatics 2010;26:589-95

840 23. Benjamin D, Sato T, Cibulskis K, Getz G, Stewart C, Lichtenstein L. Calling Somatic SNVs and
841 Indels with Mutect2. bioRxiv 2019

842 24, Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of
843 SAMtools and BCFtools. Gigascience 2021;10

844 25. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive
845 analysis of somatic variants in cancer. Genome Res 2018;28:1747-56

846 26. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and
847 genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019;37:907-+

848 27. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
849 Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078-9

850 28. Alvarez RV, Pongor LS, Marino-Ramirez L, Landsman D. TPMCalculator: one-step software to
851 quantify mRNA abundance of genomic features. Bioinformatics 2019;35:1960-2

852 29. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, et al. Absolute quantification of
853 somatic DNA alterations in human cancer. Nat Biotechnol 2012;30:413-+

854 30. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: precision HLA
855 typing from next-generation sequencing data. Bioinformatics 2014;30:3310-6

856 31. Schenck RO, Lakatos E, Gatenbee C, Graham TA, Anderson ARA. NeoPredPipe:
857 high-throughput neoantigen prediction and recognition potential pipeline. Bmc
858 Bioinformatics 2019;20

859 32. Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, et al. pVAC-Seq: A
860 genome-guided in silico approach to identifying tumor neoantigens. Genome Med 2016;8
861 33. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and
862 RNA-Seq data. Bmc Bioinformatics 2013;14

863 34, McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, et al.
864 Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell 2017;171:1259-+
865 35. Wang SX, He ZK, Wang X, Li HM, Liu XS. Antigen presentation and tumor immunogenicity in
866 cancer immunotherapy response prediction. Elife 2019;8

867 36. Li XY, Zhou C, Chen K, Huang BD, Liu Q, Ye H. Benchmarking HLA genotyping and clarifying
868 HLA impact on survival in tumor immunotherapy. Mol Oncol 2021;15:1764-82

869 37. Hugo W, Zaretsky JM, Sun L, Song CY, Moreno BH, Hu-Lieskovan S, et al. Genomic and
870 Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell
871 2016;165:35-44

872 38. Riaz N, Havel 1, Makarov V, Desrichard A, Urba WIJ, Sims IS, et al. Tumor and
873 Microenvironment Evolution during Immunotherapy with Nivolumab. Cell 2017;171:934-+
874 39. Liu D, Schilling B, Liu D, Sucker A, Livingstone E, Jerby-Amon L, et al. Integrative molecular and
875 clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma.
876 Nat Med 2019;25:1916-+

877 40. Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, et al. Meta-analysis of
878 tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell
879 2021;184:596-+

880 41. Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, et al
881 Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic
882 phenotype: a pan-cancer analysis. Lancet Oncol 2017;18:1009-21

29


https://doi.org/10.1101/2022.04.08.487711
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.08.487711,; this version posted April 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

883 42, Lindeboom RGH, Vermeulen M, Lehner B, Supek F. The impact of nonsense-mediated mRNA
884 decay on genetic disease, gene editing and cancer immunotherapy. Nat Genet
885 2019;51:1645-+

886 43, Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al.
887 IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest
888 2017;127:2930-40

889 44, Auslander N, Zhang G, Lee IS, Frederick DT, Miao BC, Moll T, et al. Robust prediction of
890 response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med
891 2018;24:1545-+

892 45, Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al.
893 Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer
894 (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet
895 2016;387:1837-46

896 46. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-Origin Patterns Dominate
897 the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 2018;173:291-+
898 47. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set
899 enrichment analysis: A knowledge-based approach for interpreting genome-wide expression
900 profiles. P Natl Acad Sci USA 2005;102:15545-50

901 48. Van den Eynden J, Larsson E. Mutational Signatures Are Critical for Proper Estimation of
902 Purifying Selection Pressures in Cancer Somatic Mutation Data When Using the dN/dS Metric.
903 Front Genet 2017;8

904 49, Newman AM, Liu CL, Green MR, Gentles AJ, Feng WG, Xu Y, et al. Robust enumeration of cell
905 subsets from tissue expression profiles. Nat Methods 2015;12:453-+

906 50. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al. Molecular and
907 pharmacological modulators of the tumor immune contexture revealed by deconvolution of
908 RNA-seq data. Genome Med 2019;11

909 51. Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade:
910 response evaluation and biomarker development. Nat Rev Clin Oncol 2017;14:655-68

911 52. Wang SX, Zhang J, He ZK, Wu K, Liu XS. The predictive power of tumor mutational burden in
912 lung cancer immunotherapy response is influenced by patients' sex. Int J Cancer
913 2019;145:2840-9

914 53. Wang SX, Cowley LA, Liu XS. Sex Differences in Cancer Immunotherapy Efficacy, Biomarkers,
915 and Therapeutic Strategy. Molecules 2019;24

916 54. Ahmadzadeh M, Pasetto A, lJia L, Deniger DC, Stevanovic S, Robbins PF, et al.
917 Tumor-infiltrating human CD4(+) regulatory T cells display a distinct TCR repertoire and
918 exhibit tumor and neoantigen reactivity. Sci Immunol 2019;4

919 55. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and Genetic Properties of
920 Tumors Associated with Local Immune Cytolytic Activity. Cell 2015;160:48-61

921

922

923

924

925

926 Figure legend
30


https://doi.org/10.1101/2022.04.08.487711
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.08.487711,; this version posted April 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

927 Figure 1. Conceptual framework for the quantification of elimination and
928 escape phases of immunoediting. A, Phases of immunnoediting and the
929  manifestations of the elimination and escape phases of cancer immunoediting.
930 B, Detailed steps for CCF down-regulation based immunoediting-elimination
931  (ESccr) quantification. 1. Equally divide the whole CCF range (0-1) into 100
932 intervals and calculate the distribution of CCF of neoantigenic mutations and
933 non-neoantigenic mutations in these intervals; 2. Construct the
934 Kolmogorov—Smirnov (K-S) statistics based on difference between the two
935 distributions; 3. Calculate the enrichment score (ESccg). C, Detailed steps for
936 mMRNA down-regulation based immunoediting-escape (ESgna) quantification. 1.
937 Rank mutations by corresponding mRNA expression and calculate the
938 distribution of mMRNA expression of neoantigenic mutations and
939 non-neoantigenic mutations; 2. Construct the K-S statistics based on
940 difference between the two distributions; 3. Calculate the enrichment score
941  (ESgrna). D, Random simulation to obtain the null distribution of ES. For each
942 sample, we permute the mutation labeling (ie. randomly select the same
943  number of mutations as the observed number in the sample, and label them as
944  neoantigenic mutations) and calculate ES value, the processes are repeated
945 for 2000 times, and the actual ES values are compared with the simulated
946  values.

947

948 Figure 2. Pan-cancer distributions and features of the quantified
949 immunoediting signals (ESccrk and ESgna). A, Distribution of EScce in
950 pan-cancer (left) and in specific cancer type (right). The p values are
951 calculated from simulated median ES distributions. ns: p > 0.05, *: P <= 0.05,
952 ** P <=0.01, ***: P <= 0.001, ****: P <= 0.0001. B, Distribution of ESccr in
953  pan-cancer (left) and in specific cancer type (right), after removing samples
954  with neoantigenic and driver mutations located in the same gene. The p values
955 are calculated from simulated median ES distributions. C, Distribution of ESrna

956 in pan-cancer (left) and in specific cancer type (right). The p values are
31
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957 calculated from simulated median ES distributions. D, From left to right,
958 simulated median ES distribution and the observed median ES for Fig 3a, 3b
959  and 3c respectively. E, Correlation between median ESgna and ESccr of TCGA
960 cancer types. Pearson correlation coefficient and p value are shown. F,
961 Correlation between the percent of escape samples (ESgna < 0 and P < 0.05)
962 and median ESccr in TCGA cancer types. Pearson correlation coefficient and
963  p value are shown.

964

965 Figure 3. Immunoediting-elimination signal (ESccr) and neoantigen-mediated
966 negative selection strength quantification. A, EScce as a function of

967 neoantigen-mediated negative selection strength s, computed from n=100
968 tumors, with simulated read depth of 200xfor each indicated selection strength

969 S. The observed median ESccr of TCGA samples is indicated with a horizontal
970 dashed line. B, The proportion of 100 simulated tumors with significant EScce
971  (FDR corrected p value less than 0.1) in each selection strength s. C,
972  Derivation from neutral VAF distribution quantification as a function of negative

973  selection strength s, computed from individual tumor of a simulation cohort
974  (n=100), with a simulated read depth of 200x. D, Proportion of 100 simulated

975 tumors with significant signal (FDR corrected p value less than 0.1) quantified
976  using derivation from neutral VAF distribution method under each negative
977  selection strength s. Of note, no tumors show significant signal under the same
978 simulated conditions as the data show in Fig. 3B. E, Power to detect negative
979  selection as a function of sequencing read depth (x axis) and false neoantigen
980 rate (y axis) using the enrichment score method developed in this study. Power
981 is the proportion of 100 simulated tumors with significant negative ES value
982 (FDR corrected P value less than 0.1). F, Power to detect negative selection
983 as a function of sequencing read depth (x axis) and false neoantigen rate (y
984  axis) using derivation from neutral VAF distribution method. Power is the

985 proportion of 100 simulated tumors with significant difference (two-sided K-S
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986 test, FDR corrected P value less than 0.1) between the distribution of all
987  mutations and neoantigenic mutations.

988

989  Figure 4. Immunoediting-elimination and escape signals and tumor immune
990 cell infiltration status. A and B, Comparisons between TCGA cancer patients
991  with detectable Immunoediting-elimination signal (EScce<0, p<0.05) and the
992  remaining patients in CD8" T plus natural killer (NK) cell (A) and Treg cell (B)
993 infiltration status. C and D, Comparisons between TCGA cancer patients with
994 detectable Immunoediting-elimination signal (ESgna<0, p<0.05) and the
995 remaining patients in CD8" T plus NK cell (C) and Treg cell (D) infiltration
996  status. Wilcoxon rank sum test P value is shown.

997

998  Figure 5. Quantified immunoediting-elimination signal (ESccg) predicts cancer
999 immunotherapy clinical response. A, Univariate Cox regression analysis was
1000 performed to estimate the hazard ratio (HR) associated with ESccr values. The
1001 length of horizontal line represents the 95% confidence interval (ClI) and the
1002  vertical dashed line represents HR = 1. B, Kaplan-Meier overall survival curves
1003 show the comparison between different groups stratified by ESccr value.
1004 Samples with EScce values higher than the cutoff (-0.222, determined by
1005  surv_cutpoint function of “survminer” package) were classified as “high” group,
1006 and samples with EScce value less than the cutoff were classified as “low”
1007  group. The remaining samples (without neoantigen or minimum CCF is higher
1008 than 0.6) were classified as “other” group. C, The goodness-of-fit is performed
1009 by Hosmer-Lemeshow test.

1010

1011
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