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Abstract 33 

Immunoediting, which includes three temporally distinct stages, termed 34 

elimination, equilibrium, and escape, has been proposed to explain the 35 

interactions between cancer cells and the immune system during the evolution 36 

of cancer. However the status of immunoediting in cancer remains unclear, 37 

and the existence of neoantigen depletion signal in untreated cancer has been 38 

debated. Here we developed a distribution pattern based method for 39 

quantifying neoantigen mediated negative selection in cancer evolution. Our 40 

method provides a robust and reliable quantification for immunoediting signal 41 

in an individual cancer patient. The prevalence of immunoediting signal in 42 

immunotherapy untreated cancer genome has been demonstrated with this 43 

method. Importantly, the elimination and escape stages of immunoediting can 44 

be quantified separately, tumor types with strong immunoediting-elimination 45 

tend to have weak immunoediting-escape signal, and vice versa. Quantified 46 

immunoediting-elimination signal predicts cancer immunotherapy clinical 47 

response. Immunoediting quantification provides an evolutional perspective for 48 

evaluating the antigenicity of neoantigen, and reveals a potential biomarker for 49 

cancer precision immunotherapy.  50 

 51 
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Introduction 62 

During cancer evolution, some genome DNA alterations can be positively 63 

selected, such as driver mutations. Some genome alterations could posit a 64 

deleterious effect, and consequently are negatively selected or depleted during 65 

cancer evolution. Some (or the majority of) genome DNA alterations do not 66 

have driving or deleterious effects on cancer, and follow a neutral evolution 67 

pattern. The interactions between immune cells and tumor cells are reflected 68 

as immunoediting, which could mediate the negative selection of DNA 69 

alterations encoding high antigenicity (also known as neoantigenic mutations) 70 

(1,2). Positively selected genome alterations can be readily detected in the 71 

final mutation reservoir, however, the quantification of negative selection in 72 

cancer evolution is still a significant challenge (3). The status of neoantigen 73 

mediated negative selection in cancer evolution has been evaluated in several 74 

studies, and controversial results have been reported (4-7). 75 

 76 

Convincing cases of adaptive molecular evolution have been identified through 77 

comparison of synonymous (silent; dS) and nonsynonymous (amino 78 

acid-changing; dN) substitution rates in protein-coding DNA sequences. dN/dS 79 

is the ratio between the rate of non-synonymous substitutions per 80 

non-synonymous site and the rate of synonymous substitutions per 81 

synonymous site. dN/dS method was originally developed to quantify the 82 

molecular evolution from sequencing data (8,9). Recently, dN/dS method has 83 

been applied in cancer evolution study (3). An important consideration in 84 

dN/dS analysis is the selection of negative control regions. For example, a 85 

recent study reported that neoantigen depletion signal is undetectable in the 86 

pan-cancer dataset (5), however the selection of negative control region is 87 

questionable (10). In addition, the percentage of depleted neoantigen could be 88 

tiny, and this prohibits the accurate detection of negative selection signal 89 
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through dN/dS, especially in an individual cancer patient. Population genetics 90 

based method has been used to identify the neutral pattern of cancer evolution, 91 

this method is based on the assumption that the variant allele frequency (VAF) 92 

within a tumor follows a characteristic power-law distribution in case of neutral 93 

evolution (11,12). The detection of neutral evolution with this method has been 94 

questioned (13,14), and its application in immune mediated negative selection 95 

has not been fully established. In together, till now, the existence and the 96 

degree of neoantigen mediated negative selection in human cancer remain 97 

unclear. 98 

 99 

It is known that immunoediting elimination can lead to the down-regulation of 100 

cancer cell fraction (CCF) of antigenic mutation (15). To fully utilize the CCF 101 

distribution information, here we build a new distribution pattern based method 102 

for quantifying neoantigen mediated negative selection in an individual cancer 103 

patient. With this new analysis framework, we demonstrate the pan-cancer 104 

existence of neoantigen mediated negative selection signal. Shut down the 105 

expression of antigenic mutations can be one way for tumor cells to escape the 106 

surveillance of immune system, consequently the mRNA down-regulation 107 

status of antigenic mutations can be a surrogate of immune escape. Thus the 108 

elimination and escape phases of immunoediting can be quantified separately. 109 

In total, this study not only provides a novel method for quantifying negative 110 

selection in cancer evolution, but also reveals a potential biomarker for cancer 111 

immunotherapy clinical response prediction.  112 

 113 

 114 

 115 

Materials and Methods 116 

Pan-cancer clinical and molecular data  117 

The normalized gene-level RNA-seq data (TPM, transcripts per million) for 31 118 

TCGA cohorts were downloaded from Xena (https://xenabrowser.net/ , dataset 119 
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ID: tcga_RSEM_gene_tpm). Pre-compiled curated somatic mutations for 120 

TCGA cohorts were downloaded from Xena (dataset ID: 121 

GDC-PANCAN.mutect2_snv.tsv), and missense variants are selected for 122 

downstream analysis (16,17). ABSOLUTE-annotated MAF file which contains 123 

cancer cell fraction (CCF) information of mutations was downloaded from GDC 124 

PanCanAtlas publications 125 

(https://gdc.cancer.gov/about-data/publications/pancanatlas), and then we 126 

used liftover function from R package “rtracklayer” to convert the hg37 genome 127 

coordinates to hg38. Clinical data was obtained from GDC PanCanAtlas 128 

publications. HLA typing data was downloaded from Thorsson et.al study (18). 129 

The downloaded mutation data, HLA typing data and CCF values for TCGA 130 

samples have also been validated with in house algorithm. Immune cell 131 

infiltration data for all TCGA tumors was downloaded from ImmuneCellAI study 132 

(19), which estimates the abundance of 24 immune cells comprised of 18 133 

T-cell subtypes and 6 other immune cells. Other immune cell infiltration data 134 

including CIBERSORT (abs mode), Quantiseq were obtained from the 135 

TIMER2.0 study (20). For TCGA tumors which do not have HLA typing data in 136 

the mutation data set (2404 samples), we downloaded raw bam files, and 137 

performed HLA typing as described below. Driver mutation data was 138 

downloaded from Bailey et al study (21). This study utilized three different 139 

categories of tools to identify driver mutations: (1) tools distinguishing benign 140 

versus pathogenic mutations based on sequence; (2) tools distinguishing 141 

driver versus passenger mutations based on sequence; and (3) tools 142 

identifying statistically significant three-dimensional clusters of missense 143 

mutations (21). We keep mutations identified by ≥2 approaches as the final 144 

high confident driver mutations, including 3437 unique mutations. 145 

 146 

Somatic mutation calling  147 

For the cancer immune checkpoint inhibitor therapy datasets, raw sequences 148 
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were aligned to the reference human genome (hg38) using Burrows–Wheeler 149 

Alignment (BWA) tool (22). Preprocessing followed the GATK4 best practices 150 

workflow, including duplicate removal, base quality score recalibration. 151 

Somatic mutations were identified on processed data using Mutect2 (23). 152 

BCFtools was used to filter genome variants that passed all quality control 153 

filters (24). The resulting VCF files were annotated by VEP and further 154 

converted to MAF files by vcf2maf.pl (https://github.com/mskcc/vcf2maf). The 155 

MAF file was loaded into R, analyzed and visualized by Maftools (25). 156 

 157 

Gene expression analysis 158 

For the cancer immune checkpoint inhibitor therapy datasets, paired-end 159 

RNA-seq data were processed using hisat2 (26) aligner on the basis of the 160 

hg38 human genome assembly with default parameters. Then the aligned 161 

SAM files were transformed to BAM files using samtools (27). Normalized RNA 162 

expression values (TPM) were calculated by TPMCalculator (28). 163 

 164 

Cancer cell fraction (CCF) calculation 165 

We followed the GATK4 copy number analysis pipeline to get copy number 166 

segment files. CCF information for each mutation was calculated based on 167 

segment files and somatic mutation MAF files using ABSOLUTE software (29). 168 

Briefly, read counts for each of the exome targets were collected from all 169 

samples and calculated the coverage by count reads that overlap intervals 170 

which were formed by padding the target regions. Each of the tumor samples 171 

was compared to a panel of normal (PoN) controls for normalization and 172 

denoising. The tool standardizes counts by the PoN median counts. The 173 

normalization process includes log2 transformation and normalizing the counts 174 

data to center around one. Then, the tool denoised the standardized copy 175 

ratios using the principal components of the PoN. These normalized coverage 176 

profiles were then segmented using Gaussian-kernel binary-segmentation 177 

algorithm, which were fed into ABSOLUTE algorithm to determine CCF. 178 
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 179 

HLA typing and neoantigen prediction 180 

HLA genotyping was performed with Optitype (30), using default parameters. 181 

Mutect2 mutation files were first transformed into VCF format by maf2vcf tools, 182 

and we used NeoPredPipe to predict neoantigen (31). Single-nucleotide 183 

variants leading to a single amino acid change are the focus of this study. 184 

From the output results, if the IC50 of a novel peptide is less than 50, the 185 

binding level is SB (strong binder, rank is less than 0.5%), and the expression 186 

level (TPM) is greater than 1, then this peptide is labeled as neoantigen. A 187 

mutation is considered antigenic if there is at least one peptide in all possible 8, 188 

9, 10-mer peptides derived from the mutated site predicted as neoantigen. To 189 

validate the major conclusion of our study, we also used additional MHCflurry 190 

method implemented in pVACseq to predict neoantigen (32).  191 

 192 

Enrichment Score calculation 193 

The Kolmogorov–Smirnov (K-S) statistic can be used to quantify the distance 194 

between two cumulative distributions. We constructed a K-S like statistic to 195 

quantify the difference between the distribution of the CCF (or mRNA 196 

expression) of antigenic mutations and non-antigenic mutations in each 197 

sample. 198 

 199 

ESCCF quantification in individual cancer patient 200 

We equally divided the whole CCF range (0-1) into 100 intervals (in 201 

descending order) and assigned each interval a rank value (from 100 to 1). To 202 

make the heavier weights on two tails of the rank distribution, we further 203 

normalized the ranks (Eq. A): 204 

(A)            1
2

+−= r
L

Ri  205 

Where Ri is the normalized rank value, i is the interval index, L is the total 206 

number of intervals (here L=100), and r is the original rank value. 207 
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 208 

Then we counted the number of mutations lied in each interval (m (i)) and 209 

assigned a value a(i) to each interval depending on mutation counts (m (i)) and 210 

interval rank (R (i)) (Eq. B): 211 

(B)            
∑ ×

×=
ii

ii
i Rm

Rm
a  212 

We can calculate the empirical cumulative distribution of random variable a (i) 213 

by walking from top to bottom (Fig 2) (Eq. C): 214 

∑ ==
n

i
i nanF (C)            100 ..., 2, ,1  )( ，  215 

n is the total number of intervals, i is the interval index.  216 

 217 

We then constructed two distributions for antigenic mutations (F_N(n)) and 218 

non-antigenic mutations (F_M(n)) of an individual sample, respectively. Then 219 

K-S like statistics can be obtained by taking distance (D(n)) of two distributions 220 

(Eq. D): 221 

(D)            )()()( nFnFnD MN −=  222 

Similar to GSVA (33), the enrichment score (ES) was defined as (Eq. E): 223 

(E)            ))(,0min())(,0max()()( nDnDnDnDES −=−= −+
 224 

Where D(n)+ and D(n)−are the largest positive and negative random walk 225 

deviations from zero, respectively. 226 

 227 

ESRNA quantification in individual cancer patient 228 

For a sample, using  to denote mRNA expression (TPM). To reduce the 229 

influence of potential outliers, we first convert  to rank , and normalize 230 

further to r = |P/2 - z’| + 1, making the ranks symmetric around 1 (P is the 231 

number of mutations in a sample), making the heavier weights on two tails of 232 

the rank distribution. Then we got two cumulative distributions, for mutations 233 

which are neoantigens (Eq. F): 234 
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(F)            ),(
,
∑

∑≤∈
∈

=
ijSr

Sr
j

j

neo

j

j

r

r
iSD  235 

For mutations which are not neoantigens (Eq. G): 236 

(G)            ),(
,

no ∑
∑≤∉

∉

=
ijSr

Sr
j

j

tneo

j

j

r

r
iSD  237 

Where S is the set of mutations which are neoantigens, the size of the set is Ps, 238 

P is the number of mutations in a sample, r is normalized rank of mutations, i 239 

and j are mutation index. Then we constructed a K-S like statistics (Eq. H): 240 

(H)            ),(),( iSDiSDT notneoneo −=  241 

 242 

We transform the K-S like statistic into neoantigen enrichment score (ES) as 243 

the difference between the largest positive and negative distribution deviations 244 

from zero (Eq. I): 245 

(I)            ),0min(),0max( TTES −=  246 

 247 

Estimation of significance level of ES. 248 

We employed a permutation method to derive a null distribution to calculate p 249 

value of the ES (ESCCF or ESRNA). For each sample, the same number of 250 

mutations as neoantigens are randomly selected from the mutation list and the 251 

corresponding ES is calculated. This process is repeated 1000 times to get the 252 

ES null distribution. The p value is calculated from the positive or negative 253 

region of the empirical null distribution (Eq. J): 254 

(J)            

0 )(
1000

1

0 )(
1000

1

1000

1

1000

1

⎪
⎪

⎩

⎪
⎪

⎨

⎧

<<

≥≥
=

∑

∑

=

=

n
n

n
n

ESESESI

ESESESI

P

，

，

 255 

Where I is an indicator function. 256 

 257 
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Neutral simulation 258 

For each sample, we permute the neoantigen labeling (ie. randomly select the 259 

same number of mutations as the actual neoantigen number in the selected 260 

sample and label them as neoantigenic mutations) and calculate ES value. For 261 

pan-cancer or cancer type dataset, we can obtain the same number of 262 

simulated samples and corresponding ES values, then calculate the median 263 

ES of these simulated samples. This process was repeated many times 264 

(usually 2000 times) to get the simulated distribution of median ES. The actual 265 

pan-cancer or cancer type median ES values are compared with this simulated 266 

ES distribution, and p values are then reported. 267 

 268 

Immune escape analysis 269 

We consider the following immune escape mechanisms: 1, suppress the 270 

transcription of genome alterations encoding high antigenicity (quantified as 271 

ESRNA); 2, antigen presentation pathway gene alterations; 3, PD-L1 or CTLA-4 272 

overexpression; 4, loss of heterozygosity (LOH) on the HLA locus (34). Antigen 273 

presentation pathway genes were selected based on the list of antigen 274 

processing and presentation machinery (APM) from the Gene Ontology 275 

Consortium (GO:0002474) (35). Gene level non-silent mutation file was 276 

downloaded from UCSC Xena. Immune checkpoint gene overexpression was 277 

assessed using RNA-seq data. Normal expression values (in transcripts per 278 

million mapped reads (TPM)) of PD-L1 and CTLA-4 were established from the 279 

TCGA based on RNA-seq expression of the two genes in normal samples. 280 

Checkpoint overexpression was called if either PD-L1 or CTLA-4 expression in 281 

the tumor was higher than the mean plus two standard deviations of normal 282 

expression. The HLA LOH status data was obtained from Li et al study (36). If 283 

at least one HLA allele is subject to loss by LOH, then the sample is labeled as 284 

HLA LOH. 285 

 286 

Cancer immunotherapy datasets analysis 287 
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To investigate the predictive performance of the quantified 288 

immunoediting-elimination signal in immune checkpoint inhibitor (ICI) therapy 289 

clinical response prediction for individual patient, we searched for public ICI 290 

datasets with available raw WES data and RNA-seq data. Three melanoma ICI 291 

datasets have been identified for this study. The Hugo et al dataset was related 292 

to anti-PD-1 therapy in metastatic melanoma (37). This dataset has 38 293 

samples with WES data, 27 were also analyzed by RNA sequencing 294 

(RNA-seq). The Riaz et al dataset was related to anti-PD-1therapy in 295 

metastatic melanoma, and it has 64 samples with WES data, 51 with RNA-seq 296 

(38). The Liu et al cohort includes melanoma patients treated with anti-PD1 297 

antibody, it has 124 samples with WES data and 121 samples with RNA-seq 298 

(39). All three melanoma studies used a very similar definition for clinical 299 

endpoints. Clinical response for patients was defined by RECIST v1.1, 300 

responding tumors were derived from patients who have complete or partial 301 

responses (CR/PR) in response to anti-PD-1 therapy; non-responding tumors 302 

were derived from patients who had progressive disease or stable disease 303 

(PD/SD). We only chose pre- immunotherapy treatment samples for analysis. 304 

Mutation calling, neoantigen prediction, expression quantified, CCF calculation 305 

and ES calculation were performed as described above. 306 

 307 

The performance of ESCCF has been compared with 15 biomarkers reported to 308 

have significant association with immune checkpoint inhibitor (ICI) response 309 

(40), including tumor mutation burden (TMB), clonal TMB, indel mutation 310 

burden (41), burden of indels escaping nonsense mediated decay (NMD) (42), 311 

SERPINB3 mutations, CD274 (PD-L1) expression, CD38 expression, CD8A 312 

expression, CXCL13 expression, CXCL9 expression, T cell inflamed gene 313 

expression signature (43), IMPRES (44), CD8 T effector from the POPLAR 314 

trial (45), cytolytic score, and UV signature. TMB was calculated as the 315 

number of missense mutations per megabase; clonal TMB was measured as 316 

missense mutations which CCF exceed 0.9. Indel mutation burden was 317 
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calculated by the counts of frameshift indel mutation counts. The counts of 318 

indels having no overlap with the nucleotides of NMD score > 0.52 was 319 

considered as NMD-escape indel burden (40). T cell inflamed gene expression 320 

signature (Ayer score) was calculated as average expression (TPM) of 18 321 

genes (CD3D, IDO1, CIITA, CD3E, CCL5, GZMK, CD2, HLA-DRA, CXCL13, 322 

IL2RG, NKG7, HLA-E, CXCR6, LAG3, TAGAP, CXCL10, STAT1, GZMB). 323 

IMPRES values was calculated based on expression of 15 gene pairs. For 324 

each gene pair gene_i/gene_j, using following formula to calculate gene pair 325 

value (Eq. K): 326 

)K(            
otherwise,0

)(exp)(exp,1
)(,

⎩
⎨
⎧ <

=
xx

xF ji
ji  327 

For each sample, we can get a gene pairs value vector of length 15, and The 328 

total number of ‘1’s in this vector denotes the sample’s IMPRES score (44). 329 

CD8 T effector signature from the POPLAR trial was calculated as the average 330 

expression (TPM) of 8 genes (CD8A, GZMA, GZMB, IFNγ, EOMES, CXCL9, 331 

CXCL10, and TBX21). Cytolytic activity score (CYT) was calculated as the 332 

geometric mean expression (TPM) of GZMA and PRF1. 333 

 334 

Stochastic branching process model for cancer evolution and power 335 

analysis 336 

The tumor evolution model constructed by Lakatos et al has been applied in 337 

this study (15). In this model, tumor evolution was initiated by a single 338 

transformed cell. At any simulation step, a cell is randomly selected and has 339 

three events that could happen: birth (divide to produce two offspring), death 340 

and waiting. For a birth event, new cells could acquire some new mutations 341 

(counts are sampled from Poisson distribution) and each mutation can become 342 

neoantigen as a specific probability. Under negative selection on neoantigen, 343 

the death rate of cells could increase from d0 to di with neoantigen 344 

accumulation. Selection strength (s) of neoantigen mediated negative 345 
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selection can be calculated as (Eq. L): 346 

(L)            1
0db

db
ns i

−
−=×+  347 

n is the number of neoantigens in a cell, b is the birth rate (for simplicity, set 348 

b=1) In addition, every mutation has a probability (pesc) to escape. Once a 349 

mutation is escaped, the death rate of the cell which contains this mutation 350 

decrease to basal death rate d0. This simulation step continues until the 351 

population reaches a pre-defined size. Similar to the original study (15), the 352 

following parameters were applied: neoantigen probability p=0.1, birth rate 353 

b=0.1, basal death rate d0=0.1, Poisson distribution parameter (mutation rate) 354 

µ=1, escape probability pesc=10-6, selection strength -0.25≤s≤0, final 355 

population size popSize=105. At each selection strength, we run the simulation 356 

100 times. The model was implemented with Julia (v1.3.1, revised from the 357 

original Julia code provided by Lakatos et.al). 358 

 359 

Mutations harbored in at least 5 cells out of 105 were collected at the end of 360 

each simulation and the CCF was calculated. To account for imperfect 361 

sequencing measurements, CCF values were computed via a simulated 362 

sequencing step introducing noise to these frequencies with the indicated read 363 

depth. For a given read depth D, each frequency value f was substituted by a 364 

new frequency f’ sampled from a binomial distribution with parameters D and f: 365 

f’ ~ Binom(D,f)/D . We filtered for mutations with f’ above 0 to discard mutations 366 

that are not picked up due to limited detection power. In addition to sequencing 367 

limitations, we also added different proportions of false positive neoantigen 368 

when evaluating the power of detecting negative selection: we randomly 369 

sampled nonantigenic mutations of simulated tumors (varied between 5 and 370 

500% of the number of true neoantigen) that were falsely labeled as 371 

neoantigen. To calculate the power of derivation from neutral VAF distribution 372 

method (15), we used two side K-S test to detect the difference between the 373 

VAF distribution of all mutations and neoantigenic mutations and reported K-S 374 
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statistic and corresponding P value.  375 

 376 

Statistical analysis 377 

All statistical tests were performed using R statistical language. In all boxplots, 378 

the center lines represent the median, low and upper box limits are the first 379 

and third quartiles, respectively, and whiskers represent the values up to 1.5 380 

times of the interquartile range. P values for comparisons between boxplots 381 

were calculated by Wilcoxon rank sum test. Correlation and corresponding p 382 

values were calculated by Pearson method using R function cor.test. 383 

Kaplan-Meier survival analysis was performed using the R package “survival” 384 

with log-rank test, and Cox-proportional hazard analysis was performed using 385 

the R package “ezcox”. The cutoff value of ESCCF in Kaplan-Meier overall 386 

survival analysis was determined by surv_cutpoint function of “survminer” 387 

package. R function ks.test was used to perform two-sided K-S test. 388 

 389 

Software and data availability  390 

Custom code for quantifying immunoediting-elimination and 391 

immunoediting-escape are available in 392 

https://github.com/XSLiuLab/Immunoediting/tree/main . All code required to 393 

reproduce the analysis outlined in this manuscript, and R markdown analysis 394 

report are available in https://xsliulab.github.io/Immunoediting/. 395 

 396 

 397 

 398 

 399 

Results 400 

Conceptual framework for the elimination and escape phases of cancer 401 

immunoediting 402 

The interactions between cancer cells and immune cells are manifested as 403 

immunoediting, which consists of three sequential phases: elimination, 404 
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equilibrium, and escape (1,2). In the elimination phase, tumor cells with 405 

genome alterations encoding high antigenicity are partially or completely 406 

eliminated by immune cells, and this leads to the down-regulation of the 407 

cancer cell fraction (CCF) of genome alterations encoding high antigenicity 408 

(Fig. 1A). In the escape phase, tumor cells escape the surveillance of immune 409 

system through multiple mechanisms, including the following: 1. Suppress the 410 

transcription or expression of genome alterations encoding high antigenicity; 2. 411 

Antigen presentation pathway down-regulation; 3. Up-regulate the expression 412 

of immune suppressive molecules, including PD-L1, CTLA-4, etc. (Fig. 1A). 413 

 414 

The elimination phase of immunoediting will lead to the down-regulation of 415 

CCF of neoantigenic mutations, and consequently this CCF down-regulation 416 

status of neoantigenic mutations can reflect the strength of the elimination 417 

phase of immunoediting. The mRNA down-regulation status of neoantigenic 418 

mutations is a partial reflection of the strength of immunediting-escape phase. 419 

Here we use TCGA pan-cancer dataset to investigate this immunoediting 420 

signal. TCGA dataset includes 31 cancer types and 9511 samples with 421 

available WGS or WES data and mRNA expression profiling (RNA-seq) data, 422 

and neoantigenic genome alterations can be found in 9166 samples 423 

(Supplementary Fig. S1) (46). In the following section we build a distribution 424 

pattern based method to quantify the selection strength acting on the CCF or 425 

mRNA expression of neoantigenic mutation. 426 

 427 

Method for quantifying neoantigen mediated negative selection 428 

For each genome mutation, we have CCF and normalized mRNA expression 429 

(transcripts per million, TPM) information. The antigenicity value of genome 430 

mutation can be calculated as the possibility of the mutated peptide to be 431 

presented by HLA type I, and mutated peptides with predicted HLA I binding 432 

affinity (IC50) less than 50nM are labeled as neoantigens. A mutation was 433 

considered neoantigenic if there was at least one peptide derived from the 434 
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mutated sequence is predicted as neoantigen. The consequence of 435 

immunoediting-elimination phase will lead to an unbalanced distribution of the 436 

CCF of neoantigenic mutations (15), and this CCF distribution pattern of 437 

genome alterations encoding antigenicity can reflect the selection strength of 438 

immunoediting-elimination phase. This distribution enrichment status of CCF 439 

was calculated following a similar principle of gene set variation analysis 440 

(GSVA) or gene set enrichment analysis (GSEA), which was originally 441 

developed in the estimation of the variation of pathway activity over a sample 442 

population in an unsupervised manner (33,47).  443 

 444 

The mutations in an individual sample or a cancer type as a whole, are ordered 445 

by CCF or mRNA expression (TPM) as a ranked list L. The mutations with 446 

antigenicity are defined as a set S. The goal of this analysis is to determine 447 

whether the members of S are randomly distributed throughout L or primarily 448 

found at the top or bottom. There are two key steps of this method (Fig. 1B):  449 

 450 

1. Enrichment score (ES) calculation based on the distribution of neoantigen. 451 

We calculate an ES that reflects the degree to which a set S is 452 

overrepresented at the extremes (top or bottom) of the entire ranked list L. The 453 

score is calculated by walking down the list L, increasing a running-sum 454 

statistic when we encounter a mutation in S and decreasing it when we 455 

encounter mutations not in S. The ES is calculated based on the maximum 456 

deviations from zero during the random walk, it corresponds to a weighted 457 

Kolmogorov–Smirnov (K-S) like statistic (see details in the Methods). The CCF 458 

values of mutations are in the range of 0-1, and in TCGA dataset, the CCF 459 

values of mutations do not show normal distribution, and many mutations have 460 

CCF values equal to 1 (Supplementary Fig. S2). A fixed CCF rank from 1 to 461 

100 has been constructed in the quantification of CCF distribution enrichment 462 

status of neoantigenic mutation (ESCCF). CCF distributions of neoantigenic and 463 

non-neoantigenic mutations in TCGA cancer types are shown, an apparent 464 
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shift in the CCF distribution of neoantigenic mutations compared with 465 

non-neoantigenic mutations can be observed (Supplementary Fig. S3). 466 

 467 

2. Estimation of the significance level of ES. 468 

We estimate the statistical significance (nominal P value) of the ES by using a 469 

permutation test procedure, this procedure permute the neoantigen labels and 470 

recomputed the ES of each patient, and this generates a null distribution for 471 

the ES. The P value of the observed ES is then calculated according to this 472 

null distribution. For ES significance analysis in TCGA pan-cancer or individual 473 

cancer type cohort level, the observed median ES value of the test cohort is 474 

compared with the distribution of median ES values from 2000 simulations (Fig. 475 

1C). The calculated P values are dependent on the mutation rank, and also the 476 

number of total mutations and the number of antigenic mutations. Minimum 477 

number of total mutations and antigenic mutations are required for confident 478 

quantification of ES values (Supplementary Fig. S4).  479 

 480 

Tumor cells can evolve multiple strategies to escape the surveillance of 481 

immune system, and down-regulating the mRNA expression of neoantigenic 482 

mutation is one of these strategies (Fig. 1A). Similar to CCF values, the mRNA 483 

expression values of mutations are independent variables from antigenicity 484 

IC50 values. Similar strategy can be applied to quantify this mRNA expression 485 

down-regulation mediated immunoediting, and the resulting ESRNA is a partial 486 

reflection of the strength of immunoediting-escape signal (Fig. 1A and B).  487 

 488 

The existence of significant immunoediting signal 489 

Previous studies have debated the existence of neoantigen depletion signals 490 

in cancer evolution. Van den Eynden J. et al. reported that neoantigen 491 

depletion signal is undetectable in TCGA pan-cancer dataset (5). However as 492 

pointed out in a preprint, their method for neoantigen depletion signal detection 493 

is problematic, as the actual neoantigens with antigenicity are not located in 494 
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their defined “HLA-binding regions” (10). We investigate the status of this 495 

immunoediting signal with the new method developed in this study using 496 

TCGA pan-cancer dataset. The antigenicity IC50 value is calculated based on 497 

the mutated DNA sequence and HLA status, and the CCF information is 498 

independently obtained from high-throughput sequencing. Mutation types do 499 

not influence the CCF values, and the distribution of antigenicity is not 500 

influenced by mutation types either. The antigenicity IC50 values are thus 501 

independent variables from CCF values, and this is different from the 502 

calculation of dN/dS, where the two variables dN, dS are interconnected and 503 

are both significantly influenced by mutation types (3,48).   504 

 505 

Since the variables (CCF and HLA binding IC50 status) are independent, we 506 

use random simulation to generate a null distribution of ESCCF. For TCGA 507 

pan-cancer or individual cancer type cohort, the median ESCCF values are 508 

recorded after each simulation. The observed median ESCCF values are 509 

compared with the simulated ESCCF values. In TCGA pan-cancer cohort with at 510 

least 1 neoantigenic and 1 subclonal mutation (CCF<0.6) (n=5900), the 511 

observed ESCCF is -0.017 (P=0.051) (Fig. 2A and D). In PAAD and LUAD, the 512 

observed ESCCF values are significant lower compared with the random 513 

simulations, suggesting the existence of immunoediting-elimination signal (Fig. 514 

2A; Supplementary Fig. S5). Since some neoantigenic mutations can be 515 

cancer drivers, which are known to undergo positive selection during the 516 

evolution of cancer. Neoantigens that happen to be cancer drivers are not 517 

undergoing immune based negative selection (Supplementary Fig. S6). In 518 

TCGA pan-cancer cohort, when samples with neoantigenic and driver 519 

mutations lying on the same gene are not included, the observed median 520 

ESCCF is -0.023 (n=5295, P=0.0055) (Fig. 2B and D). Several cancer types 521 

including ACC, PAAD, UCEC, LUAD show significant low ESCCF values (Fig. 522 

2B; Supplementary Fig. S7). This data demonstrates the existence of 523 

immunoediting-elimination signal in TCGA dataset. 524 
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 525 

Similarly random simulations were performed to evaluate the significance of 526 

the observed ESRNA values. Compared with ESCCF, the observed ESRNA show 527 

much strongly significant difference when compared with the random 528 

simulated values. In TCGA pan-cancer dataset with at least 1 neoantigenic 529 

mutation and accompanied mRNA expression information (n=6974), the 530 

observed ESRNA =-0.048 (p<0.0005) (Fig. 2C and D). In the majority of cancer 531 

types (including DLBC, CHOL, SARC, LUAD, PRAD, UCS, STAD, LGG, LUSC, 532 

HNSC, OV, UCEC, BRCA, LIHC, READ, TGCT, KIRP), a significant low ESRNA 533 

values are observed (Fig. 2C; Supplementary Fig. S8). This study 534 

demonstrates that the immunoediting escape through down-regulating the 535 

expression of neoantigenic alteration is prevalent in human cancer (Fig. 2C). 536 

Furthermore, the immunoediting-escape signal is more prevalent than the 537 

immunoediting-elimination signal (Fig. 2A-C). This is in line with the fact that 538 

clinically detectable tumors need to have immune escape capacity, and the 539 

tumors with strong immunoediting-elimination signal may not have the chance 540 

to become clinically apparent lesions. 541 

 542 

Interestingly we observed that in cancer types with strong 543 

immunoediting-elimination signal, a weak immunoediting-escape signal exist, 544 

and vice versa (Fig. 2E and F). ESRNA signal is only a partial mechanism of 545 

cancer immune escape, known additional mechanisms include overexpression 546 

of immune checkpoint genes (for example PD-L1, CTLA-4), antigen 547 

presentation pathway gene alterations, and loss of heterozygosity on the HLA 548 

locus. Pan-cancer distributions of these immune escape mechanisms are 549 

shown, and different cancer types show different proportion of tumors with 550 

each specific immune escape mechanisms (Supplementary Fig. S9). When 551 

TCGA samples are divided into two parts based on the existence of known 552 

immune escape mechanisms, significant immune elimination signal (ESCCF) 553 

can only be observed in patients without immune escape mechanisms 554 
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(Supplementary Fig. S10). ESCCF values of patients without immune escape 555 

mechanisms are significantly lower than patients with immune escape 556 

mechanisms (Supplementary Fig. S11).  557 

 558 

To further validate the immunoediting signal, we select different neoantigen 559 

prediction cutoff, which increase the percentage of antigenic mutations from 9% 560 

to 19%, and under this new situation, we still observe a significant 561 

immunoediting elimination signal (ESCCF=-0.013, P=0.054), and also a more 562 

significant ESRNA signal (ESRNA=-0.056, P<0.0005) (Supplementary Fig. S12). 563 

When another neoantigen prediction tool MHCflurry is applied, a significant 564 

immunoediting elimination signal (ESCCF=-0.017, P=0.015) and ESRNA signal 565 

(ESRNA=-0.029, P<0.0005) can also be observed (Supplementary Fig. S13). In 566 

pan-cancer or individual cancer type level, the immunoediting elimination and 567 

escape signal exist, however in majority of cancer patients, both of 568 

immunoediting-elimination and escape signals are weak or undetectable 569 

(Supplementary Fig. S14 and Supplementary Fig. S15). Sufficient sequencing 570 

depth is required for the detection of this immunoediting signal, and the 571 

required sequencing depth is not reached in many TCGA samples. 572 

 573 

Neoantigen enrichment score and immune negative selection strength 574 

quantification 575 

Recently, immune based negative selection has been simulated using a 576 

stochastic branching process model (15). The neoantigen mediated negative 577 

selection strength (s) is an inherent feature of each patient. However method 578 

for accurately quantifying this immune based negative selection strength is still 579 

lacking. Here we investigate the connections between neoantigen enrichment 580 

score (ESCCF) and immune negative selection strength s using a stochastic 581 

branching cancer evolution model as previously described (15). For each fixed 582 

selection strength s, the resulting ESCCF was calculated (Fig. 3A and B). ESCCF 583 

show near linear correlation with s values (Fig. 3A). This analysis suggests 584 
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that the quantified ESCCF can be used to infer the immune selection strength in 585 

patient. The median ESCCF in TCGA datasets is -0.023, suggesting a median 586 

immune negative selection strength s=-0.08 (Fig. 3A). 587 

 588 

Proportional neoantigen burden measures the percentage of neoantigenic 589 

mutations in individual sample or cancer types. Proportional neoantigen 590 

burden was originally designed to compare the immune negative selection 591 

strength between two or more samples (15). The baseline values of 592 

proportional neoantigen burden cannot be obtained, and consequently 593 

proportional neoantigen burden method could not be applied in quantifying the 594 

strength of immune negative selection in individual cancer patient, or in 595 

individual cancer type. Derivation from neutral VAF distribution (1/f 596 

dependence of the cumulative VAF distribution) has been suggested to reflect 597 

the selection status (11,15). However neutral VAF distribution method is not 598 

suitable in negative selection quantification due to strict requirement in 599 

sequencing depth and neoantigen prediction accuracy (Fig. 3C-F).  600 

 601 

Pan-cancer features and correlations of immunoediting signal  602 

Human cancer evolve over a long time interval, usually in decades. The 603 

immunoediting-elimination signal quantified in this study suggests the 604 

existence of an already happened neoantigen mediated tumor elimination 605 

process. While the quantified immune cell infiltration level represent the 606 

current immune response status. We calculated the immunoediting status in 607 

TCGA pan-cancer datasets (Fig. 2A). The unbalanced distribution of CCF in 608 

neoantigenic vs non-neoantigenic mutations quantified as ESCCF could reflect 609 

the status of neoantigen mediated tumor elimination. In tumors with detectable 610 

immunoediting-elimination signal (ESCCF<0, P<0.05), a slightly increased CD8+ 611 

T plus natural killer (NK) cell infiltration status compared with the remaining 612 

samples were observed, and the difference does not reach statistical 613 

significance (P=0.2) (Fig. 4A and B). The immune cell infiltration status was 614 
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further evaluated using additional methods, such as CIBERSORT (49), 615 

Quantiseq (50), similarly no significant difference can be observed in CD8+ T 616 

cell and regulatory T cell (Treg) cell levels, CD8+/Treg ratio between tumors 617 

with and without ESCCF signal (Supplementary Fig. S16, S17, S18). This data 618 

suggests that historically happened immunoediting-elimination process may 619 

not be reflected in the current immune cell infiltration status. 620 

 621 

The down-regulation of antigenic mutation encoded mRNA is a partial 622 

reflection of immunoediting-escape phase (Fig. 1A). Pan-cancer status of this 623 

ESRNA is shown, and different cancer types have different median ESRNA 624 

scores (Fig. 2C). The immunoediting-escape signal quantified as ESRNA also 625 

does not show a statistically significant difference between samples with 626 

detectable immunoediting-escape signal (ESRNA<0, P<0.05) and the remaining 627 

samples in CD8+ T plus NK cell infiltration (Fig. 4C). Treg percentage appear 628 

to be up-regulated in samples with detectable immunoediting-escape signal 629 

(P=0.03) (Fig. 4D), while this up-regulated Treg signal can be reproduced with 630 

Quantiseq analysis, but not CIBERSORT analysis (Supplementary Fig. S16, 631 

S17, S18). These analyzes suggest that there are no strong and direct 632 

connections between the immune cell infiltration status of present time point 633 

and the immune escape signal that historically happened during the evolution 634 

of tumor. 635 

 636 

Quantified immunoediting-elimination signal predicts the clinical 637 

response of cancer immunotherapy 638 

Immunotherapy, represented by immune checkpoint inhibitors (ICI), is 639 

transforming the treatment of cancer. However, only a small percentage of 640 

patients show response to ICI, and effective biomarkers for ICI clinical 641 

response prediction is still urgently needed (51). To investigate the predictive 642 

performance of the quantified immunoediting-elimination signal (ESCCF) in ICI 643 

response prediction for individual patient, we searched for public ICI datasets 644 
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with raw WES data and RNA-seq data available, and three melanoma ICI 645 

datasets have been identified (37-39) (Supplementary Fig. S19).  646 

 647 

We calculate the immunoediting-elimination signal (ESCCF) for each patient. In 648 

univariate Cox proportional hazards regression analysis, quantified ESCCF 649 

value is significantly associated with cancer patients' survival (p=0.03), and 650 

low ESCCF value (suggest the presence of high immunoediting-elimination 651 

signal) is associated with improved ICI clinical response (Hazard ratio 652 

(HR)=3.74, 95%CI=1.11-12.6) (Fig. 5A). Patients are divided into three groups 653 

based on ESCCF value, patients with the lowest ESCCF values (indicate the 654 

presence of immunoediting-elimination signal) show the best survival after ICI 655 

(Fig. 5B). Fifteen additional biomarkers, including tumor mutational burden 656 

(TMB), clonal TMB, indel mutation burden, burden of indels escaping 657 

nonsense mediated decay (NMD), SERPINB3 mutation, PD-L1 expression, 658 

CD38 expression, CD8A expression, CXCL13 expression, CXCL9 expression, 659 

T cell inflamed gene signature, IMPRES, CD8 T effector, cytolytic score, UV 660 

signature mentioned in Litchfield et al study have been evaluated and 661 

compared with the ESCCF (40). In these melanoma datasets, only ESCCF and 662 

UV signature show significant HR (Supplementary Fig. S20). 663 

 664 

Logistic regression is the appropriate regression analysis to conduct when the 665 

dependent variable is dichotomous (binary). Here we use logistic regression to 666 

compare the efficiency of ESCCF, TMB and neoantigenic mutation count in 667 

predicting immunotherapy clinical response. Relationship between prognosis 668 

(patients with clinical response or without clinical response) and ESCCF, TMB 669 

and neoantigenic mutation count was analyzed. The goodness of fit was 670 

performed by Hosmer–Lemeshow test (H-L test). The H-L test P-value of TMB 671 

is 0.051 (Fig. 5C, middle), close to 0.05, implicating the difference between 672 

prediction and expectation is close to significant. The H-L test P-value of ESCCF 673 

is 0.771 (Fig. 5C, right), higher than the H-L test P-value of TMB and 674 
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neoantigen count. This study suggests that the quantified 675 

immunoediting-elimination signal can be biomarker for ICI clinical response 676 

prediction. ICI clinical responses are known to be influenced by variables like 677 

gender (52,53), When considering ICI type as a covariate, the HR of 678 

ESCCF=3.75, P=0.03; When considering gender as a covariate, the HR of 679 

ESCCF=3.96, P=0.09 (Supplementary Fig. S21). Based on this analysis, the 680 

effects of ESCCF is not influence by ICI type and gender, however more 681 

samples are needed to further validated the clinical effects of ESCCF in ICI 682 

clinical response prediction. 683 

 684 

 685 

 686 

Discussion 687 

Here we provide reliable evidence to demonstrate the pan-cancer existence of 688 

immunoediting signal. Importantly, the elimination and escape phases of 689 

immunoediting can be separately quantified with our method. Cancer types 690 

with strong immunoediting elimination signal usually have low immunoediting 691 

escape signal, and vice versa. Furthermore, the quantified immunoediting 692 

elimination signal predict cancer immunotherapy clinical response.  693 

 694 

This study provides an initial method to reliably quantify immunoediting signal 695 

in individual cancer patient. To quantify the immunoediting signal for an 696 

individual patient, at least one neoantigenic mutation is required. The 697 

mechanisms employed by tumor cells to escape immune surveillance is very 698 

complex, and the shutdown of the expression of neoantigen mutation is only 699 

one of the mechanisms. In addition, the mRNA expression is the combination 700 

of both wild type and mutated alleles. Lack of ESRNA signal does not mean that 701 

the immune escape signal does not exist in the specific cancer or cancer types. 702 

Usually neoantigens are believed to be able to mediate the negative selection 703 

of cancer cells, the possibilities that some mutations could encode peptides 704 
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suppressing the immune function cannot be ruled out. For example, 705 

neoantigens that bind the TCR of Tregs, could have potential 706 

immunosuppressive function (54). 707 

 708 

The existence of neoantigen mediated negative selection status in untreated 709 

cancer has been debated (4-7). Existing methods for negative selection study 710 

include dN/dS and population genetics method. Rooney et al. use TCGA 711 

pan-cancer CDS as the control sequence to calculate the expected neoantigen 712 

number per non-silent mutation (Bpred/Npred), then the actual observed 713 

neoantigen number per non-silent mutation (Bobs/Nobs) are compared with 714 

Bpred/Npred (55). Since the pan-cancer CDS sequence has already been 715 

immune edited, the neoantigen depletion signal reported in this study is 716 

systematically underestimated. In addition, as pointed out by Van den Eynden 717 

et al. There is HLA typing mistake in this study (5). Van den Eynden J. et al. 718 

reported that neoantigen depletion signal is undetectable in untreated cancer 719 

(5). This study selects the “non HLA-binding regions” as the control, and 720 

compare the nonsynonymous vs synonymous mutation ratio (n/s) in 721 

“HLA-binding regions” vs “non HLA-binding regions”. They did not identify any 722 

difference in these two regions in regard to n/s using TCGA pan-cancer 723 

dataset. However their method is problematic, as the actual neoantigen with 724 

antigenicity are not located in their defined “HLA-binding regions” (10). 725 

Martincorena et al. performed a comprehensive gene level evolution selection 726 

study with dN/dS method, and reported significant neutral and positive 727 

selection, but not negative selection in cancer genome (3). Since antigenicity 728 

mutations occupy less than 5% of total mutations. In gene level, the selection 729 

on neoantigen mutations is overshadowed by other driving or neutral 730 

mutations. Neoantigen mediated negative selection not being observed in 731 

gene-level does not mean the absence of immune based neoantigen depletion. 732 

Zapata et al. investigated immune based negative selection with dN/dS 733 

method (4). However same problem exists in the selection of control DNA 734 
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sequence. Similar to Van den Eynden J. et al. CDS was divided into epitope 735 

region and non-epitope region, dN/dS was compared in these two regions. 736 

Since neoantigen with antigenicity are not necessarily located in the “epitope 737 

region”, the results reported in this study is also questionable. Population 738 

genetics model for neutral evolution has been proposed to detect neutral 739 

evolution based on cumulative VAF distribution. For instance, a recent study 740 

test the neutrality of cancer based on the VAF of mutations in a limited 741 

subclonal frequency range (11). However, that test of neutrality has been 742 

questioned, the frequency distribution of mutated alleles in a limited frequency 743 

range is not an accurate statistic for detecting selection in cancer (13,14). 744 

Furthermore the application of this population genetics method in neoantigen 745 

mediated negative selection quantification in individual cancer patient has not 746 

been established (15) (Fig. 3D and F).  747 

 748 

The quantification of negative selection in cancer evolution has been a major 749 

scientific challenge, the method developed here for neoantigen mediated 750 

negative selection quantification could be instructive for the future design of 751 

strategies for studying negative selection in cancer evolution. The existence of 752 

neoantigen mediated negative selection has been demonstrated with our new 753 

method. Importantly we observed a strong immunoediting-escape signal 754 

reflected as the down-regulation of mRNA encoded by neoantigenic mutations. 755 

The quantification of immunoediting provides an evolutionary perspective for 756 

the design of neoantigen vaccine for cancer therapy. The immune based 757 

negative selection is an inherent feature of a cancer patient, the quantified 758 

immunoediting signal can be used in cancer precision stratification, including 759 

the clinical response prediction for cancer immunotherapy. 760 

 761 

 762 

 763 

 764 
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Figure 1. Conceptual framework for the quantification of elimination and 927 

escape phases of immunoediting. A, Phases of immunnoediting and the 928 

manifestations of the elimination and escape phases of cancer immunoediting. 929 

B, Detailed steps for CCF down-regulation based immunoediting-elimination 930 

(ESCCF) quantification. 1. Equally divide the whole CCF range (0-1) into 100 931 

intervals and calculate the distribution of CCF of neoantigenic mutations and 932 

non-neoantigenic mutations in these intervals; 2. Construct the 933 

Kolmogorov–Smirnov (K-S) statistics based on difference between the two 934 

distributions; 3. Calculate the enrichment score (ESCCF). C, Detailed steps for 935 

mRNA down-regulation based immunoediting-escape (ESRNA) quantification. 1. 936 

Rank mutations by corresponding mRNA expression and calculate the 937 

distribution of mRNA expression of neoantigenic mutations and 938 

non-neoantigenic mutations; 2. Construct the K-S statistics based on 939 

difference between the two distributions; 3. Calculate the enrichment score 940 

(ESRNA). D, Random simulation to obtain the null distribution of ES. For each 941 

sample, we permute the mutation labeling (ie. randomly select the same 942 

number of mutations as the observed number in the sample, and label them as 943 

neoantigenic mutations) and calculate ES value, the processes are repeated 944 

for 2000 times, and the actual ES values are compared with the simulated 945 

values. 946 

 947 

Figure 2. Pan-cancer distributions and features of the quantified 948 

immunoediting signals (ESCCF and ESRNA). A, Distribution of ESCCF in 949 

pan-cancer (left) and in specific cancer type (right). The p values are 950 

calculated from simulated median ES distributions. ns: p > 0.05, *: P <= 0.05, 951 

**: P <= 0.01, ***: P <= 0.001, ****: P <= 0.0001. B, Distribution of ESCCF in 952 

pan-cancer (left) and in specific cancer type (right), after removing samples 953 

with neoantigenic and driver mutations located in the same gene. The p values 954 

are calculated from simulated median ES distributions. C, Distribution of ESRNA 955 

in pan-cancer (left) and in specific cancer type (right). The p values are 956 
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calculated from simulated median ES distributions. D, From left to right, 957 

simulated median ES distribution and the observed median ES for Fig 3a, 3b 958 

and 3c respectively. E, Correlation between median ESRNA and ESCCF of TCGA 959 

cancer types. Pearson correlation coefficient and p value are shown. F, 960 

Correlation between the percent of escape samples (ESRNA < 0 and P < 0.05) 961 

and median ESCCF in TCGA cancer types. Pearson correlation coefficient and 962 

p value are shown.  963 

 964 

Figure 3. Immunoediting-elimination signal (ESCCF) and neoantigen-mediated 965 

negative selection strength quantification. A, ESCCF as a function of 966 

neoantigen-mediated negative selection strength s, computed from n=100 967 

tumors, with simulated read depth of 200×for each indicated selection strength 968 

s. The observed median ESCCF of TCGA samples is indicated with a horizontal 969 

dashed line. B, The proportion of 100 simulated tumors with significant ESCCF 970 

(FDR corrected p value less than 0.1) in each selection strength s. C, 971 

Derivation from neutral VAF distribution quantification as a function of negative 972 

selection strength s, computed from individual tumor of a simulation cohort 973 

(n=100), with a simulated read depth of 200×. D, Proportion of 100 simulated 974 

tumors with significant signal (FDR corrected p value less than 0.1) quantified 975 

using derivation from neutral VAF distribution method under each negative 976 

selection strength s. Of note, no tumors show significant signal under the same 977 

simulated conditions as the data show in Fig. 3B. E, Power to detect negative 978 

selection as a function of sequencing read depth (x axis) and false neoantigen 979 

rate (y axis) using the enrichment score method developed in this study. Power 980 

is the proportion of 100 simulated tumors with significant negative ES value 981 

(FDR corrected P value less than 0.1). F, Power to detect negative selection 982 

as a function of sequencing read depth (x axis) and false neoantigen rate (y 983 

axis) using derivation from neutral VAF distribution method. Power is the 984 

proportion of 100 simulated tumors with significant difference (two-sided K-S 985 
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test, FDR corrected P value less than 0.1) between the distribution of all 986 

mutations and neoantigenic mutations. 987 

 988 

Figure 4. Immunoediting-elimination and escape signals and tumor immune 989 

cell infiltration status. A and B, Comparisons between TCGA cancer patients 990 

with detectable Immunoediting-elimination signal (ESCCF<0, p<0.05) and the 991 

remaining patients in CD8+ T plus natural killer (NK) cell (A) and Treg cell (B) 992 

infiltration status. C and D, Comparisons between TCGA cancer patients with 993 

detectable Immunoediting-elimination signal (ESRNA<0, p<0.05) and the 994 

remaining patients in CD8+ T plus NK cell (C) and Treg cell (D) infiltration 995 

status. Wilcoxon rank sum test P value is shown.  996 

 997 

Figure 5. Quantified immunoediting-elimination signal (ESCCF) predicts cancer 998 

immunotherapy clinical response. A, Univariate Cox regression analysis was 999 

performed to estimate the hazard ratio (HR) associated with ESCCF values. The 1000 

length of horizontal line represents the 95% confidence interval (CI) and the 1001 

vertical dashed line represents HR = 1. B, Kaplan-Meier overall survival curves 1002 

show the comparison between different groups stratified by ESCCF value. 1003 

Samples with ESCCF values higher than the cutoff (-0.222, determined by 1004 

surv_cutpoint function of “survminer” package) were classified as “high” group, 1005 

and samples with ESCCF value less than the cutoff were classified as “low” 1006 

group. The remaining samples (without neoantigen or minimum CCF is higher 1007 

than 0.6) were classified as “other” group. C, The goodness-of-fit is performed 1008 

by Hosmer-Lemeshow test. 1009 

 1010 

 1011 
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