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Abstract 

The use of EEG to simultaneously record multiple brains (i.e., hyperscanning) during 

social interactions has led to the discovery of inter-brain coupling (IBC). IBC is defined as the 

neural synchronization between people and is considered to be a marker of social interaction. 

IBC has previously been observed across different frequency bands, including Theta [4-7 Hz]. 

Given the proximity of this frequency range with behavioral rhythms, models have been able 

to combine IBC in Theta with sensorimotor coordination patterns. Interestingly, empirical 

EEG-hyperscanning results also report the emergence of IBC in the Gamma range [>30 Hz]. 

Gamma oscillations' fast and transient nature makes a direct link between Gamma-IBC and 

other (much slower) interpersonal dynamics difficult, leaving Gamma-IBC without a plausible 

model. However, at the intra-brain level, Gamma activity is coupled with the dynamics of 

lower frequencies through cross-frequency coupling (CFC). This paper provides a biophysical 

explanation for the emergence of Gamma inter-brain coupling using a Kuramoto model of four 

oscillators divided into two separate (brain) units. By modulating both the degree of inter-

brain coupling in the Theta band (i.e., between-units coupling) and CFC (i.e., intra-unit Theta-

Gamma coupling), we provide a theoretical explanation of the observed Gamma-IBC 

phenomenon in the EEG-hyperscanning literature. 
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Introduction 

Social interaction is a core feature of human life. However, the neural mechanisms that 

support our capacity to interact with others remain poorly understood due to the fact that 

neuroscience has mainly focused on recording single participants in isolation rather than 

assessing several interacting agents simultaneously. Recently, however, the simultaneous 

recording of multiple brains, commonly known as hyperscanning, has become a popular method 

within the field of social neuroscience to study interpersonal brain dynamics (Montague et al., 

2002; Babiloni et al., 2006; Dumas et al., 2010; Czeszumski et al., 2020). Specifically, 

electroencephalography (EEG) hyperscanning led to the report of a phenomenon called inter-

brain coupling (IBC, but see also similar terms such as Inter-brain Synchrony/Synchronization 

(Dumas et al., 2010; Reinero et al., 2020; Novembre and Iannetti, 2021), a temporal 

synchronization of neural signals across brains when participants interact (Lindenberger et al., 

2009; Dikker et al., 2017; Dikker et al., 2019; Koban et al., 2019). Inter-brain coupling is now 

widely accepted as a marker of social engagement and successful interpersonal communication, 

despite the doubt regarding its epiphenomenal nature not being completely lifted (Hamilton, 

2020; Holroyd, 2022). IBC has been mostly highlighted using phase synchrony indices such as 

the Phase-Locking Value (PLV; Lachaux et al., 1999), the Phase-Locking Index (PLI; Tass et 

al., 1998) and the Partial Directed Coherence (PDC; Baccalá and Sameshima, 2001). This 

revealed a variety of inter-brain synchronizations across different frequency bands, including 

in the Theta [4-7 Hz] (Lindenberger et al., 2009; Astolfi et al., 2011; Sänger et al., 2012; 

Kawasaki et al., 2013) and the Alpha/Mu [8-13 Hz] ranges (Dumas et al., 2010; Naeem et al., 

2012; Konvalinka et al., 2014). According to the laws of coordination dynamics, behavioral 

rhythms of participants during an interaction can both influence and be reciprocally influenced 

by the behavior of the partner, resulting in a convergence of the dyad’s behavioral rhythms 

towards a common frequency (Kelso et al., 2013; Tognoli and Kelso, 2015). Given the 

proximity of Theta and Alpha/Mu frequencies with the rhythms of behavioral sensorimotor 

coordination, IBC in these ranges can be modeled according to the same coordination dynamics 

principles and reciprocal exchanges of information across members of an interaction, leading 

to the brain-behavior coordination dynamics framework (Dumas et al., 2010, 2012a; Kelso et 

al., 2013; Tognoli et al., 2007; Tognoli & Kelso, 2015). 
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However, inter-brain synchronizations in higher frequencies such as in the Gamma 

range [>30 Hz] have also been reported (Dumas et al., 2010; Kinreich et al., 2017; Mu et al., 

2017; Barraza et al., 2020). Gamma waves are fast and ultra-fast transient oscillations believed 

to support local computation (Fries, 2005; Hughes, 2008; Fries, 2009; Magri et al., 2012). 

Hence, the time scale of this frequency band cannot be directly attributed to behavioral 

coordination rhythms, leading some to question the validity of observed Gamma-IBC (Holroyd, 

2022). On the other hand, at the intra-brain level, an increase of local Gamma amplitude is 

supported by the phase of lower frequencies (Theta-Gamma coupling) through cross-frequency 

coupling (CFC; Canolty and Knight, 2010; Lisman and Jensen, 2013; Akkad et al., 2021). CFC 

has been described as a physiological mechanism capable of coordinating neural dynamics 

across spatial and temporal scales, where the firing of local neural populations is controlled by 

larger whole-brain dynamics (Aru et al., 2015). Based on these characteristics, we propose that 

previously observed Gamma IBC during social interactions can be explained by the 

combination of two neurophysiological occurrences: 1) inter-brain coupling of lower frequency 

waves according to coordination dynamics and 2) intra-brain level cross-frequency coupling.  

 

Results and Discussion 

Schematic Model 

To test our hypothesis that IBC in Gamma can be accounted for by the joint effects 

of Theta IBC and Theta-Gamma CFC, we conceptualized a simple computational model of 

coupled oscillators. We opted for a model capable of capturing the elementary principles of 

intra and inter-brain coupling with minimal features. As illustrated in Figure 1A, our model 

contains two brains, represented as two separate units (units A and B), that are coupled 

together through inter-brain coupling in the Theta band (θ), while within each unit Theta and 

Gamma (ɣ) are coupled through CFC.  
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Figure 1. Overview of the model. A. Schematic representation of our two-brain model, capable of capturing the 
elementary principles of intra (A1-A2 and B1-B2) and inter-brain (A1-B1) coupling; B. the connectivity matrix 
K, where 1 means the presence and 0 the absence of a coupling between the oscillators. 

 
Kuramoto Simulations and Signal-to-Noise ratio. 

Previous studies used the Kuramoto model for weakly coupled oscillators (Kuramoto, 

1975; Acebrón et al., 2005) to demonstrate the effect of intra-brain anatomical and functional 

connectivity on IBC (Dumas et al., 2012), as well as interpersonal behavioral synchronization 

strategies and how they rely on the relationship between intra- and inter-unit coupling (Heggli 

et al., 2019). Generally, the Kuramoto model describes a system of coupled oscillators where 

the individual oscillators are attracted and entrained to the average rate (in our case, this 

refers to phase convergence rather than frequency convergence (Cumin & Unsworth, 2007; 

Dumas et al., 2012). Here, we implemented our model using Kuramoto oscillators, following 

the connectivity matrix K (Figure 1B). The mean frequency of the oscillators A1 and B1 was 

set at 6Hz (± 1, i.e., within the Theta range), and the mean frequency of the oscillators A2 

and B2 was set at 40Hz (± 1, i.e., within the Gamma range) and without time delays. We 

simulated time series with a length of 40s (by steps of 10ms). The inter-brain coupling between 

A1 and B1 in the Theta band and the intra-brain Theta-Gamma CFC (between A1-A2 and 
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B1-B2) were programmed to range from 0 to 1, by steps of 0.1. Simulations were run 10000 

times to obtain stable results. We used a Gaussian noise of 0.6 to have a Signal-to-Noise ratio 

(SNR, see computation in the Methods) of 6.575 dB, which is comparable to SNR found in the 

EEG literature (Goldenholz et al., 2008).  

 

Inter-brain Gamma Connectivity 

To estimate inter-brain connectivity between the simulated time series of oscillator A2 

and B2, we computed the Phase Locking Value (see Material and Methods section). The γ-

PLV matrix containing the inter-brain connectivity values between the oscillators A2 and B2 

is illustrated by the heatmap in Figure 2.  

The first observation is that the modulation of θ inter-brain coupling alone has no 

effect on the γ-PLV values. This is shown by consistent high PLV scores along the x-axis on 

the heatmap in Figure 2, associated with low values of θ-γ CFC (i.e., between 0 and 0.2). 

These IBC-independent γ-PLVs represent spurious connectivity that can be explained by the 

similar properties of the oscillators in our model. 

Figure 2.  Effect of inter-brain coupling in θ and θ-γ cross-frequency on inter-brain coupling in Gamma. PLV scores 
between A2 and B2 oscillators reveal that a joint increase of inter-brain coupling in θ and θ-γ cross-frequency 
coupling account for the observation of inter-brain coupling in the γ band. Panels on the right show that subtracting 
high θ-IBC and low θ-IBC (i.e., ΔPLV) and Z-testing the values against 0 confirms the pattern observed on the 
heatmap.  
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Our second crucial finding is that the increase of θ-γ CFC (above 0.3 on the y-axis of 

the heatmap in Figure 2) together with an increase of Inter-brain coupling in the θ band is 

associated with higher PLV scores (see top-right corner values of the heatmap in Figure 2). 

Additionally, we subtracted the values (i.e., ΔPLV) with the highest degree of IBC (i.e., Inter-

brain coupling in the Theta band = 1) from the values with the lowest degree of coupling (i.e., 

Inter-brain coupling in the Theta band = 0) and performed a one-sample z-test (N = 10000) 

on ΔPLV values against 0 for each values of CFC, confirming incremental effect of CFC on 

γ-PLV (see bar plots in Figure 2): ZCFC=0 = 0.572, p = .283; ZCFC=0.1 = 4.963, p > .001; 

ZCFC=0.2 = 24.421, p > .0001; ZCFC=0.3 = 58.554, p > .0001; ZCFC=0.4 = 87.363, p > .0001; 

ZCFC=0.5 = 99.601, p > .0001; ZCFC=0.6 = 112.079, p > .0001; ZCFC=0.7 = 296.298, p > .0001; 

ZCFC=0.8 = 480.977, p > .0001; ZCFC=0.9 = 484.854, p > .0001;   ZCFC=1 = 495.701, p > .0001.  

These results highlight the impact of the joint increase of θ inter-brain coupling and θ-γ cross-

frequency coupling on γ-PLV. 

 

Biophysical explanation for Gamma inter-brain coupling  

Our model provides a biophysical explanation for Gamma inter-brain coupling, an 

observation that has often been reported in human EEG hyperscanning studies. While IBC in 

lower frequencies such as Theta and Alpha is in line with brain-behavior coordination dynamics 

(Dumas et al., 2010, 2012a; Kelso et al., 2013; Tognoli et al., 2007; Tognoli & Kelso, 2015), 

doubts regarding the validity and the reliability of observed Gamma inter-brain coupling and 

its potential epiphenomenological nature (i.e., Gamma IBC not actually being a neural 

correlate of interaction) are not completely lifted (Holroyd, 2022).  

 

Based on evidence from intra-brain, inter-brain, and computational connectivity 

studies (Dumas et al., 2010; Dumas et al., 2012; Heggli et al., 2019; Loh and Froese, 2021), 

but also recent account of inter-brain correlations in animals including bats (Zhang and 

Yartsev, 2019) and mice (Kingsbury et al., 2019; Kingsbury and Hong, 2020), we hypothesized 

that Gamma IBC could be explained and modeled according to two distinct neurophysiological 

processes, namely inter-brain coupling in Theta (Lindenberger et al., 2009; Astolfi et al., 2011; 

Sänger et al., 2012; Kawasaki et al., 2013) and intra-brain Theta-Gamma cross-frequency 
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coupling (Canolty and Knight, 2010; Lisman and Jensen, 2013). First, we showed that our 4-

oscillator Kuramoto model, divided into 2 separate units, was able to replicate the core 

characteristics of both CFC and IBC. Furthermore, our model confirms the hypothesis that 

IBC in Gamma can be ascribed to intra-brain Theta-Gamma cross-frequency and Theta inter-

brain coupling, by showing higher PLV scores during the joint increase of both parameters. 

Hence, our simulations give a biophysical model to the observed Gamma-IBC in the EEG-

Hyperscanning literature (Dumas et al., 2010; Kinreich et al., 2017; Mu et al., 2017; Barraza 

et al., 2020). Our results also illustrate the importance of both intra-brain and inter-brain 

factors in hyperscanning.  

Altogether, through computational modeling, our approach and results advance our 

mechanistic understanding of IBC, which is crucial to reaching a coherent theoretical 

framework describing causal relations between socio-cognitive factors, behavioral dynamics, 

and neural mechanisms involved in multi-brain neuroscience (Moreau and Dumas, 2021). 

 

Material and Methods 

Dynamical Model of Gamma IBC with Kuramoto 

Leveraging Python implementation of Kuramoto systems (Laszuk, 2017), we implemented our 

model in Python 3.7 (Van Rossum and Drake, 2009) using libraries such as Numpy (Harris et 

al., 2020), and SciPy (Virtanen et al., 2020) for the computational analyses, and Matplotlib 

(Hunter, 2007) for the visualization. The Kuramoto model also holds several assumptions: that 

all oscillators are identical, that the oscillators are innately coupled, and that the oscillations 

follow a sinusoidal pattern (Kuramoto, 1975; Acebrón et al., 2005; Cumin and Unsworth, 2007; 

Hudson et al., 2021). Finally, the phase θ of an oscillator i at time t is described by the 

following dynamical equation: 

dθ!(t)
dt = ω!(t) +)K!"

#

$%&

sin(θ"(t) − θ!(t)) 

where Kij is the coupling matrix with coupling from oscillator i to oscillator j and ωi is the 

frequency of oscillator i.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 11, 2022. ; https://doi.org/10.1101/2022.04.08.487686doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.08.487686
http://creativecommons.org/licenses/by-nc-nd/4.0/


As mentioned above, our model is composed of 4 oscillators, two in each Brain unit (oscillators 

A1 and A2 in Brain unit A and B1 and B2 in Brain unit B, see Figure 1). The connectivity 

matrix K is illustrated in Figure 1B. The inter-brain coupling between A1 and B1 in the Theta 

band and the intra-brain theta-gamma CFC (between A1-A2 and B1-B2) were programmed 

to range from 0 to 1, by steps of 0.1.  

 

Inter-brain coupling Measure 

To quantify the coupling between the A2 and B2 Gamma oscillators, we used the Phase 

Locking Value (i.e., PLV) which provides a frequency-specific phase synchrony measure 

between two signals across time (Lachaux et al., 1999) and is widely used in both intra and 

inter-brain EEG studies (Tognoli et al., 2007; Dumas et al., 2010; Burgess, 2013; Moreau et 

al., 2020). We applied a Hilbert transform to extract the instantaneous phase of the signals 

from oscillators A2 and B2 (see Figure 1A) and computed the ɣ-PLV via the following 

equation: 

PLV'(,*( 	= 	
&
+
3∑ 𝑒,(.!"(/)1.#"(/))2

/%& 3          

where T is the number of sampled time points and θA2 and θB2 are the instantaneous phase 

values of oscillators B and D at time point t. PLV values range from 0 to 1, where 0 reflects 

an absence of phase synchrony and 1 an identical relative phase between the two signals. 

 

Signal-to-Noise ratio 

By extracting the signal and the noise amplitude of the simulated time series, we 

computed the Signal-to-Noise ratio (SNR) using the following formula: 

SNR	(dB) 	= 	20 ∗ log&3
Signal
Noise	 

Data availability 

The current manuscript only relies on computational simulations, no data has been recorded. 

All codes are available at https://github.com/ppsp-team/Hyper-Model. The data file contains 

the numerical matrices generated to reproduce Figure 2. 
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