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1 Abstract

Vagus nerve stimulation is an emerging therapy that seeks to offset pathological conditions by electrically stimu-
lating the vagus nerve through cuff electrodes, where an electrical pulse is defined by several parameters such as
pulse amplitude, pulse width, and pulse frequency. This electroceutical therapy has been approved for epilepsy,
and treatment resistant depression. Currently, vagus nerve stimulation is under investigation for the treat-
ment of heart failure, heart arrhythmia, hypertension, and gastric motility disorders. Through several clinical
trials that sought to assess vagus nerve stimulation for the treatment of heart failure, stimulation parameters
were determined heuristically and the results were left inconclusive, which has led to the suggestion of using a
closed-loop approach to optimize the stimulation parameters. A recent investigation has demonstrated highly
specific control of cardiac physiology by selectively activating different fibers in the vagus nerve. When multiple
locations and multiple stimulation parameters are considered for optimization, the design of closed-loop control
becomes considerably more challenging. To address this challenge, we investigated a data-driven control scheme
for both modeling and controlling the rat cardiac system. Using an existing in silico physiological model of a rat
heart to generate synthetic input-output data, we trained a long short-term memory network (LSTM) to map
the effect of stimulation on the heart rate and the blood pressure. The trained LSTM was utilized in a model
predictive control framework to optimize the vagus nerve stimulation parameters for set point tracking of the
heart rate and the blood pressure in closed-loop simulations. Additionally, we altered the underlying in silico
physiological model to consider intra-patient variability, and diseased dynamics from increased sympathetic
tone in designing closed-loop VNS strategies. Throughout the different simulation scenarios, we leveraged the
design of the controller to demonstrate alternative clinical objectives. Our results show the controller can opti-
mize stimulation parameters to achieve set-point tracking with nominal offset while remaining computationally
efficient. Furthermore, we show a controller formulation that compensates for mismatch due to intra-patient
variabilty, and diseased dynamics. This study demonstrates the first application and a proof-of-concept for
using a purely data-driven approach for the optimization of vagus nerve stimulation parameters in closed-loop
control of the cardiac system.

2 Introduction

Cardiovascular diseases are a prevalent health risk and financial burden. As an example, heart failure alone
is projected to reach a total cost of $70 billion in 2030 [Heidenreich et al., 2013]. Current pharmaceutical
therapies lack adequate efficacy in treating cardiovascular diseases as demonstrated by the mortality rates
[Benjamin et al., 2018, Savarese and Lund, 2017, Ovbiagele et al., 2013], which has motivated investigation ef-
forts into alternative therapeutic approaches. Vagus nerve stimulation (VNS) has been identified and proposed
as a potential therapy for a variety of cardiac conditions such as heart failure, atrial fibrillation, hypertension,
and stroke [Capilupi et al., 2020]. VNS involves sending electrical pulses through a cuff electrode to the vagus
nerve, with the electrical pulse characterized by several parameters such as pulse width, pulse amplitude, and
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pulse frequency [Howland, 2014]. A major challenge present in VNS delivery involves recruitment of specific
fibers in the vagal nerve, as not all fibers have the same effect on the functioning of the cardiac system. A
recent study has demonstrated the ability to recruit specific fiber types through the use of different stimulation
locations in a rat heart [Plachta et al., 2014].

Another challenge present in delivering VNS therapy involves the optimal selection of VNS parameters to
achieve a desired physiological response. Currently, VNS parameters are determined through manual titration
in an open-loop configuration, as was used in the three clinical trials that investigated VNS for the treatment
of heart failure [Gold et al., 2016, Zannad et al., 2015, Premchand et al., 2014]. These clinical trials reached
different conclusions regarding the efficacy of VNS. The different conclusions could be attributed to the different
operating regimes for each trial, leading to the suggestion of finding optimal VNS parameters in future trials to
clearly evaluate the efficacy of VNS [Asad and Stavrakis, 2019].

To address the challenge of finding the optimal VNS parameter selection, studies investigating the closed
loop control of VNS stimulation has been accomplished in previous studies performed in sheep by using a
proportional-intergral controller design [Ugalde et al., 2015], and state space transition models [Romero-Ugalde et al., 2017].
Other studies have investigated using proportional-integral controller designs to control the heart rate of rats
[Greenwald et al., 2016], pigs [Tosato et al., 2006], and dogs [Zhang et al., 2002]. The previously discussed con-
trollers only controlled the heart rate, and did not control multiple physiological outputs such as heart rate and
blood pressure. Further, these controller studies were not optimizing multiple input stimulation parameters,
nor did they consider the possibility of different stimulation location sites. A recent in silico study developed a
cardiac model of a rat heart with the influence of VNS and used a model predictive control (MPC) framework
to optimize multiple VNS parameters (pulse width and pulse frequency) at multiple locations to control the
heart rate and blood pressure simultaneously [Yao and Kothare, 2020].

For this application of MPC, there are challenges revolving around the development and validation of in
silico cardiac models. Often such an approach becomes a challenging task in selecting the correct dynamical
equations that govern the cardiac system, and then fitting the parameters to those specific equations. Such
tasks can be guided by a deep mechanistic understanding of the system, however the definition of the system
can vary, as shown by the variety of in silico cardiac models in the literature that range from modeling the
individual neuronal cells in a cardiac tissue [Mangoni et al., 2006], to modeling the whole cardiac system as a
pump [Suga et al., 1973]. There have been some models that incorporate the effects of extrinsic stimulation on
the cardiac system, such as simulating an orthostatic response in a human cardiac system [Melchior et al., 1992].
However, most in silico computational models do not include the necessary variables to account for physiological
changes mediated through VNS, leaving a challenging task for their application in VNS parameter optimization.
Further, such models may be difficult to validate in experiments due to the variability of fiber recruitment in
the vagus nerve. Adding to the challenge of using full-scale in silico physiological models is the computational
expense associated with simulating these models for real-time closed-loop control.

Data driven modeling techniques are a viable approach that address the challenges associated with the
previously described in silico physiological models. A common approach for data driven modeling includes
machine learning, which can learn a compact representation for nonlinear dynamics present in a variety of
systems [Goodfellow et al., 2016]. There are no underlying assumptions about the data fed to train the net-
work or the distribution of the data fed to the network. Together, these features have led to the widespread
application of machine learning for the modeling of nonlinear dynamical systems. More specifically, recurrent
neural networks (RNNs) are well suited for time series modeling shown by their state-of-the-art performance
in challenging applications that include forecasting river flows [Sahoo et al., 2019], power usage in residential
areas [Kong et al., 2017], and short-term traffic patterns [Zhao et al., 2017]. Of noteworthy importance in these
applications, a RNN was consistently shown to give better predictive performance of the time-series data when
compared to a simple feedforward neural network. Thus, the hidden state kept in a RNN improves the learning
of intrinsic temporal symmetries that allow for more accurate predictions of future time-series data. Previously,
long short-term memory (LSTM) neural networks which are a type of RNN, have been used to model the effect
of current injection on a pyramidal neuron [Plaster and Kumar, 2019]. Additionally LSTMs have been shown to
be less computationally expensive for function evaluation, which motivates their application in real-time control
of the cardiac system. Finally, LSTMs have also been previously used in a MPC framework to demonstrate the
control of a chemical plant [Wu et al., 2019].

In this simulation work, we demonstrate a computationally efficient data-driven closed-loop control scheme
to control the heart rate (HR) and the mean arterial blood pressure (MAP) in an in silico physiological model
of a rat heart [Yao and Kothare, 2020]. We develop and use a LSTM model in a MPC framework to optimize
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the VNS parameters to achieve the desired set points in HR and MAP. We formulate unique optimization
problems that consider different physiological contexts, and discuss their influence on the closed-loop controller
performance. Our results show that our designed controllers lead to set point tracking with nominal offset for
both HR and MAP. Next, we modify the in silico physiological model to exhibit intra-patient variability, caused
by a unique concentration of neuronal fiber recruitment from the cuff electrode. To account for the intra-patient
variability in the closed-loop control formulation, we include additional constraints in the optimization problem,
thus enabling the control of the physiological variables without training another LSTM on the data from the
modified in silico physiological model. We investigate this approach further by modifying the controlled in silico
physiological model to demonstrate a case of an elevated sympathetic nervous system and a decreased vagal
tone, similar to a diseased state. Through simulations, we show that our closed-loop control design can efficiently
control HR and MAP for both the intra-patient and diseased state systems while using the same previously
trained LSTM in designing the controller. Together, we demonstrate a novel computationally efficient data-
driven closed-loop VNS design for modeling and controlling HR and MAP, which could potentially be translated
in animal experiments for real-time control of the cardiac system.

3 Results

3.1 Data-driven mapping of VNS parameters to the heart rate and mean arterial
blood pressure

We recently developed a novel data-driven machine learning-based computational modeling approach to map the
effect of VNS on the heart rate (HR) and the mean arterial blood pressure (MAP). Briefly, we used a published
computational model of the rat cardiac system [Yao and Kothare, 2020] to generate synthetic data by varying
three VNS locations, pulse width, and stimulation frequency and measuring the effect of VNS parameters on
HR and MAP (see the details of the in silico physiological model and the range of the VNS parameters in
Materials and Methods section p.][). We then trained several neural networks, including vanilla recurrent neural
networks (RNNs) and long short-term memory (LSTM) network, on this synthetic data by systematically
varying the model hyperparameters, such as the number of hidden layers, hidden-state dimensionality, and
activation functions, and compared the performance of the models in predicting HR and MAP in response
to VNS. Our results showed that a single hidden layer LSTM network with a hidden-state dimensionality of
10 and a hyperbolic tangent activation function led to the best performance. Although a manuscript on this
modeling has been accepted in IEEE EMBC 2021 for oral presentation, for the completeness of this manuscript,
we provide the details of our modeling approach and the comparison of various trained neural networks in the
Materials and Methods section p.4.

Figure E shows a specific prediction of HR and MAP by our LSTM model and its comparison with the in
silico physiological model (ground truth data), where we have varied the VNS parameters after every 50 cardiac
cycles. As shown in this figure, the LSTM model is able to predict the response of the in silico physiological
model with high accuracy, following the selection of time-varying VNS parameters. Notably, this predictive
task requires the trained LSTM to recursively predict all 200 cardiac cycles, given the initial HR and MAP and
the VNS parameters for all 200 cardiac cycles. In this way, the LSTM has correctly learned the mapping of
the VNS parameters to the physiological effect on HR and MAP. Importantly, our LSTM model took 2.10 s to
predict HR and MAP for 100 cardiac cycles on a local PC machine (Intel(R) Core 17-9700 CPU 3.00 GHz with
16 GB RAM) compared to 19.99 s by the in silico physiological model.

In conclusion, our results demonstrate a computationally efficient data-driven machine learning approach
to predict HR and MAP in response to VNS stimulation with high accuracy directly from the data. In the
remainder of this paper, we will use our LSTM model to demonstrate how this model can be used to design
a model-based optimal control strategy to regulate HR and MAP by optimizing the VNS parameters in a
feedback-based closed-loop framework.

3.2 Model-based Optimal Control Framework to Optimize VNS Parameters for
Cardiac System
As described in the previous section, the cardiac physiological system (the in silico physiological model of a

rat cardiac system [Yao and Kothare, 2020] in our case) has three distinct VNS locations, with each location
having two design parameters, i.e., the pulse width and the stimulation frequency. These different stimulation
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Figure 1: LSTM predictions (shown in red) compared to the output from the in silico physiological model of
the rat cardiac system (PM, shown in black) for 200 simulated cardiac cycles of A) heart rate and B) mean
arterial blood pressure (MAP). For cycles 1-50 (light green), location 1 was active with a pulse width of 0.36
ms and pulse frequency of 31 Hz. For cycles 51-100 (light blue), location 2 was active with a pulse width 0.19
ms and a pulse frequency 17 Hz. For cycles 101-150 (yellow), location 3 was active with a pulse width of 0.42
ms and a pulse frequency of 47 Hz. The last 50 cycles did not have any locations active.

locations, along with the pulse width and stimulation frequency as the design parameters at each location, have
a distinctive effect on cardiac physiology, such as heart rate (HR) and mean arterial blood pressure (MAP). The
presence of several stimulation design parameters raises the challenge of optimizing these parameters to achieve
a desired physiological response.
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Figure 2: A Schematic showing our model-based predictive closed-loop optimal control framework for optimizing
the vagus nerve stimulation (VNS) parameters to control multiple cardiac physiological biomarkers such as heart
rate (HR) and mean arterial blood pressure (MAP). Here, a long short-term memory (LSTM) based recurrent
neural network model has been used to make predictions of HR and MAP in response to VNS and optimize the
VNS parameters within the model predictive control (MPC) framework.

In an experimental/clinical setting, the choice of these stimulation design parameters is typically accom-
plished manually based on the experience. In order to automate this process, we developed a closed-loop optimal
control approach to optimize the VNS parameters to achieve the desired HR and MAP in an in silico physio-
logical model of the rat cardiac system using the model predictive control (MPC) framework. Figure P shows a
schematic of our closed-loop control framework with the model-based controller utilizing predictions from the


https://doi.org/10.1101/2022.04.08.487633
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.08.487633; this version posted April 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

trained LSTM. Briefly, MPC is an optimal control strategy that uses a model of the system in designing and
optimizing the control actions. Specifically, at the current time, the measurements of the outputs are obtained
from the system, and a model of the system is used to predict the system’s outputs in the future over a specified
time horizon (prediction horizon) in terms of the current and future control actions over a specified time horizon
(control horizon). Then an optimization problem is formulated and solved to minimize the difference between
the predicted model outputs and the desired outputs over the prediction horizon by optimizing the VNS param-
eters over the control horizon. The first computed optimal control action is implemented on the system, and
the prediction and control horizons are receded by one time-step in the future. This process is repeated until
the system is driven to the desired outputs. One of the significant advantages of using MPC over other optimal
control approaches in controlling the cardiac system is its flexibility in incorporating physiological constraints
and uncertainties explicitly in the optimization problem formulation.

To demonstrate our approach, we considered the in silico physiological model of the rat cardiac system
[Yao and Kothare, 2020] as the physiological cardiac system to be controlled. We adapted the MPC framework
to design and optimize the VNS parameters — pulse width, stimulation frequency, and three VNS locations
(i.e., 6 input parameters) — to control HR and MAP in the in silico physiological model of the rat cardiac
system. To design our model-based controller, we used the LSTM model presented in the previous section as a
predictive model of the physiological system and formulated the following optimization problem to be solved at
each cardiac cycle:

min J(k)

i(k+j—1lk),j=1,2,--- ,No.—1

s.t. 7-_’:min S ﬁ(k +j - 1|k) S ﬁmamaj € [1)NC]
gk +ilk) = fan Gk +i— 1k), @k +i — 1]k)),i € [1,N,)]
J(k|k) = go(k)

Here, fyn(-,-) denotes the LSTM model described in the previous section, 7(k + i|k) is the vector of predicted
physiological outputs (i.e, HR and MAP) from the LSTM model at the discrete time (i.e., cardiac cycle) k + ¢,
given that the outputs are measured from the physiological system at the current time k£, N, and N, are the
control horizon and prediction horizon, respectively, and @(k + i|k) denotes the vector of VNS input parameters
(i.e., the pulse width and the stimulation frequency at three VNS locations) at a future time k + i, given that
the outputs are measured from the physiological system at the current time k. (k) is the vector of measured
HR and MAP from the physiological system at the current time (or cardiac cycle) k and J(k) is the user defined
scalar cost function. In the optimization problem ([lf), the first constraint is the upper and lower bounds on the
VNS parameters over the control horizon. The second constraint states that the evolution of outputs over the
prediction horizon must satisfy the LSTM model dynamics. The last constraint states that the current outputs
of LSTM model are same as the measured outputs from the physiological system at time k.

(1)

3.2.1 Sparsity Promoted Closed-Loop VNS Design for Cardiac System

As noted in the description of the optimization problem @), the manipulated (or designed) VNS inputs consist
of three VNS locations, with each location having two VNS design parameters, the pulse width, and the stimu-
lation frequency. The presence of discrete or integer variables (locations of VNS) requires the formulation of the
optimization problem (l|) in the form of well-known mixed-integer programming, which is typically computa-
tionally expensive to solve [Trespalacios and Grossmann, 2014]. To keep our control strategy computationally
efficient while achieving a similar performance compared to the mixed-integer programming solution, we formu-
lated the cost function in the optimization problem ([l|) by introducing a L; penalty on the VNS parameters as

follows:
N, N,

J(k) = (7 (k + i) — 4k + ilk) T Q(F(k + i) — y(k + i|k)) + Afjnﬂ(icﬂ —1[k) |1 (2)

i=1 j=1

Here, the first term in the sum is a weighted quadratic cost defining the error between the target output (or
reference) to be achieved by the controller and the predicted output from the LSTM model over the prediction
horizon N,. 7(k+1i) € R?*! is a vector of the time varying target output (HR and MAP) at discrete time k + i
and Q € R?*2 is the weighting matrix emphasizing the importance of specific outputs. The second term in the
sum is a Ly cost on the manipulated inputs (the pulse width and stimulation frequency at three VNS locations)
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over the control horizon N.. The parameter A defines the importance of these two terms in the cost function.
We defined the Lq cost as

N N. 6
Dotk 4+ =1kl =) Y il (3)
j=1 j=li=1

Here, | - | represents the absolute value of the argument. L; penalty in the cost function is well-known to

introduce sparsity in the optimization variables, both in the control community and machine-learning community
[Vidaurre et al., 2013)].

To solve the optimization problem (m) with the cost function (E), we set N, = 10, N, = 5, and A = 0.001.
The initial measured HR and MAP from the physiological rat cardiac model were 409 (bpm) and 138 (mmHg),
respectively. We selected the heart rate going from 392 (bpm) to 346 (bpm) followed by 393 (bpm), and mean
arterial blood pressure going from 111 (mmHg) to 144 (mmHg) followed by 125 (bpm) with each pair lasting
for 50 cardiac cycles as the desired set point trajectory to be followed by the controller.

Figure B shows our simulation results on the sparsity promoted closed-loop VNS design to control HR
and MAP simultaneously. In Figures BA and BB, we note that the designed controller efficiently drove the
physiological system to the desired time-varying set points with minimal to no steady-state offset for HR and
MAP, respectively. Figures EC and BD show the optimized pulse width and stimulation frequency, respectively,
delivered to the physiological system at each cardiac cycle. As noted in Figures BC and BD, the controller
activated locations 1 and 2 in the first and the last 50 cardiac cycles and locations 2 and 3 in the second 50
cardiac cycles to achieve the desired set points in each 50 cycles period.

We also note in Figures BC and BD that the controller actions are oscillating slightly. A possible reason
for this behavior may be due to influence from the MAP variable, which exhibits fluctuations even at the
steady-state (see Figure [l|). Since there is no cost term forcing a constant solution on the controller inputs, the
controller attempts to compensate for this fluctuation by altering its actions, thus leading to similar fluctuations
in the controller actions. Additionally, it’s worth noting that the LSTM had a higher error for MAP predictions
(compared to HR) for this reason.

In summary, we showed a data-driven model-based closed-loop control strategy to optimize the VNS pa-
rameters with multiple stimulation location sites, leading to a sparse selection of VNS parameters in controlling
cardiac physiology efficiently. This strategy may find applications in developing efficient closed-loop VNS ther-
apy for cardiac diseases by minimizing the side effects of specific stimulation locations. Although we have
not considered all possible physiological constraints in formulating our optimization problem, the framework is
general enough to introduce additional physiological constraints within the optimization problem.

3.2.2 Minimum Energy-based Closed-Loop VNS Design for Cardiac System

In the previous section, we presented a sparsity-promoted closed-loop VNS strategy that selectively stimulated
specific VNS locations to control the heart rate (HR) and mean arterial blood pressure (MAP). Although this
strategy could potentially minimize the location-specific side effects induced by VNS, the bang-bang nature of
this strategy (i.e., delivering VNS at the maximum allowable pulse width and frequency) may damage tissues
over a longer period of VNS application. To minimize the duration of the applied VNS at the maximum allowable
pulse width and frequency, we designed a closed-loop optimal control strategy by minimizing the stimulation
energy required to drive HR and MAP to the desired set points. To implement this strategy, we chose the
following cost function in the optimization problem ([If):

Np N,
J(k) = Z(F(k +i) = ik +ilk)TQ(F(k + i) — §(k + ilk)) + )\Zﬂﬁ(k + 35— k)3 (4)

Here, the first term in the sum is a weighted quadratic cost defining the error between the target output (or
reference) to be achieved by the controller and the predicted output from the LSTM model over the prediction
horizon N,. 7(k +i) € R?*! is a vector of the time varying target output (HR and MAP) at discrete time k + i
and Q € R?*? is the weighting matrix emphasizing the importance of specific outputs. The second summation
term is a Lo cost on the manipulated inputs (the pulse width and stimulation frequency at three VNS locations)
over the control horizon N.. The parameter A defines the importance of these two terms in_the cost function.
It should be noted that the cost function ({) is same as the sparsity promoted cost function (E) described in the
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Figure 3: Sparsity-promoted closed-loop control of the heart rate (HR) and the mean arterial blood pressure
(MAP) of the in silico physiological model of the rat cardiac system. (A) and (B) show the closed-loop control
response from the in silico physiological model (shown in red dots) and the target (or reference) for the controller
(shown in black line) for HR and MAP, respectively. (C) and (D) show the pulse width and the stimulation
frequency, respectively, designed by the controller at each VNS location.

previous section except we replaced the Ly penalty in (E) by a Lo penalty. We defined the Ly cost as

Nc Nc
> Nk + 5 = k)13 =Y a" (k + j — 1/k)Rii(k + j — 1]k). (5)
j=1 j=1

Here, (-)7 represents a vector transpose and R € R6%® is the weighting matrix defining the importance of
individual inputs. Lo penalty in the cost function is well-known to achieve a minimum energy solution by
suppressing large amplitude control actions [Kwakernaak and Sivan, 1972].

To solve the optimization problem ([ll) with the cost function (H), we set N, = 10, N, = 5, and A = 0.001.
We set the design parameters @ and R to an identity matrix of appropriate dimensions. The initial measured
HR and MAP from the physiological rat cardiac model were 409 (bpm) and 138 (mmHg), respectively. We
selected the heart rate going from 392 (bpm) to 346 (bpm) followed by 393 (bpm), and mean arterial blood
pressure going from 111 (mmHg) to 144 (mmHg) followed by 125 (mmHg) with each variable lasting for 50
cardiac cycles as the desired set point trajectory to be followed by the controller.

Figure @l shows our simulation results on the minimum energy-based closed-loop VNS design in controlling
HR and MAP of the physiological model of rat cardiac system simultaneously. In Figures HA and HB, we show
that the designed controller can efficiently drive the physiological system to the desired time-varying set points
with minimal to no offset for HR and MAP, respectively. We note that the output performance of the designed
controller is similar to the sparsity promoted design described in the previous section, with slight oscillations in
MAP. Figures @C and @D show the optimized pulse width and stimulation frequency, respectively, delivered to
the physiological model at each cardiac cycle. As noted in Figures HC and HD, the controller activated all the
locations to achieve the desired set points in each 50 cycle period as opposed to the sparsity-promoted design
shown in Figures §C and BD. More importantly, the designed controller selected minimum values on the VNS
parameters (pulse width and frequency) required to drive HR and MAP to the desired set points by minimizing
the input energy.
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Figure 4: Minimum energy-based closed-loop control of the heart rate (HR) and the mean arterial blood pressure
(MAP) of the in silico physiological model of the rat cardiac system. (A) and (B) show the closed-loop control
response from the in silico physiological model (shown in red dots) and the target (or reference) for the controller
(shown in black line) for HR and MAP, respectively. (C) and (D) show the pulse width and the stimulation
frequency, respectively, designed by the controller at each VNS location.

In summary, we showed a data-driven model-based closed-loop control strategy to optimize the VNS param-
eters with multiple stimulation location sites, leading to a minimum energy based selection of VNS parameters in
controlling cardiac physiology efficiently. This strategy may find applications in developing efficient closed-loop
VNS therapy for cardiac diseases by enhancing the battery life of the VNS device. Moreover, this strategy could
easily be combined with the sparsity promoted closed-loop VNS design by including an additional L; penalty
term in the cost function (4).

3.2.3 Minimum Overshoot based Closed-Loop VNS Design for Cardiac System

In the previous two closed-loop VNS designs, we noted that the controller actions oscillate around the steady-
state values (see Figures EC, D, YC, and gD). To eliminate or reduce the oscillatory behavior in the controller
actions, we included an additional term in the cost function that penalizes the deviation in inputs, when
comparing the current and future stimulation parameters to the previously implemented optimal stimulation
parameters to the physiological system. Particularly, we formulated the cost function J(k) in the optimization
problem ([ll) as follows:

J(k) = Z(F(kﬂ‘)fz}*(kﬂ\k))TQ(F(kH)fz}*(kﬂlk)) (6)
zlec N
+ >\1Z||ﬁ(k+jf1|k)||1+>\22\|ﬁ(k+j71|k)—ﬁk_1||1.

Here, the first two terms of the cost function (B) are sanie as the sparsity promoted cost function (E)7 as described
in Section . The last term in the cost function () is the difference between the current and future control
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inputs over the control horizon N, and the last applied optimal control input ;1 on the physiological model
of the rat cardiac system (i.e., the physiological system). A\; and Ay are the weighting parameters.

By including the difference in controller action term in the cost function [, we forced the controller actions
to take values close to the last implemented optimal control action on the physiological system. As a result of
the constant controller actions, the physiological variables should exhibit minimal overshoot as they gradually
reach the setpoint. Additionally, any fluctuations in HR or MAP at the setpoint are the result of intrinsic model
dynamics. The inclusion of the L1 cost term in the cost function [j serves to maintain a sparse solution.

For the closed-loop simulation, we set N, = 5, IV, = 10, A\; = 0.001, and A2 = 0.00005. It should be noted
that different selections of N, and N, can lead to similar performance, provided that the weights (A1, A2) are
appropriately selected. The initial values of HR and MAP were 409 (bpm) and 138 (mmHg), respectively. The
values for @ and R were again an identity matrix of the appropriate dimensions. The duration and set points
for both HR, and MAP were the same as mentioned in previous sections.

Figures EA and BB show the controller performance in driving HR and MAP of the physiological model to
the desired set points. As shown here, adding an input difference term (the last term in the right hand side of
the cost function (E)) in the cost function (i) minimized the previously seen fluctuations in MAP and led to a
more smooth behavior in both HR and MAP compared to the sparsity-promoted and minimum energy-based
strategies. Notably, this strategy resulted in no overshoot in the last set point for HR and a minimal overshoot
for the other two target set points for HR.

A B = =
400 140 { s
L]
° » P ——— . g
390{ %o K — 1351 N
— o K] % o
o
£ 150 . . € 130 h
e/ E ° °
o £
x o 125 0)
& 370 P . .
=120 o
360 . .
o 3 115{ ©
350 . % o
il 110{ TN
0 25 50 75 100 125 150 0 25 50 75 100 125 150
C Cardiac Cycle D Cardiac Cycle
0.0005 50 ( — Loc1
—— Loc2
~ — Loc3
0.0004 E 40
O >
(]
< 0.0003 € 30
z g
S g
8 0.0002 20
>
& 8
0.0001 g 10
0.0000 L 0 /

o

25 50 75 100 125 150 0 25 50 75 100 125 150
Cardiac Cycle Cardiac Cycle

Figure 5: Minimum overshoot-based closed-loop control of the heart rate (HR) and the mean arterial blood
pressure (MAP) of the in silico physiological model of the rat cardiac system. (A) and (B) show the closed-loop
control response from the in silico physiological model (shown in red dots) and the target (or reference) for the
controller (shown in black line) for HR and MAP, respectively. (C) and (D) show the pulse width and the
stimulation frequency, respectively, designed by the controller at each VNS location.

The impact of the input difference term in the cost function (E) becomes more pronounced in the controller
actions, as depicted in Figures BC and ED for VNS pulse width and frequency, respectively. We particularly
found minimal to no oscillations in the controller actions as compared to the sparsity promoted and minimum
energy-based strategies. Interestingly, the minimum overshoot based controller does not achieve the sparse
solution at all target set points, evidenced by having all three locations active for the last set point.

In summary, we showed a data-driven model-based closed-loop control strategy to optimize the VNS pa-
rameters with multiple stimulation location sites, leading to smooth selection of VNS parameters in controlling
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cardiac physiology efficiently. This strategy may find applications in developing efficient closed-loop VNS ther-
apy for cardiac diseases by avoiding overshoots/fluctuations in the controlled outputs.

3.3 Controlling Individual Patient Mismatch

So far, we have only considered scenarios where the developed LSTM model accurately predicted the heart
rate (HR) and the mean arterial blood pressure (MAP) of the in silico physiological model of the rat cardiac
system in response to VNS. We then used this LSTM model to design control strategies to optimize the VNS
parameters to achieve a desired HR and MAP in the in silico physiological model. We demonstrated that
the designed controller could efficiently drive HR and MAP to the desired set points as long as the LSTM
predictions are reasonably accurate compared to the in silico physiological model (i.e., there is a minimal or no
model mismatch between the LTSM and the in silico physiological model). In general, it may not always be
feasible to obtain an accurate system model, mainly if experimental/clinical data are used to develop a system
model. Should a reasonably good quantitative model be developed from the available experimental data, there
may always be subject-to-subject variability in response to VNS which could potentially result in a significant
model mismatch between the developed model and the physiological system. This model mismatch could lead
to degraded performance of the designed controller in driving HR and MAP to the desired set points.

To illustrate this point, we created a specific case where we modified the neuronal fiber recruitment concentra-
tions at each VNS location in the in silico physiological model of the rat cardiac system [[Yao and Kothare, 2020)].
Specifically, we changed the neuronal fiber concentrations at each location (C; ;) whose impact affects the output
of Equation (RJ), and ultimately leads to a different influence of VNS on the cardiac variables when compared
to the base in silico physiological model. Figure B shows the predicted HR and MAP from the modified in silico
physiological model in response to various VNS parameters and their comparison with the LSTM predicted
values and the original in silico physiological model. As shown here, although the LSTM model did not predict
the physiological HR and MAP quantitatively in response to VNS for the modified in silico physiological model,
it indeed predicted the HR and MAP qualitatively. As noted in Figure fj for the cardiac cycles between 150
to 200, the LSTM predicted both HR and MAP quantitatively with reasonable accuracy in the absence of
VNS, which we expect since the modified in silico physiological model only differs from the original in silico
physiological model [Yao and Kothare, 2020] in terms of how it responds to VNS.
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Figure 6: Comparison between the physiological outputs predicted from the modified in silico physiological
model (IP, shown in blue), the in silico physiological model (PM, shown in black) and LSTM model (shown in
red) in response to the vagus nerve stimulation (VNS) for 200 simulated cardiac cycles. (A) shows the heart
rate (HR, bpm) and (B) shows the mean arterial blood pressure (MAP, mmHg). For cycles 1-50 (light green),
location 1 was active with a pulse width of 0.36 ms and pulse frequency of 31 Hz. For cycles 51-100 (light blue),
location 2 was active with a pulse width 0.19 ms and a pulse frequency 17 Hz. For cycles 101-150 (yellow),
location 3 was active with a pulse width of 0.42 ms and a pulse frequency of 47 Hz. The last 50 cycles did not
have any locations active.

We then used the same control formulation as described in the sparsity-promoted control design (see Section
) but with the modified in silico physiological model in the closed-loop instead of the original in silico
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hysiological model. Figure H shows the closed-loop performance of the designed controller. As noted in Figures
EA and [1B, the designed controller failed to drive HR and MAP to the desired set points. Specifically, the
designed controller led to significant steady-state offset at most of the set-points. Interestingly, the sparsity
promoted controller drove MAP to the desired set point for the cardiac cycles 150-300. This surprising result
highlights one of the inherent advantages of model-based predictive control, wherein the feedback to the model
provides inherent integral action to compensate for offsets.
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Figure 7: Sparsity-promoted closed-loop control of the heart rate (HR) and the mean arterial blood pressure
(MAP) of the modified in silico physiological model of the rat cardiac system. (A) and (B) show the closed-
loop control response from the modified in silico physiological model (shown in blue dots) and the target (or
reference) for the controller (shown in black line) for HR and MAP, respectively. (C) and (D) show the pulse
width and the stimulation frequency, respectively, designed by the controller at each VNS location.

To eliminate the steady-state offsets in the closed-loop performance, we adopted an approach of nonlinear
offset-free control [Morari and Maeder, 2012] and reformulated our MPC optimization problem as follows:

min I(k).
@(k+jlk),j=0,1,-- ,No—1

Us,Ys
s.t. ﬁmm S ﬁ(k +.7 - 1“{;) S ﬁmaxaj € [LNC];

Tk ilk) = Fyw g (Fk + i — UR) dk), ik + i~ U))i € LN,), )

J(k|k) = Go(F)
F(k) = fNN,aug(ié'SaCi(k%ﬁS)'

Here, i(k + j|k) € R6*! is a vector of VNS parameters at the discrete time k + j, given that HR and MAP were
measured from the modified physiological system at time k. ,,;, and @4, are the minimum and maximum
bound on the VNS parameters, respectively. j(k + i|k) € R2*! is a vector of outputs (HR and MAP) predicted
by the LSTM model at the discrete time k41, give that HR and MAP were measured from the modified in silico
physiological model (the physiological system to be controlled in our case) at time k. The function faywn,qug(-)
represents the LSTM model augmented with a disturbance model (see Equation (@)) N, and N, are the
prediction and control horizon, respectively. (k) € R?*! is the output (HR and MAP) measured from the in
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silico physiological model at time k in response to the optimal VNS parameters @(k — 1|k — 1). #(k) € R?*! is a
vector consisting of the reference or target HR and MAP. The vector cf(k) € R?*1 is a disturbance term which
models the mismatch between the LSTM and the in silico physiological model at time k (see Equation (@))
For a given 7(k) and J(k)7 7s and @, are the steady-state solution of the the disturbance-augmented LSTM
model.

The optimization problem (H) is notably different from the previously formulated optimization problem (m)
in two ways. First, this new optimization problem aims to minimize a scalar cost function J(k) with respect to
two steady-state variables @, € RS*! and §j, € R2*! in addition to the VNS parameters @(k + j — 1|k) € R6*?
over the control horizon N, used in the optimization problem (E) And second, we introduced an additional
constraint in the optimization problem formulation which ensures that the current target (#(k)) is returned
when the disturbance-augmented LSTM is evaluated at the steady-state optimized variables ¢ and i, for a
given d(k).

To account for the model mismatch between the output predictions from the LSTM model and the modified
in silico physiological model (the physiological system to be controlled in our case) in the computation of optimal
control actions, we introduced the following disturbance model:

FNN.aug(G(K), d(k), @(k)) = fun (G(K), @(k)) + d(k) (8a)
d(k + 1) = d(k) + Lqé(k) (8b)
&k) = fnN.aug @k — 1),d(k — 1), @(k — 1)) — g(k) (8c)

Here, the augmented LSTM function fNN’aug(ﬁ(k),d_’(k),ﬁ(k)) described by Equation (@) is the sum of the

LSTM function fyn(7(k),@(k)) and the disturbance variable dy. The disturbance model (@) updates the
model mismatch between the measured outputs (HR and MAP) from the modified in silico physiological model
and the predicted outputs from the LSTM model at the next time step by integrating a scaled error. Equation
(Bd) computes the model mismatch between the predicted outputs from the LSTM model and the measured
outputs (HR and MAP) ¢(k) from the modified in silico physiological model at time k. Lq € R?*! is a vector
of constant gains.

At the beginning of the simulation. the disturbance variable aT( 0) was initialized to zero. To select the gain,
L, on the disturbance update model (@), the authors in [Morari and Maeder, 2012] computed Ly based on the
system model (well-behaved differential equation model in this case) linearized about the origin using the steady-
state Kalman filter algorithm. In principle, the observer must be nominally asymptotically stable and satisfy:
La(e =0) = 0. In our case, such linearization was not possible for the LSTM model. Therefore, we selected the
gain Ly based on a trial-and-error procedure. Particularly, we ran different trials of closed-loop simulations and
examined the plot of the disturbance evolution over time. Typically, if a sufficiently inappropriate value was
selected, the solver ceased to converge, often requiring a decrease in the Ly values. If the values were within the
range required for the convergence, then the effect of increasing those values led to faster convergence to the
steady-state solution. However, if the selected values were too large, then the error signal (Equation Bd) was
significantly emphasized, and the controller became unstable, often causing a failure in the convergence of the
optimization solver. If the values of Ly were decreased, the controller took more iterations or a longer time to
compensate for the offset. Based on this approach, we selected the following value of the gain Lg:

0.06 0
La= [ 0 0.05]

We formulated the following cost function to be minimized within the optimization problem (H)

N, N.—1
Ik) = (W — gk +ilk)T Qs — ylk +ilk)) + > (s — ik + jlk))" R(iis — ii(k + j|k)). (9)
i=1 7=0

Here, the first summation term is the squared difference between the LSTM model predictions and the optimized
variable ¢;. Note that this optimized variable represents the new target set point for the controller that accounts
for the model mismatch. The second summation term is the squared difference between the control input and
the optimized variable us. Again, note that this additional optimized variable is the actuation that together with

-

s satisfies the last constraint in the optimization problem ([q) for a given 7(k) and d(k). Consistent with the
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previous cost functions, @ and R were set to an identity matrix of the appropriate dimensions. The constrained
optimization problem (Equation H) together with the disturbance update (Equation BH), and the cost function
(Equation ) enable the designed controller to achieve the steady-state offset free control of HR and MAP.

Figure § shows the closed-loop performance of our designed controller. For the first 150 cardiac cycles, the
set point 7(k) was set to 356 (bpm) and 150 (mmHg) for HR and MAP, respectively. For the next 150 cardiac
cycles, the set point was set to 393 (bpm) and 129 (mmHg) for HR and MAP, respectively. Finally, for the
final 150 cardiac cycles, the set point was set to 377 (bpm) and 143 (mmHg) for HR and MAP, respectively.
The initial values were 409 (bpm) and 138 (mmHg) for HR and MAP, respectively. For the controller, we set
N, = 20 and N, = 10 for this simulation. For each set point, we ran the simulation for 100 cardiac cycles
longer (150 cardiac cycles as opposed to 50 cardiac cycles in previous closed-loop simulations) to ensure the
convergence of the offset-free closed-loop control formulation.
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Figure 8: Offset-free closed-loop control of the heart rate (HR) and the mean arterial blood pressure (MAP) of
the modified in silico physiological model of the rat cardiac system in the presence of intra-patient variability
in the VNS response to HR and MAP. (A) and (B) show the closed-loop control response from the modified
in silico physiological model (shown in blue dots) and the target (or reference) for the controller (shown in
black line) for HR and MAP, respectively. (C) and (D) show the pulse width and the stimulation frequency,
respectively, designed by the controller at each VNS location.

As shown in Figure E, the controller is able to achieve offset-free control within the first 50 cardiac cycles of
each set point change. As the controller approaches each set point, there is an overshoot of each target for the
first 20 cardiac cycles of the set point change. Notably, the optimized VNS parameters are generally smooth
and constant near the steady-state.

Concisely summarized, we developed a closed-loop optimal control approach that accounts for the intra-
patient variability of vagus nerve stimulation (VNS) response to the heart rate (HR) and the mean arterial
blood pressure (MAP) in optimizing the VNS parameters for controlling HR and MAP. This specific closed-
loop control formulation is appropriate in clinical /experimental settings where intra-patient variability is critical
in designing VNS strategies, and the response of the implanted VNS device is sufficiently different from the
responses used to train the LSTM model. A notable limitation of this approach is that it requires the controller’s
task to be a set point tracking problem due to the offset-free constraint formulation.
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3.4 Closed-Loop Control of Overactive Sympathetic System

To demonstrate whether the designed control strategy presented in the previous section could be used to regulate
the heart rate (HR) and the mean arterial blood pressure (MAP) in a diseased case, we constructed an example
of overactive sympathetic pathway case in the cardiac system. Specifically, we modified the parameters of the
original in silico physiological model [Yao and Kothare, 2020] in a way such that the response to the sympathetic
nervous system dominated over the parasympathetic response. These changes led to a higher resting heart rate,
and a higher blood pressure, both of which are consistent with the behavior of some cardiovascular diseases
[Malpas, 2010]. We provide the specific parameter changes in Table E Particularly, this autonomic nervous
system imbalance promotes heart failure, and vagal nerve stimulation has been suggested as a treatment therapy
[Kishi, 2012]. Similarly, the dominance of the sympathetic system corresponds to the increased blood pressure
present in hypertension [Carthy. 2014]. Additionally, hypertension has been shown to occur in parallel with
other cardiovascular diseases [Palatini and Julius, 2009]. Figure g shows the difference between this new in
silico pathological behavior model and the original in silico physiological model. Notably, in the absence of
VNS, the in silico pathological behavior model does not return to the same value as the original in silico
Ehysiological model, which is different from the intra-patient mismatch shown previously (compare with Figure
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Figure 9: Comparison between the physiological outputs predicted from the modified in silico physiological
model of an overactive sympathetic system (Sympathetic, shown in purple), the original in silico physiological
model (PM, shown in black) and LSTM model (shown in red) in response to the vagus nerve stimulation (VNS)
for 200 simulated cardiac cycles. (A) shows the heart rate (HR, bpm) and (B) shows the mean arterial blood
pressure (MAP, mmHg). For cycles 1-50 (light green), location 1 was active with a pulse width of 0.36 ms and
pulse frequency of 31 Hz. For cycles 51-100 (light blue), location 2 was active with a pulse width 0.19 ms and
a pulse frequency 17 Hz. For cycles 101-150 (yellow), location 3 was active with a pulse width of 0.42 ms and a
pulse frequency of 47 Hz. The last 50 cycles did not have any locations active.

To drive the HR and MAP to the desired set points, we applied the control formulation developed in the
previous section (Equations B, @, , Bd, B). Figure @ shows the closed-loop controller performance for our
designed controller. For this simulation, we set the initial heart rate to 452 bpm and the initial blood pressure
to 152 (mmHg). For the first 300 cycles, the controller’s target was 356 (bpm) and 150 (mmHg) for HR and
MAP, respectively. The following 300 cardiac cycles had the target change to 393 (bpm) and 129 (mmHg), and
the final 300 cardiac cycles the target was set to 377 (bpm) and 143 (mmHg). These are the same set points
used for the intra-patient case (Figure f§). Regarding the controller, the controller parameters were set to the
same previous values (N, = 20 and N, = 10). We set the disturbance gain vector Lgq to

0.06 0
La= [ 0 0.018] '

The length of simulation was considerably longer than the previous simulations (900 cardiac cycles compared
to 450 cardiac cycles) because the disturbance variable, used for model mismatch compensation, took a longer
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time to reach the saturation due to a large model mismatch in this case. Nevertheless, the designed controller
drove both HR and MAP to the desired set points with no steady-state offsets.
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Figure 10: Offset-free closed-loop control of the heart rate (HR) and the mean arterial blood pressure (MAP)
in an in silico overactive sympathetic system model of the rat cardiac system. (A) and (B) show the closed-
loop control response from the modified in silico physiological model (shown in purple dots) and the target (or
reference) for the controller (shown in black line) for HR and MAP, respectively. (C) and (D) show the pulse
width and the stimulation frequency, respectively, designed by the controller at each VNS location.

As noted in Figure EB, the controller initially drives the MAP in the opposite direction of the target. This
behavior is likely due to the significant model mismatch between the LSTM model and the modified in silico
physiological model for the overactive sympathetic case. After about 50 cardiac cycles, the disturbance variable
starts compensating for the mismatch and the MAP variable starts moving toward the target. After about 220
cardiac cycles, the disturbance variable has saturated leading to offset free control. As discussed previously, the
MAP variable exhibits inherent fluctuations, and these fluctuations have grown larger with the new parameter
selection. Even with the inherent model fluctuations, the MAP variable mean hits all of the set points and thus
providing an offset-free control. Figure [LJC and [LOD show the optimal pulse width and stimulation frequency
selected by the controller, respectively.

In summary, we modified the in silico physiological model of the rat cardiac system (the system to be
controlled in our case) to exhibit increased responses in the sympathetic nervous system and decreased responses
in the parasympathetic nervous system, and demonstrated that the offset-free controller formulation reached
several set point tracking targets without a steady-state offset. This proof-of-concept suggests that a controller
can be designed for cases where the diseased hemodynamics are considerably different from the hemodynamics
used to train the LSTM or other neural network model to be used in designing a model-based optimal controller.

3.5 Impact of Prediction and Control Horizons on the Controller Performance
and Computational Cost

In previous sections, we demonstrated various closed-loop optimal VNS designs for controlling the heart rate
(HR) and the mean arterial blood pressure (MAP). In this section, we systematically evaluated the computa-
tional time required for simulating closed-loop control designs presented in the previous sections. Additionally,
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we compared the effect of the prediction horizon N, and the control horizon IN. on the computational time and
the closed-loop performance. All the comparisons were performed on an INTEL(R) CORE 17-9700 CPU 3.00
GHz with_16.0 GB of RAM Desktop.

Table [ll shows a summary of the computational time required to simulate 100 cardiac cycles (shown in terms
of Average Time/Cycle) in closed-loop under specific control policy along with the closed-loop performance in
terms of the mean absolute steady-state error between the desired setpoint and the closed-loop controlled output
computed over the last 10 cardiac cycles for each setpoint. We estimated the computational time by taking the
total time to run the closed-loop simulation for 100 cardiac cycles and subtracting the time it took the full in
silico physiological model (the cardiac system to be controlled in our case) to simulate the number of cycles and
dividing this difference by the total number of cycles in the simulation. For the sake of comparison, we set the
parameter A, A1, and A in the optimization problems to 0.001. As expected, when the control horizon N, was
increased, the computational time increased as well. A longer control horizon led to longer times for optimization
to converge because the number of optimized variables increased by a six-fold rate as there were six additional
parameters for the controller to optimize for every additional control horizon. Similarly, as the predictive horizon
N, increased, the time of optimization also increased as there were more predictions to be computed from the
LSTM model. However, this additional computational time was not as significant compared to the increase in
the control horizon N.. It should be noted that there were 8 additional variables to be optimized in the case of
offset-free VNS design and overactive sympathetic case due to the different optimization problem formulation.

To compare the closed-loop performance over different prediction and control horizons across the imple-
mented control strategies, we computed the steady-state mean absolute error (SS MAE) by taking the average
of the mean absolute difference between the controlled output and the target setpoints for the last 10 cycles
of each setpoint. It should be noted that SS MAE represents the combined absolute mean error of both the
heart rate and the mean arterial blood pressure. We noted in Table [I| that the performance of the controller
decreased to the point of showing a clear steady-state offset from the setpoints for the control horizon N, = 1.
It is expected that an increase in both N, or N, should exhibit less offset. This trend is not entirely shown by
the results in Table [l because the weights of the cost function (i.e., A, A1, A2) were held constant. These results
highlight how the selection of controller parameters can lead to different performances. Thus, the controllers
with higher values of N, or IV, likely need to be tuned to obtain comparable performance.

Based on the results shown in Table m, we conclude that it is likely that selections with N, > 5 and N, > 20
would be difficult to implement in real-time due to large computational time. This leaves N, < 5, and N, < 10
as plausible choices for the real-time implementation of our closed-loop VNS designs. This analysis is based
on the estimation that the controller would be continuously optimizing with roughly one second to optimize
the result. In the case of N. > 1, control actions can be implemented one at a time from the previous step
optimization in case the next optimization has not converged in time.

4 Discussion

In this paper, we developed a model-based predictive closed-loop optimal control framework that utilizes a data-
driven machine learning model of a system in optimizing vagus nerve stimulation (VNS) parameters to control
the cardiovascular physiological outputs such as heart rate (HR) and mean arterial blood pressure (MAP).
Using a synthetic dataset generated from a previously published in silico physiological model of the rat cardiac
system [Yao and Kothare, 2020], we developed a long short-term memory (LSTM) based neural network model
to predict HR and MAP of the in silico physiological model in response to VNS. The predictions of HR and MAP
from our LSTM model showed quantitative consistency with the in silico physiological model in response to VNS
with reasonable accuracy. We then used this model in designing various model-based optimal control strategies
and demonstrated the efficacy of our closed-loop optimal control designs in controlling HR and MAP of the in
silico physiological model of the rat cardiac system (the physiological system to be controlled in our case) in
simulation. Finally, we showed in the simulation how our control designs could address intra-patient variability
in closed-loop VNS designs and control HR and MAP in pathological conditions (e.g., overactive sympathetic
cardiac system) where the model mismatch between the LSTM model and the system to be controlled is
significant. Overall, our results highlight the advantage of using a closed-loop model predictive optimal control
framework in optimizing VNS parameters to control multiple cardiac biomarkers.

Throughout our closed-loop designs and simulations, we chose appropriate design parameters such as the
control and prediction horizons and various weighting matrices to obtain the best performances. Regarding
the selection of these control design parameters, there are some guiding principles to select these parameters
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Table 1: Comparison of computational time and closed-loop performance of the designed closed-loop VNS
strategies. Simulations were performed on an INTEL(R) CORE 17-9700 CPU 3.00 GHZ with 16.0 GB of RAM
Desktop.

Nc (cycles) Np (cycles) Variables Est. Time/cycle (s) SS MAE

Sparsity-promoted VNS de-
sign (Section B.2.1

~

1 10 6 0.21 2.41
) 10 30 0.89 0.96
10 10 60 1.15 0.99
1 20 6 0.57 5.46
5 20 30 1.89 0.80
10 20 60 2.35 0.75
20 20 120 2.75 1.10

Minimum energy-based VNS
design (Section B.2.

1 10 6 0.24 2.52
) 10 30 0.81 0.87
10 10 60 0.97 0.84
5 20 30 1.72 0.92
10 20 60 2.2 0.86
20 20 120 2.33 0.79

Minimum  overshoot-based
VNS design (Section EZQ)

1 10 6 0.33 1.43
5 10 30 1.00 1.40
10 10 60 1.55 2.12
10 20 60 3.81 2.04
20 20 120 6.34 2.32
Offset free VNS design (Sec-

tion )

10 20 68 1.03 0.34
Overactive Sympathetic

Case (Section )B.4)

10 20 68 1.06 0.70

based on the observed closed-loop response of the designed controller. For example, in the case of the sparsity-
promoted design presented in Section B.2.1|, a large value of X instructs the controller to emphasize suppressing
the inputs more than reaching the target value. A significant offset would evidence the occurrence of such a
scenario in the controlled system’s outputs. Similarly, in the minimum energy-based design presented in Section
‘, a large value of A can lead to a similar situation where the controller is more focused on minimizing the
energy than driving the outputs to the desired target.

As for this study, we have not found any significant difference in the closed-loop performance for different
choices of prediction and control horizons, as shown in Section B.J. However, we had noted that the computa-
tional time increased by approximately 3 times when we changed the prediction and control horizons from 10
and 5, respectively, to 20 and 20 (see Section @) In general, the choice of control horizon N, and prediction
horizon N, can have a significant impact on the closed-loop stability, performance, and computational time.
Typically, a large prediction horizon can help in stabilizing the closed-loop system, while a large control horizon
(less than or equal to the length of the prediction horizon) can provide less aggressive closed-loop performance.
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However, selecting large values for these parameters could also lead to large computational time to simulate the
closed-loop response of the system, which may prevent the real-time implementation of the closed-loop control
design in experiments.

The control design weighting parameters such as @ and R in the cost function are the user-defined parameters.
Throughout this work, we have chosen these to be identity matrices of appropriate dimensions. The matrix Q
allows to weigh specific output of interest more than other outputs to be controlled, and thus the optimization
problem focuses more on minimizing this specific output than other outputs. Similarly, the matrix R allows
to weigh specific input of interest more than other inputs to be optimized, and thus the optimization problem
emphasizes minimizing this specific input compared to other inputs.

Although we showed the efficacy of the designed closed-loop VNS strategies in controlling the cardiac phys-
iological biomarkers in an in silico physiological model of the rat cardiac system, the described methodology
appears general enough to be translated in animal experiments. Remarkably, the inclusion of a deep learning-
based model allows for the flexibility of developing a model of the physiological system only using the ex-
perimental data. Notably, the deep learning model described here was model-agnostic, as it was never given
information regarding the structure of the underlying in silico physiological model. While this approach has
been demonstrated for the specific application of cardiovascular control, it can more generally be used to de-
velop reduced-order models of large-scale and computationally inefficient models, thus enabling the plausibility
of real-time control of cardiac system in animal experiments. Other potential applications where this approach
would excel can be found in areas where model development is challenging, but a control application would still
prove useful. The challenge of model building may result from a lack of adequate system knowledge or the level
of detail required for a particular experimental system. In either case, provided with the input-output data,
this approach can be used to develop a controller. We note that this approach is particularly advantageous in
the context of controlling biological systems.

The closed-loop control framework developed in this work provides flexibility in designing a control strategy
for a specific situation. The optimization problem formulation can incorporate any relevant cost function and
physiological constraints depending on the specific application. Additionally, as shown in Sections and B.4,
the control problem formulation allows using the LSTM model trained on the data obtained from one subject
to be applied in designing control strategy for a different subject, thus allowing a possibility to develop a model
from the healthy subjects and use the model in designing control strategy for treating diseased cases.

Due to a limitation of the in silico physiological model used to generate synthetic data for training the
LSTM model, we have omitted the pulse amplitude as an optimized VNS parameter. We anticipate that the
inclusion of this parameter would not cause any fundamental problem to our approach. Additionally, most of
the published studies on optimizing VNS for cardiac system did not consider the influence of disease pathology
on_controller performance [Greenwald et al., 2016, Ugalde et al., 2015, Tosato et al., 2006, Zhang et al., 2002,
Romero-Ugalde et al., 2017],[Yao and Kothare, 2020]). While we have considered this by modifying the phys-
iological dynamics (see Sections and B.4), it is worth noting that the offset-free controller formulation is
limited to overcoming the steady-state offsets in the closed-loop performance. Thus, should the controller’s
objective change to a tracking problem (as opposed to a constant set point), then the controller’s performance
would not necessarily achieve nominal offset in the presence of model mismatch. While this limitation may
appear exceptionally prohibitive, depending on the application of the VNS device, such a limitation may not
restrict all applications.

Should these controller designs be deployed in the experimental/clinical setup, there is a potential that the
controller could switch its objective function to meet the demands of the physiological system. In a therapeutic
context, stimulating all locations at all times could lead to a loss in the efficacy of specific treatment. Conversely,
there may be times when power consumption holds a higher priority than enforcing a sparse solution. For the
therapeutic application, the closed-loop control formulation in Section m could drive the physiological system
to reach the desired targets with more smooth transitions, which may be more gentle for the patient or subject
of the therapy. These different contexts are why we have investigated multiple controller designs in this paper.
Importantly, all the control designs have been shown to reach the target set point with a nominal to no steady-
state offset. Their similar performances suggest a potential of employing them in the experimental system while
accounting for multiple external factors (battery level, physiological feedback, stimulation time, etc.) to provide
the context for selecting the specific controller design used at a particular time.

18


https://doi.org/10.1101/2022.04.08.487633
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.08.487633; this version posted April 10, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

5 Methods
5.1 In Silico Rat Cardiac Model

We used a previously published in silico physiological model of the rat cardiac system that includes the effect
of two VNS parameters (pulse width in ms and pulse frequency in Hz) on the two physiological variables (heart
rate (HR) in bpm and mean arterial blood pressure (MAP) in mmHg) [Yao and Kothare, 2020]. Here, we
provide a brief description of this in silico physiological model and refer the reader to this study for a full model
description. The model was composed of three different parts: the cardiovascular system, the baroreflex system,
and the vagus nerve stimulation (VNS) device. Regarding the VNS device, there were three different locations
to apply VNS, following the experimental setup of [Plachta et al., 2014], and thus there were six total VNS
parameters (three locations with two parameters each). To determine the effects of VNS on the physiological
outputs, each location contained a concentration of vagal, baroreceptive, and sympathetic neuronal fibers. The
application of VNS led to different fiber recruitment levels depending on the parameters chosen. From the
fiber recruitment, the effect on the physiological variables were determined through the interactions between
the simulated central nervous system, and the cardiac system.

5.1.1 Cardiovascular Model

Design of the cardiovascular system were based on the previously published models [Djabella et al., 2005,
Ferreira et al., 2005]. Parameters for the cardiovascular system came from [Ferreira et al., 2005] and were ad-
justed by the body volume ratio of rats to humans, resulting in values similar to those measured in experimental
rats [Pacher et al., 2004]. The pressure volume relationship was described as

Py = E;(Vi = Via), (10)

where the instantaneous blood pressure of compartment ¢ is denoted by P;, the total volume is denoted by V;,
unstressed volume is denoted by V; 4. and the elastance is denoted by E;. The elastance, E(t), was described,
by following the formulation of [Stergiopulos et al., 1996], as:

E(t)=E a Gr)™ ! + Ep (11)
max 1+ (atlnT)nl (at;T)nQ man»

where t,, denotes the periodic time, T denotes the cardiac period, E,,,, denotes the end-systolic elastance, F,n
denotes the end-diastolic elastance, and a, a, as,nq, ne are all dimensionless constants. The flow, @, between
chambers of the cardiac system was modeled as follows:

Q _ —Pzn - Pout (12)
CiRsys
Here, P;, and P,,; represent the pressure difference causing blood flow, C; represents a compliance constant,
and Ry, represents the cardiac system’s resistance to blood flow. Following a mass balance, the change in
volume was given by

dv
E - Qin - Qouta (13)

where Q;,, represents the flow into the compliance chamber, and @Q,,: represents the flow out of the compliance
chamber. Finally, the inertial flow out of the left ventricle was described as

dq

AP =12
dt’

(14)

where L denotes the inertance, and AP denotes the pressure difference due to the inertial blood flow.
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5.1.2 Baroreflex Model

The baroreflex system model was derived from [Lau and Figueroa, 2015], and was composed of several parts:
the central nervous system, the baroreceptor model, and a modulation of efferent responses. Following the
activation of the sympathetic drive, the modulation of efferent responses was described by the left ventricle
systolic elastance (Epqe) and the cardiac resistance to blood flow (Rsys) exhibiting a positive response, and
conversely the heart period (T") exhibiting a negative response. A previously developed input-output relationship
of the interactions between the central nervous system and baroreceptive fibers was used to determine the effect
of the baroreflex system on cardiovascular functioning [Ursino, 1998]. The parameters for the baroreceptive
model were taken from [Mahdi et al., 2013], and the parameters of the baroreflex system model were taken
from [Ursino, 1998]. To keep generality, each location was assumed to be concentrated with 100% of a specific
neuronal fiber type (i.e., location 1 was assumed to be concentrated with only baroreceptive fibers), which led
to a qualitative match with the experimental data presented in [Plachta et al., 2014]. The sympathetic efferent
pathway was described using the following equation:

db.s 1
dt = *?(035 - 00) + Ggm ln(max{fes(t - DGQS) - fes,min> 1}) (15)

es

Here, 0.5 denotes each of the efferent path variables: the heart period T', the systolic elastance of the left
ventricle E,,q., and the inertial cardiac flow resistance, Ryys. The baseline value in the absence of external
input is given by 6, 79, denotes the time constant, f.s(¢) represents the firing rate of the sympathetic efferents,
Gy, denotes the gain, Dy, denotes the delay of the effector, and fes min denotes the minimum firing rate of the
sympathetic efferents. Following the activation of vagal fibers, the first-order dynamics were used to capture
the corresponding change in the heart period as follows:

dTe, 1
d = (Tev - TO) + GTM fev(t - DTev)' (16)
t TTey

Here, T, denotes the change in the heart period due to activation of vagal fibers, Ty denotes the resting heart
period, 7r,, is the time constant, G, is the gain of the heart period, and Dy, is the delay of the vagal
pathway. The effects on the heart period (T") from sympathetic activation were assumed to be independent of
the effects from the vagal activation, leading to the following calculation for the heart period from the total
effects of stimulation:

T =To+Tos — To. (17)

Here, T, denotes the effect of vagal (parasympathetic) efferents on the heart period, Tes denotes the effect of
sympathetic efferents on the heart period, and Tj is the resting heart period.

5.1.3 VNS Device Model

The stimulation device translates VNS parameter selection into neural firing rate changes, with an assumption
that the device increases the firing rates of the baroreceptive fibers, efferent sympathetic fibers, and vagal fibers.
The fiber recruitment due to pulse width was given by

Py /kw
V1+ Py k)
where i = 1,2, ...,n is the location index, k, denotes a dimensionless scaling parameter, P! denotes the pulse

width, and F(P!) denotes the fiber recruitment at each location. The change in firing rates due to pulse
frequency was given by

F(P,) =

(18)

AR(P}) = % (19)
1+ (P;/ks)?
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where ¢ = 1,2...,n denotes the location index, ky denotes a dimensionless scaling parameter, P]’L denotes the
pulse frequency, and AR(P}) denotes the change in firing rates of each fiber. Since the change in fiber firing rates
leads to the change in physiological variables, this aggregate effect of fiber recruitment regarding the selection
of the pulse width and the pulse frequency on the firing rates of neuronal fiber type j was described by

Af; = DS 5,00, F(PLAR(PY). (20)
=1

n <

Here, i = 1,2, ....,n is the location index, j = 1,2, 3 indicates the fiber type index, ¢; indicates an on/off of the
it" location, C}; ; represents the concentration of fiber type j at location 7. The gain of each fiber’s excitability
is represented by G, and_f; denotes the final change in the firing rate of the fibers.

Thus, Equations [L] - é, together describe the complete physiological dynamics of the in silico rat cardiac
system with the influence of VNS.

5.2 Intra-Patient Variation Cardiac Model

In [Plachta et al., 2014], the authors showed that there is a significant variation across rats in response to the
vagus nerve stimulation (VNS) parameter selection. Particularly in their study, they showed that the qualitative
response to the specific stimulation parameters on the heart rate was consistent across the animals, but there
were significant statistical variations in the quantitative responses (i.e., A 20% decrease in heart rate was
observed in one rat, while a 10% decrease in the heart rate was observed in another rat for the same stimulation
parameter selection). To demonstrate how our closed-loop VNS design can account for this subject-to-subject
variability in response to VNS, we constructed an example by modifying the in silico physiological model of the
rat cardiac system. Specifically, we modified the concentration of fiber recruitment at each VNS location (see
C in Equation (R()) from an identity matrix to:

1.1 0.1 0.2
C=1{01 08 0.0
0.2 0.2 06

Here, the row in the matrix C' represents the specific location, and the column represents the fiber type
recruited at that location. For example, row 1 in the matrix C' indicates that the VNS location 1 activates 110
% of barorecpetive fiber, 10% of sympathetic fibers, and 20% of vagal fibers compared to the baseline responses.
Note that these values were set to an identity matrix in the in silico physiological model, which says that each
location has a 100% concentration of an individual fiber type (baroreceptive, sympathetic, and vagal). Since
this modification in the in silico physiological model only affects the actuation side of the model (i.e., the VNS
effect), the model mismatch shown in Figure fj is due to the stimulation parameters exhibiting differential effects
on the physiological variables.

5.3 Overactive Sympathetic Cardiac Model

Often, throughout the progression of specific cardiovascular disease pathology, the sympathetic system becomes
overactive at the resting state [Malpas, 2010]. This hyperactivity is typically observed by a higher resting
heart rate, a higher resting blood pressure, or both, depending on the specific disease considered. Since VNS
is a therapy that targets disease pathology, we questioned if a closed-loop VNS control design could perform
through a potential mismatch in the hypothetical case of an overactive sympathetic system. To investigate
this question, we constructed a hypothetical example of an overactive sympathetic case where we modified the
parameters of the in silico physiological model of rat cardiac system to increase the influence of the sympathetic
system and decrease the influence from the parasympathetic system, consistent with disease pathology that
exhibits a reduced parasympathetic tone. We summarize the specific changes we made in the physiological
model parameters, described in Section p.1|, in Table ] .

The behavior of the in silico physiological model has changed considerably with the new parameter selection,
as demonstrated by Figure §. As expected, the physiological cardiac model with overactive sympathetic system
exhibited a higher heart rate and higher blood pressure. In addition to the changes in the model parameters
shown in Table P, we also changed the concentration of fiber recruitment at each VNS location (see C' in
Equation (@)) from an identity matrix to:
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Table 2: Description of the modified parameters in the in silico physiological model of rat cardiac system
[Yao and Kothare, 2020] to construct an overactive sympathetic case.

Parameters Description Initial Value Diseased Value Equations
R1 systemic resistance 0.01 0.007
R2 mitral valve resistance 0.0001 0.0002
R3 aortic valve resistance 0.008 0.006
C2 veneous compliance 20 25
C3 systemic compliance 1.8 14
Ein end-diastolic elastance 0.02 0.01
J - end-systolic elastance 1.2 1.1
T baseline HR, 60/450 60/480
Gr gain of systemic resistance 0.06 0.07
Grs gain of heart period from sympathetic fibers -0.01 -0.015
Gr,, gain of heart period from vagal fibers 0.015 0.011
G gain of sympathetic fibers 30 33
Gs gain of vagal fibers 30 27

1.3 0.1 0.1

C=101 14 0.1
0.1 01 1.3

By changing the actuation matrix of the model and the model parameters, we considered both the intra-patient
model mismatch and the disease model mismatch. Should a controller be deployed in the clinical setting, the
controller would likely be required to compensate for both sources of mismatch simultaneously.

5.4 LSTM Model Development

We recently developed a purely data-driven long short-term memory (LSTM) based neural network modeling ap-
proach to map the VNS parameters on the cardiac physiology. LSTM is the state-of-art in data-driven modeling
of dynamical systems and sequence based tasks [Hochreiter and Schmidhuber, 1997] demonstrated by its use for
forecasting traffic patterns [Zhao et al., 2017], natural language processing [Radford et al., 2019], handwriting
recognition [Graves et al., 2008], and speech recognition [Sak et al., 2014]. The LSTM uses a combination of a
hidden state, a cell state, and the incoming data to predict the sequential evolution of the system. The inclusion
of the cell state allows for learning of long-scale temporal dynamics, and is managed by a gating process where
incoming data with the previous hidden state is used to forget a portion of the previous information from the
cell state. Additionally, an input gate allows the relevant information from the incoming data and previous
hidden state to be stored in the cell state. The output from a LSTM is based on the updated cell state, previous
hidden state, and the incoming data.

In this work, we used a LSTM based modeling approach to predict the effect of VNS parameters on the
dynamics of the heart rate (HR) and the mean arterial blood pressure (MAP). We generated a synthetic
input-output dataset by simulating the in silico physiological rat cardiac model (Equations [L( - R(Q) for 15,198
individual trials using VNS parameters from a randomly sampled uniform distribution with a range between 0
ms and 0.5 ms for the pulse width and 0 Hz and 50 Hz for the pulse frequency. Each location was also turned
on/off by sampling from a uniform random distribution between 0 and 1. The specific location is turned off if the
selected value is 0 and turned on if the selected value is 1. An individual trial consists of 100 consecutive cardiac
cycles with constant VNS parameters. These open loop trials were then used to train the neural network using a
40% - 20% - 40% split for the training, validation, and testing sets respectively. We note that this synthetically
generated dataset represents a similar task to real data collection methods, and could be extended to an in vivo
experimental system where different experimental trials are used to generate a sweep of the VNS parameters.
In the case of data collection from the in vivo system, random sampling of VNS parameters and locations is not
required, and can be replaced with a systematic investigation of the parameter space, such that the full range
of parameters have been swept. The LSTM was trained for 250 epochs using the adaptive moment estimation
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Figure 11: Performance comparison of different trained neural network architectures based on the mean absolute
error for the same test set. (A) shows a comparison of baseline performance to a vanilla RNN, gated recurrent
unit (GRU) and LSTM. (B) Shows the a comparison of the effect of the number of LSTM layers on the model’s
predictive performance. (C) Shows a comparison of the effect of the number of inputs on the model’s predictive
performance.

(Adam) optimizer [Kingma and Ba, 2014] with a mean squared error loss function. Prior to feeding the data to
the LSTM for training, the open-loop dataset was normalized using the following equation:

T —p

Tmaz — Tmin

T = (21)
where p is the mean of the training set, &, is the minimum of the training set, and x4, is the maximum value
of the training set for each variable. Statistics from the training set are used to avoid providing any information
about the validation or test datasets to the trained network, as this is a standard practice in the machine
learning community. As a note, since the LSTM was trained in the normalized space, all control applications
required incoming data for predictions to be normalized, and the controller actions to be un-normalized before
applying to the physiological model during closed-loop operation.

To compare different trained architectures, the test set of data was used in such a way that the trained
network was required to recursively predict 99 consecutive cardiac cycles (1 trial) for both HR and MAP. A
baseline model that predicted no change in the initial value for all 99 cycles was used to provide context to the
normalized mean absolute error (MAE) and emphasize a trained network’s ability to learn the dynamics. These
results are summarized in Figure [L1|, with different recurrent networks (GRU is a gated recurrent unit) shown
in Figure LA, the influence of number of LSTM layers on_predictive performance is shown in Figure @B, and
the influence of LSTM input neuron size shown in Figure [L1C.

To conclude the study of several different neural network architectures, the best trained model resulted in
a LSTM with a single layer, hidden dimensionality of 10, and a hyperbolic tangent (tanh) activation function.
The output from this LSTM was fed to a dense layer with dimensionality of two, and tanh activation function.
The performance of this LSTM is highlighted by a normalized mean absolute_error of 0.0072 on the test set.
A prediction from the LSTM for time varying VNS inputs is shown in Figure m The LSTM model reasonably
predicts the output from the full physiological model, and is capable of mapping VNS parameters to the effect
on the cardiac variables of heart rate and mean arterial blood pressure.

5.5 Simulation Environment and Relevant Software Packages

Throughout this work, we used MATLAB (version R2019b) to simulate the physiological model of rat cardiac
system. The LSTM model was developed in Python (version 3.7) using TensorFlow2. The controller was syn-
thesized in Python (version 3.7) and the formulated optimization problems were solved using the sequential least
squares programming (SLSQP) algorithm in Scipy (version 1.6). The closed-loop simulations were performed
through the interaction of Python with MATLAB. For the healthy cases, the optimization solver’s tolerance was
set to 10e — 5 and the maximum number of iterations was set to 50. While, for the intra-patient and diseased
cases, the solver’s tolerance was set to 10e — 4 and the maximum number of iterations was set to 500 (although
the algorithm converged in less than 50 iterations in our simulations).
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