

1 **The multi-BRCT domain protein DDRM2 is required for homologous
2 recombination in plants**

3 **Lili Wang^{1,2,*}, Chen Yu^{1,2,*}, Longhui Hou^{1,2}, Yongchi Huang^{1,2}, Xiaoyu
4 Cui^{1,2}, Shijun Xu^{1,2}, Shunping Yan^{1,2,#}**

5 ¹ Hubei Hongshan Laboratory, Wuhan, 430070, China

6 ² College of Life Science and Technology, Huazhong Agricultural University,
7 Wuhan, Hubei 430070, China

8 * These authors contributed equally to this work.

9 # Author for correspondence: Shunping Yan (spyan@mail.hzau.edu.cn)

10

11 **Short title:** DDRM2 is required for homologous recombination

12

13 **One Sentence Summary:**

14 A genetic screen in *Arabidopsis* reveals that the multi-BRCT domain protein
15 DDRM2 is required for homologous recombination and is targeted by the
16 master DNA damage response regulator SOG1.

17

18

19 **Abstract**

20 DNA double-strand breaks (DSBs) are the most toxic DNA damage for cells.
21 Homologous recombination (HR) is a precise DSB repair mechanism as well
22 as a basis for gene targeting using genome-editing techniques. Despite the
23 importance of HR, the HR mechanism in plants is poorly understood. In a
24 genetic screen for DNA Damage Response Mutants (DDRMs), we find that the
25 *Arabidopsis ddrm2* mutant is hypersensitive to DSB-inducing reagents. *DDRM2*
26 encodes a protein with four BRCA1 C-terminal (BRCT) domains and is highly
27 conserved in plants including the earliest land plant lineage, bryophytes. The
28 plant-specific transcription factor *SOG1* binds to the promoter of *DDRM2* and
29 activates its expression, suggesting that *DDRM2* is a direct target of *SOG1*. In
30 consistence, the expression of *DDRM2* is induced by DSBs in a *SOG1*-
31 dependent manner. Epistasis analysis indicates that *DDRM2* functions
32 downstream of *SOG1*. Similar to the *sog1* mutant, the *ddrm2* mutant shows
33 dramatically reduced HR efficiency. Our study suggests that the *SOG1-DDRM2*
34 module is required for HR, providing new insights into the HR mechanisms in
35 plants and a potential target for improving the efficiency of gene targeting.

36
37
38 **Keywords:** DNA double-strand breaks, homologous recombination, BRCT
39 domain, *SOG1*, *Arabidopsis*

40

41 **Introduction**

42 Genome integrity is crucial for the survival of organisms. But genome is
43 constantly challenged by genotoxic insults arising from both exogenous factors
44 (i.e. UV and ionizing radiation) and endogenous factors (i.e. reactive oxygen
45 species and DNA replication errors), leading to various types of DNA lesions.
46 Among them, DNA double-strand breaks (DSBs) are one of the most cytotoxic
47 forms, which, if unrepaired properly, can result in tumorigenesis, premature
48 aging, or cell death (Ciccia and Elledge, 2010). To deal with this, all organisms
49 have evolved complex but elaborate DSB repair mechanisms. Homologous
50 recombination (HR) and non-homologous end-joining (NHEJ) are the two major
51 DSB repair pathways. NHEJ is error-prone and functions throughout all the cell
52 cycle phases. HR is error-free, mainly occurs in the late S and G2 phases (Her
53 and Bunting, 2018). Accumulating evidence suggests that NHEJ and HR
54 compete to repair DSBs (Willis et al., 2018). HR is also a basis of gene targeting
55 using genome-editing tools such as CRISPR/CAS technology (Chen et al.,
56 2019). Due to the low efficiency of HR, it is still a challenge to perform gene
57 targeting in plants (Wolter and Puchta, 2019). There is a great need to improve
58 HR efficiency so as to improve gene targeting efficiency. Therefore, studying
59 the HR mechanism is of both scientific importance and potential implication.

60 The HR pathway was well-studied in animals. HR is initiated by the
61 recognition of DSBs by the MRE11/RAD50/NBS1 (MRN) complex, which then
62 recruits the protein kinase Ataxia-telangiectasia mutated (ATM). ATM can
63 phosphorylate H2AX, forming an anchor for DNA damage-checkpoint 1 (MDC1),
64 which is also phosphorylated by ATM. Then, MDC1 recruits the ubiquitin E3
65 ligase RING finger protein 8 (RNF8) to mediate the polyubiquitination of histone
66 H1, which further recruits RNF168 to DSB sites (Mailand et al., 2007). RNF168
67 ubiquitinates histone H2A to provide a docking site for RAP80 and BRCA1(Doil
68 et al., 2009). BRCA1 then promotes MRN, CtIP, EXO1, and BLM/DNA2 for DNA
69 end resection, producing 3' single-stranded DNA (ssDNA) overhang, which is

70 protected by RPA proteins. With the help of BRCA2 and other proteins, RPA is
71 replaced by recombinase RAD51 and forms a RAD51 nucleoprotein filament,
72 which performs homologous DNA searching and strand invasion (San Filippo
73 et al., 2008). Recently, it was reported that 53BP1, RIF1, PTIP, and the Shieldin
74 complex inhibit HR and promote NHEJ through protecting DNA end from long-
75 range resection (Noordermeer et al., 2018; Callen et al., 2020). Plants encode
76 the orthologs of ATM, MRN, H2AX, RPA, RAD51, BRCA1, and BRCA2, but lack
77 many other orthologs including MDC1, RNF8, RNF168, 53BP1, RIF1, and
78 Shieldin components. Therefore, it remains largely unknown how plants control
79 HR in plants.

80 Suppressor of Gamma Response1 (SOG1) is a plant-specific transcription
81 factor and was considered as the functional homolog of p53, a master DNA
82 damage response (DDR) regulator in animals (Yoshiyama et al., 2014). SOG1
83 plays a crucial role in the transcriptional regulation of DDR genes involved in
84 cell cycle checkpoints, programmed cell death (PCD), and DNA repair
85 (Bourbousse et al., 2018; Ogita et al., 2018). It was shown that SOG1 is
86 required for HR because the HR efficiency in the *sog1* mutant is dramatically
87 reduced compared to wildtype (WT) *Arabidopsis* (Takahashi et al., 2019).

88 In this study, we performed a genetic screen for DNA Damage Response
89 Mutants (DDRMs) in *Arabidopsis* and found that the *ddrm2* mutant is defective
90 in HR. DDRM2 contains four BRCT domains and its biological function is not
91 characterized previously in plants. DSBs induce the expression of *DDRM2* in a
92 SOG1-dependent manner. Consistently, SOG1 binds to the promoter of
93 *DDRM2* and activates its expression. Our study suggests that the SOG1-
94 DDRM2 module is required for HR in plants.

95

96 **Results**

97 ***DDRM2* is required for DSB repair**

98 To identify new regulators of DSB repair, we performed a forward genetic
99 screen for *ddrm* mutants using camptothecin (CPT), a topoisomerase I inhibitor

100 that can cause DSBs. The WT *Arabidopsis* seeds were mutagenized with ethyl
101 methanesulfonate (EMS) and the M2 seeds were grown vertically on medium
102 containing CPT for 8 days. The plants with shorter or longer roots than WT were
103 considered as *ddrms*. The *atm* mutant was reported to be hypersensitive to the
104 DSB-inducing reagents (Culligan et al., 2006) and thus was used as a positive
105 control. Here we show one of the *ddrm* mutants, *ddrm2-1*. As shown in Figure
106 1A and 1B, the root length of the *ddrm2-1* mutant was comparable to that of WT
107 and *atm* in absence of CPT. However, the *ddrm2-1* and *atm* mutants showed
108 much shorter roots than that of WT in the presence of CPT, suggesting that the
109 *ddrm2-1* mutant was hypersensitive to CPT. To test whether the *ddrm2-1*
110 mutant responds to other DNA-damaging reagents, we treated the *ddrm2-1*
111 with another DSB-inducing reagent belomycin (BLM) and replication-blocking
112 reagent hydroxyurea (HU). Previous studies suggested that the *atr* mutant was
113 hypersensitive to HU (Culligan et al., 2004) and was used as a positive control.
114 Similar to the case of CPT treatment, the root length of *ddrm2-1* was much
115 shorter than that of WT upon BLM treatment (Supplemental Figure S1A and
116 S1B), indicating that *ddrm2-1* was also hypersensitive to BLM. However, the
117 root length of the *ddrm2-1* mutant was similar to WT upon HU treatment
118 (Supplemental Figure S1C and S1D), suggesting that DDRM2 is not involved
119 in replication stress response. These results suggest that DDRM2 specifically
120 participates in DSB repair.

121 To clone *DDRM2*, we used the MutMap strategy (Abe et al., 2012). The
122 *ddrm2-1* mutant was backcrossed to WT. The F2 seedlings were grown
123 vertically on the CPT-containing medium, the plants with shorter roots were
124 sampled as the mutant pool and the plants with longer roots were sampled as
125 the WT pool. The DNA from both the mutant pool and the WT pool was
126 sequenced using the next-generation sequencing technology. The data were
127 analyzed using SIMPLE pipeline (Wachsman et al., 2017), which revealed four
128 candidate genes (Supplemental Table S1). Among them, AT4G02110 encodes

129 a protein with four BRCA1 C-terminal (BRCT) domains. Because many BRCT-
130 domain proteins are involved in DDR (Leung and Glover, 2011), we chose
131 AT4G02110 for further analysis. Firstly, we tested the phenotypes of *ddrm2-2*,
132 another T-DNA insertion mutant of AT4G02110. We found that the *ddrm2-2*
133 mutant was similar to *ddrm2-1* in responses to CPT, BLM, and HU (Figure 1D,
134 1E, and Supplemental Figure S1A-S1D). Secondly, the reciprocal crosses
135 between *ddrm2-1* and *ddrm2-2* were performed. All the resulting F₁ seedlings
136 (1F1, 2F1) were hypersensitive to CPT (Figure 1D and 1E), suggesting that
137 *ddrm2-1* and *ddrm2-2* are allelic. Thirdly, we carried out the complementation
138 test by transforming the CDS of *DDRM2* driven by the CaMV 35S promoter into
139 the *ddrm2-1* mutant. The resulting transgenic lines (COM) displayed WT-like
140 response to CPT (Figure 1F and 1G), suggesting that *DDRM2* can complement
141 *ddrm2-1*. These results revealed that AT4G02110 is the *DDRM2* gene.

142

143 **DDRM2 is a BRCT-containing protein and is induced by DSB-inducing
144 reagents**

145 *DDRM2* consists of 1329 amino acids with four BRCT domains: BRCT1 (9-87
146 aa) and BRCT2 (105-194 aa) at the N-terminus, BRCT3 (1087-1181 aa), and
147 BRCT4 (1209-1296 aa) at the C-terminus. The orthologs of *DDRM2* could be
148 identified in all plant species including *Physcomitrium patens* and *Marchantia
149 polymorpha*, two representatives of the earliest land plant lineage bryophytes
150 (Figure 2A), suggesting that *DDRM2* is a evolutionarily ancient protein.
151 Sequence alignment revealed that the four BRCT domains are highly
152 conserved but the region between BRCT2 and BRCT3 is highly variable.
153 Moreover, the mutation site (R1201W) in *ddrm2-1* is also highly conserved
154 (Supplemental Figure S2). *DDRM2* is annotated as a transcription coactivator
155 by TAIR (<https://www.arabidopsis.org>). However, to our knowledge, its
156 molecular and biological functions have not been characterized.

157 *DDRM2* was predicted to localize in the nucleus by WoLF PSORT

158 (<https://wolfsort.hgc.jp/>). To confirm this, the DDRM2-GFP fusion driven by the
159 CaMV 35S promoter was transformed into *ddrm2-1*. The resulting transgenic
160 plants were similar to WT upon CPT treatment (Supplemental Figure S3),
161 suggesting that DDRM2-GFP is biologically active. DDRM2-GFP was detected
162 both in the nucleus and cytoplasm through confocal microscopy analysis
163 (Figure 2B).

164 To test the expression patterns of *DDRM2*, the *GUS* gene driven by *DDRM2*
165 native promoter (*proDDRM2:GUS*) was transformed into WT plants. Among 16
166 transgenic lines, 15 of them showed a similar expression pattern. As shown in
167 Figure 2C, the expression of *DDRM2* was highest in hypocotyls in the 6-day-
168 old seedlings. It can also express in cotyledons and roots, especially in the
169 vascular tissues. To our surprise, *DDRM2* was weakly expressed in the root
170 meristem, where many genes involved in DNA repair are highly expressed. This
171 result suggested that *DDRM2* may be induced upon DNA damage treatment.
172 Indeed, the expression of *DDRM2* in the root tips was dramatically enhanced
173 after CPT treatment (Figure 2D). This result was confirmed through quantitative
174 reverse transcription-PCR assay (qRT-PCR) (Figure 3A).

175

176 ***DDRM2* is a target gene of SOG1**

177 It has been shown that the plant-specific transcription factor SOG1 plays a
178 central role in the transcriptional regulation of DNA repair genes (Bourbousse
179 et al., 2018; Ogita et al., 2018). To test whether the DSB-induced expression of
180 *DDRM2* is dependent on SOG1, we examined the *DDRM2* expression levels in
181 the *sog1-1* mutant through qRT-PCR analyses. As expected,, we found that the
182 induced expression of *DDRM2* was abolished in the *sog1-1* mutant (Figure 3A).
183 Precious high-throughput studies suggested that *DDRM2* is a target gene of
184 SOG1 (Bourbousse et al., 2018; Ogita et al., 2018). To further confirm this, we
185 performed the Chromatin Immunoprecipitation-qPCR (ChIP-qPCR) assays
186 using the transgenic plants expressing SOG1-HA driven by the CaMV 35S

187 promoter. The well-known SOG1 target gene *BRCA1* was used as a positive
188 control. Indeed, the promoter regions of both *DDRM2* and *BRCA1* were
189 significantly enriched in the SOG1-HA transgenic plants compared with WT
190 (Figure 3B). To test whether SOG1 binds the promoter of *DDRM2* directly, we
191 performed yeast-one-hybrid (Y1H) assays. The promoter of *DDRM2* (1000 bp
192 upstream of the start codon) was cloned into *pHis2* vector and SOG1 was
193 cloned into *pGADT7* (AD) vector. As shown in Figure 3C, compared with the
194 negative controls, the yeasts expressing SOG1-AD could grow on the selective
195 medium (TDO+3AT), suggesting that SOG1 can directly bind to the promoter
196 of *DDRM2*. To examine whether SOG1 activates *DDRM2*, the dual-luciferase
197 assays were performed in Arabidopsis protoplasts. The reporter vector contains
198 a firefly luciferase (LUC) gene driven by the *DDRM2* promoter and a renilla
199 luciferase (REN) gene driven by the CaMV 35S promoter. The effector vector
200 encodes SOG1 driven by the CaMV 35S promoter (Figure 3D). As shown in
201 Figure 3E, the expression ratio of LUC and REN was significantly higher when
202 SOG1 was expressed compared with the empty vector (EV) control. These
203 results strongly suggested that SOG1 can directly bind to the promoter of
204 *DDRM2* and activate its expression, indicating that *DDRM2* is a target gene of
205 SOG1.

206 The *sog1* mutant was more resistant to BLM than WT (Yoshiyama *et al.*, 2017)
207 and *ddrm2* was more sensitive to BLM than WT (Supplemental Figure S1),
208 which allowed us to perform epistasis analysis. We generated the *ddrm2-2*
209 *sog1-2* mutant through genetic crossing. As shown in Figure 3F and 3G, the
210 sensitivity of the *ddrm2-2 sog1-2* double mutant to BLM was similar to that of
211 *ddrm2-2*, indicating that *DDRM2* functions downstream of SOG1.

212

213 **DDRM2 is required for HR**

214 It was shown that the HR efficiency in the *sog1* mutant was reduced compared
215 with WT (Takahashi *et al.*, 2019). Since *DDRM2* functions downstream of SOG1,

216 it is likely that DDRM2 is also involved in HR. To test this, we compared the HR
217 efficiency of *ddrm2-2* and WT using a well-established HR reporter system
218 IU.GUS (Roth et al., 2012). The reporter (R) line harbors an *I-SceI* restriction
219 site within the two non-functional β -glucuronidase (GUS) fragments and a
220 nearby donor sequence (U) in inverted orientation. The trigger (T) line
221 expresses the endonuclease *I-SceI*. In the crossed (RxT) line, DSBs are
222 generated at the *I-SceI* site and HR-mediated DSB repair will reconstitute a
223 functional GUS gene, resulting in blue sectors after GUS staining (Figure 4A).
224 As shown in Figure 4B and 4C, the HR efficiency in the *ddrm2-2* mutant was
225 reduced to 40% of that in WT, indicating that DDRM2 is required for HR.

226

227 **Discussion**

228 Repair of DSBs is critical for cell survival. To date, numerous proteins involved
229 in DSB repair have been identified both in animals and yeasts (Gupta et al.,
230 2018). However, many of them could not be identified in plants (Hu et al., 2016).
231 Therefore, how plants repair DSBs remains elusive. In this study, we found that
232 DDRM2 is an essential regulator of HR. DDRM2 is targeted by the plant-specific
233 protein SOG1 (Figure 3), which is a master regulator of plant DDR. In a recent
234 study, we demonstrated that a plant-specific E3 ubiquitin ligase DDRM1
235 ubiquitinates and stabilizes SOG1 to regulate HR (Wang et al., 2022). Therefore,
236 DDRM1, SOG1, and DDRM2 function in the same pathway to regulate HR, with
237 DDRM1 upstream of SOG1 and DDRM2 downstream of SOG1. Our study
238 provides not only new insights into HR mechanisms but also potential targets
239 for improving the efficiency of gene targeting.

240 BRCT domain is originally identified in tumor suppressor BRCA1 and is
241 considered as a protein interaction domain. Recent studies suggest that BRCT
242 domain can not only recognize phosphorylated peptides, but also mediate the
243 interactions with the non-phosphorylated protein, DNA, and poly (ADP-ribose)
244 (Leung and Glover, 2011). In animals and yeasts, BRCT domain is present in
245 many DDR proteins such as 53BP1, MDC1, BRAD1, PARP1, XRCC1, LIG4,

246 TOPBP1, and PTIP (Zhang et al., 2005; Singh et al., 2008). These proteins
247 contain various number of BRCT domains or contain other protein domains. A
248 previous bioinformatics study suggested that DDRM2 and MEI1, which
249 contains five BRCT domains, are two homologs of human HsTOPBP1 (Shultz
250 et al., 2007). HsTOPBP1 contains nine BRCT domains and plays essential
251 roles in DNA replication (Kumagai et al., 2010) and replication stress responses
252 (Bigot et al., 2019). However, the *ddrm2* mutants grow normally and are not
253 sensitive to HU-induced replication stress (Figure 1 and Supplemental Figure
254 S1), suggesting that DDRM2 is divergent from HsTOPBP1.

255 Although our data clearly showed that DDRM2 is required for HR (Figure 4),
256 how it regulate HR remain to be further elucidated. Given that DDRM2 contain
257 four BRCT domains, it is likely that DDRM2 functions in HR by interacting with
258 other proteins. Therefore, one of the future direction is to identify DDRM2-
259 interacting proteins. Since DDRM2 is highly conserved in plants, it will also be
260 interesting to test whether the DDRM2 homologues from other plant species,
261 especially crops, are essential for HR.

262

263 **Materials and Methods**

264 **Plants materials and growth conditions**

265 *Arabidopsis thaliana* mutants used in this study are in the Columbia (Col-0)
266 background. The *ddrm2-2* (SALK_051265), *atm* (SALK_006953), *ku70*
267 (SALK_123114C), *sog1-2* (GK-143A02), *rad51* (GABI_134A01), *brca1*
268 (SALK_014731), and *atr* mutant (SALK_032841) mutants were obtained from
269 Arabidopsis Biological Resource Center (ABRC). The *sog1-1* mutant was
270 described previously (Yoshiyama et al., 2009). Seeds were sterilized with 2%
271 PPM (Plant Cell Technology), stratified at 4 °C in the dark for 2 days, and then
272 plated on 1/2 Murashige and Skoog (MS) medium containing 1% (w/v) sucrose
273 and 0.4% (w/v) phytagel. The plants were grown under long-day conditions (16
274 h of light and 8 h of dark) at 22°C in a growth chamber.

275 **Genetic screen for *ddrm***

276 The Col-0 seeds were mutagenized with 0.2% ethyl methanesulfonate (EMS)
277 and grown in soil to produce M2 seeds. M2 seeds were grown vertically on 1/2
278 MS medium containing 15 nM CPT for 8 days. The plants with longer or shorter
279 roots than WT were considered to be *ddrms*.

280

281 **Cloning of *DDRM2***

282 To clone *DDRM2*, the *ddrm2-1* mutant was crossed with WT. The F2 seedlings
283 were grown vertically on the CPT-containing medium. The plants with shorter
284 root were considered as the mutant pool and the plants with longer roots were
285 considered as the WT pool. These plants were transferred into the soil and
286 grown for two weeks. The leaf discs were separately pooled for genomic DNA
287 extraction. The DNA from both WT and mutant pools were subjected to next-
288 generation sequencing (NGS) by Novogene. The sequence data were analyzed
289 using SIMPLE pipeline to obtain candidate genes (Wachsman et al., 2017).

290

291 **Phylogenetic tree analyses**

292 Alignment of protein sequences was performed with ClustalX (gap open penalty:
293 10; gap extension penalty: 0.1; protein weight matrix: BLOSUM). The
294 phylogenetic analysis was performed with MEGA6 (Tamura et al., 2013).
295 Evolutionary relationships were deduced using the Neighbour-Joining method
296 with bootstrap values (1,000 replicates). Evolutionary distances were computed
297 with the Jones-Taylor-Thornton model with default values (rate among sites:
298 uniform rates; gap/missing data treatment: complete deletion; ML heuristic
299 method: NNI).

300

301 **Plasmid Construction**

302 All the vectors used in this study were constructed using a Lighting Cloning
303 system (Biodragon Immunotechnology, China). For complementation assay,

304 CDS of *DDRM2* was amplified and cloned into *pCAMBIA1301* vector. For
305 subcellular localization assay, CDS of *DDRM2* was cloned into modified
306 *pFGC5941* vector with a GFP tag under the control of CaMV 35S promoter. For
307 GUS staining, the *DDRM2* promoter (2,000 bp upstream of start codon ATG)
308 was cloned into *pCAMBIA2300-YG* vector. Primers used for the construction of
309 vectors were listed in Supplemental Table S2.

310

311 **Subcellular localization**

312 The roots of 35S: *DDRM2*-GFP/*ddrm2-1* transgenic seedlings were stained
313 with propidium iodide (PI), and the PI and GFP fluorescence signals were
314 observed using confocal microscopy (Leica TCS SP8, Germany).

315

316 **GUS staining**

317 The seedlings were incubated in GUS staining solution (100 mmol/L sodium
318 phosphate buffer pH 7.0, 0.1% Triton X-100, 0.5 mmol/L potassium
319 ferrocyanide, 0.5 mmol/L potassium ferricyanide, and 0.5 mmol/L X-Gluc) in the
320 dark at 37°C for 12 hours. After that, the samples were washed several times
321 with 70% ethanol and observed under a light microscope (Nikon SMZ1000,
322 Japan).

323

324 **Quantitative RT-PCR**

325 Total RNA was extracted using TRIzol Reagent (Invitrogen, USA). The reverse-
326 transcription reaction was performed using HiScript III 1st Strand cDNA
327 Synthesis Kit (+gDNA wiper) according to the manufacturer's protocol (Vazyme,
328 China). The quantitative PCR assays were performed on the CFX ConnecTM
329 Real-Time PCR Detection System (Bio-Rad, USA) using ChamQ Universal
330 SYBR qPCR Master Mix (Vazyme, China). The *ubiquitin 5 (UBQ5)* was used
331 as a reference gene. The relative expression level was calculated by the $2^{-\Delta\Delta CT}$
332 method.

333

334 **Yeast one-hybrid**

335 Yeast one-hybrid assays were performed using the Matchmaker Yeast One-
336 Hybrid System (Clontech). The DNA fragment 1,000 bp upstream of the start
337 codon ATG of *DDRM2* was cloned into *pHis2.1* vector and *SOG1* was cloned
338 into the *pGADT7* vector. They were co-transformed into the yeast strain Y187.
339 Growth performances of the transformants on the SD/-Leu/-Trp and SD/-Leu/-
340 Trp/-His media containing 3-aminotriazole (3-AT) were observed to evaluate the
341 DNA– protein interactions.

342

343 **ChIP-qPCR**

344 ChIP assays were performed as described previously with some modifications
345 (Zhao et al., 2020). Briefly, 0.5 g of 10-day-old 35S:*SOG1-HA* transgenic
346 seedlings grown on MS plates were cross-linked under vacuum with 1%
347 formaldehyde for 15 min at room temperature. The crosslinking reaction was
348 stopped by adding glycine to a final concentration of 0.2 M. The seedlings were
349 washed with ice-cold water and then ground in liquid nitrogen. The fine powder
350 was lysed in 750 μ l of Buffer S (50 mM HEPES-KOH pH7.5, 150 mM NaCl, 1
351 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 1% SDS) for 10 min
352 at 4°C. The homogenate was mixed with 3.75 ml of Buffer F (50 mM HEPES-
353 KOH pH7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium
354 deoxycholate), and then the mixture was sonicated to shear DNA into 250 to
355 600 bp fragments using Bioruptor Plus sonication system (Diagenode, Belgium).
356 The lysates were centrifuged at 20,000 \times g for 10 min at 4°C, and the
357 supernatant was transferred to a new tube containing protein G beads. Then
358 the precleared chromatin was incubated with the anti-HA antibody/protein G
359 beads complexes overnight at 4°C. The immunoprecipitated chromatin was
360 washed subsequently with low-salt ChIP buffer (50 mM HEPES-KOH, 150 mM
361 NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS),

362 high-salt ChIP buffer (low-salt ChIP buffer replaced 150 mM NaCl with 350 mM
363 NaCl), ChIP wash buffer (10 mM Tris-HCl pH 8.0, 250mM LiCl, 0.5% NP-40, 1
364 mM EDTA, 0.1% sodium deoxycholate), and TE buffer. The protein-DNA
365 complexes were eluted from beads by adding 100 μ l of freshly prepared ChIP
366 Elution buffer for 15 min at 65 °C. The purified DNA samples were subjected to
367 qPCR analysis.

368

369 **Dual-luciferase assay**

370 The dual-luciferase assays were performed as described previously (Wang et
371 al., 2018). The DNA fragment 1000 bp upstream of the start code ATG of
372 *DDRM2* was cloned into *pGreenII 0800-LUC* reporter vectors as a
373 transcriptional fusion with the firefly luciferase (LUC). In the same vector, the
374 renilla luciferase (REN) reporter gene driven by the CaMV 35S promoter was
375 used as an internal standard in each transformation. SOG1 was cloned to the
376 effector vector *pFGC5941* driven by the CaMV 35S promoter. The reporter and
377 effector constructs were co-expressed in *Arabidopsis* protoplasts. The
378 luciferase activities were measured on the Mithras LB 940 multimode
379 microplate reader (BERTHOLD technologies, Germany) using Dual-Luciferase
380 Reporter Assay System (Promega, USA).

381

382 **HR efficiency assay**

383 The HR efficiency assay was performed as described previously (Roth et al.,
384 2012). The IU.GUS reporter (R) line and the DSB-triggering (T) line were
385 introduced into *ddrm2-2* background. The progenies of RxT crossed plants
386 were then used for GUS staining.

387

388 **Supplemental data**

389 **Supplemental Figure S1.** The *ddrm2* mutants are hypersensitive to BLM, but
390 not HU (Supports Figure 1).

391 **Supplemental Figure S2.** The sequence alignment of DDRM2 and its
392 orthologs in other plant species (Supports Figure 2).

393 **Supplemental Figure S3.** DDRM2-GFP fusion protein driven by the CaMV 35S
394 promoter can rescue *ddrm2-1* (Supports Figure 2).

395 **Supplemental Table S1.** Candidate genes revealed by SIMPLE analysis.

396 **Supplemental Table S2.** Primers used in this study.

397

398 **Acknowledgments**

399 We thank Prof. Yijun Qi for gifting the HR reporter system. The work was
400 supported by the National Natural Science Foundation of China (32070312,
401 31970311, 31800216), Thousand Talents Plan of China-Young Professionals,
402 Huazhong Agricultural University Scientific & Technological Self-innovation
403 Foundation (2014RC004).

404

405 **Author contributions**

406 S.Y. designed the research, L.W., C.Y., L.H., Y.H., X.C., and S.X. performed
407 experiments and analyzed data, L.W. and S.Y. wrote the manuscript.

408

409 **References**

- 410 1. **Abe A, Kosugi S, Yoshida KK, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida KK, Mitsuoka C, Tamiru M, et al** (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol **30**: 174–178
- 414 2. **Bigot N, Day M, Baldock RA, Watts FZ, Oliver AW, Pearl LH** (2019) Phosphorylation-mediated interactions with TOPBP1 couple 53BP1 and 9-1-1 to control the G1 DNA damage checkpoint. eLife **8**: e44353
- 417 3. **Bourbousse C, Vigesna N, Law JA** (2018) SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis. Proc Natl Acad Sci USA **115**: E12453–E12462

420 4. **Callen E, Zong D, Wu W, Wong N, Stanlie A, Ishikawa M, Pavani R, Dumitrac**he LC, Byrum AK, Mendez-Dorantes C, et al (2020) 53BP1
421 enforces distinct pre- and post-resection blocks on homologous
422 recombination. *Mol Cell* **77**: 26–38

423

424 5. **Ceccaldi R, Rondinelli B, D'Andrea AD** (2016) Repair pathway choices
425 and consequences at the double-strand break. *Trends Cell Biol* **26**: 52–64

426 6. **Chen K, Wang Y, Zhang R, Zhang H, Gao C** (2019) CRISPR/Cas
427 genome editing and precision plant breeding in agriculture. *Annu Rev Plant
428 Biol* **70**: 667–697

429 7. **Ciccia A, Elledge SJ** (2010) The DNA damage response: Making it safe
430 to play with knives. *Mol Cell* **40**: 179–204

431 8. **Culligan KM, Robertson CE, Foreman J, Doerner P, Britt AB, Road M**
432 (2006) ATR and ATM play both distinct and additive roles in response to
433 ionizing radiation. *Plant J* **48**: 947–961

434 9. **Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok
435 R, Ellenberg J, Panier S, Durocher D, Bartek J, et al** (2009) RNF168
436 binds and amplifies ubiquitin conjugates on damaged chromosomes to
437 allow accumulation of repair proteins. *Cell* **136**: 435–446

438 10. **Hu Z, Cools T, De Veylder L** (2016) Mechanisms used by plants to cope
439 with DNA damage. *Annu Rev Plant Biol* **67**: 439–462

440 11. **Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG** (2010) Treslin
441 collaborates with TopBP1 in triggering the initiation of DNA replication. *Cell*
442 **140**: 349–359

443 12. **Leung CCY, Glover JNM** (2011) BRCT domains: Easy as one, two, three.
444 *Cell Cycle* **10**: 2461–2470

445 13. **Mailand N, Bekker-Jensen S, Fastrup H, Melander F, Bartek J, Lukas
446 C, Lukas J** (2007) RNF8 ubiquitylates histones at DNA double-strand
447 breaks and promotes assembly of repair proteins. *Cell* **131**: 887–900

448 14. **Noordermeer SM, Adam S, Setiaputra D, Barazas M, Pettitt SJ, Ling**

449 **AK, Olivieri M, Álvarez-Quilón A, Moatti N, Zimmermann M, et al** (2018)
450 The shieldin complex mediates 53BP1-dependent DNA repair. *Nature* **560**:
451 117–121

452 15. **Ogita N, Okushima Y, Tokizawa M, Yamamoto YY, Tanaka M, Seki M, Makita Y, Matsui M, Okamoto-Yoshiyama K, Sakamoto T, et al** (2018)
453 Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1,
454 a master transcription factor controlling DNA damage response in
455 Arabidopsis. *Plant J* **94**: 439–453

456 16. **Roth N, Klimesch J, Dukowic-Schulze S, Pacher M, Mannuss A, Puchta H** (2012) The requirement for recombination factors differs
457 considerably between different pathways of homologous double-strand
458 break repair in somatic plant cells. *Plant J* **72**: 781–790

459 17. **San Filippo J, Sung P, Klein H** (2008) Mechanism of eukaryotic
460 homologous recombination. *Annu Rev Biochem* **77**: 229–257

461 18. **Shultz RW, Tatineni VM, Hanley-Bowdoin L, Thompson WF** (2007)
462 Genome-wide analysis of the core DNA replication machinery in the higher
463 plants Arabidopsis and rice. *Plant Physiol* **144**: 1697–1714

464 19. **Singh SK, Choudhury SR, Roy S, Sengupta DN** (2008) Sequential,
465 structural, and phylogenetic study of brct module in plants. *J Biomol Struct
466 Dyn* **26**: 235–245

467 20. **Takahashi N, Ogita N, Takahashi T, Taniguchi S, Tanaka M, Seki M, Umeda M** (2019) A regulatory module controlling stress-induced cell cycle
468 arrest in Arabidopsis. *eLife* **8**: e43944

469 21. **Tamura K, Stecher G, Peterson D, Filipski A, Kumar S** (2013) MEGA6:
470 Molecular evolutionary genetics analysis version 6.0. *Mol Biol Evol* **30**:
471 2725–2729

472 22. **Wachsman G, Modliszewski JL, Valdes M, Benfey PN** (2017) A SIMPLE
473 Pipeline for Mapping Point Mutations. *Plant Physiol* **174**: 1307–1313

474 23. **Wang L, Chen H, Wang C, Hu Z, Yan S** (2018) Negative regulator of E2F

478 transcription factors links cell cycle checkpoint and DNA damage repair.

479 *Proc Natl Acad Sci USA* **115**: E3837–E3845

480 24. **Wang X, Wang L, Huang Y, Deng Z, Li C, Zhang J, Zheng M, Yan S**
481 (2022) A plant-specific module for homologous recombination repair. *Proc*
482 *Natl Acad Sci USA* **119**: e2202970119

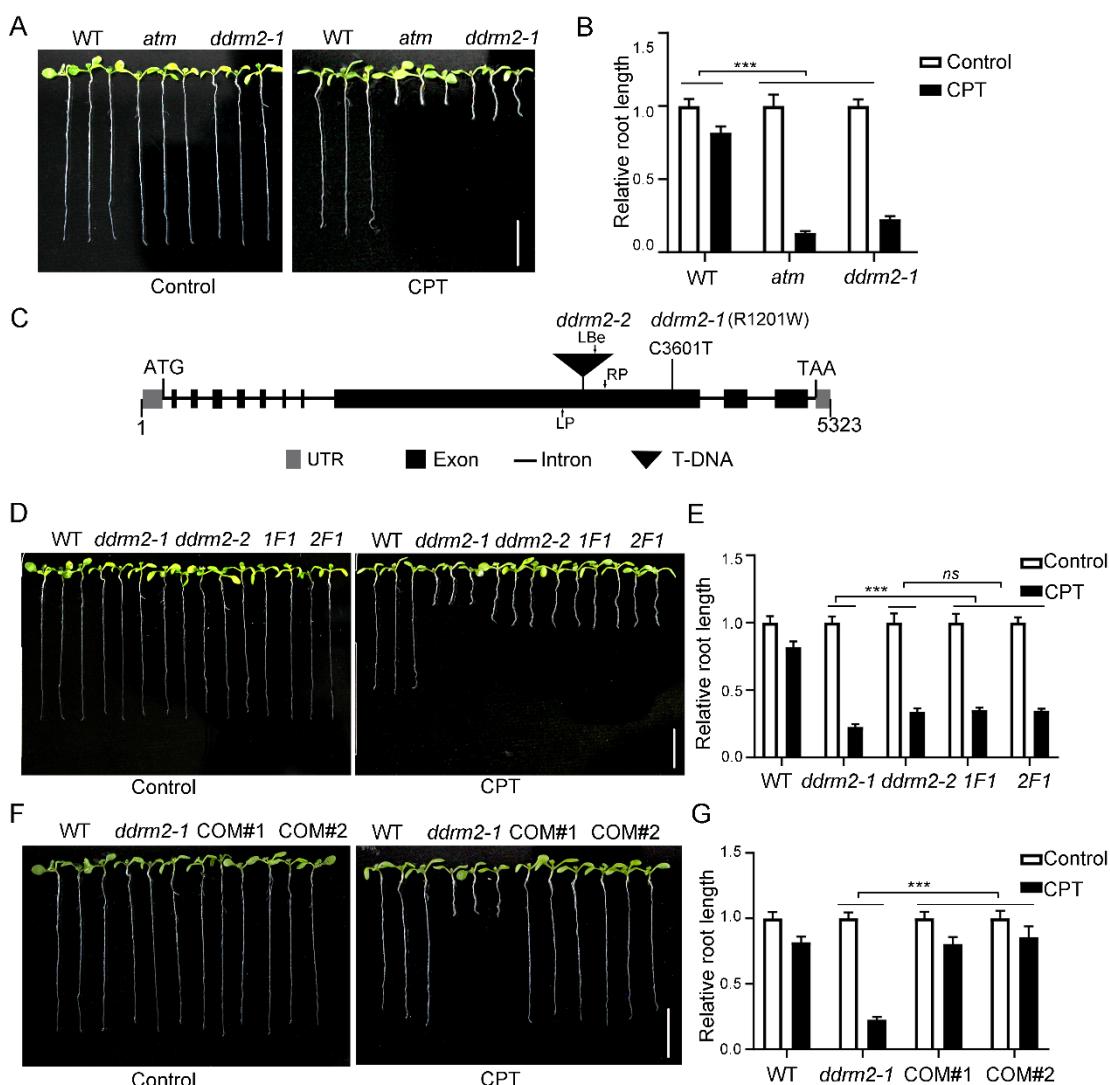
483 25. **Willis NA, Panday A, Duffey EE, Scully R** (2018) Rad51 recruitment and
484 exclusion of non-homologous end joining during homologous
485 recombination at a Tus/Ter mammalian replication fork barrier. *PLOS*
486 *Genet* **14**: e1007486

487 26. **Wolter F, Puchta H** (2019) In planta gene targeting can be enhanced by
488 the use of CRISPR/Cas12a. *Plant J* **100**: 1083–1094

489 27. **Yoshiyama KO, Kaminoyama K, Sakamoto T, Kimura S** (2017)
490 Increased Phosphorylation of Ser-Gln Sites on SUPPRESSOR OF
491 GAMMA RESPONSE1 Strengthens the DNA Damage Response in
492 *Arabidopsis thaliana*. *Plant Cell* **29**: 3255–3268

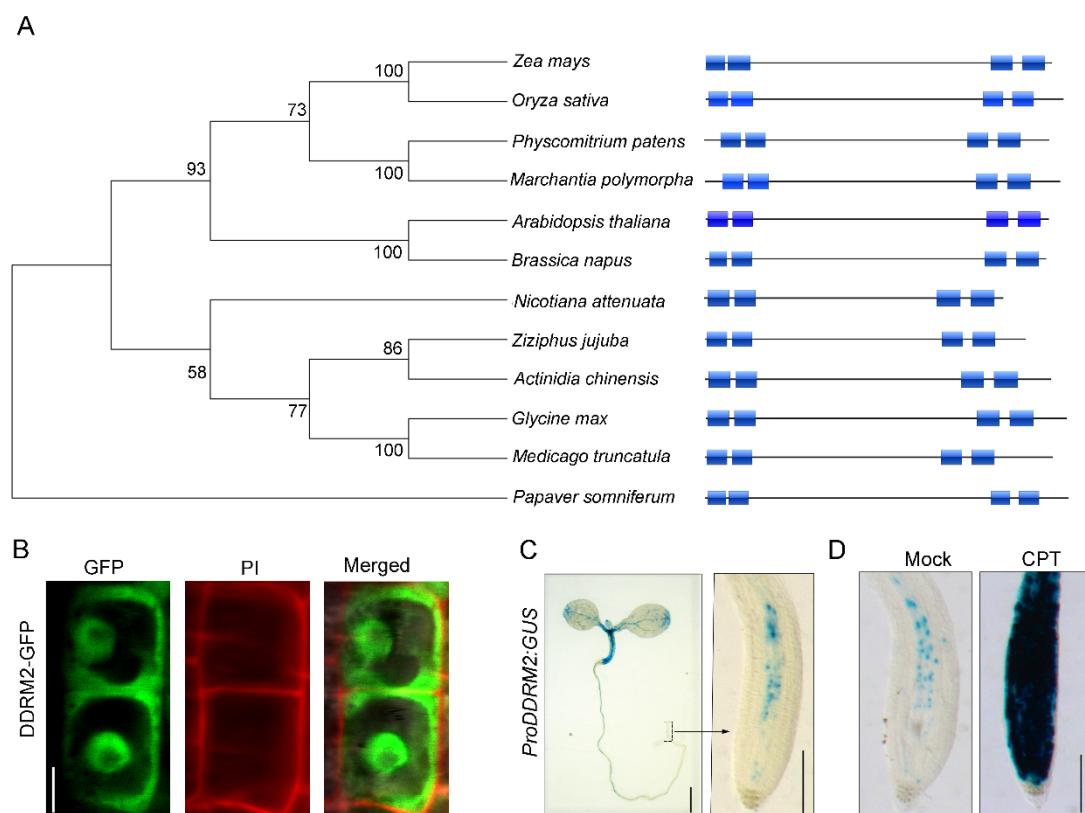
493 28. **Yoshiyama KO, Kimura S, Maki H, Britt AB, Umeda M** (2014) The role
494 of SOG1, a plant-specific transcriptional regulator, in the DNA damage
495 response. *Plant Signal Behav* **9**: e28889

496 29. **Zhang J, Ma Z, Treszezamsky A, Powell SN** (2005) MDC1 interacts with
497 Rad51 and facilitates homologous recombination. *Nat Struct Mol Biol* **12**:
498 902–909

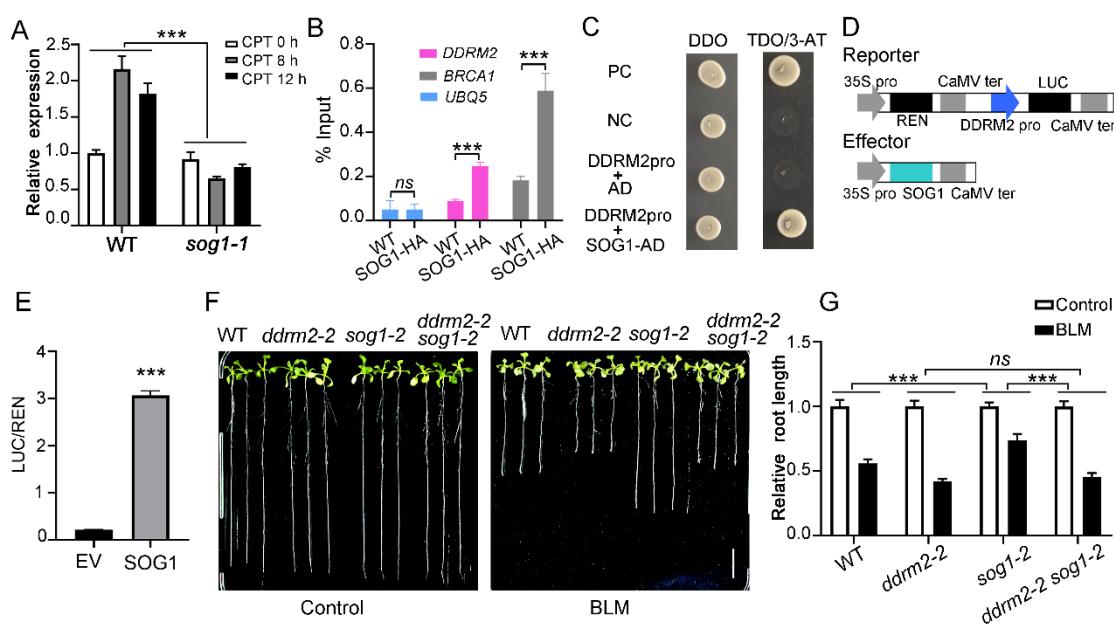

499 30. **Zhao L, Xie L, Zhang Q, Ouyang W, Deng L, Guan P, Ma M, Li Y, Zhang**
500 **Y, Xiao Q, et al** (2020) Integrative analysis of reference epigenomes in 20
501 rice varieties. *Nat Commun* **11**: 2658

502

503

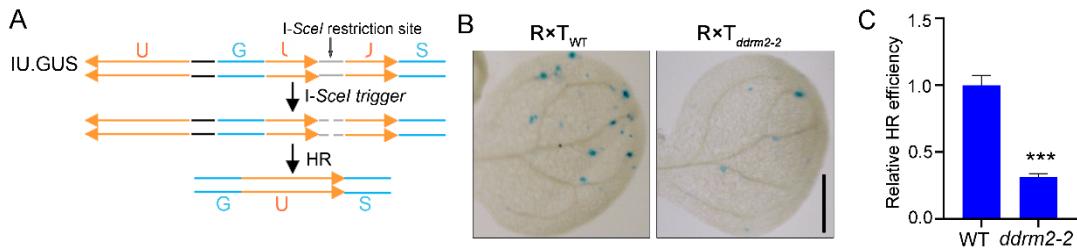

504 **Figures and Figures Legends**

505


506

507 **Figure 1** DDRM2 is required for DSB repair. A, D, and F, Pictures of Arabidopsis
508 seedlings grown on 1/2 MS with or without CPT (15 nM) for 8 days. CPT,
509 camptothecin. WT, wildtype. 1F1, the F1 seedlings from a cross of *ddrm2-1* (♂)
510 and *ddrm2-2* (♀). 2F1, the F1 seedlings from a cross of *ddrm2-2* (♂) and *ddrm2-1* (♀). COM,
511 complementation line. Scale bar, 1 cm. B, E, and G, The relative
512 root length of the indicated plants. The relative root length data are represented
513 as means \pm SD ($n = 10$) relative to the values obtained under the control
514 condition. The statistical significance was determined using two-way ANOVA
515 analysis. ***, $P < 0.001$, ns, no significance. All experiments were repeated
516 three times with similar results. C, The genomic structure of DDRM2. Black
517 boxes indicate exons and lines indicate introns. ATG and TGA indicate the start
518 and stop codons, respectively. The mutation site of *ddrm2-1*, the T-DNA
519 insertion site of *ddrm2-2*, and the primers used for genotyping are indicated.
520

521


522 **Figure 2** DDRM2 is a conserved nuclear protein and is induced by DNA double-
523 strand breaks. A, Phylogenetic tree of DDRM2 and its orthologs in the indicated
524 species. The BRCT domains are indicated by blue boxes. The amino acid
525 sequences are retrieved from NCBI: *Medicago truncatula* (MTR_1g087290),
526 *Marchantia polymorpha* (MARPO_0010s0152), *Glycine max*
527 (GLYMA_02G013500), *Oryza sativa* (Os03g0304400), *Nicotiana attenuata*
528 (A4A49_18737), *Actinidia chinensis* (CEY00_Acc15287), *Papaver somniferum*
529 (C5167_015111), *Ziziphus jujuba* (XP_015891972.1), *Zea mays*
530 (NP_001339373.1), *Physcomitrium patens* (XP_024371123.1), *Brassica napus*
531 (XP_013735363.2), and *Arabidopsis thaliana* (AT4G02110). B, Subcellular
532 localization of DDRM2-GFP in the roots of 35S:DDRM2-GFP/ddrm2-1
533 transgenic plants. The roots were stained with propidium iodide (PI) to show
534 cell walls. The pictures were captured using confocal microscopy. Scale bar, 5
535 μm. C, Histochemical staining of transgenic Arabidopsis expressing GUS driven
536 by the DDRM2 promoter. Scale bar on the left, 1 mm. Scale bar on the right, 100
537 μm. D, GUS staining results showing that the expression of DDRM2 is induced
538 by CPT. The seedlings were treated by 300 nM CPT for 8h. Scale bar, 100 μm.

539

540 **Figure 3** *DDRM2* is a target gene of *SOG1*. A, The relative expression of
541 *DDRM2* in WT and *sog1-1* seedlings treated with 40 nM CPT for different times
542 (0, 8, 12 h). The relative expression level of *DDRM2* was determined by qRT-
543 PCR analysis using *ubiquitin 5* (*UBQ5*) as an internal standard. B, *SOG1*
544 associates with *DDRM2* promoter in ChIP-qPCR assays. The anti-HA antibody
545 was used to perform immunoprecipitation. *UBQ5* was used as a negative
546 control. *BRCA1* was used as a positive control. C, *SOG1* binds to the promoter
547 of *DDRM2* in yeast one-hybrid assay. The promoter fragment of *DDRM2* was
548 cloned into *pHis2.1* vector (DDRM2pro). *SOG1* was cloned into *pGADT7-rec2*
549 vector (SOG1-AD). *pGADT7-Rec-53* and *pHis2.1-P53* were used as a positive
550 control (PC). *pGADT7-Rec-53* and *pHis2.1* were used as a negative control
551 (NC). DDO, double dropout (SD/-Trp/-Leu) medium; TDO, triple dropout (SD/-
552 Trp/-Leu/-His) medium; 3-AT, 80 mM 3-amino-1,2,4-triazole. D, Schematic
553 representation of the constructs used in dual-luciferase assays. E, *SOG1*
554 activates *DDRM2* expression in dual-luciferase assays. The reporters and
555 effectors were co-expressed in *Arabidopsis* protoplasts, and both REN and
556 LUC activity were measured. The relative LUC activities normalized to the REN
557 activities are shown (LUC/REN). EV, empty vector. Data represent mean \pm SE
558 of three biological replicates. F, Pictures of *Arabidopsis* seedlings grown on 1/2
559 MS for 5 days and then were transferred onto 1/2 MS with or without BLM (2
560 μ M) for another 6 days. Scale bar, 1 cm. G, The relative root length of the
561 indicated plants. The relative root length data are represented as means \pm SD
562 ($n = 10$) relative to the values obtained under the control condition. The
563 statistical significances in A and G were determined using two-way ANOVA
564 analysis. ***, $P < 0.001$, ns, no significance. The statistical significances in C
565 and E were determined using one-tailed Student's t-test. ***, $P < 0.001$, ns, no
566 significance. All experiments were repeated three times with similar results.

567

568

569 **Figure 4** DDRM2 is required for homologous recombination. A, Schematic
570 representation of the IU.GUS reporter system. The reporter (R) line harbors an
571 I-SceI restriction site located between two nonfunctional GUS fragments and a
572 nearby donor sequence (U) in inverted orientation. A single DSB is introduced
573 when the reporter line (R) is crossed with the DSB-triggering (T) line that
574 expresses the I-SceI endonuclease. When the DSB is repaired through HR,
575 the functional GUS is restored. B, Representative GUS staining images of
576 cotyledons. The reporter line and trigger line in either *ddrm2-2* or WT
577 background were crossed and the F1 seedlings were used for scoring. Scale
578 bar, 1 mm. C, The relative HR efficiency. The HR efficiency in WT was set to
579 1.0. Data represent mean \pm SE of 64 plants in each genetic background. The
580 statistical significances were determined using Student's t-test. ***, $P < 0.001$.