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Abstract

New neurons are continuously generated in the subgranular zone of the dentate gyrus
throughout adulthood. These new neurons gradually integrate into hippocampal
circuits, forming new naive synapses. Viewed from this perspective, these new neurons
may represent a significant source of ‘wiring’ noise in hippocampal networks. In
machine learning, such noise injection is commonly used as a regularization technique.
Regularization techniques help prevent overfitting training data, and allow models to
generalize learning to new, unseen data. Using a computational modeling approach, here
we ask whether a neurogenesis-like process similarly acts as a regularizer, facilitating
generalization in a category learning task. In a convolutional neural network (CNN)
trained on the CIFAR-10 object recognition dataset, we modeled neurogenesis as a
replacement/turnover mechanism, where weights for a randomly chosen small subset
of neurons in a chosen hidden layer were re-initialized to new values as the model
learned to categorize 10 different classes of objects. We found that neurogenesis
enhanced generalization on unseen test data compared to networks with no
neurogenesis. Moreover, neurogenic networks either outperformed or performed
similarly to networks with conventional noise injection (i.e., dropout, weight decay, and
neural noise). These results suggest that neurogenesis can enhance generalization in
hippocampal learning through noise-injection, expanding on the roles that neurogenesis

may have in cognition.
Author Summary

In deep neural networks, various forms of noise injection are used as regularization
techniques to prevent overfitting and promote generalization on unseen test data. Here,
we were interested in whether adult neurogenesis- the lifelong production of new
neurons in the hippocampus- might similarly function as a regularizer in the brain. We
explored this question computationally, assessing whether implementing a
neurogenesis-like process in a hidden layer within a convolutional neural network
trained in a category learning task would prevent overfitting and promote
generalization. We found that neurogenesis regularization was as least as effective as, or
more effective than, conventional regularizers (i.e., dropout, weight decay and neural

noise) in improving model performance. These results suggest that optimal levels of
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hippocampal neurogenesis may improve memory-guided decision making by preventing
overfitting, thereby promoting the formation of more generalized memories that can be
applied in a broader range of circumstances. We outline how these predictions may be

evaluated behaviorally in rodents with altered hippocampal neurogenesis.


https://doi.org/10.1101/2022.04.07.487582
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.07.487582; this version posted April 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Introduction

Noise reflects random or unpredictable fluctuations that are not part of a signal (Faisal
et al 2008). Within the brain there are multiple sources of noise, including processes at
the cellular (e.g., protein production and degradation), electrical (e.g., membrane
potential) or synaptic levels (e.g., vesicular release) that collectively impact the
probability and timing of action potentials (Faisal et al., 2008; McDonnell & Ward, 2011).
While neural noise is often considered an obstacle in extracting relevant information
from the brain’s output activity, optimal levels of neural noise (encapsulated in a broad
range of phenomena termed stochastic facilitation (McDonnell & Ward, 2011)) may
enhance information transmission and behavior. Similarly, in machine learning noise
can also be used to achieve better performance. One of the most common examples is
that the addition of some optimized level of noise enhances a model’s ability to avoid
overfitting and enhances generalization (i.e., avoiding the memorization of training data
that is not beneficial to the transfer of learning to unseen data) (Hinton & Camp, 1993).
This process of preventing overfitting in order to enhance generalization on unseen data
is termed regularization. We, and others, have suggested that neural noise may be one
such strategy by which the brain performs regularization to better extract the statistical

regularities of our experiences (Hoel, 2021; Richards & Frankland, 2017).

In the hippocampus, another potential source of neural noise is ongoing neurogenesis.
Asymmetric division of neural precursor cells in the subgranular zone gives rise to
newborn neurons that synaptically integrate into hippocampal networks throughout life
(Abrous et al., 2005; Denoth-Lippuner & Jessberger, 2021; Gongalves et al., 2016; Ming &
Song, 2005). This process may be considered a form of noise injection in two respects.
First, these new neurons are naive and therefore do not encode any aspects of past
experience. Second, their integration gradually reconfigures hippocampal networks.
Therefore, we hypothesize that this form of ‘wiring’ noise may function to regularize
learning in the hippocampus, and here we will explore these ideas computationally

using categorical learning tasks.

To study whether neurogenesis can act as a regularizer, we implemented neurogenesis
in hidden layers of a traditional deep learning architecture (i.e., a convolutional neural

network [CNN]). In adult rodents, loss of developmentally-generated granule cells is
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balanced by the addition of new neurons (Ciric et al., 2019; Cole et al., 2020). Therefore,
we modeled neurogenesis as a “replacement/turnover” mechanism, where a randomly
chosen small subset of neurons in the middle layer is “turned over” such that their input
and output weights are re-initialized to new values (whereas connections of mature
neurons remain the same). This turnover/replacement model ensures that the size of
the network remains constant. From a computational perspective, this controls for the
fact that networks of different sizes can perform very differently (since larger networks
have more tunable parameters). From a biological perspective, this mimics the rodent
hippocampus where neurogenesis produces negligible net growth (i.e., increase in total
number of granule cells) during adulthood (Cole et al., 2020). While deep learning
models with neurogenesis have been previously developed (Aimone, 2016; Draelos et

al,, 2017), these did not explicitly evaluate the role of neurogenesis in generalization.

Results

Neurogenesis improves generalization in CNNs

We implemented neurogenesis in a CNN trained and tested on the CIFAR-10 dataset
(Krizhevsky, 2009). CIFAR-10 consists of 60,000 32 X 32 pixel RGB images in 10
different classes representing airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships,
and trucks. The CNN consists of 64, 64, and 128 filters, respectively (see Methods for
more information), followed by three fully connected layers (Figure 1A-B). In order to
model neurogenesis, weights of a randomly selected subpopulation of neurons in the
middle layer of the fully-connected layers were reinitialized continuously during
training, with multiple turnover events. Following hyperparameter tuning, we found
that turning over 3.2% of neurons every 640 mini-batch updates to the model had the
greatest impact on performance of the network (Figure 1C). Neurogenesis was
restricted to only one layer, mimicking the occurrence of neurogenesis only in the
dentate gyrus layer of the hippocampus. We found that neurogenesis in the second fully
connected output layer of the network performed the best during hyperparameter
tuning, and therefore used this configuration for all experiments. The performance of
neural networks is also dependent on initialization (with some random initializations
outperforming others even after undergoing the same training process). To control for

potential differences in initialization states between groups, each network initialization
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was copied and these identical versions were used in the control (no neurogenesis) and

experimental (neurogenesis) networks, respectively.

We found that neurogenesis improved network performance on unseen test data.
Whereas test accuracy for the control network was 74.36 + 0.16 %, networks trained
with neurogenesis had a test score of 76.20 + 0.20 % (Figure 2A). This improvement in
performance with neurogenesis did not depend on initialization states. In particular, the
performance-enhancing effects of neurogenesis were not limited to low-scoring
variants. Higher-scoring variants also benefited from neurogenesis, indicating that
neurogenesis can improve generalization beyond the top scores that a static, non-

neurogenic network can achieve (Figure 2B).

Adult-generated neurons are more excitable than their developmentally-generated
counterparts, with excitability peaking between 4-8 weeks of cell age (Dieni et al., 2016;
Doetsch & Hen, 2005; Marin-Burgin et al., 2012; Mongiat et al., 2009; Schmidt-Hieber et
al,, 2004). To address whether elevated excitability of new neurons might further
promote regularization and improve the performance of neurogenic networks, we
increased the activation of new neurons by 30% during each forward pass during
training (Figure 2C). To reflect the transient nature of these changes, following each
round of new neuron turnover, excitability of previously turned over neurons returned
to baseline. As before, we found that neurogenic networks outperformed our control
networks (i.e., non-neurogenic networks) on held-back test data. However,
incorporating excitability into the neurogenic CNN did not further improve performance

(i.e., neurogenesis + excitability) (Figure 2D).
Neurogenesis improves CNN performance via regularization

The improved performance on held-back test data might reflect a more powerful model
in the neurogenesis group, rather than a regularization effect. In other words, it could be
that learning in general is simply better in the neurogenesis networks, in the same way
that networks with more layers tend to learn better. Indeed, in adult rodent studies
interventions that elevate hippocampal neurogenesis facilitate learning in many (Creer
et al.,, 2010; Sahay, Scobie, et al,, 2011) situations. (Though it should be noted that this
does not actually hold in all situations (Frankland, 2013)). Similarly, in artificial neural

networks, implementation of neurogenesis may improve learning in general (Chambers
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et al.,, 2004; Deisseroth et al., 2004; Meltzer et al., 2005), rather than having a specific
effect on generalization. To assess this, we compared training accuracy of the control
and neurogenic networks, anticipating that training accuracy would be the same, or
even reduced, in the neurogenesis network should improved performance be due to
regularization. We found that the neurogenic networks do not improve training
accuracy, and in fact, they sacrifice training accuracy in order to achieve the previously
observed higher test accuracy on held-back data. Neurogenic networks achieve lower
validation loss, but higher training loss relative to control, suggesting that the

enhancement in performance is indeed due to a regularization effect (Figure 2E,F).
Neurogenesis regularization achieves similar level improvement to dropout

We next compared neurogenesis to conventional regularization methods, including
dropout, weight decay, and neural noise (Figure 3A-C). Dropout involves the stochastic
silencing of a subset of units during each forward pass (Srivastava et al., 2014). Weight
decay involves adding a small penalty to the loss function that penalizes large weights,
thus resulting in an overall decay of larger weights (Krogh & Hertz, 1992). Neural noise
involves the addition of Gaussian noise to all the activations during each forward pass
(Bishop, 1995). After identifying the optimal parameter values for each of these
regularization methods, we compared the performance of neurogenic networks to
networks regularized with these other methods. We found that neurogenic CNNs
performed similarly to dropout, and outperformed weight decay and neural noise

(Figure 3D).

Mechanistically, there are similarities between replacement/turnover neurogenesis and
dropout, with both involving information loss at each update. In dropout, a
subpopulation of neurons is transiently silenced, but connection weights are otherwise
maintained. In contrast, replacement/turnover neurogenesis involves resetting the
weights of a subpopulation of neurons. Interestingly, the optimal size of these
subpopulations differs markedly for dropout vs. neurogenesis. Optimal performance
occurred when dropout was implemented in a subpopulation that corresponded to
~20% of hidden layer neurons, whereas for neurogenesis, optimal performance was

achieved when the turnover subpopulation was ~3.2% of hidden layer neurons.
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We next asked whether combining regularization techniques might further enhance
performance. Surprisingly, neurogenesis, when combined with dropout, weight decay or
neural noise, consistently reduced the performance (Figure 3E). This suggests that the
amount of noise injected by neurogenesis may be suboptimal when combined with other
regularization techniques. Consistent with this idea, performance improved when the
amount of noise injection for each regularization method was reduced. However, even
using these reduced parameter values did not enhance performance beyond that of
neurogenesis alone, suggesting that there is a ceiling effect beyond which performance

cannot be improved further (Figure 3F).
Targeted neurogenesis in CNNs

In our model, neurogenesis occurs in randomly selected subpopulations of middle layer
neurons. However, the integration of new neurons might be non-random in nature. For
example, in rodents there is evidence for neurogenesis-dependent refinement of
synaptic connections in the hippocampus, with the integration of new neurons leading
to the elimination of less active synaptic connections (Yasuda et al., 2011). Here we
explored whether implementation of a similarly targeted turnover mechanism during
training would further enhance performance of our neurogenic networks. Such an
approach has previously been explored using dropout regularization, and, in this case,
targeting dropout to neurons that are likely to be less important for the task (i.e.,
neurons with lowest L1 norm values or total weights) led to significant improvement in
test performance (Gomez et al., 2019). Using a similar strategy, here we ranked neurons
by their L1 norm values at every turnover event, and reinitialized weights of the bottom
3.2% ranking neurons. As a positive control, we reinitialized the weights of the top 3.2%

ranking neurons in a separate experiment (Figure 4A).

Targeting top-ranked neurons impaired generalization performance below that of the
control (no neurogenesis) group. This is expected since these neurons are assumed to be
more valuable to the performance of the network. However, targeting the bottom-
ranked neurons did not further enhance performance (i.e, compared to random
reinitializations affecting the same size subpopulation) (Figure 4B). While this finding
indicates that targeting turnover neurogenesis to the bottom L1 norm ranking neurons

does not further improve generalization, we recognize that there may be alternate ways
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to determine ‘importance’ of units in a neurogenic network, and it is possible that

targeting these might produce performance improvements.

Neurogenesis improves generalization but increases reliance on individual

neurons

The degree to which networks depend on single units vs. more distributed, population
codes influences generalization (Morcos et al., 2018). Typically, networks that generalize
well on held back, unseen test data depend on distributed population codes, rather than
a small subset of units. Moreover, because of their distributed nature, these types of
networks tend to be more resilient to random ablation of units (Morcos et al,, 2018).
Conversely, networks that generalize poorly tend to depend on a small subset of units,
rather than distributed codes, and these networks are typically less resilient to random

ablation of units.

We performed a similar analysis here to assess whether neurogenesis improves
generalization by reducing the dependence of networks on a small subset of single units.
To evaluate the reliance on single units vs. distributed codes, we sequentially ablated
random units following training and compared pre- and post-ablation performance
(accuracy was normalized to pre-ablation performance) (Figure 5A). Surprisingly, we
found that neurogenic networks were less resilient. Ablation of a smaller proportion of
units was sufficient to decrease performance (as reflected by the leftward shift of the
curve) (Figure 5B). This indicates that neurogenesis improves generalization through a
mechanism other than reducing the network’s reliance on individual neurons. We also
measured the class selectivity for each neuron using the metric described in Morcos et
al,, (2018) to test whether there were fewer highly class selective neurons. We found
that the distribution of class selectivities of neurons was shifted to the left (on average
neurons were less selective for class) in the neurogenesis group compared to dropout or
control networks (Figure 5C). To assess whether the reduced resilience to ablation of
neurogenic networks translates to increased vulnerability to neurogenesis post-training,
we trained networks as before, with and without neurogenesis, and tested performance
with and without post-training neurogenesis. One turnover event (replacing 8 neurons)
after training/at test-time was used. We found that post-training neurogenesis reduced

performance of the neurogenic networks, but not the control networks, further


https://www.zotero.org/google-docs/?vIkAYo
https://www.zotero.org/google-docs/?EN9v2A
https://doi.org/10.1101/2022.04.07.487582
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.07.487582; this version posted April 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

demonstrating a specific sensitivity to perturbation in neurogenic networks (Figure

5D).

Discussion

As adult-generated neurons integrate into hippocampal circuits they form naive
synapses and therefore can be thought of as a form of ‘wiring’ noise. Deep learning has
found that various forms of noise-injection can reduce overfitting on training data and,
as a result, enhance generalization in deep neural networks. We therefore hypothesized
that neurogenesis-mediated rewiring would similarly have a regularization effect, i.e.,
prevent memorization of training data and favor a more flexible, generalized memory
that can be applied in a broader range of circumstances. We explored this hypothesis
computationally, implementing neurogenesis in a hidden layer of a CNN trained on the
CIFAR-10 object recognition task. Consistent with our hypothesis, neurogenesis acted as
aregularizer, improving generalization on the test (held-out) data. Performance with
neurogenesis regularization matched (dropout) or outperformed (weight decay, neural

noise) other conventional regularization techniques.

In our model, we implemented neurogenesis as a replacement/turnover mechanism,
where input and output synaptic weights associated with small subsets of middle layer
neurons were re-initialized through training. We used this approach since neurogenesis
in the rodent hippocampus similarly involves replacement of mature, developmentally-
generated neurons with immature, adult-generated neurons, and, therefore, turnover of
associated synaptic weights. For instance, in the rat adult dentate gyrus there is
significant loss of mature granule cells that were born soon after birth (Ciric et al.,
2019). Since there is negligible overall increase in the size of the dentate granule cell
layer during adulthood (Rapp & Gallagher, 1996), this implies that this loss of
developmentally-generated granule cells in adulthood is balanced by new neuron
addition (Cole et al., 2020). Viewed in this way, neurogenesis regularization can be
thought of as a form of wiring noise that incrementally alters network connectivity

patterns, without impacting overall network size.

In the CNN, we explored whether targeting neurogenesis regularization to less
important neurons was beneficial. Using L1 norm values as a metric of “importance”

(Gomez et al,, 2019), we assessed generalization following three types of neurogenesis
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regularization: When neurogenesis regularization was applied randomly to all middle
layer units versus when neurogenesis regularization was either restricted to the least
(i.e., neurons with lowest L1 norm values or weakest weights) or the most (i.e., neurons
with highest L1 norm values or strongest weights) important middle layer neurons. As
expected, targeting neurons with the highest L1 norm scores decreased generalization
scores below control (no neurogenesis) levels, consistent with the idea that neurons
with the highest L1 norm values are indeed more important for the task. However,
targeting neurogenesis regularization to neurons with the lowest L1 norm scores did
not improve generalization beyond networks with non-targeted or random

neurogenesis regularization.

In the rodent brain, there is some evidence that the integration of new neurons is a non-
random process, with the integration of new neurons leading to the pruning of less
active synaptic connections (Yasuda et al., 2011). While our current analyses suggest
that such a targeted mechanism may not be critical for improving generalization,
nonetheless it is possible that using the L1 norm of each unit may not be the most
suitable metric of importance. Alternatively, the lottery ticket hypothesis suggests that
within these networks there exist sparse sub-networks that, when trained in isolation,
can achieve the same final performance accuracy of the entire network but in the same
or fewer training epochs (Frankle & Carbin, 2019). Interestingly, the rates at which
these lottery-winning sub-network neurons change weights is much higher compared to
other neurons. Therefore, one possibility would be to target neurogenesis regularization
to neurons that change their weights the least (i.e., those that contribute least to the loss
function) during training. Simply looking at the L1 norm, which is not sensitive to the
rate of weight changes, would not capture the same “importance” as described in the

lottery ticket hypothesis.

A second issue we explored in the CNN was whether neurogenesis regularization
impacts how information is organized within the network. Typically, better
generalization is associated with more distributed coding (Morcos et al., 2018).
Following dropout regularization, for example, information tends to be coded in a more
distributed manner, rather than in single units. One consequence of this organization is
that networks tend to be more resilient to random, sequential ablation of units following

dropout regularization. In contrast, we found that there was greater reliance on single
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units following neurogenesis regularization, and networks regularized this way were

more vulnerable to random ablations (despite better generalization performance).

One way these findings might be viewed is that while neurogenesis regularization
improves generalization it also introduces network vulnerabilities. That is, randomly
turning over units pushes the network to rely on neurons that are tuned to single
directions (via an unknown mechanism). This may improve generalization performance,
but subsequent, random turnover events can also eliminate neurons that are highly-
tuned to single directions, and hence, have catastrophic consequences. The idea that
neurogenesis might introduce network vulnerabilities is interesting since neurogenesis
has been linked to forgetting (Frankland et al., 2013; Ryan & Frankland, 2022). For
example, post-training increases in neurogenesis induce forgetting of established
hippocampus-dependent memories in adult rodents (Akers et al., 2014; Epp et al., 2016;
Gao et al.,, 2018). Whether (or not) forgetting happens may depend both on the levels

and/or the timing of neurogenesis.

With respect to levels of neurogenesis, whereas low levels of neurogenesis may promote
overfitting (i.e., memorization or no forgetting), high levels of neurogenesis may
promote underfitting (i.e., forgetting). In between these extremes, moderate levels of
neurogenesis may prevent overfitting and promote generalization (Ko & Frankland,
2021). According to this scenario, it may be the case that neurogenesis levels need to be
tightly regulated in order to balance the costs (e.g., overfitting, forgetting) vs. benefits

(improved generalization) of rewiring (Richards & Frankland, 2017).

Our analyses suggest that the timing of increases in neurogenesis (with respect to
training) also might matter. When neurogenesis occured in concert with training, we
found this led to improved performance on subsequent test data. However, when
neurogenesis-like turnover occurs at the time of testing we observed a decrease in
performance on the unseen test data. This suggests that neurogenic networks need to
keep training if they are to retain high performance. Viewed this way, it might be useful
to distinguish between the effects of ongoing neurogenesis on active memories (i.e.,
those that are undergoing training and invulnerable) vs. inactive (i.e., those where

training is ‘complete’ and therefore are vulnerable).
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While our model captures replacement/turnover as a core feature of neurogenesis, we
nonetheless recognize that it is highly abstracted and differs significantly from biological
networks in terms of architecture, connectivity and sparsity. Another feature that was
not captured in the current model, but is relevant especially in the context of
consolidation, is replay. During sleep, previous event sequences are “replayed” in the
hippocampus and this may provide an opportunity to integrate new experiences with
prior, relevant experience and promote generalization (Ji & Wilson, 2007; Louie &
Wilson, 2001). Indeed, REM sleep, the period of sleep during which replay events
typically occur (Louie & Wilson, 2001), is associated with enhanced memory
generalization in humans (Lerner et al,, 2021). Interestingly, adult-born dentate granule
cells that were active during learning are reactivated during subsequent REM (Kumar et
al,, 2020). This suggests that new neurons may indeed be contributing to consolidation
as a source of noisy replay, potentially promoting neural regularization and
generalization of hippocampal memories. Consistent with this view, in a computational
model, O’'Donnell et al. found that noisy replay led to an relative increase in the overlap
between input patterns and a particular target pattern (O’Donnell & Sejnowski, 2014).
Such a mechanism might underlie generalization through broadening the types of inputs

that would drive activation of a given memory.

What are the implications for functional studies of hippocampal neurogenesis? The
functional consequences of altering hippocampal neurogenesis (or manipulating the
activity of adult-generated granule cells) have largely been studied in rodents (Anacker
& Hen, 2017; Cameron & Glover, 2015; Gongalves et al., 2016). A major focus of these
studies has been on the role of hippocampal neurogenesis in pattern separation (Sahay,
Wilson, et al,, 2011; Santoro, 2013). In a typical experiment, an experimental
intervention is introduced to alter levels of hippocampal neurogenesis, and then the
ability of mice or rats to make fine spatial or contextual discriminations is assessed. In a
touchscreen apparatus, for example, this might involve discriminating between stimuli
presented in different spatial locations (Oomen et al., 2013). Rodents with reduced
neurogenesis perform poorly under conditions where spatial similarity is high, whereas
rodents with elevated neurogenesis exhibit enhanced discrimination (Clelland et al.,

2009; Creer et al,, 2010).
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These results are consistent with the idea that hippocampal neurogenesis regulates a
pattern separation-like process in the hippocampus. However, directly comparing these
results to our model is difficult given that spatial discrimination is a computationally
different task from category discrimination, as we studied here. While studies of
category learning are common in monkeys (Ashby & Spiering, 2004), investigations of
category learning have been less common in rodents (where neurogenesis levels can be
more readily manipulated). Nonetheless, both object recognition and touchscreen-based
category learning tasks have been developed for rodents (Broschard et al., 2021;
Creighton et al., 2019). The object category recognition tasks take advantage of rodents’
innate preference for novelty. During the study phase, mice are allowed to explore two
objects from the same category (e.g., two different toy cars). During the test phase, mice
are presented with a choice between a third object from the studied category (i.e.,
another toy car) and a novel object from a new category (e.g., hair clip). Should the
mouse exhibit a preference for the object from the unstudied category (i.e., hair clip),
then this suggests some within category generalization (i.e., across different types of toy
cars) (Creighton et al., 2019). In the touchscreen-based category learning task, mice are
trained to discriminate between 2D visual stimuli presented on a touchscreen that can
be categorized according to spatial features (e.g., spatial frequency and orientation of
gratings). Generalization is assessed when rodents are subsequently tested on novel
visual stimuli from the studied categories (Broschard et al., 2021). Based on the findings
presented here, we predict that suppression of adult hippocampal neurogenesis will
impair generalization in such tests, whereas increasing adult hippocampal neurogenesis
will facilitate performance. All of this would be consistent with the effects proposed for

neurogenesis in the pattern separation literature.

Neurogenesis has previously been modeled in the context of deep learning in the form of
an autoencoder that can perform continual learning. Neurogenesis was found to prevent
memory interference of learning new classes on previously learned classes in an image
reconstruction task (Draelos et al.,, 2017). This aligns with other literature where
neurogenesis has been shown to improve memory capacity and prevent catastrophic
interference (Appleby & Wiskott, 2009; Finnegan & Becker, 2015; Wiskott et al., 2006).
Here, we found that neurogenesis can be applied to CNNs as a novel regularization
technique to improve generalization in classification tasks. While the performance of

turnover models was superior to neural noise and weight decay, turnover models did
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not exceed the performance of other regularization methods (namely, dropout). While
both methods introduce randomness via the architecture of the network during training,
turnover differs from dropout in that turnover consists of the simultaneous permanent
loss of learned weights and resetting of weights during the course of training, whereas
dropout temporarily silences a random population at each forward pass during training.
Neurogenesis as a regularization technique may benefit further by using a different
targeted approach to which neurons are turned over, as discussed above. However,
there is also the question as to the mechanism by which neurogenesis improves
performance. It is possible that by randomly resetting some neurons during training,
these neurons’ weights have the opportunity to be arranged in such a way that is more

beneficial to training than their previous weights.

Conclusions. The current analyses provide evidence that ‘wiring noise’ in the
hippocampus, in the form of ongoing neurogenesis, provides a means to regularize
memories, thereby preventing memorization and promoting generalization. These ideas
are consistent with recent computational and imaging evidence that the hippocampus
supports statistical learning/generalized memories, in addition to detailed memories, in
humans (Schapiro & Turk-Browne, 2015; Sucevi¢ & Schapiro, 2022), and they provide a
potential mechanism. Because neurogenesis can be experimentally manipulated in
rodents, these predictions can be evaluated using category learning (or related)

paradigms in the future.
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Methods

Software

Code for these methods is available on GitHub (https://github.com/linamnt/dnn-

neurogenesis).

Python

Models were built and analyzed in Python 3.6 (Van Rossum & Drake, 2009) with custom
scripts that are freely available on GitHub, and were developed using the following
packages: PyTorch (Paszke et al., 2019), Ax (https://github.com/facebook/Ax), NumPy
(Oliphant, 2006), SciPy (Virtanen et al.,, 2020), Pandas (McKinney & others, 2010),
Matplotlib (Hunter, 2007), Seaborn (Waskom et al., 2017), Scikit-learn 0.21.1
(Pedregosa et al., 2011).

Computing resources

These experiments were implemented on the high-performance compute clusters at

Compute Canada and Vector Institute for Al.

Convolutional neural network

The CNN involves convolutional layers that have filters that convolve to extract features
of the image that are not affected by translation. Each convolutional layer is followed by
a pooling layer that downsamples the images to improve computational efficiency.
Finally, after multiple sets of convolutional and pooling layers, there are fully connected
layers. The input layer was of size 32 X 32 X 3, corresponding to the images (with three
color channels) from the CIFAR-10 dataset. The CNN was built with three sets of two
convolutional layers, each followed by a max-pooling layer. The convolutional layer sets
had 16, 32, and 64 filters, respectively, with a 3 X 3 filter size and stride (steps the filter
moves along) of 1. The max-pooling layers pool a 2 X 2 region and are applied at strides
of 1. The convolutional layers are then connected to three fully connected layers, each
with 250 units, using a rectified linear activation function. Neurogenesis occurred in the
middle, fully connected layer. Data was split into training (40,000 images), validation

(10,000 images) and test sets (10,000 images). Test results are derived from networks
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trained on the full training set. We tuned the network’s hyper-parameters by training on
the training set (40, 000 images), and testing on the validation set (10, 000 images). The
hyper-parameters, i.e., values that regulate learning in the networks, and other

information about the networks are listed in tbl. 1.

CIFAR-10

The CIFAR-10 dataset is a collection of images that consists of 50,000 training and
10,000 test images for each of ten classes commonly used to train machine learning and
computer vision models. The images are 32 X 32 color images with the 10 different
classes representing airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships and

trucks.

Table 1: Table of CNN model parameters.

Hyperparameter CNN

Batch size 4

Learning rate 0.0002

Epochs 14

Turnover Proportion 0.032

Turnover Frequency 1/640 batch updates
Dropout 0.2

Weight Decay 0.00001

Neural Noise (log normal: mean, std) -0.2,0.5

Excitation Factor (c) 1.3

Training neurogenic networks

We found that neural networks with neurogenesis can be trained using stochastic

gradient descent (Robbins, 2007). During training, neurogenesis was implemented on
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an ongoing basis, with multiple turnover events occurring. Neurogenesis occured in the
second hidden layer (of three). Neurogenesis was implemented as a
replacement/turnover mechanism, whereby a randomly chosen subset of neurons in the
layer was “turned over” such that their weights were re-initialized to new values. In
contrast, the other neurons maintained their learned weights. We initialized the new
neurons’ weights using the same function used when randomly initializing the network
at the start of training, i.e., Kaiming uniform initialization (He et al., 2015). Turnover can
occur at a frequency of once every n batch updates. We tuned the hyperparameters
using Bayesian Optimization which is an iterative parameter tuning process which
builds a probability model for the best parameters to try next (Snoek et al,, 2012),
whereby we input the turnover frequency (ranging from once every update to once
every 12500 updates), and how many neurons to add at each turnover event (ranging
from 0 to 250 neurons) as parameters to search for. We found that turning over 8
neurons every 640 updates in the second fully-connected layer resulted in the highest
performance on the validation set. We implemented neurogenesis in the output layers of

a CNN.
Enhancing excitability

To evaluate whether manipulating “excitability” of new neurons might impact
regularization, in a separate experiment we incorporated an excitability component into
our neural networks in each forward pass during training. We multiplied the activations
of the neurogenesis layer by an excitability array. The activations corresponding to the
new neurons were set to a factor (1.3; determined by hyperparameter tuning), and all
other activations were set to 1. As a result, only the activations corresponding to the
turned-over neurons were enhanced, and the remainder of the neurons’ activations
were unchanged. Whenever a new set of neurons were turned over, the previous set of

new neurons became “mature” and were no longer “excited” in the forward pass.
Other Regularization Methods

To compare the performance of neurogenesis to other regularization methods, we also
used dropout, weight decay and neural noise in the CNNs. Dropout involves the
stochastic silencing of a subset of units during each forward pass (Srivastava et al.,

2014). We used a dropout rate of 0.2 in CNNs, with an additional 7 epochs required to
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reach the end of training, compared to non-dropout networks. Weight decay consists of
adding a small penalty to the loss function that penalizes large weights, thus resulting in
an overall decay of larger weights (Krogh & Hertz, 1992). We used a weight decay value
of 0.00001 for our CNN. Neural noise involves the addition of Gaussian noise to all the
activations during each forward pass (Bishop, 1995). We defined our noise using a mean

of -0.2, and a standard deviation of 0.5 on a log normal distribution for our CNN.
Ablation experiments

To measure the importance of individual neurons in a network, we tested how much the
network’s performance degrades as progressively more neurons are removed from the
network (based on Morcos et al. (2018)). To remove a neuron, we set that neuron’s
activity to a fixed value of 0, effectively ablating the unit. We progressively ablated
neurons in proportional steps of 5% of the neurons in the neurogenesis layer, testing the
accuracy of the training data at each step to generate ablation curves. We repeated each
ablation five times and randomized the order of neurons ablated each time. Ablation
curves plot the degradation in accuracy as more neurons are ablated. Networks that rely
more heavily on individual units will drop their accuracy more quickly as units are
ablated. Networks that are less sensitive to ablations have been shown to correlate with

better generalization (Morcos et al., 2018).
Class selectivity

Class selectivity was calculated using the method described in Morcos et al., 2018. The
class-conditional mean activity was calculated from the test set and the class selectivity

index was measured as

— [?]
Hapm O _pap

selectivity = Bt

whereu; ., is the highest mean class activity and u_, is the mean class activity across

all other classes.

Targeted neurogenesis

To test whether a targeted approach to removing new neurons might improve the
performance of neurogenic networks, we implemented a targeted turnover of new

neurons. Based on the work of Gomez et al. (2019)(Gomez et al.,, 2019), we adapted the
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targeted unit dropout technique to choose which units to replace in the network with
naive units. It was found that this method of targeting neurons for dropout performed
better than a random dropout process for identifying pruned networks. While
identifying pruned networks is not the goal of our work, we could use their methods to
identify important and unimportant units to target for turnover. The unit’s importance
was determined using the unit L1 norm (i.e., the sum of the absolute values of all the
weights inputting onto the unit) and ranking them from lowest to highest value and
importance. To test whether targeting neurogenesis to the low importance neurons
would improve performance, a proportion of the lowest ranking neurons matching the
proportion of neural turnover had their weights reset. As a positive control, we also
targeted the highest importance neurons (highest L1 norm values) for turnover to
confirm that this metric does indeed carry information about the importance of neurons

for learning.
Statistical analyses and plotting

All statistics were performed using the scipy.stats module in Python 3.6 (Van Rossum &
Drake, 2009; Virtanen et al., 2020). Error bars on graphs represent the standard error of
the mean across different initializations of the model, where each experiment is
repeated 20 times unless otherwise stated. Comparisons were made using unpaired,
two-tailed t-tests, or analysis of variance (ANOVA) followed by Tukey’s HSD post-hoc
tests where appropriate. Significance indicated by an asterisk (*) for p-values less than
0.01 unless otherwise stated. Graphs were generated using the matplotlib, and seaborn
packages in Python 3.6 (Hunter, 2007; Waskom et al., 2017), and figures were compiled
using Inkscape (Inkscape Project, 2020).
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Figure 1. Implementing neurogenesis in convolutional neural networks. (A)
[llustration of the CNN used in these experiments. (B) A schematic illustrating how
replacement/turnover neurogenesis was implemented. (C) [llustration of the training
and testing process with neurogenesis.
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Figure 2. Neurogenesis improves generalization in CNNs. (A) Box plot of test
accuracy of control and neurogenesis networks after training; t-test: t;9 = 7.00, p
=1.1x10-6. (B) Violin plots of the distribution of scores for the lowest scoring (left) and
highest scoring (right) halves from each group: control and neurogenesis, from (A). (C)
An illustration of how we implemented enhanced excitability of new neurons in a
neurogenic neural network by multiplying the activations of a new neuron by an
excitability factor, c. (D) Boxplot of test accuracies of control, neurogenic and neurogenic
+ excitability CNNs; ANOVA: F257=19.01, p = 4.7x10-7; Tukey’s HSD: Neurogenesis,
Neurogenesis Excite > Control, p < 0.01. (E) Box plot of the training accuracy of the
control and neurogenesis groups at the end of training; t-test: t19=4.94, p = 9.0 x 10->,
(F) Plot of validation loss across training. *represents p-value below 0.01.
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Figure 3. Illustration of regularization methods. (A) Dropout: a random subset of
neurons and their weights are inactivated during a given forward pass. (B) Weight
decay consists of adding a small penalty to the loss function that penalizes large weights,
thus resulting in an overall decay of larger weights. (C) Neural noise: Gaussian noise is
added to the activations of a layer. (D) Box plot of the test accuracy of neurogenesis
compared to other regularization methods; ANOVA: F4, 95 = 16.54, p = 2.5x10-19; Tukey’s
HSD: neurogenesis vs. control p<0.01, neurogenesis vs. dropout p>0.01, neurogenesis vs.
weight decay p<0.01, neurogenesis vs. neural noise p<0.01. (E) Heatmap of z-scores of
test performance in networks with combined regularization methods relative to
neurogenesis-only networks. (F) Plot of neurogenesis and dropout combined using
lower parameter values of dropout (0.1), and neurogenesis (turnover every 1000
updates); ANOVA: Fz257 = 65.69, p = 1.6x10-15; Tukey’s HSD: control vs. neurogenesis p <
0.01, control vs. neurogenesis+dropout p < 0.01, neurogenesis vs. neurogenesis +
dropout p > 0.01. * represents p-value below 0.01.

31


https://doi.org/10.1101/2022.04.07.487582
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.07.487582; this version posted April 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

|:| Kept Neuron *
D Reset Neuron 78

Targeted Portion

Low 77-
Importance LTI PP T T I T T T T TTd
£ 1
275 | -
H |
i Targeted Porti =
High T ooy 374 l:‘
importance L L L L LTI = €
w73 — .
il
72
Random [ e 1
i ey Ry ,g,.- ln
Neurons sorted by weight strengths Q, 7Y /i Oy,
Low HIGH iroy " on, 9 e,
%2, "y,
Ca ]

Figure 4. Targeted neurogenesis does not change network performance. (A) An
illustration of targeted neurogenesis in a hidden layer. The neurons are ranked in order
of input weight strengths, and a proportion of the lowest-ranked (low importance) or
highest-ranked (high importance) neurons are targeted for neurogenesis (i.e., having
their weights reset), or there is no targeting (random). (B) A boxplot of model test
accuracy in control, random neurogenesis, targeted neurogenesis of high importance
neurons (positive control), and targeted neurogenesis of low importance neurons;
ANOVA: F3,96 = 46.30 p = 1.3x10-18; Tukey’s HSD: (Control vs. Random) p<0.01, (Control
vs. High Importance) p<0.01 (Random vs. Low Importance) p>0.01. * represents p-value
below 0.01.
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Figure 5. Networks with neurogenesis are less robust to ablation. (A) [llustration of
ablation experiments. (B) Plot of the mean normalized accuracy across 20 repeats as
progressively more neurons are ablated from the network. (C) Density plot of the class
selectivity of neurons in the second hidden layer in control, neurogenic and dropout
networks. (D) Boxplot of test accuracy of networks that were trained with and without
neurogenesis, and then tested with and without new neurons added post-training;
Repeated-measures ANOVA: Training x Post-training interaction, F1,19 = 58.68, p < 0.01;
Tukey’s HSD: (Neurogenesis/Control vs Neurogenesis/Neurogenesis) p < 0.01. *
represents p-value below 0.01.
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