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Abstract 

New neurons are continuously generated in the subgranular zone of the dentate gyrus 

throughout adulthood. These new neurons gradually integrate into hippocampal 

circuits, forming new naïve synapses. Viewed from this perspective, these new neurons 

may represent a significant source of ‘wiring’ noise in hippocampal networks. In 

machine learning, such noise injection is commonly used as a regularization technique. 

Regularization techniques help prevent overfitting training data, and allow models to 

generalize learning to new, unseen data. Using a computational modeling approach, here 

we ask whether a neurogenesis-like process similarly acts as a regularizer, facilitating 

generalization in a category learning task. In a convolutional neural network (CNN) 

trained on the CIFAR-10 object recognition dataset, we modeled neurogenesis as a 

replacement/turnover mechanism, where weights for a randomly chosen small subset 

of neurons in a chosen hidden layer were re-initialized to new values as the model 

learned to categorize 10 different classes of objects. We found that neurogenesis 

enhanced generalization on unseen test data compared to networks with no 

neurogenesis. Moreover, neurogenic networks either outperformed or performed 

similarly to networks with conventional noise injection (i.e., dropout, weight decay, and 

neural noise). These results suggest that neurogenesis can enhance generalization in 

hippocampal learning through noise-injection, expanding on the roles that neurogenesis 

may have in cognition.  

Author Summary 

In deep neural networks, various forms of noise injection are used as regularization 

techniques to prevent overfitting and promote generalization on unseen test data. Here, 

we were interested in whether adult neurogenesis– the lifelong production of new 

neurons in the hippocampus– might similarly function as a regularizer in the brain. We 

explored this question computationally, assessing whether implementing a 

neurogenesis-like process in a hidden layer within a convolutional neural network 

trained in a category learning task would prevent overfitting and promote 

generalization. We found that neurogenesis regularization was as least as effective as, or 

more effective than, conventional regularizers (i.e., dropout, weight decay and neural 

noise) in improving model performance. These results suggest that optimal levels of 
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hippocampal neurogenesis may improve memory-guided decision making by preventing 

overfitting, thereby promoting the formation of more generalized memories that can be 

applied in a broader range of circumstances. We outline how these predictions may be 

evaluated behaviorally in rodents with altered hippocampal neurogenesis.   
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Introduction 

Noise reflects random or unpredictable fluctuations that are not part of a signal (Faisal 

et al 2008). Within the brain there are multiple sources of noise, including processes at 

the cellular (e.g., protein production and degradation), electrical (e.g., membrane 

potential) or synaptic levels (e.g., vesicular release) that collectively impact the 

probability and timing of action potentials (Faisal et al., 2008; McDonnell & Ward, 2011). 

While neural noise is often considered an obstacle in extracting relevant information 

from the brain’s output activity, optimal levels of neural noise (encapsulated in a broad 

range of phenomena termed stochastic facilitation (McDonnell & Ward, 2011)) may 

enhance information transmission and behavior. Similarly, in machine learning noise 

can also be used to achieve better performance. One of the most common examples is 

that the addition of some optimized level of noise enhances a model’s ability to avoid 

overfitting and enhances generalization (i.e., avoiding the memorization of training data 

that is not beneficial to the transfer of learning to unseen data) (Hinton & Camp, 1993). 

This process of preventing overfitting in order to enhance generalization on unseen data 

is termed regularization. We, and others, have suggested that neural noise may be one 

such strategy by which the brain performs regularization to better extract the statistical 

regularities of our experiences (Hoel, 2021; Richards & Frankland, 2017). 

In the hippocampus, another potential source of neural noise is ongoing neurogenesis. 

Asymmetric division of neural precursor cells in the subgranular zone gives rise to 

newborn neurons that synaptically integrate into hippocampal networks throughout life 

(Abrous et al., 2005; Denoth-Lippuner & Jessberger, 2021; Gonçalves et al., 2016; Ming & 

Song, 2005). This process may be considered a form of noise injection in two respects. 

First, these new neurons are naive and therefore do not encode any aspects of past 

experience. Second, their integration gradually reconfigures hippocampal networks. 

Therefore, we hypothesize that this form of ‘wiring’ noise may function to regularize 

learning in the hippocampus, and here we will explore these ideas computationally 

using categorical learning tasks.  

To study whether neurogenesis can act as a regularizer, we implemented neurogenesis 

in hidden layers of a traditional deep learning architecture (i.e., a convolutional neural 

network [CNN]). In adult rodents, loss of developmentally-generated granule cells is 
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balanced by the addition of new neurons (Ciric et al., 2019; Cole et al., 2020). Therefore, 

we modeled neurogenesis as a “replacement/turnover” mechanism, where a randomly 

chosen small subset of neurons in the middle layer is “turned over” such that their input 

and output weights are re-initialized to new values (whereas connections of mature 

neurons remain the same). This turnover/replacement model ensures that the size of 

the network remains constant. From a computational perspective, this controls for the 

fact that networks of different sizes can perform very differently (since larger networks 

have more tunable parameters). From a biological perspective, this mimics the rodent 

hippocampus where neurogenesis produces negligible net growth (i.e., increase in total 

number of granule cells) during adulthood (Cole et al., 2020). While deep learning 

models with neurogenesis have been previously developed (Aimone, 2016; Draelos et 

al., 2017), these did not explicitly evaluate the role of neurogenesis in generalization.  

Results 

Neurogenesis improves generalization in CNNs 

We implemented neurogenesis in a CNN trained and tested on the CIFAR-10 dataset 

(Krizhevsky, 2009). CIFAR-10 consists of 60,000 32 ⨉ 32 pixel RGB images in 10 

different classes representing airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, 

and trucks. The CNN consists of 64, 64, and 128 filters, respectively (see Methods for 

more information), followed by three fully connected layers (Figure 1A-B). In order to 

model neurogenesis, weights of a randomly selected subpopulation of neurons in the 

middle layer of the fully-connected layers were reinitialized continuously during 

training, with multiple turnover events. Following hyperparameter tuning, we found 

that turning over 3.2% of neurons every 640 mini-batch updates to the model had the 

greatest impact on performance of the network (Figure 1C). Neurogenesis was 

restricted to only one layer, mimicking the occurrence of neurogenesis only in the 

dentate gyrus layer of the hippocampus. We found that neurogenesis in the second fully 

connected output layer of the network performed the best during hyperparameter 

tuning, and therefore used this configuration for all experiments. The performance of 

neural networks is also dependent on initialization (with some random initializations 

outperforming others even after undergoing the same training process). To control for 

potential differences in initialization states between groups, each network initialization 
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was copied and these identical versions were used in the control (no neurogenesis) and 

experimental (neurogenesis) networks, respectively.  

 

We found that neurogenesis improved network performance on unseen test data. 

Whereas test accuracy for the control network was 74.36 ± 0.16 %, networks trained 

with neurogenesis had a test score of 76.20 ± 0.20 % (Figure 2A). This improvement in 

performance with neurogenesis did not depend on initialization states. In particular, the 

performance-enhancing effects of neurogenesis were not limited to low-scoring 

variants. Higher-scoring variants also benefited from neurogenesis, indicating that 

neurogenesis can improve generalization beyond the top scores that a static, non-

neurogenic network can achieve (Figure 2B). 

Adult-generated neurons are more excitable than their developmentally-generated 

counterparts, with excitability peaking between 4-8 weeks of cell age (Dieni et al., 2016; 

Doetsch & Hen, 2005; Marín-Burgin et al., 2012; Mongiat et al., 2009; Schmidt-Hieber et 

al., 2004). To address whether elevated excitability of new neurons might further 

promote regularization and improve the performance of neurogenic networks, we 

increased the activation of new neurons by 30% during each forward pass during 

training (Figure 2C). To reflect the transient nature of these changes, following each 

round of new neuron turnover, excitability of previously turned over neurons returned 

to baseline. As before, we found that neurogenic networks outperformed our control 

networks (i.e., non-neurogenic networks) on held-back test data. However, 

incorporating excitability into the neurogenic CNN did not further improve performance 

(i.e., neurogenesis + excitability) (Figure 2D).  

Neurogenesis improves CNN performance via regularization 

The improved performance on held-back test data might reflect a more powerful model 

in the neurogenesis group, rather than a regularization effect. In other words, it could be 

that learning in general is simply better in the neurogenesis networks, in the same way 

that networks with more layers tend to learn better. Indeed, in adult rodent studies 

interventions that elevate hippocampal neurogenesis facilitate learning in many (Creer 

et al., 2010; Sahay, Scobie, et al., 2011) situations. (Though it should be noted that this 

does not actually hold in all situations (Frankland, 2013)). Similarly, in artificial neural 

networks, implementation of neurogenesis may improve learning in general (Chambers 
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et al., 2004; Deisseroth et al., 2004; Meltzer et al., 2005), rather than having a specific 

effect on generalization. To assess this, we compared training accuracy of the control 

and neurogenic networks, anticipating that training accuracy would be the same, or 

even reduced, in the neurogenesis network should improved performance be due to 

regularization. We found that the neurogenic networks do not improve training 

accuracy, and in fact, they sacrifice training accuracy in order to achieve the previously 

observed higher test accuracy on held-back data. Neurogenic networks achieve lower 

validation loss, but higher training loss relative to control, suggesting that the 

enhancement in performance is indeed due to a regularization effect (Figure 2E,F).  

Neurogenesis regularization achieves similar level improvement to dropout 

We next compared neurogenesis to conventional regularization methods, including 

dropout, weight decay, and neural noise (Figure 3A-C). Dropout involves the stochastic 

silencing of a subset of units during each forward pass (Srivastava et al., 2014). Weight 

decay involves adding a small penalty to the loss function that penalizes large weights, 

thus resulting in an overall decay of larger weights (Krogh & Hertz, 1992). Neural noise 

involves the addition of Gaussian noise to all the activations during each forward pass 

(Bishop, 1995). After identifying the optimal parameter values for each of these 

regularization methods, we compared the performance of neurogenic networks to 

networks regularized with these other methods. We found that neurogenic CNNs 

performed similarly to dropout, and outperformed weight decay and neural noise 

(Figure 3D).  

Mechanistically, there are similarities between replacement/turnover neurogenesis and 

dropout, with both involving information loss at each update. In dropout, a 

subpopulation of neurons is transiently silenced, but connection weights are otherwise 

maintained. In contrast, replacement/turnover neurogenesis involves resetting the 

weights of a subpopulation of neurons. Interestingly, the optimal size of these 

subpopulations differs markedly for dropout vs. neurogenesis. Optimal performance 

occurred when dropout was implemented in a subpopulation that corresponded to 

~20% of hidden layer neurons, whereas for neurogenesis, optimal performance was 

achieved when the turnover subpopulation was ~3.2% of hidden layer neurons.  
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We next asked whether combining regularization techniques might further enhance 

performance. Surprisingly, neurogenesis, when combined with dropout, weight decay or 

neural noise, consistently reduced the performance (Figure 3E). This suggests that the 

amount of noise injected by neurogenesis may be suboptimal when combined with other 

regularization techniques. Consistent with this idea, performance improved when the 

amount of noise injection for each regularization method was reduced. However, even 

using these reduced parameter values did not enhance performance beyond that of 

neurogenesis alone, suggesting that there is a ceiling effect beyond which performance 

cannot be improved further (Figure 3F). 

Targeted neurogenesis in CNNs 

In our model, neurogenesis occurs in randomly selected subpopulations of middle layer 

neurons. However, the integration of new neurons might be non-random in nature. For 

example, in rodents there is evidence for neurogenesis-dependent refinement of 

synaptic connections in the hippocampus, with the integration of new neurons leading 

to the elimination of less active synaptic connections (Yasuda et al., 2011). Here we 

explored whether implementation of a similarly targeted turnover mechanism during 

training would further enhance performance of our neurogenic networks. Such an 

approach has previously been explored using dropout regularization, and, in this case, 

targeting dropout to neurons that are likely to be less important for the task  (i.e., 

neurons with lowest L1 norm values or total weights) led to significant improvement in 

test performance (Gomez et al., 2019). Using a similar strategy, here we ranked neurons 

by their L1 norm values at every turnover event, and reinitialized weights of the bottom 

3.2% ranking neurons. As a positive control, we reinitialized the weights of the top 3.2% 

ranking neurons in a separate experiment (Figure 4A).  

Targeting top-ranked neurons impaired generalization performance below that of the 

control (no neurogenesis) group. This is expected since these neurons are assumed to be 

more valuable to the performance of the network. However, targeting the bottom-

ranked neurons did not further enhance performance (i.e, compared to random 

reinitializations affecting the same size subpopulation) (Figure 4B). While this finding 

indicates that targeting turnover neurogenesis to the bottom L1 norm ranking neurons 

does not further improve generalization, we recognize that there may be alternate ways 
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to determine ‘importance’ of units in a neurogenic network, and it is possible that 

targeting these might produce performance improvements. 

Neurogenesis improves generalization but increases reliance on individual 

neurons 

The degree to which networks depend on single units vs. more distributed, population 

codes influences generalization (Morcos et al., 2018). Typically, networks that generalize 

well on held back, unseen test data depend on distributed population codes, rather than 

a small subset of units. Moreover, because of their distributed nature, these types of 

networks tend to be more resilient to random ablation of units (Morcos et al., 2018). 

Conversely, networks that generalize poorly tend to depend on a small subset of units, 

rather than distributed codes, and these networks are typically less resilient to random 

ablation of units.  

We performed a similar analysis here to assess whether neurogenesis improves 

generalization by reducing the dependence of networks on a small subset of single units.  

To evaluate the reliance on single units vs. distributed codes, we sequentially ablated 

random units following training and compared pre- and post-ablation performance 

(accuracy was normalized to pre-ablation performance) (Figure 5A). Surprisingly, we 

found that neurogenic networks were less resilient. Ablation of a smaller proportion of 

units was sufficient to decrease performance (as reflected by the leftward shift of the 

curve) (Figure 5B). This indicates that neurogenesis improves generalization through a 

mechanism other than reducing the network’s reliance on individual neurons. We also 

measured the class selectivity for each neuron using the metric described in Morcos et 

al., (2018) to test whether there were fewer highly class selective neurons. We found 

that the distribution of class selectivities of neurons was shifted to the left (on average 

neurons were less selective for class) in the neurogenesis group compared to dropout or 

control networks (Figure 5C). To assess whether the reduced resilience to ablation of 

neurogenic networks translates to increased vulnerability to neurogenesis post-training, 

we trained networks as before, with and without neurogenesis, and tested performance 

with and without post-training neurogenesis. One turnover event (replacing 8 neurons) 

after training/at test-time was used. We found that post-training neurogenesis reduced 

performance of the neurogenic networks, but not the control networks, further 
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demonstrating a specific sensitivity to perturbation in neurogenic networks (Figure 

5D). 

Discussion 

As adult-generated neurons integrate into hippocampal circuits they form naive 

synapses and therefore can be thought of as a form of ‘wiring’ noise. Deep learning has 

found that various forms of noise-injection can reduce overfitting on training data and, 

as a result, enhance generalization in deep neural networks. We therefore hypothesized 

that neurogenesis-mediated rewiring would similarly have a regularization effect, i.e., 

prevent memorization of training data and favor a more flexible, generalized memory 

that can be applied in a broader range of circumstances. We explored this hypothesis 

computationally, implementing neurogenesis in a hidden layer of a CNN trained on the 

CIFAR-10 object recognition task. Consistent with our hypothesis, neurogenesis acted as 

a regularizer, improving generalization on the test (held-out) data. Performance with 

neurogenesis regularization matched (dropout) or outperformed (weight decay, neural 

noise) other conventional regularization techniques.  

In our model, we implemented neurogenesis as a replacement/turnover mechanism, 

where input and output synaptic weights associated with small subsets of middle layer 

neurons were re-initialized through training. We used this approach since neurogenesis 

in the rodent hippocampus similarly involves replacement of mature, developmentally-

generated neurons with immature, adult-generated neurons, and, therefore, turnover of 

associated synaptic weights. For instance, in the rat adult dentate gyrus there is 

significant loss of mature granule cells that were born soon after birth (Ciric et al., 

2019). Since there is negligible overall increase in the size of the dentate granule cell 

layer during adulthood (Rapp & Gallagher, 1996), this implies that this loss of 

developmentally-generated granule cells in adulthood is balanced by new neuron 

addition (Cole et al., 2020). Viewed in this way, neurogenesis regularization can be 

thought of as a form of wiring noise that incrementally alters network connectivity 

patterns, without impacting overall network size. 

In the CNN, we explored whether targeting neurogenesis regularization to less 

important neurons was beneficial. Using L1 norm values as a metric of “importance” 

(Gomez et al., 2019), we assessed generalization following three types of neurogenesis 
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regularization: When neurogenesis regularization was applied randomly to all middle 

layer units versus when neurogenesis regularization was either restricted to the least 

(i.e., neurons with lowest L1 norm values or weakest weights) or the most (i.e., neurons 

with highest L1 norm values or strongest weights) important middle layer neurons. As 

expected, targeting neurons with the highest L1 norm scores decreased generalization 

scores below control (no neurogenesis) levels, consistent with the idea that neurons 

with the highest L1 norm values are indeed more important for the task. However, 

targeting neurogenesis regularization to neurons with the lowest L1 norm scores did 

not improve generalization beyond networks with non-targeted or random 

neurogenesis regularization.  

In the rodent brain, there is some evidence that the integration of new neurons is a non-

random process, with the integration of new neurons leading to the pruning of less 

active synaptic connections (Yasuda et al., 2011). While our current analyses suggest 

that such a targeted mechanism may not be critical for improving generalization, 

nonetheless it is possible that using the L1 norm of each unit may not be the most 

suitable metric of importance. Alternatively, the lottery ticket hypothesis suggests that 

within these networks there exist sparse sub-networks that, when trained in isolation, 

can achieve the same final performance accuracy of the entire network but in the same 

or fewer training epochs (Frankle & Carbin, 2019). Interestingly, the rates at which 

these lottery-winning sub-network neurons change weights is much higher compared to 

other neurons. Therefore, one possibility would be to target neurogenesis regularization 

to neurons that change their weights the least (i.e., those that contribute least to the loss 

function) during training. Simply looking at the L1 norm, which is not sensitive to the 

rate of weight changes, would not capture the same “importance” as described in the 

lottery ticket hypothesis.  

A second issue we explored in the CNN was whether neurogenesis regularization 

impacts how information is organized within the network. Typically, better 

generalization is associated with more distributed coding (Morcos et al., 2018). 

Following dropout regularization, for example, information tends to be coded in a more 

distributed manner, rather than in single units. One consequence of this organization is 

that networks tend to be more resilient to random, sequential ablation of units following 

dropout regularization. In contrast, we found that there was greater reliance on single 
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units following neurogenesis regularization, and networks regularized this way were 

more vulnerable to random ablations (despite better generalization performance).  

One way these findings might be viewed is that while neurogenesis regularization 

improves generalization it also introduces network vulnerabilities. That is, randomly 

turning over units pushes the network to rely on neurons that are tuned to single 

directions (via an unknown mechanism). This may improve generalization performance, 

but subsequent, random turnover events can also eliminate neurons that are highly-

tuned to single directions, and hence, have catastrophic consequences. The idea that 

neurogenesis might introduce network vulnerabilities is interesting since neurogenesis 

has been linked to forgetting (Frankland et al., 2013; Ryan & Frankland, 2022). For 

example, post-training increases in neurogenesis induce forgetting of established 

hippocampus-dependent memories in adult rodents (Akers et al., 2014; Epp et al., 2016; 

Gao et al., 2018). Whether (or not) forgetting happens may depend both on the levels 

and/or the timing of neurogenesis.  

With respect to levels of neurogenesis, whereas low levels of neurogenesis may promote 

overfitting (i.e., memorization or no forgetting), high levels of neurogenesis may 

promote underfitting (i.e., forgetting). In between these extremes, moderate levels of 

neurogenesis may prevent overfitting and promote generalization (Ko & Frankland, 

2021). According to this scenario, it may be the case that neurogenesis levels need to be 

tightly regulated in order to balance the costs (e.g., overfitting, forgetting) vs. benefits 

(improved generalization) of rewiring (Richards & Frankland, 2017). 

Our analyses suggest that the timing of increases in neurogenesis (with respect to 

training) also might matter. When neurogenesis occured in concert with training, we 

found this led to improved performance on subsequent test data. However, when 

neurogenesis-like turnover occurs at the time of testing we observed a decrease in 

performance on the unseen test data. This suggests that neurogenic networks need to 

keep training if they are to retain high performance. Viewed this way, it might be useful 

to distinguish between the effects of ongoing neurogenesis on active memories (i.e., 

those that are undergoing training and invulnerable) vs. inactive (i.e., those where 

training is ‘complete’ and therefore are vulnerable).  
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While our model captures replacement/turnover as a core feature of neurogenesis, we 

nonetheless recognize that it is highly abstracted and differs significantly from biological 

networks in terms of architecture, connectivity and sparsity. Another feature that was 

not captured in the current model, but is relevant especially in the context of 

consolidation, is replay. During sleep, previous event sequences are “replayed” in the 

hippocampus and this may provide an opportunity to integrate new experiences with 

prior, relevant experience and promote generalization (Ji & Wilson, 2007; Louie & 

Wilson, 2001). Indeed, REM sleep, the period of sleep during which replay events 

typically occur (Louie & Wilson, 2001), is associated with enhanced memory 

generalization in humans (Lerner et al., 2021). Interestingly, adult-born dentate granule 

cells that were active during learning are reactivated during subsequent REM (Kumar et 

al., 2020). This suggests that new neurons may indeed be contributing to consolidation 

as a source of noisy replay, potentially promoting neural regularization and 

generalization of hippocampal memories. Consistent with this view, in a computational 

model, O’Donnell et al. found that noisy replay led to an relative increase in the overlap 

between input patterns and a particular target pattern (O’Donnell & Sejnowski, 2014). 

Such a mechanism might underlie generalization through broadening the types of inputs 

that would drive activation of a given memory.  

What are the implications for functional studies of hippocampal neurogenesis? The 

functional consequences of altering hippocampal neurogenesis (or manipulating the 

activity of adult-generated granule cells) have largely been studied in rodents (Anacker 

& Hen, 2017; Cameron & Glover, 2015; Gonçalves et al., 2016). A major focus of these 

studies has been on the role of hippocampal neurogenesis in pattern separation (Sahay, 

Wilson, et al., 2011; Santoro, 2013). In a typical experiment, an experimental 

intervention is introduced to alter levels of hippocampal neurogenesis, and then the 

ability of mice or rats to make fine spatial or contextual discriminations is assessed. In a 

touchscreen apparatus, for example, this might involve discriminating between stimuli 

presented in different spatial locations (Oomen et al., 2013). Rodents with reduced 

neurogenesis perform poorly under conditions where spatial similarity is high, whereas 

rodents with elevated neurogenesis exhibit enhanced discrimination (Clelland et al., 

2009; Creer et al., 2010).  
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These results are consistent with the idea that hippocampal neurogenesis regulates a 

pattern separation-like process in the hippocampus. However, directly comparing these 

results to our model is difficult given that spatial discrimination is a computationally 

different task from category discrimination, as we studied here. While studies of 

category learning are common in monkeys (Ashby & Spiering, 2004), investigations of 

category learning have been less common in rodents (where neurogenesis levels can be 

more readily manipulated). Nonetheless, both object recognition and touchscreen-based 

category learning tasks have been developed for rodents (Broschard et al., 2021; 

Creighton et al., 2019). The object category recognition tasks take advantage of rodents’ 

innate preference for novelty. During the study phase, mice are allowed to explore two 

objects from the same category (e.g., two different toy cars). During the test phase, mice 

are presented with a choice between a third object from the studied category (i.e., 

another toy car) and a novel object from a new category (e.g., hair clip). Should the 

mouse exhibit a preference for the object from the unstudied category (i.e., hair clip), 

then this suggests some within category generalization (i.e., across different types of toy 

cars) (Creighton et al., 2019). In the touchscreen-based category learning task, mice are 

trained to discriminate between 2D visual stimuli presented on a touchscreen that can 

be categorized according to spatial features (e.g., spatial frequency and orientation of 

gratings). Generalization is assessed when rodents are subsequently tested on novel 

visual stimuli from the studied categories (Broschard et al., 2021). Based on the findings 

presented here, we predict that suppression of adult hippocampal neurogenesis will 

impair generalization in such tests, whereas increasing adult hippocampal neurogenesis 

will facilitate performance.  All of this would be consistent with the effects proposed for 

neurogenesis in the pattern separation literature. 

Neurogenesis has previously been modeled in the context of deep learning in the form of 

an autoencoder that can perform continual learning. Neurogenesis was found to prevent 

memory interference of learning new classes on previously learned classes in an image 

reconstruction task (Draelos et al., 2017). This aligns with other literature where 

neurogenesis has been shown to improve memory capacity and prevent catastrophic 

interference (Appleby & Wiskott, 2009; Finnegan & Becker, 2015; Wiskott et al., 2006). 

Here, we found that neurogenesis can be applied to CNNs as a novel regularization 

technique to improve generalization in classification tasks. While the performance of 

turnover models was superior to neural noise and weight decay, turnover models did 
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not exceed the performance of other regularization methods (namely, dropout). While 

both methods introduce randomness via the architecture of the network during training, 

turnover differs from dropout in that turnover consists of the simultaneous permanent 

loss of learned weights and resetting of weights during the course of training, whereas 

dropout temporarily silences a random population at each forward pass during training. 

Neurogenesis as a regularization technique may benefit further by using a different 

targeted approach to which neurons are turned over, as discussed above. However, 

there is also the question as to the mechanism by which neurogenesis improves 

performance. It is possible that by randomly resetting some neurons during training, 

these neurons’ weights have the opportunity to be arranged in such a way that is more 

beneficial to training than their previous weights.   

Conclusions. The current analyses provide evidence that ‘wiring noise’ in the 

hippocampus, in the form of ongoing neurogenesis, provides a means to regularize 

memories, thereby preventing memorization and promoting generalization. These ideas 

are consistent with recent computational and imaging evidence that the hippocampus 

supports statistical learning/generalized memories, in addition to detailed memories, in 

humans (Schapiro & Turk-Browne, 2015; Sučević & Schapiro, 2022), and they provide a 

potential mechanism. Because neurogenesis can be experimentally manipulated in 

rodents, these predictions can be evaluated using category learning (or related) 

paradigms in the future.     
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Methods 

Software 

Code for these methods is available on GitHub (https://github.com/linamnt/dnn-

neurogenesis). 

Python 

Models were built and analyzed in Python 3.6 (Van Rossum & Drake, 2009) with custom 

scripts that are freely available on GitHub, and were developed using the following 

packages: PyTorch (Paszke et al., 2019), Ax (https://github.com/facebook/Ax), NumPy 

(Oliphant, 2006), SciPy (Virtanen et al., 2020), Pandas (McKinney & others, 2010), 

Matplotlib (Hunter, 2007), Seaborn (Waskom et al., 2017), Scikit-learn 0.21.1 

(Pedregosa et al., 2011). 

Computing resources 

These experiments were implemented on the high-performance compute clusters at 

Compute Canada and Vector Institute for AI. 

Convolutional neural network 

The CNN involves convolutional layers that have filters that convolve to extract features 

of the image that are not affected by translation. Each convolutional layer is followed by 

a pooling layer that downsamples the images to improve computational efficiency. 

Finally, after multiple sets of convolutional and pooling layers, there are fully connected 

layers. The input layer was of size 32 ⨉ 32 ⨉ 3, corresponding to the images (with three 

color channels) from the CIFAR-10 dataset. The CNN was built with three sets of two 

convolutional layers, each followed by a max-pooling layer. The convolutional layer sets 

had 16, 32, and 64 filters, respectively, with a 3 ⨉ 3 filter size and stride (steps the filter 

moves along) of 1. The max-pooling layers pool a 2 ⨉ 2 region and are applied at strides 

of 1. The convolutional layers are then connected to three fully connected layers, each 

with 250 units, using a rectified linear activation function. Neurogenesis occurred in the 

middle, fully connected layer. Data was split into training (40,000 images), validation 

(10,000 images) and test sets (10,000 images). Test results are derived from networks 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.07.487582doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?Fh1HpB
https://www.zotero.org/google-docs/?kElwJO
https://github.com/facebook/Ax
https://www.zotero.org/google-docs/?5nZQuL
https://www.zotero.org/google-docs/?NdY4HR
https://www.zotero.org/google-docs/?Ncp4VC
https://www.zotero.org/google-docs/?oVCOsW
https://www.zotero.org/google-docs/?WUQBWl
https://www.zotero.org/google-docs/?xZbEBg
https://doi.org/10.1101/2022.04.07.487582
http://creativecommons.org/licenses/by/4.0/


17 
 

trained on the full training set. We tuned the network’s hyper-parameters by training on 

the training set (40, 000 images), and testing on the validation set (10, 000 images). The 

hyper-parameters, i.e., values that regulate learning in the networks, and other 

information about the networks are listed in tbl. 1. 

CIFAR-10 

The CIFAR-10 dataset is a collection of images that consists of 50,000 training and 

10,000 test images for each of ten classes commonly used to train machine learning and 

computer vision models. The images are 32 ⨉ 32 color images with the 10 different 

classes representing airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships and 

trucks.  

Table 1: Table of CNN model parameters. 

Hyperparameter CNN 

Batch size 4 

Learning rate 0.0002 

Epochs 14 

Turnover Proportion 0.032 

Turnover Frequency 1/640 batch updates 

Dropout 0.2 

Weight Decay 0.00001 

Neural Noise (log normal: mean, std) -0.2, 0.5 

Excitation Factor (c) 1.3 

 

Training neurogenic networks 

We found that neural networks with neurogenesis can be trained using stochastic 

gradient descent (Robbins, 2007). During training, neurogenesis was implemented on 
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an ongoing basis, with multiple turnover events occurring. Neurogenesis occured in the 

second hidden layer (of three). Neurogenesis was implemented as a 

replacement/turnover mechanism, whereby a randomly chosen subset of neurons in the 

layer was “turned over” such that their weights were re-initialized to new values. In 

contrast, the other neurons maintained their learned weights. We initialized the new 

neurons’ weights using the same function used when randomly initializing the network 

at the start of training, i.e., Kaiming uniform initialization (He et al., 2015). Turnover can 

occur at a frequency of once every n batch updates. We tuned the hyperparameters 

using Bayesian Optimization which is an iterative parameter tuning process which 

builds a probability model for the best parameters to try next (Snoek et al., 2012), 

whereby we input the turnover frequency (ranging from once every update to once 

every 12500 updates), and how many neurons to add at each turnover event (ranging 

from 0 to 250 neurons) as parameters to search for. We found that turning over 8 

neurons every 640 updates in the second fully-connected layer resulted in the highest 

performance on the validation set. We implemented neurogenesis in the output layers of 

a CNN. 

Enhancing excitability 

To evaluate whether manipulating “excitability” of new neurons might impact 

regularization, in a separate experiment we incorporated an excitability component into 

our neural networks in each forward pass during training. We multiplied the activations 

of the neurogenesis layer by an excitability array. The activations corresponding to the 

new neurons were set to a factor (1.3; determined by hyperparameter tuning), and all 

other activations were set to 1. As a result, only the activations corresponding to the 

turned-over neurons were enhanced, and the remainder of the neurons’ activations 

were unchanged. Whenever a new set of neurons were turned over, the previous set of 

new neurons became “mature” and were no longer “excited” in the forward pass. 

Other Regularization Methods 

To compare the performance of neurogenesis to other regularization methods, we also 

used dropout, weight decay and neural noise in the CNNs. Dropout involves the 

stochastic silencing of a subset of units during each forward pass (Srivastava et al., 

2014). We used a dropout rate of 0.2 in CNNs, with an additional 7 epochs required to 
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reach the end of training, compared to non-dropout networks. Weight decay consists of 

adding a small penalty to the loss function that penalizes large weights, thus resulting in 

an overall decay of larger weights (Krogh & Hertz, 1992). We used a weight decay value 

of 0.00001 for our CNN. Neural noise involves the addition of Gaussian noise to all the 

activations during each forward pass (Bishop, 1995). We defined our noise using a mean 

of -0.2, and a standard deviation of 0.5 on a log normal distribution for our CNN. 

Ablation experiments 

To measure the importance of individual neurons in a network, we tested how much the 

network’s performance degrades as progressively more neurons are removed from the 

network (based on Morcos et al. (2018)). To remove a neuron, we set that neuron’s 

activity to a fixed value of 0, effectively ablating the unit. We progressively ablated 

neurons in proportional steps of 5% of the neurons in the neurogenesis layer, testing the 

accuracy of the training data at each step to generate ablation curves. We repeated each 

ablation five times and randomized the order of neurons ablated each time. Ablation 

curves plot the degradation in accuracy as more neurons are ablated. Networks that rely 

more heavily on individual units will drop their accuracy more quickly as units are 

ablated. Networks that are less sensitive to ablations have been shown to correlate with 

better generalization (Morcos et al., 2018). 

Class selectivity 

Class selectivity was calculated using the method described in Morcos et al., 2018. The 

class-conditional mean activity was calculated from the test set and the class selectivity 

index was measured as 

selectivity = 𝜇𝜇���− �−���  
����+ �−���  

 

where𝜇𝜇��� is the highest mean class activity and 𝜇𝜇−���  is the mean class activity across 

all other classes. 

Targeted neurogenesis 

To test whether a targeted approach to removing new neurons might improve the 

performance of neurogenic networks, we implemented a targeted turnover of new 

neurons. Based on the work of Gomez et al. (2019)(Gomez et al., 2019), we adapted the 
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targeted unit dropout technique to choose which units to replace in the network with 

naive units. It was found that this method of targeting neurons for dropout performed 

better than a random dropout process for identifying pruned networks. While 

identifying pruned networks is not the goal of our work, we could use their methods to 

identify important and unimportant units to target for turnover. The unit’s importance 

was determined using the unit L1 norm (i.e., the sum of the absolute values of all the 

weights inputting onto the unit) and ranking them from lowest to highest value and 

importance. To test whether targeting neurogenesis to the low importance neurons 

would improve performance, a proportion of the lowest ranking neurons matching the 

proportion of neural turnover had their weights reset. As a positive control, we also 

targeted the highest importance neurons (highest L1 norm values) for turnover to 

confirm that this metric does indeed carry information about the importance of neurons 

for learning. 

Statistical analyses and plotting 

All statistics were performed using the scipy.stats module in Python 3.6 (Van Rossum & 

Drake, 2009; Virtanen et al., 2020). Error bars on graphs represent the standard error of 

the mean across different initializations of the model, where each experiment is 

repeated 20 times unless otherwise stated. Comparisons were made using unpaired, 

two-tailed t-tests, or analysis of variance (ANOVA) followed by Tukey’s HSD post-hoc 

tests where appropriate. Significance indicated by an asterisk (*) for p-values less than 

0.01 unless otherwise stated. Graphs were generated using the matplotlib, and seaborn 

packages in Python 3.6 (Hunter, 2007; Waskom et al., 2017), and figures were compiled 

using Inkscape (Inkscape Project, 2020). 
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Figure 1. Implementing neurogenesis in convolutional neural networks. (A) 
Illustration of the CNN used in these experiments. (B) A schematic illustrating how 
replacement/turnover neurogenesis was implemented. (C) Illustration of the training 
and testing process with neurogenesis. 
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Figure 2.  Neurogenesis improves generalization in CNNs. (A) Box plot of test 
accuracy of control and neurogenesis networks after training; t-test: t19 = 7.00, p 
=1.1×10-6. (B) Violin plots of the distribution of scores for the lowest scoring (left) and 
highest scoring (right) halves from each group: control and neurogenesis, from (A). (C) 
An illustration of how we implemented enhanced excitability of new neurons in a 
neurogenic neural network by multiplying the activations of a new neuron by an 
excitability factor, c. (D) Boxplot of test accuracies of control, neurogenic and neurogenic 
+ excitability CNNs; ANOVA: F2,57 = 19.01, p = 4.7×10-7; Tukey’s HSD: Neurogenesis, 
Neurogenesis Excite > Control, p < 0.01. (E) Box plot of the training accuracy of the 
control and neurogenesis groups at the end of training; t-test: t19 = 4.94, p = 9.0 × 10-5. 
(F) Plot of validation loss across training. *represents p-value below 0.01. 
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Figure 3. Illustration of regularization methods. (A) Dropout: a random subset of 
neurons and their weights are inactivated during a given forward pass. (B) Weight 
decay consists of adding a small penalty to the loss function that penalizes large weights, 
thus resulting in an overall decay of larger weights. (C) Neural noise: Gaussian noise is 
added to the activations of a layer.  (D) Box plot of the test accuracy of neurogenesis 
compared to other regularization methods; ANOVA: F4, 95 = 16.54, p = 2.5×10-10; Tukey’s 
HSD: neurogenesis vs. control p<0.01, neurogenesis vs. dropout p>0.01, neurogenesis vs. 
weight decay p<0.01, neurogenesis vs. neural noise p<0.01. (E) Heatmap of z-scores of 
test performance in networks with combined regularization methods relative to 
neurogenesis-only networks. (F) Plot of neurogenesis and dropout combined using 
lower parameter values of dropout (0.1), and neurogenesis (turnover every 1000 
updates); ANOVA: F2,57 = 65.69, p = 1.6×10-15; Tukey’s HSD: control vs. neurogenesis p < 
0.01, control vs. neurogenesis+dropout p < 0.01, neurogenesis vs. neurogenesis + 
dropout p > 0.01. * represents p-value below 0.01. 
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Figure 4. Targeted neurogenesis does not change network performance. (A) An 
illustration of targeted neurogenesis in a hidden layer. The neurons are ranked in order 
of input weight strengths, and a proportion of the lowest-ranked (low importance) or 
highest-ranked (high importance) neurons are targeted for neurogenesis (i.e., having 
their weights reset), or there is no targeting (random). (B) A boxplot of model test 
accuracy in control, random neurogenesis, targeted neurogenesis of high importance 
neurons (positive control), and targeted neurogenesis of low importance neurons; 
ANOVA: F3, 96 = 46.30 p =  1.3×10-18; Tukey’s HSD: (Control vs. Random) p<0.01, (Control 
vs. High Importance) p<0.01 (Random vs. Low Importance) p>0.01. * represents p-value 
below 0.01. 
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Figure 5. Networks with neurogenesis are less robust to ablation. (A) Illustration of 
ablation experiments. (B) Plot of the mean normalized accuracy across 20 repeats as 
progressively more neurons are ablated from the network. (C) Density plot of the class 
selectivity of neurons in the second hidden layer in control, neurogenic and dropout 
networks. (D) Boxplot of test accuracy of networks that were trained with and without 
neurogenesis, and then tested with and without new neurons added post-training; 
Repeated-measures ANOVA: Training × Post-training interaction, F1,19 = 58.68, p < 0.01; 
Tukey’s HSD: (Neurogenesis/Control vs Neurogenesis/Neurogenesis) p < 0.01. * 
represents p-value below 0.01. 
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