

Antibody Resistance of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2 and BA.3

Sub-lineages

Jingwen Ai^{1, #}, Xun Wang^{2, #}, Xinyi He^{3, #}, Xiaoyu Zhao^{2, #}, Yi Zhang^{1, #}, Yuchao Jiang^{4, #},
 Minghui Li², Yuchen Cui², Yanjia Chen², Rui Qiao², Lin Li², Lulu Yang², Yi Li³, Zixin
 Hu^{3,5,*}, Wenhong Zhang^{1,6,*}, Pengfei Wang^{2,*}

¹Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China

²State Key Laboratory of Genetic Engineering, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai, China

³State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China

⁴Pigentech Lab Limited, Shanghai, China

⁵Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China

⁶National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China

[#]These authors contributed equally

*Address correspondence to Pengfei Wang (pengfei_wang@fudan.edu.cn), Wenhong Zhang (zhangwenhong@fudan.edu.cn) or Zixin Hu (huzixin@fudan.edu.cn).

Abstract

The SARS-CoV-2 Omicron variant has been partitioned into four sub-lineages designated BA.1, BA.1.1, BA.2 and BA.3, with BA.2 becoming dominant worldwide recently by outcompeting BA.1 and BA.1.1. We and others have reported the striking antibody evasion of BA.1 and BA.2, but side-by-side comparison of susceptibility of all the major Omicron sub-lineages to vaccine-elicited or monoclonal antibody (mAb)-

32 mediated neutralization are urgently needed. Using VSV-based pseudovirus, we found
33 that sera from individuals vaccinated by two doses of inactivated whole-virion vaccines
34 (BBIBP-CorV) showed very weak to no neutralization activity, while a homologous
35 inactivated vaccine booster or a heterologous booster with protein subunit vaccine
36 (ZF2001) markedly improved the neutralization titers against all Omicron variants. The
37 comparison between sub-lineages indicated that BA.1.1, BA.2 and BA.3 had
38 comparable or even greater antibody resistance than BA.1. We further evaluated the
39 neutralization profile of a panel of 20 mAbs, including 10 already authorized or
40 approved, against these Omicron sub-lineages as well as viruses with different Omicron
41 spike single or combined mutations. Most mAbs lost their neutralizing activity
42 completely or substantially, while some demonstrated distinct neutralization patterns
43 among Omicron sub-lineages, reflecting their antigenic difference. Taken together, our
44 results suggest all four Omicron sub-lineages threaten the efficacies of current vaccines
45 and antibody therapeutics, highlighting the importance of vaccine boosters to combat
46 the emerging SARS-CoV-2 variants.

47

48

49 **Introduction**

50 The World Health Organization has now designated five variants of severe acute
51 respiratory syndrome coronavirus 2 (SARS-CoV-2) as Variants of Concern, including
52 Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2) and Omicron
53 (B.1.1.529). The Omicron variant has recently been divided into four sub-lineages:
54 BA.1, BA.1.1, BA.2 and BA.3 (Figure 1A). The original Omicron (BA.1 sub-lineage)
55 was first identified in Botswana and South Africa in November 2021¹ and together with
56 its derivative BA.1.1 (containing an extra spike R346K mutation) became dominant
57 worldwide in replacement of Delta over the span of a few weeks. But subsequently, we
58 saw a rapid surge in the proportion of BA.2, and this sub-lineage became the dominant
59 variant globally. Compared with the BA.1 and BA.2 sub-lineages, the prevalence of
60 BA.3 sub-lineage is currently very low (Figure 1B).

61 BA.1, BA.2 and BA.3 have numerous mutations in common, but also with distinct sets

62 of mutations in their spike that can differentiate these sub-lineages (Figure 1C).
63 Although the selective advantage of BA.2 could be partially explained by its higher
64 transmissibility than BA.1², their relative immune evasion property could be also
65 counted. We^{3,4} and others⁵⁻¹² have reported that BA.1 demonstrated considerable escape
66 from neutralization by monoclonal antibodies (mAbs) and sera from vaccinated
67 individuals. BA.2 has also been reported to severely dampen antibody
68 neutralization^{13,14}. However, evaluation and comparison of susceptibility of all the
69 major Omicron sub-lineages to vaccine-elicited or mAb-mediated neutralization are
70 urgently needed. In this study, therefore, we constructed the Omicron sub-lineage
71 pseudoviruses (PsVs) and compared side-by-side their neutralization sensitivity to
72 vaccinee sera as well as a panel of mAbs.

73

74 **Results**

75 The first question we asked for the Omicron sub-lineages is their extent of immune
76 evasion of polyclonal antibody neutralizing activity elicited in humans after vaccination
77 or infection. To answer this, we first assessed the neutralizing activity of sera from
78 individuals vaccinated by two doses of inactivated whole-virion vaccines (BBIBP-
79 CorV) (Supplementary Table 1). Similar as we reported before³, although all the sera
80 showed neutralization activity against wild-type (WT) virus, the activity was relatively
81 weak with geometric mean neutralizing titers (GMTs) about 55, and when it turned to
82 BA.1, only 2/10 vaccinees showed marginal neutralization. When we tested these sera
83 on the three other sub-lineages, most of them showed no detectable activity except a
84 few had very weak neutralization against BA.2 and BA.3 (Figure 2A and
85 Supplementary Figure 1A). These results indicate that two-dose inactivated vaccine is
86 inadequate to provide full protection against these newly emerging Omicron variants.
87 Our previous study showed that a booster shot, either homologous or heterologous, can
88 reduce Omicron BA.1 escape from neutralizing antibodies³. To see if this is the case
89 for the other Omicron sub-lineages, we then collected and tested 20 samples from
90 healthy adults who had a third boosting vaccination shot with the same BBIBP-CorV
91 vaccine (homologous booster group, Supplementary Table 1). As shown in Figure 2B,

92 the sera had a neutralizing GMT against WT of 225 with 5- to 6-fold reduction against
93 BA.1, BA.1.1, BA.2 and BA.3, but at least 15/20 samples exhibiting detectable
94 neutralizing activity against all four sub-lineages. We also collected 18 sera from
95 individuals that received two doses of BBIBP-CorV followed by a protein subunit
96 vaccine (ZF2001) 4-8 months later (heterologous booster group, Supplementary Table
97 1). This cohort had higher neutralizing tiers with GMTs of 537, 108, 81, 42 and 69
98 against WT, BA.1, BA.1.1, BA.2 and BA.3, respectively. Although these numbers
99 amount to 7- to 23-fold reductions of potency comparing Omicron sub-lineages to WT,
100 almost all samples maintained detectable neutralizing activity against the Omicron
101 variants (Figure 2C). The marked improvement in serum neutralization from
102 individuals received a booster dose over those did not highlights the value of vaccine
103 boosters for eliciting neutralizing antibody responses against Omicron sub-lineages.
104 The emergence of the SARS-CoV-2 Delta variant led to an increasing number of
105 breakthrough infection cases, to gain insight into their chance of re-infection by
106 Omicron, we recruited 10 participants who were immunized with two-dose inactivated
107 vaccines before infected by Delta variant (Supplementary Table 1). Serum samples
108 were obtained from them after 3-4 months of breakthrough infection and evaluated on
109 WT and the four Omicron sub-lineage PsVs (Figure 2D). We found that breakthrough
110 infection by Delta boosted the neutralizing antibody titers significantly to very high
111 levels against WT virus (GMT = 1,740). However, the neutralization titers for Omicron
112 sub-lineages were significantly reduced, more than 100-fold in comparison to WT. The
113 reduction level was much higher than that of the homologous and heterologous vaccine
114 booster groups, which may be associated with the antigenic difference between Delta
115 and Omicron variants.
116 Taking into account of all the serum samples, we also carried out a comparison between
117 the original Omicron - BA.1 and the newly emerging sub-lineages to see if there are
118 inherent difference regarding their immune evasion property. BA.1.1, with an
119 additional R346K mutation on top of BA.1, showed slightly but statistically significant
120 lower titers than BA.1. For BA.2 and BA.3, the neutralization titers were also lower
121 than BA.1, which was mostly contributed by the heterologous booster group, indicating

122 the receptor binding domain (RBD) subunit vaccine booster may induce some RBD-
123 directed antibodies which could be evaded by the BA.2/BA.3 unique mutations
124 (Supplementary Figure 2).

125 To better understand these differences and examine which types of antibodies in serum
126 lose their activity against these Omicron sub-lineages, we further evaluated the
127 neutralization profile of a panel of 20 mAbs targeting SARS-CoV-2 spike. These
128 included 10 authorized or approved mAbs with sequences available: REGN10987
129 (imdevimab)¹⁵, REGN10933 (casirivimab)¹⁵, LY-CoV555 (bamlanivimab)¹⁶, CB6/LY-
130 CoV016 (etesevimab)¹⁷, S309 (sotrovimab)¹⁸, COV2-2130 (cilgavimab)¹⁹, COV2-
131 2196 (tixagevimab)¹⁹, CT-P59 (regdanvimab)²⁰, Brii-196 (amubarvimab)²¹ and LY-
132 CoV1404 (bebtelovimab)²², all of which are directed to RBD. We also included some
133 other RBD-directed mAbs of interest, including 1-20, 2-15, 1-57, 2-7²³, and 2-36^{23,24}
134 from our own collection and ADG-2²⁵ from Adagio Therapeutics, and four more NTD-
135 directed mAbs, including 5-24, 4-18, 4-19^{23,26} and 5-7^{23,27}. Overall, all four Omicron
136 sub-lineages had severe impact on most of the antibodies but they also showed
137 important differences in neutralization patterns. Among the authorized or approved
138 mAbs, seven were either totally inactive or severely impaired in neutralizing all four
139 sub-lineages. S309, the only approved antibody found to retain its neutralizing activity
140 against the original form of Omicron in our previous study³, lost more neutralizing
141 activity against BA.2 and BA.3. COV2-2130 completely lost its neutralizing activity
142 against BA.1 and BA.1.1, while retaining largely active against BA.2 and BA.3. Luckily,
143 LY-CoV1404, which has been granted emergency use authorization very recently,
144 remained potent in neutralizing all Omicron sub-lineages, continuing to broaden its
145 coverage of SARS-CoV-2 variants²⁸. For the other RBD- or NTD-directed mAbs, none
146 of them retained full neutralizing activity against all of the Omicron sub-lineages. Two
147 class 4 antibodies, ADG-2 and 2-36, retained decent activity against BA.1 and BA.1.1
148 but lost their neutralizing activity completely against BA.2 and BA.3. Interestingly, 2-
149 7, one of our class 3 antibody, completely lost its neutralizing activity against BA.1,
150 BA.1.1 and BA.3, while retaining largely active against BA.2. Similar pattern was seen
151 for another approved class 3 antibody, REGN10987. On the contrary, we found the

152 activity of 5-7, the non-supersite-directed NTD antibody, was partially retained against
153 BA.1, BA.1.1 and BA.3, but totally abolished against BA.2 (Figure 3A and
154 Supplementary Figure 3).

155 To dissect the key mutations conferring antibody resistance and the specific mutations
156 leading to the different neutralization patterns of Omicron sub-lineages, we constructed
157 PsVs with each of the spike single mutations alone or in combination if they are
158 spatially close and tested them using the same panel of 20 mAbs. Totally 40 specific
159 mutation viruses were tested and their comprehensive neutralization profile by these 20
160 mAbs are summarized in Figure 3B as fold change in 50% inhibitory concentration
161 (IC₅₀) relative to WT virus. For mutations affecting antibody activity, the first ones
162 caught our attention were S371L and S371F, both broadly affected most of the RBD-
163 directed mAbs with S371F had a greater negative impact. Intriguingly, when we tested
164 S371L, S373P and S375F in combination, as they form a loop adjacent to a lipid-
165 binding pocket²⁹, we indeed observed synergistic effect of the triple serine mutations in
166 the reduction of neutralization potency of some mAbs. Q493R appears to be another
167 key mutation responsible for the loss in potency of many RBD antibodies, and again,
168 when it was tested in combination with G496S and Q498R, apparent synergistic effect
169 was seen for some mAbs. G446S, which is lacking in BA.2 but presented in the other
170 sub-lineages, may explain why COV2-2130 and 2-7 are not much affected by BA.2.
171 Other mutations, such as D405N, K417N, N440K, E484A and N501Y, distinctly
172 affected the activity of different RBD-directed mAbs, most of which could be explained
173 by the mutations falling into the antibody epitopes. For LY-CoV1404, same as we saw
174 for the Omicron sub-lineages, none of the single mutations significantly affected its
175 neutralization potency, indicating despite of the constellation of spike mutations present
176 in these viruses, there is still a patch within LY-CoV1404's binding region that is not
177 affected. For the NTD-directed mAbs, it was mostly the mutations falling into the NTD
178 of the spike, including T19I, del24-26+A27S and G142D+del142-145, that are
179 responsible for the neutralization activity lost as expected.

180

181 **Discussion**

182 The SARS-CoV-2 Omicron variant immediately raised alarms after its identification
183 and the scenario seems to getting worse with the emerging Omicron sub-lineages, like
184 BA.2, which has been reported to be inherently substantially more transmissible than
185 BA.1². Lots of research articles have been published studying the original Omicron
186 BA.1 virus, but less is known about the BA.2 and other sub-lineages. Here in this study,
187 we constructed all the major Omicron sub-lineage viruses to date - BA.1, BA.1.1, BA.2
188 and BA.3, and investigated their antibody evasion property in parallel.

189 We previously reported the markedly reduced neutralizing activity against BA.1 of
190 convalescent or BBIBP-CorV vaccination sera^{3,4}. Here, we showed all polyclonal sera
191 also had a substantial loss in neutralizing activity against the other Omicron sub-
192 lineages, with drops comparable to or even greater than that of BA.1, indicating all
193 these sub-lineages have a very far antigenic distance from the WT virus. Our results are
194 quite comparable to studies on the mRNA vaccines^{13,30}, showing neutralizing antibody
195 titer against BA.2 was similar to or lower than that against BA.1. Based on these, we
196 suggest the selective advantage of BA.2 over BA.1 should be mainly contributed by its
197 higher transmissibility rather than immune evasion. On the other hand, we showed a
198 third homologous inactivated vaccine booster or a heterologous protein subunit vaccine
199 booster could elevate neutralization titer against BA.1 significantly³. This is also true
200 for the other Omicron sub-lineages. Most recently, three recombinant lineages (XD, XE
201 and XF) have been reported³¹, but their antibody evasion should not be significantly
202 different from the Omicron sub-lineages studied here since their spikes are identical to
203 either BA.1 or BA.2. Therefore, promotion and popularization of vaccine booster
204 injection is still an effective means to prevent SARS-CoV-2 transmission.

205 We also investigated the immune evasion capacity of Omicron sub-lineages with mAbs.
206 Similar as we reported for BA.1³, most mAbs lost their neutralizing activity against
207 BA.1.1, BA.2 and BA.3 completely or substantially. But we did observe some distinct
208 neutralization patterns for certain mAbs among these sub-lineages, reflecting their
209 different mutations. For example, S309 and 5-7, targeting some unique sites in RBD¹⁸
210 or NTD²⁷, were the two mAbs reported to retain largely activity against BA.1^{3,23}, but
211 their activity was further abolished by BA.2. On the contrary, some mAbs like COV2-

212 2130 and 2-7 lost activity against BA.1 totally but regained activity against BA.2. The
213 good news is LY-CoV1404 or bebtelovimab kept its potent neutralization activity
214 against all Omicron sub-lineages and other major SARS-CoV-2 variants^{28,32}, standing
215 out like a lone star in the darkness. Our data are in good consistency with others^{5,13}
216 regarding the mAb neutralization profile of the Omicron sub-lineages and single
217 mutations, but we had more sub-lineage - BA.3, and combined some mutations in
218 proximity to investigate their synergistic actions.

219 Although LY-CoV1404 remains to be our hope of SARS-CoV-2 therapeutic antibodies
220 currently, resistance may arise sometime if it is administered as mono-therapy for a
221 prolonged period given the error-prone property of RNA virus. Therefore, it is advisable
222 to develop more potent and broad neutralizing antibodies to be administered as cocktail
223 to contain this ever-evolving pathogen. Meanwhile, vaccine boosters, either
224 homologous or heterologous, could elicit neutralizing antibodies that help reduce the
225 viral escape and should be push forward.

226

227 **Methods**

228 **Serum samples**

229 Sera from individuals who received two or three doses of BBIBP-CorV or ZF2001
230 vaccine were collected at Huashan Hospital, Fudan University 14 days after the final
231 dose. Sera were also obtained from patients after 3-4 months of SARS-CoV-2
232 breakthrough infection caused by Delta variant after immunizing with two-dose
233 inactivated vaccines (CoronaVac). All collections were conducted according to the
234 guidelines of the Declaration of Helsinki and approved by the Institutional Review
235 Board of the Ethics Committee of Huashan Hospital (2021-041 and 2021-749). All the
236 participants provided written informed consents.

237

238 **Monoclonal antibodies**

239 Monoclonal antibodies tested in this study were constructed and produced at Fudan
240 University.

241

242 **Construction and production of variant pseudoviruses**

243 Plasmids encoding the WT (D614G) SARS-CoV-2 spike and Omicron sub-lineage
244 spikes, as well as the spikes with single or combined mutations were synthesized.
245 Expi293 cells were grown to 3×10^6 /mL before transfection with the indicated spike
246 gene using Polyethylenimine (Polyscience). Cells were cultured overnight at 37°C with
247 8% CO₂ and VSV-G pseudo-typed ΔG-luciferase (G*ΔG-luciferase, Kerafast) was used
248 to infect the cells in DMEM at a multiplicity of infection of 5 for 4 h before washing
249 the cells with 1×DPBS three times. The next day, the transfection supernatant was
250 collected and clarified by centrifugation at 300g for 10 min. Each viral stock was then
251 incubated with 20% I1 hybridoma (anti-VSV-G; ATCC, CRL-2700) supernatant for 1
252 h at 37 °C to neutralize the contaminating VSV-G pseudotyped ΔG-luciferase virus
253 before measuring titers and making aliquots to be stored at -80 °C.

254

255 **Pseudovirus neutralization assays**

256 Neutralization assays were performed by incubating pseudoviruses with serial dilutions
257 of monoclonal antibodies or sera, and scored by the reduction in luciferase gene
258 expression. In brief, Vero E6 cells were seeded in a 96-well plate at a concentration of
259 2×10^4 cells per well. Pseudoviruses were incubated the next day with serial dilutions of
260 the test samples in triplicate for 30 min at 37 °C. The mixture was added to cultured
261 cells and incubated for an additional 24 h. The luminescence was measured by
262 Luciferase Assay System (Beyotime). IC₅₀ was defined as the dilution at which the
263 relative light units were reduced by 50% compared with the virus control wells (virus
264 + cells) after subtraction of the background in the control groups with cells only. The
265 IC₅₀ values were calculated using nonlinear regression in GraphPad Prism.

266

267 **Sequence alignment and phylogenetic tree**

268 This analysis involved 200 nucleotide sequences, including 50 samples for each lineage
269 randomly selected from the GISAID database. Sequence alignment was carried out
270 using ClustalW progress³³ and corrected manually. The evolutionary history was

271 inferred using the Neighbor-Joining method³⁴. The optimal tree is shown. The tree is
272 drawn to scale, with branch lengths in the same units as those of the evolutionary
273 distances used to infer the phylogenetic tree. The evolutionary distances were computed
274 using the p-distance method³⁵ and are in the units of the number of base differences per
275 site. All positions with less than 50% site coverage were eliminated. There was a total
276 of 29743 positions in the final dataset. Evolutionary analyses were conducted in
277 MEGA11³⁶ and visualized with the package 'ggtree' in R. The current snapshot of
278 COVID-19 data was taken from GISAID between Oct 2021 and Mar 2022 in weekly
279 basis. Lineage level prevalence rate was summarized using cubic spline interpolation.

280

281 **Data availability**

282 Materials used in this study will be made available but may require execution of a
283 materials transfer agreement. All the data are provided in the paper or the
284 Supplementary Information.

285

286 **Acknowledgements**

287 This research was supported by Shanghai Municipal Science and Technology Major
288 Project (2017SHZDZX01).

289

290 **Author contributions**

291 P.W., W.Z., and Z.H. conceived and supervised the project. J.A., X.W., X.Z., Y.Z., Y.J.,
292 M.L., Y.Cui, Y.Chen, R.Q., L.L., and L.Y. conducted the biological experiments. X.H.,
293 Y.L., and Z.H. conducted the bioinformatics analysis. J.A., X.W., X.Z., Y.Z., Y.J., Z.H.,
294 W.Z., and P.W. analyzed the results and wrote the manuscript. All the authors reviewed,
295 commented, and approved the manuscript.

296

297 **Competing interests**

298 P.W. is an inventor on patent applications on some of the antibodies described in this
299 manuscript. Others have no conflict of interest.

300

301 **References**

302 1 Viana, R. *et al.* Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern
303 Africa. *Nature* **603**, 679-686, (2022).

304 2 Lyngse, F. P. *et al.* Transmission of SARS-CoV-2 Omicron VOC subvariants BA.1 and BA.2:
305 Evidence from Danish Households. *medRxiv*, 2022.2001.2028.22270044, (2022).

306 3 Wang, X. *et al.* Homologous or heterologous booster of inactivated vaccine reduces
307 SARS-CoV-2 Omicron variant escape from neutralizing antibodies. *Emerg Microbes Infect*
308 **11**, 477-481, (2022).

309 4 Ai, J. *et al.* Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2
310 variants to immune sera elicited by vaccines after boost. *Emerging Microbes & Infections*,
311 1-24, (2021).

312 5 Liu, L. *et al.* Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2.
313 *Nature* **602**, 676-681, (2022).

314 6 Cameroni, E. *et al.* Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron
315 antigenic shift. *Nature* **602**, 664-670, (2022).

316 7 Cao, Y. *et al.* Omicron escapes the majority of existing SARS-CoV-2 neutralizing
317 antibodies. *Nature* **602**, 657-663, (2022).

318 8 Cele, S. *et al.* Omicron extensively but incompletely escapes Pfizer BNT162b2
319 neutralization. *Nature* **602**, 654-656, (2022).

320 9 Planas, D. *et al.* Considerable escape of SARS-CoV-2 Omicron to antibody neutralization.
321 *Nature* **602**, 671-675, (2022).

322 10 VanBlargan, L. A. *et al.* An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes
323 neutralization by therapeutic monoclonal antibodies. *Nat Med* **28**, 490-495, (2022).

324 11 Garcia-Beltran, W. F. *et al.* mRNA-based COVID-19 vaccine boosters induce neutralizing
325 immunity against SARS-CoV-2 Omicron variant. *Cell* **185**, 457-466 e454, (2022).

326 12 Carreño, J. M. *et al.* Activity of convalescent and vaccine serum against SARS-CoV-2
327 Omicron. *Nature* **602**, 682-688, (2022).

328 13 Iketani, S. *et al.* Antibody evasion properties of SARS-CoV-2 Omicron sublineages. *Nature*,
329 (2022).

330 14 Bowen, J. E. *et al.* Omicron BA.1 and BA.2 neutralizing activity elicited by a comprehensive
331 panel of human vaccines. *bioRxiv*, 2022.2003.2015.484542, (2022).

332 15 Hansen, J. *et al.* Studies in humanized mice and convalescent humans yield a SARS-CoV-
333 2 antibody cocktail. *Science* **369**, 1010-1014, (2020).

334 16 Jones, B. E. *et al.* The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2
335 infection in nonhuman primates. *Sci Transl Med* **13**, (2021).

336 17 Shi, R. *et al.* A human neutralizing antibody targets the receptor-binding site of SARS-
337 CoV-2. *Nature* **584**, 120-124, (2020).

338 18 Pinto, D. *et al.* Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV
339 antibody. *Nature* **583**, 290-295, (2020).

340 19 Zost, S. J. *et al.* Potently neutralizing and protective human antibodies against SARS-CoV-
341 2. *Nature* **584**, 443-449, (2020).

342 20 Kim, C. *et al.* A therapeutic neutralizing antibody targeting receptor binding domain of
343 SARS-CoV-2 spike protein. *Nature Communications* **12**, 288, (2021).

344 21 Ju, B. *et al.* Human neutralizing antibodies elicited by SARS-CoV-2 infection. *Nature* **584**,

345 115-119, (2020).

346 22 Westendorf, K. *et al.* LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2
347 variants. *bioRxiv*, (2022).

348 23 Liu, L. *et al.* Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike.
349 *Nature* **584**, 450-456, (2020).

350 24 Wang, P. *et al.* A monoclonal antibody that neutralizes SARS-CoV-2 variants, SARS-CoV,
351 and other sarbecoviruses. *Emerg Microbes Infect*, 1-34, (2021).

352 25 Rappazzo, C. G. *et al.* Broad and potent activity against SARS-like viruses by an engineered
353 human monoclonal antibody. *Science* **371**, 823-829, (2021).

354 26 Cerutti, G. *et al.* Potent SARS-CoV-2 neutralizing antibodies directed against spike N-
355 terminal domain target a single supersite. *Cell Host Microbe* **29**, 819-833 e817, (2021).

356 27 Cerutti, G. *et al.* Neutralizing antibody 5-7 defines a distinct site of vulnerability in SARS-
357 CoV-2 spike N-terminal domain. *Cell Rep* **37**, 109928, (2021).

358 28 Zhou, T. *et al.* Structural basis for potent antibody neutralization of SARS-CoV-2 variants
359 including B.1.1.529. *Science*, eabn8897, (2022).

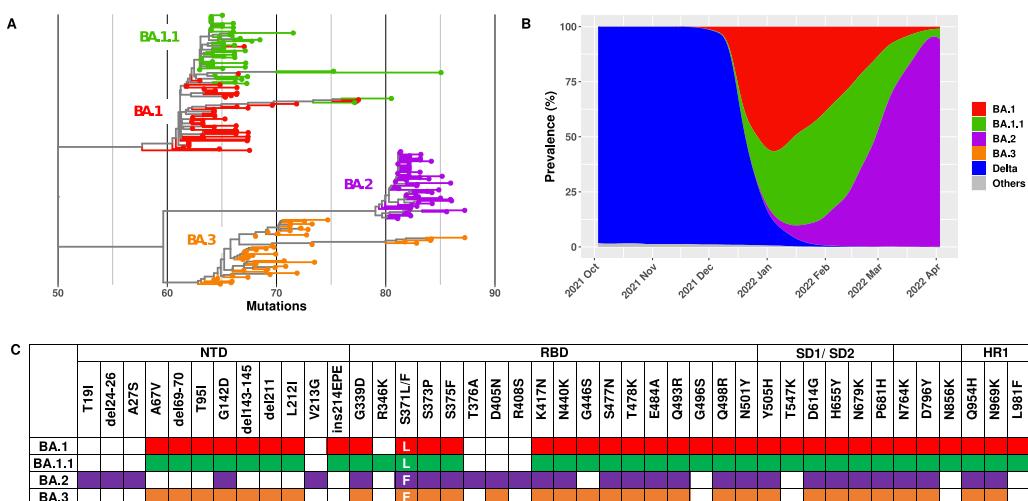
360 29 Dejnirattisai, W. *et al.* SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from
361 neutralizing antibody responses. *Cell* **185**, 467-484 e415, (2022).

362 30 Yu, J. *et al.* Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. *N Engl J
363 Med*, (2022).

364 31 UK Health Security Agency. SARS-CoV-2 variants of concern and variants under
365 investigation in England: technical briefing 39. (2022).

366 32 Westendorf, K. *et al.* LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2
367 variants. *bioRxiv*, 2021.2004.2030.442182, (2022).

368 33 Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of
369 progressive multiple sequence alignment through sequence weighting, position-specific
370 gap penalties and weight matrix choice. *Nucleic Acids Res* **22**, 4673-4680, (1994).

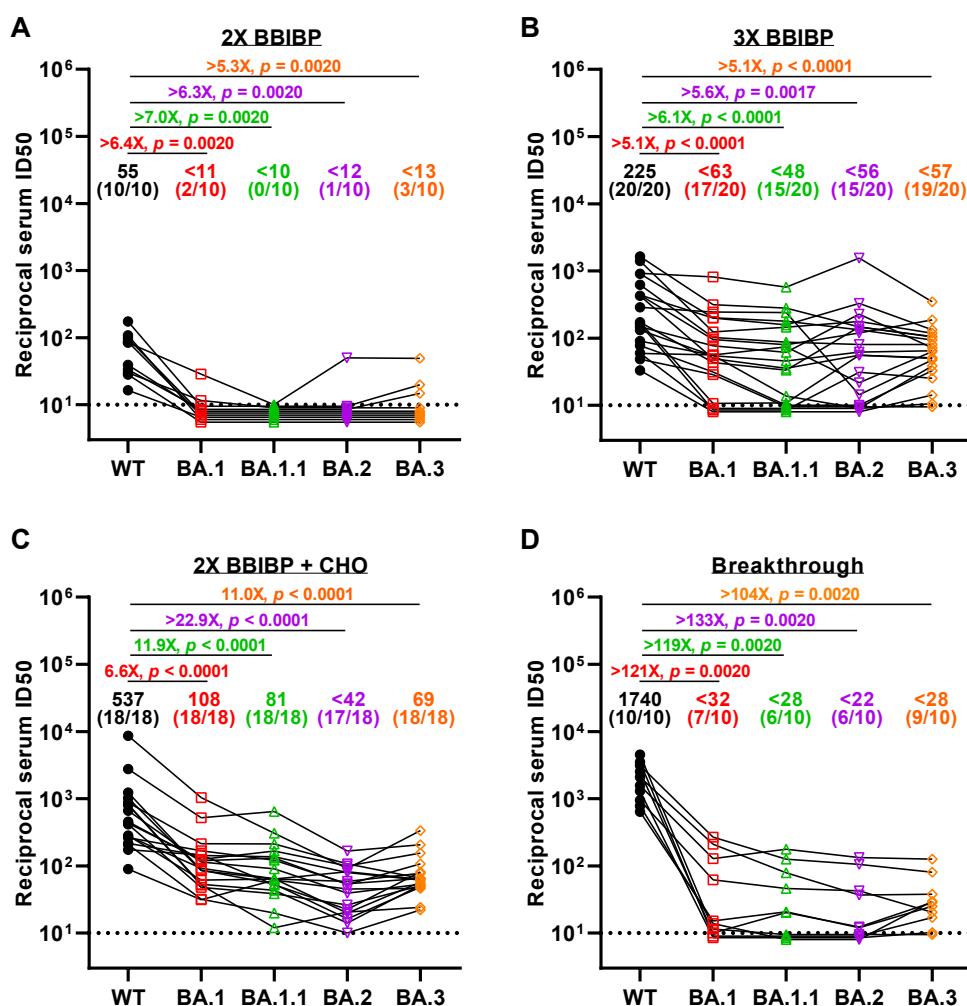

371 34 Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing
372 phylogenetic trees. *Mol Biol Evol* **4**, 406-425, (1987).

373 35 Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics. *Genetical Research* **77**, 117-
374 120, (2001).

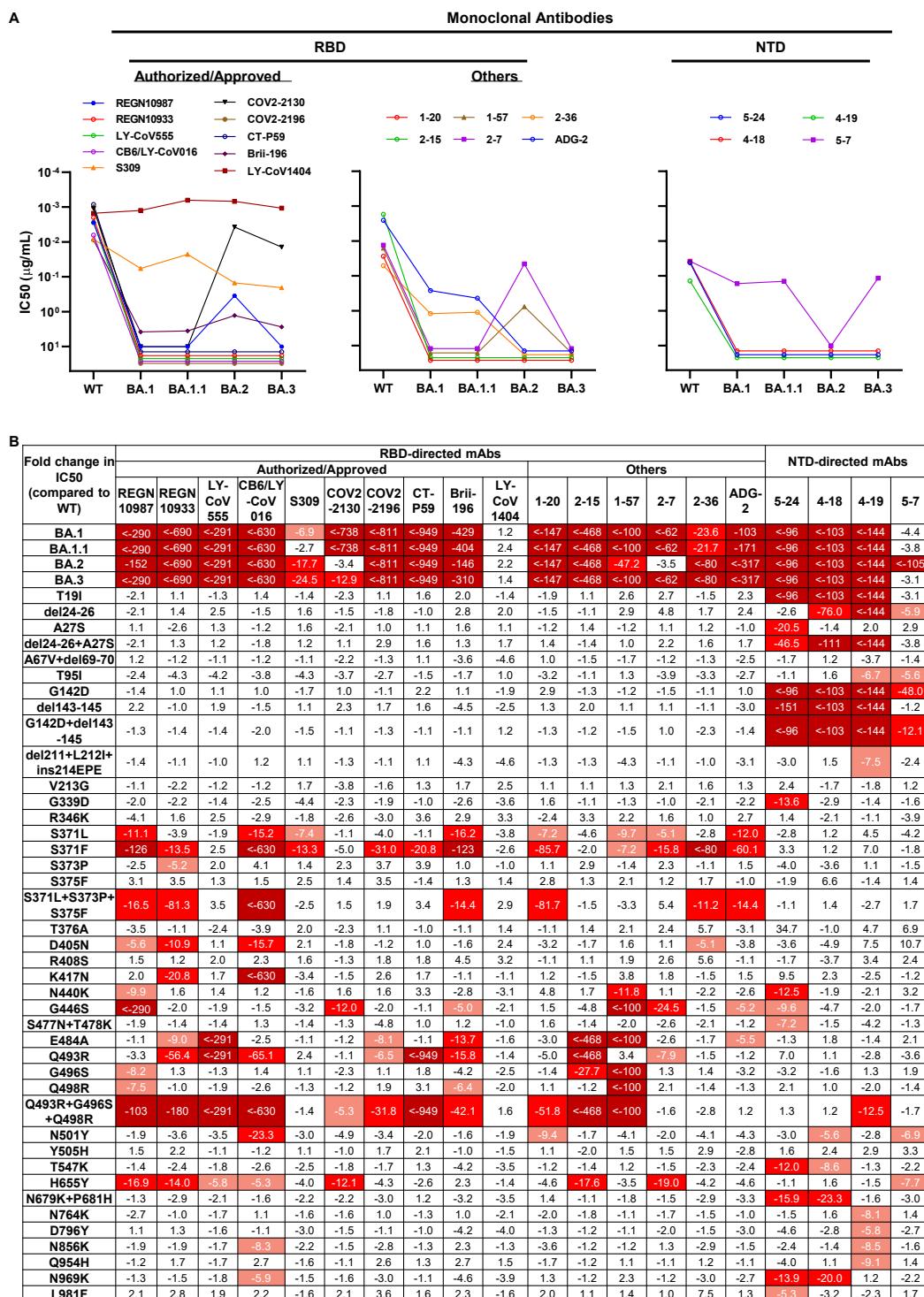
375 36 Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis
376 Version 11. *Mol Biol Evol* **38**, 3022-3027, (2021).

377

378



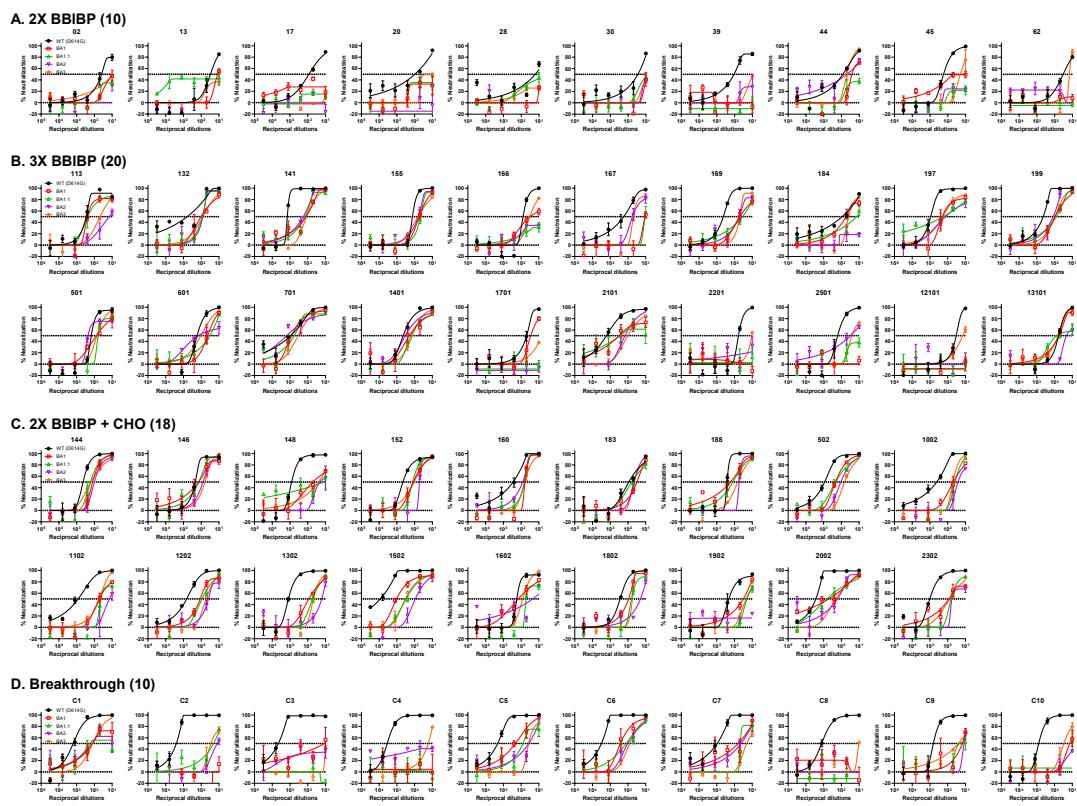
379


380 **Figure 1. Characteristics of the Omicron sub-lineages. (A)** Phylogenetic tree of the
381 BA.1, BA.1.1, BA.2 and BA.3 sub-lineages. Fifty randomly selected sequences
382 belonging to each of the Omicron sub-lineages from GISAID were used as query
383 sequences **(B)** Prevalence of the Omicron sub-lineages and Delta variant based on all
384 the sequences available on GISAID over the past six months. **(C)** Spike mutations
385 within the Omicron sub-lineages.

386

387

388 **Figure 2.** Neutralization of pseudotyped WT (D614G) and Omicron sub-lineage
389 viruses by sera collected from individuals vaccinated with 2-dose BBIBP-CorV only
390 (**A**), with a BBIBP-CorV homologous booster (**B**) or with a ZF001 heterologous booster
391 dose (**C**) following two doses of BBIBP-CorV, or from individuals infected by Delta
392 virus after vaccination (**D**). For all panels, values above the symbols denote geometric
393 mean titer and the numbers in parentheses denote the proportion of positive sera with
394 ID₅₀ above the LOQ (dotted lines, >1:10). P values were determined by using a
395 Wilcoxon matched-pairs signed-rank test (two-tailed).
396

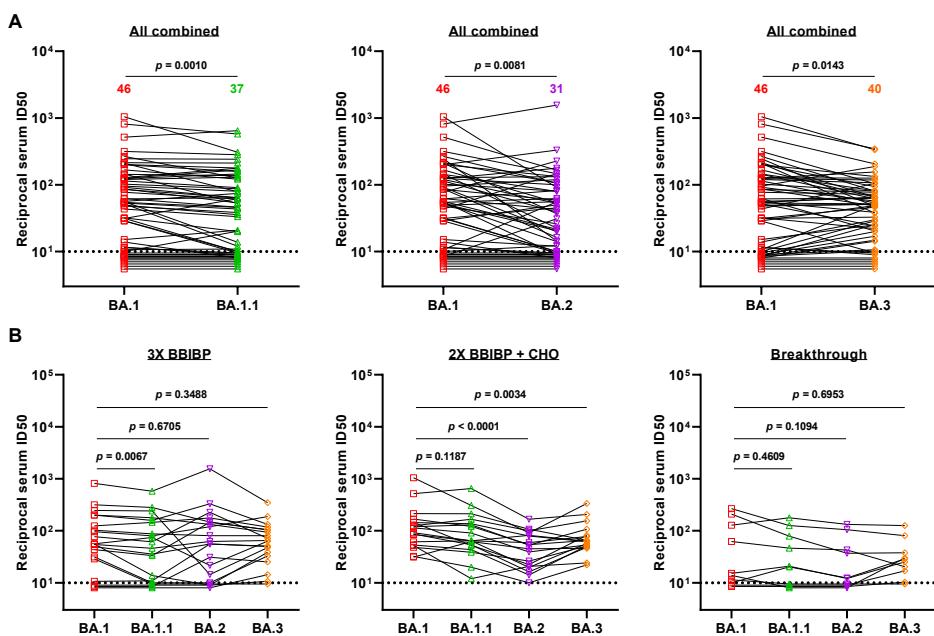


397

Figure 3. Neutralization of pseudotyped WT (D614G) and Omicron sub-lineage viruses by mAbs targeting different epitopes. (A) Changes in neutralization IC_{50} of select RBD and NTD mAbs against Omicron sub-lineage pseudoviruses. **(B)** Fold increase or decrease in neutralization IC_{50} of mAbs against Omicron sub-lineage and single-mutation as well as combined-mutation pseudoviruses, relative to WT, presented as a heatmap with darker colors implying greater change.

404

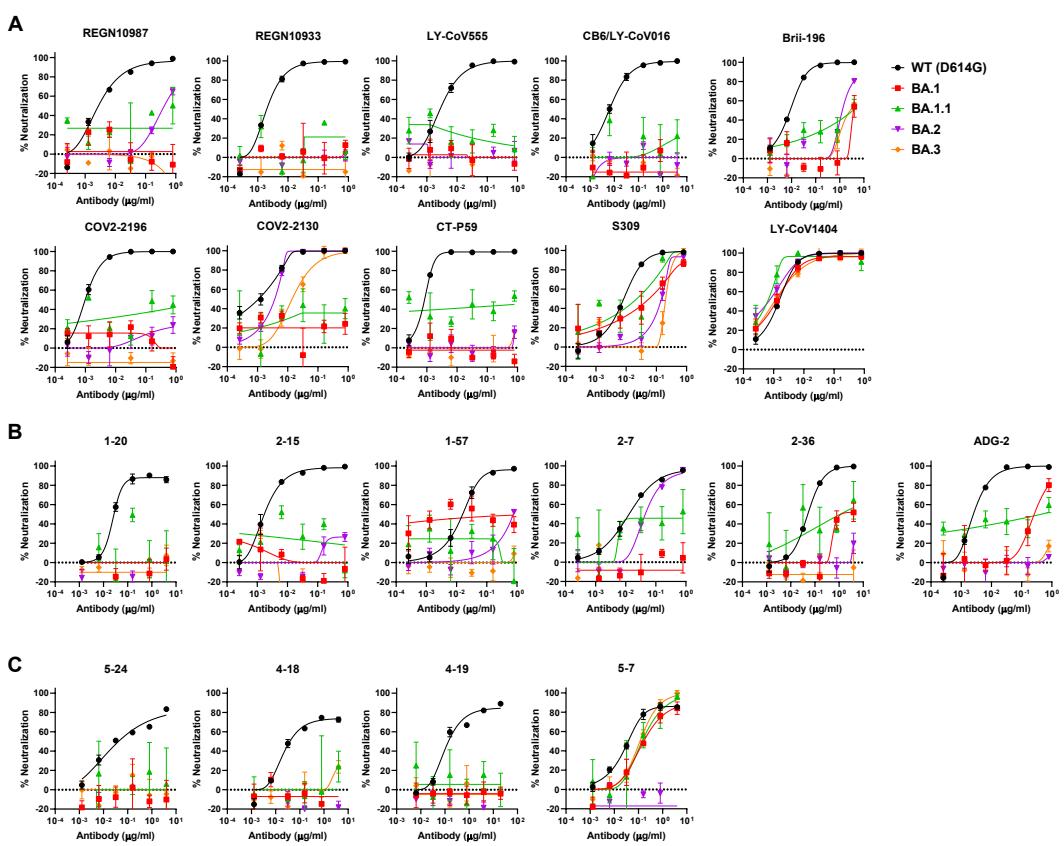
405 **Supplementary Figures**



406

407 **Supplementary Figure 1.** Neutralization curves for sera collected from individuals
408 vaccinated with 2-dose BBIBP-CorV only (A), with a BBIBP-CorV homologous
409 booster (B) or with a ZF001 heterologous booster dose (C) following two doses of
410 BBIBP-CorV, or from individuals infected by Delta virus after vaccination (D).

411


412

413

414 **Supplementary Figure 2.** Comparison between BA.1 and the other Omicron sub-
415 lineages with all the sera neutralization data combined (A) or within the different
416 immunization groups (B). *P* values were determined by using a Wilcoxon matched-
417 pairs signed-rank test (two-tailed).

418

419

420 **Supplementary Figure 3.** Neutralization curves for mAbs against WT (D614G) and
421 Omicron sub-lineage viruses.

422

423 **Supplementary Table 1.** Baseline characteristics of enrolled participants, including
424 Breakthrough infection group, BBIBP-CorV two doses group, BBIBP-CorV
425 homologous booster group and BBIBP-CorV/ZF2001 heterologous booster group.

	Breakthrough infection (n=10)	BBIBP-CorV two doses (n=10)	BBIBP-CorV homologous booster (n=20)	BBIBP-CorV/ ZF2001 heterologous booster (n=18)	P value
Age (years), median(range)	46 (34-54)	31.5 (23-51)	28 (21-59)	29.5 (23-53)	< 0.001
Male, n (%)	3 (30.00%)	2 (20.00%)	8 (40.00%)	4 (22.22%)	0.581
BMI (kg/m²), mean (SD)	24.45(5.64)	23.35 (3/16)	22.25 (2.96)	20.56 (2.01)	0.028
Comorbidities (%)					
Any, n (%)	4 (40.00%)	0 (0.00%)	2 (10.00%)	0 (0.00%)	0.008
Cardiovascular diseases, n (%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	/
Hypertension, n (%)	3 (30.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0.008
Diabetes, n (%)	1 (10.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0.345

426

427