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Key findings:

Evolutionary history of 334 SARS-CoV-2 interacting proteins (VIPs) in bats and primates
identifying how the past has shaped modern viral reservoirs and humans — results
publicly-available in an online resource.

Identification of 81 primate and 38 bat VIPs with signatures of adaptive evolution. The
common ones among species delineate a core adaptive interactome, while the ones
displaying distinct evolutionary trajectories enlighten host lineage-specific determinants.
Evidence of primate specific adaptation of the entry factor TMPRSS2 pointing to its host-
specific in vivo importance and predicting molecular interfaces.

FYCO1 sites associated with severe COVID-19 in human (GWAS) display hallmarks of
ancient adaptive evolution in primates, highlighting its importance in SARS-CoV-2
replication or pathogenesis and differences with the bat reservoir.

Identification of adaptive evolution in the bat’'s multifunctional RIPK1 at residues that may

differentially regulate inflammation.
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Abstract

The COVID-19 pandemic is caused by SARS-CoV-2, a novel coronavirus that spilled from the
bat reservoir. Despite numerous clinical trials and vaccines, the burden remains immense, and
the host determinants of SARS-CoV-2 susceptibility and COVID-19 severity remain largely
unknown. Signatures of positive selection detected by comparative functional-genetic analyses
in primate and bat genomes can uncover important and specific adaptations that occurred at
virus-host interfaces. Here, we performed high-throughput evolutionary analyses of 334 SARS-
CoV-2 interacting proteins to identify SARS-CoV adaptive loci and uncover functional
differences between modern humans, primates and bats. Using DGINN (Detection of Genetic
INNovation), we identified 38 bat and 81 primate proteins with marks of positive selection.
Seventeen genes, including the ACE2 receptor, present adaptive marks in both mammalian
orders, suggesting common virus-host interfaces and past epidemics of coronaviruses shaping
their genomes. Yet, 84 genes presented distinct adaptations in bats and primates. Notably,
residues involved in ubiquitination and phosphorylation of the inflammatory RIPK1 have rapidly
evolved in bats but not primates, suggesting different inflammation regulation versus humans.
Furthermore, we discovered residues with typical virus-host arms-race marks in primates, such
as in the entry factor TMPRSS2 or the autophagy adaptor FYCO1, pointing to host-specific in
vivo important interfaces that may be drug targets. Finally, we found that FYCO1 sites under
adaptation in primates are those associated with severe COVID-19, supporting their importance
in pathogenesis and replication. Overall, we identified functional adaptations involved in SARS-
CoV-2 infection in bats and primates, critically enlightening modern genetic determinants of virus

susceptibility and severity.
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Introduction

The current COVID-19 pandemic already led to over six million human deaths (WHO April
2022). The causative agent is a novel severe acute respiratory syndrome coronavirus strain,
SARS-CoV-2, that originated from viral cross-species transmission from the bat reservoir,
directly or through an intermediate host, to human (Temmam et al., 2022). Bats naturally hosts
some of the most high-profile zoonotic viruses, including SARS-CoVs, without apparent
symptoms (Wang and Anderson, 2019). Despite scores of clinical trials and effective vaccines,
the burden from COVID-19 remains immense in humans, and the determinants of SARS-CoV-2
susceptibility and COVID-19 severity remain largely unknown. A powerful way to identify these
factors is to use comparative functional genomics to map host-virus interfaces that underly
infections in the bat reservoir and the primate host (Christie et al., 2021).

During infection, viruses interact with many host proteins, or viral-interacting proteins (VIPs).
While some VIPs are usurped for viral replication away from their “normal” host functions, some
are specifically targeting the virus as part of the host antiviral immune defense. Since the
emergence of SARS-CoV-2, VIPs have been identified in hundreds of screens using in vitro
approaches, such as CRISPR/KO screens, cDNA library screens or mass-spectrometry
analyses (Gordon et al., 2020; Parkinson et al., 2020). However, the in vivo importance of the
identified SARS-CoV-2 VIPs remains largely unknown.

From an evolutionary standpoint, the fitness cost imposed by pathogenetic viruses triggers
strong selective pressures on VIPs, such that those VIPs able to prevent, or better counteract,
viral infection will quickly become fixed in host populations. In turn, host adaptations push viral
proteins into recurring counter-adaptations cycles creating stereotypical “virus-host molecular
arms-races”. These arms-races are withessed by signatures of accelerated rates of evolution, or
positive selection, over functionally important residues and domains in VIPs (Daugherty and
Malik, 2012; Duggal and Emerman, 2012; Enard et al., 2016). Thus, when combined with

functional data, identifying the VIPs with signatures of positive selection is a powerful way to
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discover virus-host interfaces (e.g. (Boys et al., 2020; Fregoso et al., 2013; Sawyer et al.,
2005)).

When studies of adaptive signatures in host genes are combined with human clinical studies
or genome-wide association studies (GWAS), they are powerful to uncover the importance of
gene evolution and variants in disease severity (e.g. (Wickenhagen et al., 2021; Xie et al.,
2018)). Interestingly, several genetic loci associated with COVID-19 severity and susceptibility in
humans, such as OAS1 (2'-5'-Oligoadenylate Synthetase 1) or those from the interferon
signaling pathway (Bastard et al., 2020; Crow and Stetson, 2021; Schoggins, 2021; The Severe
Covid-19 GWAS Group, 2020; Wickenhagen et al., 2021; Zeberg and Paabo, 2020; Zhang et
al., 2020), bear hallmarks of such adaptive arms-races. Furthermore, dozens of VIPs that bear
marks of adaptive evolution in the human lineage from ancient SARS-CoV epidemics may be
important host determinants of SARS-CoV-2 (Souilmi et al., 2021).

Here, we aimed to identify key SARS-CoV adaptive loci and functional genomic differences
between bats, which include the natural reservoir of SARS-CoVs, and primates, including
humans. We performed high-throughput evolutionary and positive selection screens of 334
SARS-CoV-2 interacting proteins (Gordon et al., 2020) using the Detection of Genetic
INNovation (DGINN) pipeline (Picard et al., 2020), followed by comprehensive functional-genetic
analyses of seven VIPs of interest. We provide the results in the searchable VirHostNet 2.0 web
portal. Using this approach, we identified 38 bat and 81 primate genes with strong evidence of
positive selection. Of these, we found 17 proteins, including the ACE2 receptor, subjected to
adaptative evolution in both clades, (i) confirming that past SARS-CoV epidemics occurred
during both bat and primate evolution and (ii) identifying the core VIPs that shaped universal
SARS-CoV-host molecular arms-races. We also identified 84 VIPs with lineage-specific
adaptations that likely contributed to SARS-CoV pathogenicity in different mammalian hosts.
Among these, we uncover the important role of several genes, including TMPRSS2, FYCO1 or
RIPK1 that play important roles in entry, trafficking or inflammatory responses, respectively. We
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hypothesize that these past adaptation events in bats and primates underlie differences in
susceptibility to SARS-CoV-2 infections and key determinants in COVID-19 severity in modern

humans.

Results

Characterization of the evolutionary history of SARS-CoV-2 VIPs in bats and primates
Because pathogenic viruses and hosts are engaged in evolutionary arms-races, adaptive
signatures accumulate in VIP genes as a result of past epidemics (Daugherty and Malik, 2012;
Enard et al., 2016). Adaptive evolution can be identified by positive selection analyses over a set
of protein coding orthologs when their rate of non-synonymous codon substitutions exceeds that
of synonymous ones (Sironi et al., 2015). To identify the proteins with such signatures of
adaptive evolution, we studied the evolutionary history of the SARS-CoV-2 interactome identified
in in vitro experiments. Furthermore, to discover key SARS-CoV-2 — host determinants of
replication and pathogenesis, we aimed to identify the common and different evolutions and
genetics of the VIPs in the human versus the reservoir host. We therefore performed
comparative phylogenetics of the VIPs in primates and bats. Specifically, we studied the 332
host proteins identified by Gordon et al. in mass-spectrometry assays of SARS-CoV-2 proteins
in human cells (Gordon et al., 2020), in addition to the angiotensin converting enzyme 2 (ACE2)
receptor and the transmembrane protease serine 2 (TMPRSS2), both necessary for virus entry
into the cells.

To perform the phylogenetic and positive selection analyses, we used the Detection of
genetic innovation DGINN bioinformatic pipeline (Picard et al., 2020) that entirely automates the
analyses and combines several methods to test for selection across large datasets (Figure 1A).
Briefly, from each of the 334 human reference gene sequences, DGINN automatically retrieved
bat and primate homologs (from NCBI nr database), curated the coding sequences, and

performed a codon-alignment followed by a gene phylogenetic reconstruction (Figure 1A, Table
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S1). The pipeline then screened for duplication events and identified orthologs and potential
paralogs, as well as recombination events. This mainly allows correct phylogenetic and positive
selection analyses of VIPs from gene families, and with recombination events. Finally, each
aligned set of orthologs was used to measure rates of codon substitutions and to estimate
whether the whole gene, as well as any codon, are evolving under positive selection. For this,
DGINN uses a combination of methods from the following selection tools: HYPHY (BUSTED and
MEME), PAML (Codeml MO, M1, M2, M7, M8, and associated Bayesian Empirical Bayes (BEB)
for codon-specific analyses), and bpp (MONS, M1NS, M2YS M7NS, M8NS, and associated Posterior
Probabilities (PP) for codon-specific analyses) (Figure 1A, Methods for details, Picard et al 2020)
(Guéguen et al., 2013; Pond et al., 2005; Yang, 2007).

We found that the DGINN pipeline, previously validated on nineteen primate genes
(Picard et al., 2020), was efficient at screening hundreds of genes and at analyzing other
mammalian orders (here, chiroptera) (Figures S1-S2). Overall, our bioinformatic screen allowed
us to obtain the bat and primate evolutionary history of 324 common SARS-CoV-2 VIP genes
(i.e. 330 in bats and 329 in primates). We compiled the resulting sequence alignments,
phylogenetic trees, and gene and site-specific positive selection results to an open-access and

searchable web application (https://virhostnet.prabi.fr/virhostevol/), which constitutes a new

public resource to visualize and download the evolution of SARS-CoV-2 VIPs in primates and

bats.

Identification and comparative analysis of SARS-CoV-2 VIPs with signatures of positive
selection during bat and primate evolution

To characterize the overall trend in the evolution of each VIP in primates and in bats, we
compared their omega parameter, which is positively correlated with the natural selection acting
on the protein (Figure 1B). We found a similar trend in the natural selection of bat and primate

genes: those with an elevated omega in primates had an overall rapid protein evolution in bats
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too. Beyond this trend, we cannot compare the omega values quantitatively between the two
mammalian orders — reasons include differences in the number of analyzed species (i.e. 12 and
24 median number of species in bats and primates, respectively), the population sizes, the
genetic distances, etc.

We next identified the genes with evidence of positive selection by at least three methods
in the DGINN screen. In bats, we found 38 genes, roughly 12% of SARS-CoV-2 interacting
proteins, with signatures of positive selection (Figure 1C). These include the ACE2 receptor,
also reported by others as under strong positive selection in bats (Demogines et al., 2012; Frank
et al., 2020). In primates, we identified 81 genes under positive selection, after discarding seven
due to low-quality alignments and inclusion of erroneous sequences in the automatic steps
(Figure 1D legend).

In the case of primate analyses, we identified more VIPs under positive selection than
Gordon et al., in which they identified 40/332 genes under positive selection in primates using
Codeml M8 vs M8a model (Gordon et al., 2020). One example is the Zinc finger protein ZNF318
that has some marks of positive selection during primate evolution in our analyses
(Supplementary Information). However, the overall dN/dS estimate for each gene was highly
similar between the two studies (Figure S3A) and we detected most of the genes they identified
under positive selection: 38/40 VIPs under positive selection in Gordon et al also detected by >1
DGINN method, including 28 by >3 DGINN methods (Figure S3B-C). Thus, the main
advantages of DGINN were the end-to-end automatic pipeline and the combination of multiple
methods, thereby increasing sensitivity and specificity of positive selection analyses in screening
approaches.

Altogether, we found 81 primate VIPs and 38 bat VIPs with evidence of positive selection
(Figure 1C-D). Beyond Gordon et al., other SARS-CoV-2 in vitro and clinical studies also
identified many of these positively selected genes as SARS-CoV-2 VIPs, thus confirming their

suspected role as SARS-CoV-2 regulators or interacting proteins (Figure S5, (Parkinson et al.,
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2020)). Analyses of pathway enrichment showed that positively selected VIPs are strongly
associated with cell cycle control and centrosome behavior biological pathways (Figure S6),
suggesting that the control of cell division, and perhaps centrosome-regulated cell polarization,
are important for SARS coronavirus in vivo.

We found 17 rapidly evolving genes shared between bats and primates, corresponding to
16% of all SARS-CoV-2 VIPs with evidence of positive selection (i.e., 17 genes in common over
108 in total) (Figure 1C-D). This list notably includes the ACE2 receptor of SARS coronaviruses
that has undergone positive selection in both primates and bats (Figure 1B,D). It also includes
known drug targets, such as the metalloprotease ADAM9 (Carapito et al.), the ITGB1 integrin
(Sigrist et al., 2020), and POLA1 from the Prim-Pol primase complex (Chaudhuri, 2021)
(Supplementary Information) (Figure 1D). Therefore, these genes may represent the core
SARS-CoV VIPs that have been subjected to positive selection pressure during both primate
and bat evolution.

However, we also identified 84 genes that have evolved through distinct selective
pressures during primate and bat evolution — being under positive selection only in primates (64
VIPs) or bats (20 VIPs) (Figure 1C-D) — including TMPRSS2, FYCO1, RIPK1, ZNF318 and the
Prim-Pol primase complex (Supplementary Information) that we will focus on. These genes

represent VIPs with different evolutionary trajectories in bats and primates.

Several SARS-CoV-2 VIPs under positive selection are VIPs of other coronaviruses and
may also be interconnected with other viral families

To investigate whether the SARS-CoV-2 VIPs under positive selection are also known to interact
with other coronaviruses, we interrogated the VirHostNet database (Guirimand et al., 2015) for
interconnection with SARS-1 and MERS (beta coronaviruses), and CoV-NL63 and CoV-229
(alpha coronaviruses). We found 58 genes (i.e. 54% of 108 genes under positive selection in

bats or primates) that are adaptive SARS-CoV-2 VIPs and also known interacting proteins of at
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least another coronavirus (Figure 2A). The positive selection marks in these VIPs therefore likely
represent adaptations on host proteins that have regulated or interacted with coronaviruses over
million years of coevolution with mammals. These coronavirus VIPs therefore represent an
evolutionarily common set of coronavirus interacting proteins.

Because positive selection may be driven by several viruses (Mitchell et al., 2013), we
similarly investigated whether rapidly evolving SARS-CoV-2 VIPs were also functionally linked to
other viral families (Figure 2B). We found that 82% of them (89 of 108 genes under positive
selection in bats or primates) interconnected with one or more additional viral families beside
coronaviruses. A number of proteins, including LARP1 and LARP7, ITGB1, Rab18 and ERGIC1,
interconnected with six distinct viral families, highlighting their likely involvement as broad co-
factors of viral replication (Figure 2B). On the other hand, several genes, such as FYCO1,
ZNF318 or TMPRSS2, are interconnected with only 1-2 other viral families and may therefore
represent more specialized VIPs (Figure 2B). Of note, although the TMPRSS2 co-entry factor
has no other interactor in this analysis (Figure 2B, Table S2), it is a host factor for influenza virus
entry (Bottcher et al., 2006; Limburg et al.). Lastly, the ACE2 receptor and other genes (Table
S2) were not known to interact with other viruses, and therefore likely represent coronavirus-

specific VIPs (Table S2).

The SARS-CoV-2 predicted interface in TMPRSS2 has evolved under adaptive evolution in
primates, but not in bats

Although the intrinsic role of TMPRSS2 in the cell is poorly known, this serine protease is a key
factor for the cellular entry of SARS-CoV-2. TMPRSS?2 is responsible for the priming of the viral
spike S protein, an essential step for the ACE2 receptor recognition and the plasma cell
membrane fusion process (Figure 3A) (Bestle et al., 2020; Hoffmann et al., 2020). In addition to
SARS-CoV-2, other coronaviruses, including HCoV-229E, MERS-CoV, SARS-CoV-1, enter
human cells in a TMPRSS2-dependent manner (Bertram et al., 2013; lwata-Yoshikawa et al.,

10
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2019; Matsuyama et al., 2010). Whilst the genetic and functional adaptation of ACE2 has been
studied (Demogines et al., 2012; Frank et al., 2020), the genetic diversification of mammalian
TMPRSS?2 is currently unknown. Our screen identified positive selection in TMPRSS2 in
primates, but not bats, indicating that its functional diversification is specific to coronavirus
adaptation in primates.

To validate the screen results and further characterize TMPRSS2 evolution in both
orders, we obtained sequences from additional primate and bat species that were not included
in the automated DGINN screen. We therefore obtained two new high-quality codon alignments
of TMPRSS2: from 18 bat species and from 33 primate species

(https://virhostnet.prabi.fr/virhostevol/ “Genes of focus”, Table 1). From these comprehensive

alignments, we first confirmed that TMPRSS2 has experienced significant and strong positive
selection during primate evolution (Bio++ and PAML codeml M1 vs M2 p-values: 0.0095 and <
4.27 10 respectively). This was in contrast to its evolution in bats, in which we did not find
evidence of selective pressure (Bio++ and codeml M1 vs M2 p-values: 1 and 1, respectively)
(Table 1).

To identify the precise residues that have diversified during primate evolution, we
performed site-specific positive selection analyses. We identified five residues (173, 260, 263,
360 and 412 — numbering from the human TMPRSS2 sequence) that were significantly detected
under positive selection by at least two independent methods (Table 1, Figure 3B). Of note,
position 197, which is polymorphic in human TMPRSS2 (rs12329760, V197M) and may be
associated with COVID-19 severity ((Jeon et al., 2021) p-value around 10 above the 107
significance threshold commonly used in GWAS multiple testing), encoded for a conserved
valine in all non-human primate sequences. Because the SARS-CoV-2 — TMPRSS2 interface is
currently unknown, only in silico molecular docking studies have predicted the substrate binding
region (Brooke and Prischi, 2020; Hoffmann et al., 2020; Rangel et al., 2020; SENAPATI et al.,
2021). Remarkably, the sites under positive selection cluster nearby or within the predicted
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SARS-CoV-2-host interface (Figure 3C), suggesting that SARS-CoVs played a significant role in
TMPRSS2 diversification. These regions of TMPRSS2 are also the target of several drugs, such
as al-antitrypsin (a1AT), Camostat mesylate, Nafamostat and Bromhexine hydrochloride
inhibitors (Hoffmann et al., 2020; Li et al., 2021; Wettstein et al., 2021) and newly reported N-
0385 (Shapira et al., 2022), and could therefore be prioritized in functional studies.

Finally, by analyzing the physicochemical nature of the positively selected sites, we found
that they encode for residues with very different properties, which would significantly impact the
TMPRSS2 protein structure over primate evolution and lead to species-specificity at the virus-
host interface. In particular, variation at key residues 260 and 412 was particularly high in
Hominoids, but low in Old World monkeys (Figure 3D), suggesting lineage-specific adaptations
within primates. To determine whether this domain of TMPRSS2 has been rapidly evolving in
other mammals, we extended our analyses by retrieving other mammalian sequences. We found
that most of these sites were overall conserved, except in rodents which exhibited high variability
at positions 263 and 360 (Figure 3E). In bats, although none of the models identified significant
positive selection in TMPRSS?2, the sites 260, 360 and 412 were also variable (Figure 3D).
Comparing the variability between resistant and susceptible (naturally or experimentally) species
to SARS-CoVs and MERS-CoVs did not reveal any clear pattern (Figure 3E). However, the
location and extreme variability of the positively selected sites appear lineage-specific across
mammals (with high amino acid toggling in some clades and conservation in others) and
suggest that these residues, combined with ACE2 receptor variability, may contribute to SARS-
CoV susceptibility and species-specificity.

Altogether, our findings support that the positive selection signatures in TMPRSS2 are
reminiscent of ancient SARS-CoV-driven selective pressures during primate evolution.
Mutagenesis studies of TMPRSS2, guided by the evolutionary analyses, are now required to
identify the exact and relevant SARS-CoV determinants, as well as the functional implication of
the interspecies variability in TMPRSS2.
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Evidence that FYCO1 is involved in SARS coronavirus pathogenesis or replication at
different time scales during primate evolution

FYCO1 (FYVE and coiled-coil domain containing 1) is involved in microtubule transport and
autophagy (Figure 4A). Autophagy is an important degradation process of cytoplasmic proteins
and organelles, which may be dysregulated during aging, diseases, and by pathogens. FYCO1
acts as an adaptor protein allowing the microtubule transport of autophagosomes in a STK4-
LC3B-FYCO1 axis (Cheng et al., 2016; Nieto-Torres et al., 2021). Mutations of the human
FYCO1 gene cause autosomal-recessive congenital cataract, a major cause of vision
dysfunction and blindness (Chen et al., 2011; Satoh et al., 2021). Until the COVID-19 pandemic,
there was no report of FYCO1 involvement in viral infection. However, FYCO1 is among the very
few genes identified in human genome-wide association studies (GWAS) to be significantly
associated with severe COVID-19 (Pairo-Castineira et al., 2021; The Severe Covid-19 GWAS
Group, 2020)(The COVID-19 Host Genetics Initiative, 2020). GWAS correlates natural genetic
variants in human populations to phenotypic traits; here COVID-19 severity. Therefore, genes
identified in GWAS may directly be involved in SARS-CoV-2 replication or pathogenesis.
Furthermore, FYCO1 had a high MAIC score (Figure S5B, (Parkinson et al., 2020)), indicating
that several studies suspect its involvement in SARS-CoV-2 pathogenesis or replication,
including Gordon and colleagues that identified human FYCO1 interaction with SARS-CoV-2
NSP13 (Gordon et al., 2020).

As for TMPRSS2, the DGINN screen identified signatures of positive selection in
primate FYCO1, but not in bat FYCO1. We then retrieved all FYCO1 sequences available for
primates (29 species) and bats (18 species) and performed comprehensive phylogenetic and
positive selection analyses. This new comprehensive positive selection analyses confirmed that

FYCO1 has undergone positive selection in primates, but not in bats (Table 1).
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Site-specific selection analyses identified four residues with strong evidence of significant
positive selection in primates in at least two independent methods: 447, 471, 552, and 928
(Figure 4B-C, Table 1). Though no crystal structure is available for full-length FYCO1, these
rapidly evolving sites fall into the coiled-coil domain of FYCO1, which is important for interaction
with Kinesin. In addition, the different primate species encode for amino acids with very different
physicochemical properties at these sites (Figure 4C), indicating potential structural and
functional plasticity in this region. These positive selection marks may therefore represent virus-
host interplays and be the result of selective pressure by ancient epidemics during primate
evolution.

To correlate primate natural genetic variants with ongoing human polymorphisms and
association with COVID-19 severity, we compared FYCO1 variations in primates with the human
polymorphisms associated with increased SARS-CoV-2 pathogenicity (GWAS). Using the

COVID-19 Host Genetics Initiative data (https://www.covid19hg.org/results/r6/) as well as the

data from Pairo-Castineira and colleagues (https://genomicc.org/data/), we identified five codons

in FYCO1 with polymorphisms associated with severe COVID-19 in humans (Figure 4D). By
comparing these positions to the four positively selected sites in primates, we found one position
in common, site 447 (genome position 45967996) (Figure 4C-E). This shows that residue 447,
whose alleles are correlated with COVID-19 severity in human, has also been subjected to
adaptive evolution in primate history. In addition, at the protein domain level, the regions 430-
555 and 910-1005 both have several residues associated with severe COVID-19 in humans and
residues under adaptive evolution in primates (Figure 4D-E). Therefore, our combined positive
selection and GWAS analysis identified FYCO1 regions that may be key host determinants of
SARS-CoV-2 and COVID-19.

Overall, our results support the importance of FYCO1 in SARS coronavirus pathogenesis
or replication in primates, in both ancient (our positive selection analysis) and modern (GWAS)
times. Furthermore, observed differences in positive selection between the susceptible primate
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hosts and bats (where no positive selection was observed and no disease is known to be
associated with CoV infection) may highlight key differences in pathogenesis. We have two main
hypotheses for the role of FYCO1 in SARS-CoV infection. First, given its known cellular role
(Figure 4A), FYCO1 may play a role in facilitating viral egress and replication. Second, FYCO1
may be involved in COVID-19 pathogenesis, potentially through an indirect mechanism by

affecting the autophagy process or vesicle trafficking necessary to resolve viral infection.

RIPK1 has been under adaptive evolution in bats at residues that are crucial for human
RIPK1 regulation

Human RIPK1 is an adaptor protein involved in inflammation through the tumor necrosis factor
alpha receptor 1 (TNFR1) and the Toll-like receptors 3 and 4 (TLR3/4), leading to pro-survival,
apoptotic or necroptotic signals (Figure 5A) (Delanghe et al., 2020; Liu et al., 2018). A curated
analysis of RIPK1 interactors showed that it is a central hub for 79 cellular partners involved in
key inflammatory and cell survival/death processes (Reactome database; Figure S8A). RIPK1
interacts with SARS-CoV-2 NSP12 (RdRp) (Gordon et al., 2020), and is further involved in
several bacterial and viral infections, being usurped by pathogens or involved in anti-microbial
immunity (Figure S8B).

In our DGINN screens, we only identified signatures of positive selection in primate
RIPK1. As previously, to obtain comprehensive phylogenetic and positive selection analyses, we
retrieved all available coding sequences of bat (n=18 species) and primate (n=29 species)
RIPK1 and performed new codon alignments and analyses. Here, we found strong evidence of
positive selection in bat RIPK1, but not in primates (Table 1). This is different from our screen
results, and this discrepancy was mostly due to (i) the addition of sequences as compared to our
screens (i.e., from 12 to 18 bat species sequences, and from 24 to 29 primates) and (ii) the high-

quality codon alignments, which are crucial for positive selection studies.
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Next, using site-specific analyses, we identified five residues in bat RIPK1 that have
evolved under significant positive selection (Figure 5B, Table 1). These are located in the
intermediate domain (282, 294, 370) and in the C-terminal death domain DD (662, 665) of
RIPK1. The latter domain can interact with other DD containing proteins, such as FADD, and
has determinants for host-pathogen interactions (Delanghe et al., 2020; Liu et al., 2018). To
determine where the positively selected sites fall in the three-dimensional protein, we used a
structure prediction of bat RIPK1 from Rhinolophus ferrumequinum, which genus is a SARS-
CoV-2 reservoir. We found that the rapidly evolving sites are exposed at the protein surface
(Figure 5B-C; and Figure S8B for a comparison with the predicted 3D structure of human RIPK1,
(Mompean et al., 2018)). Therefore, physicochemical variations at sites 662 and 665 (Figure 5D)
in the death domain could modulate interactions with DD-bearing proteins, and thus influence
the ability of bat RIPK1 to drive cell death (Grimm et al., 1996). Alternatively, these variations
may affect interactions between bat RIPK1 and viral antagonists, and thus may be directly
involved in host-pathogen evolutionary conflicts.

Interestingly, using comparative analyses of bat and human RIPK1s, we found that the
positively selected sites 282, 294 and 662 in bat RIPK1 correspond to sites K284 and S296, and
S664 in human RIPK1, which are ubiquitinated and phosphorylated, respectively (Delanghe et
al., 2020; Simpson et al., 2021) (Figure 5B in red). The posttranslational modifications at these
sites are very important for the balance between the pro-survival and the pro-cell death functions
of human RIPK1. It is thus possible that variation at these residues (Figure 5D) affects how bat
RIPK1 is regulated.

Overall, our evolutionary analyses indicate that RIPK1 is an important SARS-CoV-2 (and
other virus) interacting protein and suggest that residues undergoing positive selection in bats
may be important (i) as determinants of virus-host interfaces, and (ii) as regulators of the protein
balance between pro-survival and pro-cell death activities. The latter may allow certain bat
species to tolerate viral infections and regulate the associated inflammation.
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Discussion

This study of the evolution of SARS-CoV-2 interacting proteins in mammals help us to
understand how the bat reservoir and the primate host have adapted to past coronavirus
epidemics and may shed light on modern genetic determinants of virus susceptibility and
COVID-19 severity. Here, among the 334 genes encoding for SARS-CoV-2 VIPs, we identified
38 and 81 genes with strong signatures of adaptive evolution in bats and primates, respectively.

Results are available at https://virhostnet.prabi.fr/virhostevol/ . First, we found a core set of 17

genes, including the ACE2 receptor and POLA1, with strong evidence of selective pressure in
both mammalian orders, suggesting (i) past epidemics of pathogenic coronaviruses in bats and
primates shaping mammalian genomes, and (ii) common virus-host molecular and adaptive
interfaces between these two mammalian host orders. This represents a list of host genes that
should be prioritized and studied for roles in broad SARS-CoV replication. We also found several
genes under positive selection only in bats or primates (such as RIPK1 or TMPRSS2), which
highlight important differences in the coevolution of primate and bat with SARS-CoVs.
Furthermore, we discovered specific residues within the VIPs with typical marks of virus-host
arms-races, which may point to precise SARS-CoV-host interfaces that have been important in
vivo and may therefore represent key SARS-CoV-2 drug targets (such as TMPRSS2 or FYCO1).
Finally, we found that FYCO1 sites with hallmarks of positive selection during primate evolution
are those associated with severe COVID-19 in humans, supporting the importance these rapidly
evolving residues in SARS-CoV-2 pathogenesis and replication. Overall, our study identified
several host factors that (i) have been driven by ancient epidemics of pathogenic SARS
coronaviruses, (ii) are different between the bat reservoir and the primate host, and (iii) may
represent key in vivo virus-host determinants and drug targets.

The difference in adaptive VIPs in primates and bats suggests that beyond the common

virus-host interfaces, SARS-CoVs have an intrinsically different interactome in these distant
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hosts (i.e. specialization). Therefore, SARS-CoVs may have adapted to usurp and/or antagonize
different cellular proteins in the primates versus the bats. This is exemplified by the evolution of
the entry factor TMPRSS2 (amongst others). We identified strong evidence of virus-host arms-
races in primates, but not in bats, suggesting that SARS-CoVs may not strongly rely on
TMPRSS2 for entry in bat cells, as opposed to primates. Only functional studies on SARS-CoV
natural entry pathways into bat cells would firmly determine this. Interestingly, the recent SARS-
CoV-2 Omicron variant has evolved to enter the human cell through a TMPRSS2-dependent
and -independent route, showing also intra-host species plasticity at these interfaces (Meng et
al., 2022; Peacock et al., 2022; Pia and Rowland-Jones, 2022; Willett et al., 2022). Lastly, the
importance of lineage-specificity of SARS-CoV-2 VIPs has previously been highlighted for
OAS1. Indeed, humans rely on prenylated OAS1 to inhibit SARS-CoV-2 replication and prevent
COVID-19 severity (Soveg et al., 2021; Wickenhagen et al., 2021), but Rhinolophidae bats do
not encode for an OAS1 capable to interact with SARS-CoV-2 (Wickenhagen et al., 2021). Thus,
in addition to genes such as TMPRSS2, FYCO1, or RIPK1, our findings provide dozens of
genes that represent host-specific interfaces and may be critical in vivo SARS-CoV VIPs.

The differences between primate and bat evolution of the SARS-CoV-2 interactome may
further result from important differences in the adaptation at the virus-host interface in a reservoir
host versus a recipient host. In this model, beyond the core SARS-CoV-2 interactome of bats
and primates, the genes under positive selection would correspond to host-specific adaptations
to SARS-CoV. This could underlie important immunomodulatory differences between primates
and bats (Christie et al., 2021). For example, the inflammatory protein RIPK1 showed signatures
of adaptive evolution in bat residues that correspond with loss of important RIPK1 regulatory
phosphorylation and ubiquitination residues in humans. With the caveats that no functional
studies exist on bat RIPK1, the extrapolation of the functions ascribed to the corresponding
residues in human RIPK1 suggests that positive selection in bat RIPK1 may result from an
advantageous decrease of RIPK1-driven inflammation in bats. This is analogous to the loss of
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S358 phosphorylation site in bat STING that participates in a dampened inflammation response
in bats (Xie et al., 2018), and supports a model where hosts that are more tolerant to viral
infection contribute to the establishment of a host reservoir, such as hypothesized for bats (Ahn
et al., 2019; De La Cruz-Rivera et al., 2018; Irving; Pavlovich et al., 2018; Prescott et al.; Xie et
al., 2018; Zhang et al., 2013).

It is also possible that there are fewer signatures of adaptation in SARS-CoV interacting
proteins in bats over primates, because coronaviruses may have been less pathogenic in the
former host, and therefore less selective (Emerman and Malik, 2010; Irving). However, evidence
of strong positive selection in the bat ACE2 receptor driven by ancient pathogenic SARS-CoVs
(this study, and (Demogines et al., 2012; Frank et al., 2020)) supports a model in which past
SARS-CoV epidemics have been sufficiently potent to shape bat genomes.

Our work also tries to bridge studies of ancient and recent evolution of genes, which can
help us better understand past epidemics and adaptive genes, and ultimately develop
evolutionary medicine. This study over millions of years of evolution (at the inter-species level)
shows evidence of very ancient epidemics of SARS-CoVs that have shaped both primate and
bat genomes. Marks of adaptation in SARS-CoV-2 VIPs at the human population level further
identified evidence of past SARS-CoV epidemics in more recent human history (Souilmi et al.,
2021). Bridging these ancient and more recent evolutionary analyses with GWAS studies would
bring more direct confirmation of the causal role of viral interacting proteins in pathogenesis.
This is here exemplified by the FYCO1 gene that may be a central protein in SARS-CoV-2
pathogenesis and disease etiology.

A limitation of our study is that we did not quantify the selective pressures occurring at
(regulatory) noncoding regions of the VIPs. Using human population genomics, Souilmi et al
found that marks of positive selection have been particularly strong at non-coding regions of
SARS-CoV interacting proteins (Souilmi et al., 2021). However, these analyses are challenging
at the interspecies level, and more methods and high-quality genome alignments would be
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necessary for state-of-the-art mammalian genomic analyses. Our findings are therefore
conservative and other marks of adaptation in the same, and in more, VIPs are certainly at play.
At the heart of our study analyzing the coding sequences of SARS-CoV-2 VIPs is the
identification of site-specific adaptations at multiple SARS-CoV-2 interacting proteins, which may
reflect the exact sites of molecular arms-races of proviral and antiviral VIPs with SARS-CoVs
(Duggal and Emerman, 2012; Sawyer et al., 2005; Sironi et al., 2015). These sites are therefore
of primary importance to investigate in functional assays to firmly identify key SARS-CoV-2-cell
determinants and drug targets. For example, our study highlights TMPRSS2 and RIPK1,
amongst others, as potential targets of interest. Primidone, an FDA-approved RIPK1 inhibitor,
has proven ineffective as a direct inhibitor of viral replication in established cell lines (Gordon et
al., 2020; Riebeling et al., 2021). However, our findings suggest that RIPK1 inhibitors will more
likely exert an effect on the virus-induced hyperinflammation, rather than on viral replication
itself. As such, the evaluation of the effectiveness of RIPK1-kinase inhibitors will require a more
complex cellular setup. Lastly, other viruses may also have driven adaptation at these VIPs,
which therefore represent essential host-pathogens interfaces. Targeting the identified VIPs with

strong marks of virus-host arms-races may be an effective broad antiviral strategy.

Methods

DGINN Screens. Analyses were performed as previously described in Picard et al., 2020.

Briefly, CCDS identifiers were downloaded from HGNC Biomart (http://biomart.genenames.org/)

for all 334 genes of interest. If there were more than one CCDS, the longest was selected. Initial
codon alignments and phylogenetic trees were obtained using DGINN with default parameters
(prank -F -codon; version 150803, HKY+G+| model (Léytynoja and Goldman, 2008); PhyML v3.2
(Guindon et al., 2010)). Duplication events were detected through the combined use of Long

Branch Detection and Treerecs (Comte et al., 2020) as implemented in DGINN. Recombination
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events were detected through the use of GARD (Kosakovsky Pond et al., 2006) from the HyPhy
suite as implemented in DGINN. For each VIP gene, the analyses of primate evolution and of
bat evolution were separately run. The species trees employed for the tree reconciliation with

Treerecs are accessible at: https://virhostnet.prabi.fr/virhostevol/. Positive selection analyses

were then run using models from BUSTED and MEME from the HyPhy suite (Murrell et al.,
2012, 2015; Pond et al., 2005) and codon substitution models from PAML codeml (MO, M1, M2,
M7, M8) (Yang, 2007), and from Bio++ (MO, M1NS, M2NS, M7NS, M8NS) (Guéguen et al., 2013) as
implemented in DGINN (Picard et al., 2020). For the chiroptera screen, a visual inspection of the
resulting gene alignments was performed, and we refined 28 of them to delete erroneous
ortholog sequences, erroneous isoforms, or sequencing errors. These 28 curated alignments
were then re-analyzed with DGINN starting at the “alignment” step and included in the final

results (Figure S1A, Table S1).

MAIC Scores. MAIC scores were obtained from the database for COVID-19

(https://baillielab.net/maic/covid19/, 2020-11-25 release) (Parkinson et al., 2020). The 334 VIP

genes were cross-referenced against the 10,000 best hits of the MAIC database.

Detailed phylogenetic analyses on genes of interest. Alignments from the DGINN screens
were retrieved and sequences that appeared erroneous were taken out. To obtain a maximum
number of species along primate and bat phylogenies, further sequences were retrieved from
NCBI databases using BLASTn. Final codon alignments were then made using PRANK
(Léytynoja and Goldman, 2008) or Muscle Translate (Edgar, 2004), and phylogenetic trees were
built using PhyML with HKY+I+G model and aLRT for branch support (Guindon et al., 2010).
Each curated gene alignment and tree were then submitted to positive selection analyses using
the DGINN pipeline: HYPHY BUSTED and MEME, PAML Codeml (MO, M1, M2, M7, M8, M8a)
and Bio++ (M0, M1NS, M2NS M7NS M8NS, M8aN®) (references in “DGINN screen”). To test for
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statistical significance of positive selection in Codeml and Bio++, we ran a chi-squared test of
the LRT from models disallowing positive selection versus models allowing for positive selection
(M1 versus M2, and M7 versus M8) to derive p-values. To identify the sites under positive
selection, we used HYPHY MEME (p value < 0.05), the Bayes Empirical Bayes statistics (BEB)
from the codeml M2 and M8 models (BEB > 0.95), and the Bayesian Posterior Probabilities (PP)
from the M2"® and M8"® models in Bio++ (PP > 0.95). Three other web-based methods were
used for this set of genes: A Fast, Unconstrained Bayesian AppRoximation for Inferring
Selection (FUBAR) method to detect site-specific positive selection (PP > 0.90) (Murrell et al.,
2013) and An adaptive branch-site REL test for episodic diversification (aBS-REL) to detect

branch/lineage-specific positive selection (p-value < 0.1) (Smith et al., 2015).

GWAS analyses. Using the COVID-19 Host Genetics Initiative data

(https://www.covid19hg.org/results/r6/), we extracted the positions of human polymorphisms

associated with “very severe respiratory confirmed covid vs. population” that are within FYCO1
coding sequence and have a p-value below 10®. We similarly retrieved the positions found
associated to severe COVID-19 by Pairo-Castineira et al. 2020 from the data publicly available

at https://genomicc.org/data/ (Pairo-Castineira et al., 2021). We then matched the coordinates of

polymorphic sites significantly associated with severe COVID-19 to the alignment of coding
sequences of FYCO1 (using transcript FYCO1-205). To note, none of the other genes under
positive selection contained polymorphism significantly associated with “very severe respiratory

confirmed COVID” by the COVID-19 Host Genetics Initiative (see online browser).

Reactome analyses. Gene pathway enrichment analyses were carried out on the Reactome

biological pathways tools (https://reactome.org/). Interactors of RIPK1 were retrieved using the

Reactome FIV plugin in Cytoscape (Gillespie et al., 2022).
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Protein structure predictions. Protein structure prediction of human and Rhinolophus
ferrumequinum RIPK1 were modeled using RaptorX (Wang et al., 2017) and structures were
visualized using the Chimera software (Pettersen et al., 2004).

Since no crystal structure is available for TMPRSS2 protease, the 3D structure of TMPRSS2
was predicted using the Iterative-Threading ASSEmbly Refinement (I-TASSER) server (Yang
and Zhang, 2015). A total of 492 amino acid sequence of human TMPRSS2 obtained from NCBI
Genbank (accession number AF329454) was used as query. The best model inferred by I-
TASSER was selected using the C-Score — a measure assessing the quality of the models. The
final estimates are: model C-score, -0.41; estimated TM-score, 0.66+0.13; RMSD, 8.2+4.5A. The
corresponding TMPRSS2 structure was generated using Swiss PDB viewer software

(Johansson et al., 2012).

Sequence logo generation. The amino acid sequence logos of TMPRSS2 were generated
using WebLogo (V. 2.8.2, (Crooks et al., 2004)), based on an alignment of the positively sites
from mammalian species reported as naturally susceptible and/or experimentally permissive to

SARS-COV2, SARS-COV and MERS-COV.

Code and Data availability. All codes are available in: https://qitbio.ens-lyon.fr/ciri/ps sars-cov-

2/2021_dginn_covid19, and the DGINN pipeline is available at: http://bioweb.me/DGINN-github.

All results from the DGINN screens (“DGINN full dataset”) and from the detailed evolutionary
analyses (“DGINN genes of interest”) are available through the VirHostEvol web service

https://virhostnet.prabi.fr/virhostevol/ . The Shiny web application open-source code is available

from the IN2P3 gitlab https://gitlab.in2p3.fr/vincent.navratil/shinyapps-virhostevol.
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Figure Legends

Figure 1. Identification of the SARS-CoV-2 interactome with signatures of positive selection in

bats and primates. A, Overview of the DGINN pipeline to detect adaptive evolution in SARS-

CoV-2 VIPs. B, Natural selection acting on bat and primate VIP genes. Comparison of omega
(dN/dS) values of the VIPs during bat (y axis) and primate (x axis) evolution, estimated by bpp
Model MO. In black, the bisector. In red, the linear regression. The names correspond to genes
that we comprehensively analyzed (Table 1). C, Overview of the number of VIPs under
significant positive selection (i.e., by at least three methods in the DGINN screen) in bats and/or
primates. A total of 324 genes could be fully analyzed in the two mammalian orders. Numbers
represent the number of genes in the categories: No PS (positive selection) or PS, within each
host — represented by a pictogram. The numbers correspond to the conservative values after
visual inspection of the positively selected VIP alignments, while the italic numbers are from the
automated screen. D, Table showing the genes identified by x,y DGINN methods in bats and
primates, respectively. For the genes with low DGINN scores (<3), only the number of genes in
each category is shown (see Figure S4 for details). Of note, seven primate genes are “false
positive”; EMC1 (ER membrane protein complex subunit 1), MOV10 (Mov10 RISC complex RNA
helicase), POR (cytochrome p450 oxidoreductase), PITRM1 (pitrilysin metallopeptidase 1),
RAB14, RAB2A, and TIMMS8B (translocase of inner mitochondrial membrane 8 homolog B).

Figure 2. SARS-CoV-2 VIPs under positive selection are interacting proteins of other

coronaviruses, as well as other viral families. Virus-host protein-protein interactions’ network of

VIP genes under positive selection and interconnected with (A) other coronaviruses (from alpha-
or beta-coronavirus genus), and (B) viral families other than coronaviruses. VIPs interacting with
more than one additional viral family are in the center and arranged in columns (from left to right,
interconnected with 2-6 different viral families). Node sizes at the virus families are proportional

to the number of edges. The VIPs not interconnected are shown in Table S1.

Figure 3. TMPRSS2 has evolved under strong positive selection in primates, but not in bats.
A, Role of TMPRSS2 in SARS-CoV-2 entry. B, Diagram of TMPRSS2 predicted domains, with
sites under positive selection in primates represented by triangles (Table 1). Codon numbering
based on Homo sapiens TMPRSS2. C, 3D-structure modeling of human TMPRSS2 (amino
acids 1-492) with the positively selected sites (red), the SARS-CoV-2 predicted interface (light

blue), the catalytic site (dark blue). D, The positively selected sites identified in primate
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TMPRSS?2 are highly variable in primates (top), but more conserved in bats (bottom) where they
are not identified as under adaptive evolution. Left, cladograms of primate and bat TMPRSS2
with species abbreviation and accession number of sequences. Amino-acid color-coding,
RasMol properties (Geneious, Biomatters). Icon legend is embedded in the figure, with
multicolored pictograms/triangles showing cases fulfilling multiple conditions. E, Positively
selected sites in primates exhibits different patterns of variability in other mammals: pangolin,
carnivores, artiodactyls and rodents. Right, numbers in brackets correspond to the number of
species within the order with the same TMPRSS2 haplotype at these positions (e.g. the QSSKS
motif in Mustela putoris was found in eleven rodent species). The corresponding motif in

species/cells susceptible or permissive to coronaviruses is shown in Figure S7.

Figure 4. Domains of FYCO1 that are associated with severe COVID-19 in human have also

evolved under significant positive selection in primates, but not in bats.

A, Known cellular role of FYCO1. B, Diagram of FYCO1 predicted domains, with sites under
positive selection in primates represented by triangles (Table 1). Codon numbering based on
Homo sapiens FYCO1. C, Amino acid variation at the positively selected sites in primates. Left,
cladogram of primate FYCO1 with major clades highlighted. The exact species and accession
number of sequences are shown in Panel E. Amino-acid color-coding, RasMol properties
(Geneious, Biomatters). D, Sites identified in the coding sequence of FYCO1 as under positive
selection (PS) in primates (top) and as associated with severe COVID-19 in human from two
GWAS studies (middle: GWAS1, COVID-19 Host Genetics Initiative, 2021; bottom: GWAS2,
Pairo-Castineira et al. 2020). x axis, nucleotide numbering. E, Amino acid variations in primate

species at the sites associated with severe COVID-19 in GWAS.

Figure 5. The multi-functional and inflammatory RIPK1 protein exhibits strong evidence of

adaptation in bats at key regulatory residues. A, Schematic diagram of the three main functions

associated to human RIPK1 in TNF signaling. As part of the TNFR1-associated complex, RIPK1
induces pro-survival signals that notably lead to NFkB activation. When dissociating from this

complex, as a result of multiple events involving both phosphorylation and ubiquitination, RIPK1
can associate to FADD and lead to apoptosis or necrosis. B, Diagram of RIPK1 domains with

the residues under positive selection in bats (black triangles) with the corresponding positions in
human RIPK1 (Table 1). C, 3D-structure prediction of bat (Rhinolophus ferrumequinum) RIPK1,
using RaptorX. The protein domains are color-coded as in B. Residues under positive selection

are in red and numbered is according to their position in bat RIPK1. D, The positively selected
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sites identified in bat RIPK1 are highly variable in bats (top), but more conserved in primates
(bottom), where they are not identified as under adaptive evolution. Left, bat and primate RIPK1
with species abbreviation and accession number of sequences. Amino-acid color-coding,
Polarity properties (Geneious, Biomatters). The correspondence of residues from Rhinolophus

ferrumequinum bat RIPK1 (grey) to human numbering (black) is shown at the top.
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Tables

Table 1. Results from the comprehensive positive selection analyses of the genes of interest.

For each gene, are presented the results of the comprehensive phylogenetic and positive
selection analyses: BUSTED, MEME, FUBAR, aBSREL from HYPHY/Datamonkey.com,
M1vsM2, M7vsM8, M8avsM8 from Bpp, and M1vsM2, M7vsM8, M8avsM8 from PAML Codeml.
The genes identified under positive selection are highlighted in grey. The sites considered under
positive selection after the analyses are in “PSS aln” and “PSS in human ref’, corresponding to
the site number in the codon alignment and the corresponding amino acid site in the human
reference sequence. Alignments, trees, and interactive table are available at:

https://virhostnet.prabi.fr/virhostevol/ .

Legend details: Size, length of the codon alignment; n. sp., number of species included in the alignment;
PS?, if the gene is under positive selection: Y, yes, N, no; p value, supporting a model under positive
selection; PSS, positive selection sites; the cutoff for each method is given in the table; omega (PS),
corresponds to the omega value in the positive selection class (dN/dS>1). ZNF318 and the proteins from
the Primase complex are in Supplementary Information, and in Figures S9 and S10, respectively. *, for
bpp M8 PSS analyses there were dozens of sites under positive selection due to the low omega value in

the class w >1. For aBSREL, the branch identified under positive selection is given by the DGINN
nomenclature (three letters from the genus and three from the species). na, not available.

Sequence alignment info BUSTED MEME (p<0.05) |FUBAR (PP>0.9) Bpp M1vsm2 Bpp M7vsM8 M8a vs M8 Codem! M1vsM2 Codeml M7vsM8 M8a vs M8 | aBSREL PSS aln PSS in
Gene _ Order _Size nsp|PS? pvalue PS? pvalue o (PS) PSS [PS? pvalue w (PS) PSS [PS? pvalue |PS? pvalue PSS [PS? pvalue PSS |PS? pvalue| (p<0.1) human ref
375, 504, 566,
FYCO1  bats 1481 18 | N 022 | 688,790, 1059, N 09861 N 04786 N o0s2s0| N 1 Y 656E08 607 | N 02281
1092
355, 416, 472,
484, 601, 629,
728, 869, 919 448, 448,472, | R4
FYCO1 primates 1500 29 | N 0.30 : 869, 919, ar2 Y 00058 442 448 |y 477605 173 n=206* | ¥ 00136 | ¥ 00103 Y 397608 448,930 Y 0.0032| rhigie (472 | Rars,
1102, 1218, 553 553,930 | 2070 0g
1219, 1242, '
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109, 196, 246, 249, 250' 246, 249, E240,
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1270 ot 1080 | V304,
pd V1069
221,
590,707, 718 226,
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SUPPLEMENTARY

Supplementary Information — Results and Discussion

ZNF318 has undergone positive selection at three sites in primates, but not in bats
ZNF318 (NP_055160, also known as TZF, testicular zinc finger protein) is a putative RNA
binding Matrin-type zinc finger protein. Matrin-type zinc fingers are RNA interacting domains
found most notably in matrins and U1 small nuclear ribonucleoprotein C (InterPro: IPR003604).
Aside from two central matrin-type ZNF domains, ZNF318 interacts with the androgen receptor
and forms homodimers through its N-terminal tail (Figure S9A) (Tao et al., 2006). Finally, despite
accounting for about half the protein, the Proline-rich C-terminal domain of ZNF318 has currently
no ascribed function (Figure S9A). While the precise molecular function of ZNF318 remains
unknown, it was shown to interact with the HUSH chromatin silencing complex and contributes
to splicing-coupled transposon, and potentially latent HIV, silencing (Chougui et al., 2018; Douse
et al.,, 2020). Antiviral functions have also been described for some human matrin genes
(Yedavalli and Jeang, 2011).

Our DGINN screens identified signatures of positive selection in ZNF318 from primates,
but not in bat species. While we confirmed the presence of ZNF318 orthologs in 29 primate and
16 bat species, many were 5’ truncated. Thus, we used 5’ trimmed CDS for in-depth selection
analyses (Table 1). Unlike the majority of codons that are highly conserved (mean dN/dS of
~0.3), the C-terminal portion of ZNF318 displays many non-synonymous substitutions between
orthologs. Statistical analyses using CodeML identified three sites under positive selection in this
domain (M7 vs M8, BEB > 0.95): residues 1481, 1756 and 1908 in the corresponding human
full-length protein (NP_055160, Figure S9, Table 1). There does not seem to be strong co-
evolutionary signatures between these three residues and the combination of sites found in
human (“V”, “R” and “P”) arose once in the last common ancestor with chimps and bonobos

(Figure S9B). Of the three sites, non-synonymous substitutions altering the proline residue 1908
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might have strongest structural impact. Interestingly, these residues show some level of variation
in bats, with bias for Threonines and Alanines at orthologous positions of sites 1481 and 1908.
While the function of ZNF318 during SARS-CoV2 infection remains to be determined, our
finding of positive selection in primates suggest that it contributed to host adaptation in this
lineage. Moreover, our analysis identified ZNF318 Proline-Rich domain as a putative functional
interface with viruses. Hence, it would be interesting to investigate if this domain carries
functions relating only to viral infections, including with non-coronaviruses (Figure 2), or if it is

also involved in ZNF318 other cellular functions.

Rapid evolution of the Prim-Pol primase complex (POLA1, PRIM1, PRIM2) in primates and
bats
Initiation of DNA replication in eukaryotes is dependent on the multisubunit primase-polymerase
alpha (Prim-Pol a) complex that is responsible for the de novo synthesis of RNA/DNA primers on
both the leading and lagging strands. Primase consists of the small catalytic subunit PRIM1
(p49) and the large regulatory subunit PRIM2 (p58), while polymerase consists of the catalytic
subunit POLA1 (p180) and the accessory subunit POLA2 (p70). During primer synthesis, the
primase subunits generate short RNA oligos, which are then subsequently extended with DNA
by Pol a to be further elongated by replicative DNA polymerases. While many viruses encode
their own Prim-Pol (Guilliam et al., 2015), including a putative CoV primase consisting of NSP7
and NSP8, SARS-CoV-2 NSP1 interacted with all four subunits of Prim-Pol a (Gordon et al.,
2020).

From our initial DGINN analysis, we identified positive selection on three out of the four
Prim-Pol a subunits: POLA1 (four tests for primates and bats), PRIM1 (three tests for primates
and two tests for bats), and PRIM2 (five tests for primates only). POLA2 was not identified under

positive selection in primates or bats (one test for bats and zero tests for primates).
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To validate the finding and to precisely characterize gene evolution in primates and bats
for POLA1, PRIM1, and PRIM2, we retrieved additional sequences for these orders and
generated new high-quality codon alignments. POLA1 still showed significant signatures of
positive selection across both primate and bat lineages (Table 1). PRIM1 maintained signatures
of positive selection in bats (Table 1). PRIM2 maintained signatures of positive selection in
primates for some tests, and the additional sequences identified positive selection in bats not
seen with our initial pipeline (Table 1). Together this confirmed our initial analysis that POLA1,
PRIM1, and PRIM2 are rapidly evolving in primate and bat lineages, with bats having more
robust positive selection than primates.

Our codon-specific positive selection analysis identified multiple residues that have
rapidly evolved in primates and bats. We specifically focused on sites that were found with more
than one test of selection (Table 1). To determine if these sites of positive selection were found
at the interface between subunits of the Prim-Pol a complex or at surface exposed sites, we
mapped PS sites onto the human Prim-Pol a crystal structure (PDB: 5EXR) (Baranovskiy et al.,
2016). None of the sites were found at Prim-Pol a complex interfaces, and while many were
clustered close together, all were surface exposed or found in putative unstructured regions that
were not present in the crystal structures (Figure S10). Together, this indicates that the positive
selection identified for this complex is not being driven by complex formation and intra-complex
coevolution, or DNA replication.

POLA1 is of particular interest as it has been modeled to dock with SARS-CoV-2 NSP1
(PDB 70PL)(Kilkenny et al., 2022) (Chaudhuri, 2021). However, none of the sites identified in
our positive selection analysis were at the predicted POLA1-NSP1 interface (residues 615-629;
Figure S10A-B), suggesting that NSP1 is not driving positive selection on POLA1. Instead, 7/9
PS sites in bats and primates were found in unstructured regions that were not present in the
crystal structure, with four sites (V235, D232, E239, and E240) all falling in a predicted
disordered region of the protein (amino acids 232-251). That this unstructured region showed
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strong positive selection in both primates and bats could suggest that primate and bat POLA1
rapid evolution is being driven by similar unknown pressures in these distinct families.

Altogether, our positive selection analysis has identified that the Prim-Pol a complex is
under strong positive selection in bats and primates, however this is not driven by Prim-Pol a
complex formation or NSP1. Thus, it remains unclear what is driving PS on the Prim-Pol a
complex, whether SARS-CoV interact with the Prim-Pol a complex as a whole or individual
proteins from this complex, and why SARS-CoV-2 directly interact with nuclear host DNA
replication machinery.

So why does SARS-CoV-2 recruit the Prim-Pol a complex? One possibility is that Prim-
Pol a may have a role in the innate immune response to viral infection, and thus viruses directly
antagonize components of this complex. Prim-Pol a was identified to interact specifically with
NSP1 (Gordon et al., 2020), which functions to inhibit host translation and innate immunity
(Narayanan et al., 2008; Schubert et al., 2020). Pola1 is found in both the nucleus and
cytoplasm, where it generates RNA-DNA hybrids that may be important for innate immune
sensing (Starokadomskyy et al., 2016). Loss of function mutations in POLA1 lead to increased
pathogen infection, innate immune activation, and decreased number and effectiveness of NK
cells (Starokadomskyy et al., 2016)(Starokadomskyy et al., 2019). While this supports a role of
POLA1 in innate immunity against pathogens, roles for PRIM1 and PRIM2 have yet to be
investigated.

It is also possible that SARS-CoV are usurping the host primase complex (or
components of this complex) to enhance genome replication. SARS-CoV NSP7 and NSP8 are
proposed to function as primase important for initiation of genome replication (Konkolova et al.,
2020; Zhai et al., 2005). However, recent cryoEM structures of NSP7-8-12 complex suggest that
NSP7 and NSP8 are too far from the RARP NSP12 active site to act as primase (Kirchdoerfer
and Ward, 2019). Thus, it is possible that the host Prim-Pol a is recruited by NSP1 to further
help initiation (and/or elongation) of CoV genome replication.
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Supplementary Figures

Figure S1. Identification of the SARS-CoV-2 interactome with signatures of positive selection in bats. A,
Overview of the key steps of the bat VIP DGINN screen workflow. Details in Table S1. B, VIP-encoding
genes identified under significant positive selection by at least three methods in DGINN (embedded
legend). The percentage of positively selected sites in each VIP is shown on the right panel.

Figure S2. Identification of SARS-CoV-2 interactome with signatures of positive selection in primates. A,
Overview of the key steps of the bat VIP DGINN screen workflow. Details in Table S1. B, VIP-encoding
genes identified under significant positive selection by at least three methods in DGINN (embedded
legend). The percentage of positively selected sites in each VIP is shown on the right panel. Of note,
seven genes are false positives due to erroneous sequences or alignments: EMC1 (ER membrane protein
complex subunit 1), MOV10 (Mov10 RISC complex RNA helicase), POR (cytochrome p450
oxidoreductase), PITRM1 (pitrilysin metallopeptidase 1), RAB14, RAB2A, and TIMMS8B (translocase of
inner mitochondrial membrane 8 homolog B).

Figure S3. Comparison of primate positive selection analyses between this study and Gordon et al. A,
Comparison of the omega (dN/dS) values in PAML Codeml MO model of the primate VIP genes calculated
using the automated DGINN pipeline (y axis) and from Gordon et al study (x axis). Raw data were kindly
provided by Janet Young, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. In black, the
bisector. In red, the linear regression. B, Comparative analysis of the number of VIPs “under positive
selection” in primates. In dark grey, the “strong and weak positively selected genes with benjamini-
hochberg correction” from Gordon et al study (Codeml M8 vs M8a, p-value < 0.10); in medium grey, same
from “uncorrected p-values”; in light grey, the genes identified by at least three methods in the primate
DGINN screen. A total of 322 genes were in common between the two studies. C, VIPs under positive
selection in Gordon et al with a DGINN score below three.

Figure S4. Comparative analyses of adaptive signatures in SARS-CoV-2 interactome in primates and in
bats. A, Full table (associated with Figure 1D) showing the genes identified by x,y DGINN methods in bats
and primates, respectively. B, Tanglegram of genes under positive selection in bats and primates. At the
top, genes with the highest DGINN score (DGINN scores: purple, 5; blue, 4; teal, 3; green, 2; brown, 1;
red, 0).

Figure S5. Meta-Analysis by Information Content (MAIC) scores of the VIP genes under positive selection.
A-B, MAIC rank of VIPs identified under positive selection (by at least three methods in DGINN; DGINN
scores of 3-5) in bats (A) and primates (B). The ACE2 and TMPRSS2 genes are highlighted in red as
references. C-D, MAIC rank for all VIPs with, or without, evidence of positive selection (DGINN scores >
or = 3, or < 3, respectively) in bats (C) and primates (D).

Figure S6. Positively selected VIPs are involved in several biological processes. The graphs present the
top 10 biological pathways retrieved after analysis on the Reactome database of bat (A) and primate (B)
positively selected VIPs.

Figure S7. Genetic variation of mammalian TMPRSS2 at the corresponding residues under positive
selection in primates. Top, sequence logo of the positively selected sites in mammals that are naturally
and experimentally permissive to SARS and MERS coronaviruses. Logos generated using WebLogo
based on the alignment of the positively selected sites identified in primates. Bottom, Alignment of the
corresponding amino acids in the mammalian species.
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Figure S8. RIPK1 interactome and 3D-RIPK1 structure prediction. A, RIPK1 was used to interrogate the
Reactome database and to retrieve RIPK1 cellular interactors that were subsequently subdivided
according to their involvement in the indicated pathways. B, Described RIPK1 microbial antagonists or
interactors from viruses (top) and bacteria (bottom). C, Human and Rhinolophus ferrumequinum RIPK1
sequences were used to generate 3D-structure prediction models on RaptorX (grey and orange,
respectively). Magnified views of the structural homologies between the indicated domains.

Figure S9. ZNF318 has undergone positive selection at three sites in primates, but not in bats. A,
Schematic representation of human ZFN318 protein domains. Numbering of residues is relative to the
human full-length protein sequence. The three residues subjected to positive selection in primates are
shown with arrows. B, Amino-acids found at rapidly evolving sites across ZFN318 primate orthologs used
in this study (top). Orthologs are organized according to the accepted species phylogeny. Bottom, same
as top with the corresponding residues in bats. Dashes indicate an alignment gap due to an indel.

Figure S10. Rapid evolution of the Prim-Pol primase complex (POLA1, PRIM1, PRIM2) in primates and
bats. A, Schematic representation of human DNA primase complex. B, D, & E, Diagrams of predicted
domains for POLA1, PRIM1, and PRIM2, respectively. Sites under positive selection in primates are
represented by black triangles and sites under positive selection in bats are represented by purple
triangles (Table 1). Codon numbering based on Homo sapiens genes. C, POLA1 amino acid variation at
the positively selected sites in primates (top) and bats (bottom). Codon numbering and coloring as in B.

Supplementary Tables

Table S1. Number of genes screened in the initial primate and bat automatic screens — associated to
Figures S1-S2.

| Primates Bats
Initial dataset (Gordon et al., 2020 + ACE2 + TMPRSS2) 334 334
Failed runs 5 4
Phylogenetic analyses Duplicated genes retrieved by DGINN 39 5
Complete alignments and phylogenies 368 335
Positive selection analyses Results from 0 to 4 (out of 5) DGINN methods 43 11
Complete results (5/5 PS methods) 325 324

Table S2. SARS-CoV-2 interacting proteins with no other known virus interactors

HGNC names of the SARS-COV-2 VIPs
with no other known virus interactors
(*, except with other coronaviruses)

ACE2*

GOLGAT*

PRIM1*

EIF4E2*

GORASP1*

MARK1*
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TRIM59*

CISD3

GGH

INHBE

PUSLA1

DPH5

GCC2

HS6ST2

NUP58

PLAT

PTBP2

TMEM39B

TMPRSS2*
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Figure S1. Identification of SARS-CoV-2 interactome with signatures of positive selection in bats
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Figure S2. Identification of SARS-CoV-2 interactome with signatures of positive selection in primates
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Figure S3. Comparison of primate positive selection analyses between this study and Gordon et al.

A B (n=322) C
o | OREEP6 § VIPs under PS in Gordon et al.
T =] with a DGINN score < 3
DGINN score
VIP name  (identified under
@ JDNAJC19 PS by x methods)
© ABCC1 2
$ AKAPY 2
& CENPF 2
z CEP250 2
b4
o CEP350 2
o ERLECT 2
= FASTKD5 0
& MRPS27 2
S NINL 2
PDE4DIP 1
PRRC2B 0
PUSL1 1
ALGT1 0
ALG8 1
‘ ‘ ‘ ‘ ‘ o DCTPP1 0
0.0 02 0.4 0.6 08 Gordon et al Gordonetal ~ DGINN screen GOLGA2 2
(strong and weak) (uncorrected) NUP210 2

Omega (Codeml MO from Gordon et al)



tes

prima

Figure S4. Comparative analyses of adaptive signatures in SARS-CoV-2 interactome in primates and in bats
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Figure S6. Positively selected VIPs are involved in several biological processes
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Figure S7. Genetic variation of mammalian TMPRSS2 at the corresponding residues under positive selection in
primates
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Figure S8. RIPK1 interactome and 3D-RIPK1 structure prediction
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Figure S9. ZNF318 has undergone positive selection at three sites in primates, but not in bats
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Figure S10. Rapid evolution of the Prim-Pol primase complex (POLA1, PRIM1, PRIM2) in primates and bats.
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