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Abstract

Quantitative MRI (¢MRI) allows extraction of reproducible and robust parameter
maps. However, the connection to underlying biological substrates remains murky;,
especially in the complex, densely packed cortex. We investigated associations in hu-
man neocortex between qMRI parameters and neocortical cell types by comparing
the spatial distribution of the gMRI parameters longitudinal relaxation rate (Ry),
effective transverse relaxation rate (R2*), and magnetization transfer saturation
(MTsat) to gene expression from the Allen Human Brain Atlas, then combining
this with lists of genes enriched in specific cell types found in the human brain.
As qMRI parameters are magnetic field strength-dependent, the analysis was per-
formed on MRI data at 3T and 7T. All gMRI parameters significantly covaried with
genes enriched in GABA- and glutamatergic neurons, i.e. they were associated with
cytoarchitecture. The qMRI parameters also significantly covaried with the distri-
bution of genes enriched in astrocytes (Re* at 3T, Ry at 7T), endothelial cells (R
and MTsat at 3T), microglia (R; and MTsat at 3T, R; at 7T), and oligodendro-
cytes (Ry at 7T). These results advance the potential use of QMRI parameters as

biomarkers for specific cell types.
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Introduction

Multiparameter mapping (MPM) protocols allow rapid and efficient acquisition of relax-
ometric quantitative MRI (qMRI) parameters in vivo (Tabelow et al., 2019) robustly and
reproducibly (Leutritz et al., 2020). These parameters include the longitudinal relaxation
rate (R;), magnetisation transfer saturation (MTsat), and effective transverse relaxation
rate (R2™). In vivo histology aims to take such quantitative maps and extract informa-
tion about the underlying microscopic biological substructures beyond the resolution of
MRI (Edwards et al., 2018; Weiskopf et al., 2021).

On the whole-brain level, contrast in the above MRI parameters is mainly driven by
two main sources: macromolecules (mostly myelin), and iron (Callaghan et al., 2015; Ed-
wards et al., 2018; Moller et al., 2019; Kirilina et al., 2020; Weiskopf et al., 2021). MTsat is
interpreted as a marker for macromolecules (Georgiadis et al., 2021), Ry* is interpreted as
a marker for mainly iron content with some sensitivity to macromolecules (Langkammer
et al., 2010; Kirilina et al., 2020), and R; is interpreted as a marker for mainly macro-
molecular content with some sensitivity to iron (Callaghan et al., 2015). The sensitivity
of qMRI parameters to different sources is known to vary with the static magnetic field
strength (Peters et al., 2007; Rooney et al., 2007; Wang et al., 2020).

These relatively simple interpretations of gMRI parameters do not, however, allow us
to infer information about the cellular architecture of the brain from their values. On
the cellular level, the human neocortex is a complex, densely packed structure containing
billions of neurons and glia (Lent et al., 2012). The distribution of these neurons and
glia varies over the brain, forming laminae and cortical areas which can be distinguished
under the microscope (Edwards et al., 2018). Herein we aim to investigate the relationship
between neocortical cellular architecture and qMRI parameters by comparing spatial
differences in expression of cell type-specific genes with the spatial distribution of the
gMRI parameters.

Gene expression differences reflect and determine different cell types; differential gene
expression throughout the neocortex can thus be related to differential expression of cell

types (Lein et al., 2017; Arnatkeviciute et al., 2019; Fornito et al., 2019). The combination
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of knowledge of cell type-specific genes (Zeisel et al., 2015; Hawrylycz et al., 2015; Hodge
et al., 2019) with the cortical gene expression results found in the Allen Human Brain
Atlas (AHBA) of gene expression (Hawrylycz et al., 2012) from the Allen Institute for
Brain Science (AIBS) has shed light on the biological substrates of several different MRI
parameters in the cortex (e.g. Whitaker et al. (2016); Shin et al. (2018); Wen et al. (2018);
Liu et al. (2019); Patel et al. (2019, 2020); McColgan et al. (2021)).

Patel et al. (2020) examined the cell type-specific associations with a number of dif-
ferent qMRI parameters at a static magnetic field strength of 3T, including R; and a
measure of magnetisation transfer (the magnetisation transfer ratio, MTR) in a large
young male cohort. Despite the common biophysical interpretation of these two parame-
ters as markers of macromolecular content, and thus predominantly of myelin (Edwards
et al., 2018), no significant association was found to the oligodendrocyte cells (ODCs)
which build myelin (Moller et al., 2019). Instead, R; was associated with gene expression
enriched in astrocytes and CAl-pyramidal neurons, and MTR was associated with gene
expression enriched in CAl-pyramidal neurons and S1-pyramidal neurons (Patel et al.,
2019). This accords with our observations using an MPM protocol at 3T in a smaller
healthy adult cohort using a similar method of gene expression analysis (Edwards et al.,
2019). Interestingly, Patel et al. (2020) found that maps of transverse relaxation rate
(R2) and the Ry-derived myelin water fraction did show sensitivity to the ODCs. How-
ever, their analysis had several limitations, namely the use of a relatively coarse cortical
atlas, cell type-specific gene expression lists based on mouse tissue rather than human
tissue, and only male participants.

Genetic correlates of Ry* at 3T were investigated in Wen et al. (2018). The authors
found that after removing some vascular-related MRI signal contributions, the spatial
distribution of Ry* values were associated with the distribution of genes with ontologies
related to neurons, glia (including astrocytes, microglia, and oligodendrocyte progenitor
cells [OPCs]), and endothelial cells. At 7T, Ry" has also been found to be associated with
cytoarchitecture, specifically with neuronal cell counts from post-mortem atlases (McCol-

gan et al., 2021).
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In order to further investigate the biophysical inferences that are possible from the
quantitative parameters R;, MTsat, and Ry", in the following we examine associations of
the parameters using a finer cortical atlas (Glasser et al., 2016) than Patel et al. (2020),
and cell type-specific gene expression lists from human tissue (Habib et al., 2017; Hodge
et al., 2019). The analysis is replicated using two cell type-specific gene expression lists
to reduce the possibility that the results are dependent on a specific dataset. Because
gqMRI parameter contrast changes with the static magnetic field strength of the MRI
scanner (Rooney et al., 2007; Peters et al., 2007; Wang et al., 2020), and this could
potentially give rises to changes in sensitivity and specificity (Mancini et al., 2020), we
investigate the associations at two different field strengths, 3T and 7T. To mitigate partial
volume effects when examining the 1.6-4.5 mm thin cortex (Edwards et al., 2018), we

exclusively use high, isotropic resolution data (800 pm at 3T and 500 pm at 7T).

Materials and Methods

MRI acquisition and preprocessing

3T acquisition: We used MPM data (Weiskopf et al., 2013; Carey et al., 2018) from
17 healthy volunteers (5 female, 12 male, mean age + standard deviation: 29.2 + 6.8
years) from the MEG UK database (https://meguk.ac.uk/database), acquired on a
3T Prisma equipped with a 32-channel receive radiofrequency (RF) head coil (Siemens
Healthineers, Erlangen, Germany) and a body RF receive coil at the Wellcome Centre for
Human Neuroimaging, UCL, London, following the same high resolution protocol as in
Bonaiuto et al. (2018). The MPM protocol consisted of three RF- and gradient-spoiled,
multi-echo 3D FLASH scans with PD-, T1-, and MT-weighting (PDw, T1w, and MTw)
at 800 pm isotropic resolution, plus a map of the RF transmit field B; acquired using a
3D-EPI spin echo/stimulated echo method (SE/STE) corrected for geometric distortions
due to spatial inhomogeneities in the static magnetic field By (Lutti et al., 2010). PDw:
repetition time (TR) 25 ms; 8 equispaced echoes with echo time (TE) [2.34,...,18.44] ms;

flip angle (FA) 6°. T1w: TR 25 ms; 8 equispaced echoes with TE [2.34,...,18.44] ms; FA
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21°. MTw: TR 25 ms; 6 equispaced echoes with TE [2.34,...,13.84] ms; FA 6°; Gaussian
RF magnetisation transfer (MT) saturation pulse 2 kHz off resonance, 4 ms duration,
nominal flip angle 220° prior to each FLASH excitation. Additional parameters: matrix
size (read x phase X partition) 320 x 280 x 224, GRAPPA (Griswold et al., 2002) 2 x 2,
non-selective sinc excitation, readout bandwidth 488 Hz/pixel.

7T acquisition: MPM data from 10 healthy volunteers (6 female, 4 male, 28+3.6 years)
were acquired on a 7T whole-body MRI system (Magnetom 7T, Siemens Healthineers,
Erlangen, Germany) equipped with a 1-channel transmit /32-channel receive RF head coil
(Nova Medical, Wilmington, MA, USA) at the Max Planck Institute for Human Cognitive
and Brain Sciences, Leipzig; this data was previously used in McColgan et al. (2021). The
MPM protocol consisted of two RF- and gradient-spoiled, multi-echo 3D FLASH scans
(PDw, T1w) adapted for whole-brain coverage at 500 pm isotropic resolution (Trampel
et al., 2019), plus a map of B; using a 3D-EPI SE/STE method adapted for 7T corrected
for geometric distortions due to inhomogeneities in By (Lutti et al., 2012). PDw: TR
25 ms, 6 equispaced echoes with TE [2.8,...,16] ms, FA 5°. T1w: TR 25 ms, 6 equispaced
echoes with TE [2.8,...,16] ms, FA 24°. Additional parameters: matrix size (read x phase x
fast/inner phase encode direction) 496 x 434 x 352, GRAPPA (Griswold et al., 2002) 2 x 2,
non-selective sinc excitation, readout bandwidth 420 Hz/pixel. To mitigate the large B;
inhomogeneity at 7T, two dielectric pads (Webb, 2011) were placed around the head
of each subject (one each side) at approximately the level of the temporal lobe. The
transmit voltage was calibrated to be optimal over the occipital lobe using an initial low-
resolution transmit field map. For the purposes of prospective motion correction (Zaitsev
et al., 2015), each subject was scanned while wearing a tooth clip assembly (moulded to
their front teeth) with an attached passive Moiré pattern marker (Vaculéiakova et al.,
2022). An optical tracking system (Kineticor, Honolulu, HI, USA) tracked the motion of
this marker (and thus motion of the head), allowing prospective rigid-body correction of
the field of view.

The studies were approved by the local ethics committees and all subjects gave written

informed consent before being scanned.
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MRI data at each field strength were converted to qMRI maps of Ry, Ry, proton
density (PD), and (at 3T only) MTsat using the hMRI toolbox (Tabelow et al., 2019,
http://hmri.info). MTsat maps were not computed at 7T because specific absorption
rate (SAR) limits at this field strength (Collins et al., 2004) hindered the acquisition of
high-quality MTw images.

Cortical surfaces were reconstructed using the recon-all pipeline from FreeSurfer (Fis-
chl et al., 2004, https://surfer.nmr.mgh.harvard.edu). Because the contrast in the
3T and 7T qMRI maps deviates significantly from the T1lw MPRAGE image contrast
expected by the recon-all pipeline (Carey et al., 2018), the following steps were taken to
extract an image with MPRAGE-like contrast from the 3T and 7T qMRI parameters (Mc-
Colgan et al., 2021). First, a small number of negative and very high values produced
by estimation errors were set to zero in the Ry and PD maps, such that Ti(= 1/R;)
was bounded between [0,8000] ms and PD between [0,200]%. Then, the PD and T;
maps were used as input to the FreeSurfer mri_synthesize routine to create a syn-
thetic FLASH volume with optimal white matter (WM)/grey matter (GM) contrast (TR
20 ms, FA 30°, TE 2.5 ms). This synthetic image was used as the input to SPM segment
(https://www.fil.ion.ucl.ac.uk/spm) to create a combined GM/WDM/cerebrospinal
fluid (CSF) brain mask (threshold: tissue probability > 0), which was used for skull
stripping.

For the 3T MPMs, the skull-stripped synthetic image was then used as input for the
remaining steps of the recon-all pipeline.

At 7T, using the skull-stripped synthesized image as input to FreeSurfer frequently
led to errors in the recon-all pipeline (McColgan et al., 2021). Thus, at 7T the PD
map (normalised such that the average WM intensity is 69% (Tabelow et al., 2019))
was subtracted from 100% (i.e. the contrast was inverted) to yield an MPRAGE-like
contrast. This map was then denoised (Maggioni et al., 2013, http://www.cs.tut.fi/
~foi/GCF-BM3D) to mitigate the increased noise levels in the higher-resolution 7T data
compared to 3T, and the brain mask from the synthetic image was applied. The resulting

denoised and masked map was then used in the recon-all pipeline.
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For both field strengths, cortical qMRI parameter values were mapped onto the surface
using values sampled at 50% of the estimated vertex-wise cortical depth (i.e. we sampled
at approximately the central cortical surface) and 2D-smoothed on the surface with a
6 mm full-width half-maximum (FWHM) kernel. Finally, FreeSurfer was used to perform
surface based registration of the HCP-MMP1.0 cortical atlas (Glasser et al., 2016) from

fsaverage template space (Mills, 2016) to subject space (CJ Neurolab, 2018).

Cell type-specific gene expression analysis

The cell type-specific gene expression analysis proceeded in two steps, described in detail
below. In the first step, we constructed target gene lists from the genes with the strongest
spatial associations between the AHBA gene expression data and each of the ¢qMRI pa-
rameters using partial least squares (PLS) regression. The second step examined whether
these target genes were expressed more than expected by chance within particular cell
types using the Expression Weighted Cell type Enrichment (EWCE) toolbox (Skene and
Grant, 2016).

The AHBA of gene expression (Hawrylycz et al., 2012) was mapped into the 180
parcellation units of the left hemisphere of the HCP-MMP1.0 atlas (Glasser et al., 2016)
by following steps 1-6 in Arnatkeviciuteé et al. (2019) using code available at https://
github. com/BMHLab/AHBAprocessing to give a (gene X region of interest (Rol)) matrix.
The code was run using the options recommended by Arnatkeviciuteé et al. (2019). Only
left hemisphere data are presented as right hemisphere data are not available for all AHBA
donors. Three areas in the HCP-MMP1.0 atlas — retroinsular cortex, middle temporal
area, and area anterior 10p (Glasser et al., 2016) — did not robustly contain samples in
the AHBA and were thus omitted from further analyses. This resulted in a (gene x Rol)
matrix of size 10,027 x 177.

Each qMRI parameter at each field strength was averaged within each parcellation
unit of the left hemisphere of the HCP-MMP1.0 atlas defined in fsaverage space (Mills,
2016), and also over subjects, resulting in an (Rol x qMRI parameter) vector of size

177 x 1. Each vector was standardised by subtracting the mean and dividing by the
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standard deviation over the elements in the vector before further analysis. Dimensional
reduction was performed separately for each gMRI parameter using PLS regression (Rosi-
pal and Kréamer, 2006; Abdi, 2010; Krishnan et al., 2011) into the two PLS components
which explained the most covariance between the spatial distribution of the genes and
the spatial distribution of the qMRI parameter. The predictor variable in each case com-
prised the (gene x Rol) matrix, and the response variable the (Rol x gMRI parameter)
vector. Weights representing the contribution of each gene to each PLS component were
estimated using the bootstrapping procedure described in Vértes et al. (2016) with 10,000
bootstrapped samples. Target lists representing the top 5%, 10% and 20% of genes most
positively associated (upweighted) and most negatively associated (downweighted) with
each qMRI parameter were then created from these weights. We examined upweighted
and downweighted associations separately to avoid potentially masking cell type asso-
ciations. We only investigated components explaining > 10% of the variance in the
(Rol x gMRI parameter) matrix further.

To check whether our results were dependent on the cell type-specific gene sets used,
we performed the further analysis steps using human-derived cell type-specific gene sets
from two independent sources. Both of these datasets used RNA sequencing (RNA-seq)
methods, giving sufficient dynamic range for EWCE analysis (Skene and Grant, 2016).

The first is the SMART-seq dataset (Hawrylycz et al., 2015; Hodge et al., 2019), which
was downloaded from the AIBS Brain Map website (https://portal.brain-map.org/
atlases-and-data/rnaseq; Multiple Cortical Areas - SMART-seq (2019)). These gene
sets comprise gene expression sampled in cells belonging to the major cell types: as-
trocytes, endothelial cells, GABAergic (inhibitory) neurons, glutamatergic (excitatory)
neurons, microglia, pericyte cells, vascular and leptomeningeal cells (VLMCs), oligoden-
drocytes (ODCs), and oligodendrocyte precursor cells (OPCs) (Hodge et al., 2019).

The second is the DroNc-seq dataset from the Regev laboratory (Habib et al., 2017).
This has slightly different cell categories as it was derived from different regions (in paren-
theses are the abbreviations used in the dataset): astrocytes (ASC), endothelial cells

(END), GABAergic neurons, glutamatergic neurons from the prefrontal cortex (exPFC),
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granule neurons from the hippocampal dentate gyrus region (exDG), ODCs, OPCs, mi-
croglia (MG), pyramidal neurons from the hippocampal CA region (exCA), and neuronal
stem cells (NSC).

It was shown in Hodge et al. (2019, Extended Data Fig. 5) that correspondence can
be made between the labels in the two datasets, namely between the respective labels
for astrocytes, microglia, endothelial cells, ODCs, OPCs and GABAergic neurons, and
between the SMART-seq glutamatergic neuron and the DroNc-seq exPFC neuron labels.
As the exCA, exDG, and NSC categories from the DroNc-seq dataset and the pericyte
and VLMC categories from the SMART-seq dataset do not have analogues in the other
respective dataset, we do not explore the results involving these cell types in the main
text. Those results can be found in the Supplementary Material (Figures S1-S12).

The EWCE toolbox (https://github.com/NathanSkene/EWCE; version 1.2.0) was
used to determine whether genes within the target lists from the PLS components of
each qMRI parameter have higher expression within a particular cell type than expected
by chance (Skene and Grant, 2016; Zarkali et al., 2020a,b). For a given cell type-specific
dataset (here, either the SMART-seq or DroNec-seq dataset), for each cell type, ¢, EWCE
first computes the average expression of each gene in the cell type. A sum is then made
over the average expression values within the gene list associated within a target list,
X, to obtain a single EWCE value for each cell type, v(X,c). To test the statistical
significance of this value, it is compared with values obtained for bootstrap target lists,
X', using the genes indexed in the cell type-specific dataset. Each comparison was run
with 100,000 bootstrap lists (controlling for transcript length and GC (guanine-cytosine)
content (Skene and Grant, 2016)), and statistical significance for each comparison was
set at a Benjamini-Hochberg false-discovery-rate (FDR) corrected p < 0.05. To check
robustness, the comparisons were repeated for target lists comprising the top 5%, 10%
and 20% of genes associated with each parameter. Results are visualised as the number
of standard deviations by which v(X, ¢) deviates from the mean over the bootstrapped
samples, 7(X’, ¢) (Skene and Grant, 2016).

We take an association with a cell type to be robust if there is significant overlap with

10


https://github.com/NathanSkene/EWCE
https://doi.org/10.1101/2022.04.07.487457
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.07.487457; this version posted April 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

genes enriched in that cell type in both cell type-specific datasets at the top 5%-of-genes
level. Note that differences in the effect size are to be expected between the two datasets as
they are taken from different brain areas and used different sequencing methods. Because
the signs of the PLS weights are difficult to interpret for MRI metrics (Romero-Garcia
et al., 2019), we treat associations with upweighted genes and with downweighted genes
identically and do not try to interpret them in terms of positive or negative correlations.

Ry at 7T is affected by By and By inhomogeneities in the inferior temporal and frontal
lobes (McColgan et al., 2021). These inhomogeneities become more important at 7T
because their causes (B; field-focusing in brain-sized objects (Hoult, 2000) and (dynamic)
susceptibility-induced contributions to the local By field (Van de Moortele et al., 2002;
Stockmann and Wald, 2018)) both increase from 3T to 7T. We thus also repeated the
above analysis for Ry at 7T after excluding data from two potentially strongly affected
regions (the orbitofrontal complex and area TE2 anterior (Glasser et al., 2016), the two
areas which had R; values which were more than three standard deviations away from

the mean) to evaluate the potential influence of these artefacts.

Results

The spatial distributions of the quantitative parameters averaged over subjects at each
magnetic field strength are shown in Figure 1. Primary cortical areas are clearly delin-
eated, and subtle differences can be seen between the parameters, especially towards the
posterior of the brain, around the superior temporal lobe, and (for Ry at 7T) around the
central sulcus. The differences between 3T and 7T R; around the inferior frontal and
temporal lobes are potentially driven by artefacts arising from the greater B; and B
inhomogeneities at 7T (McColgan et al., 2021).

The spatial distribution of the PLS components in Figure 1 show a lot of similarity to
the gMRI parameters, implying that we are reasonably capturing the spatial variance. The
first component is very similar between all qMRI parameters, but with specific differences

seen around the central sulcus in Ry at 7T, in line with the different spatial distribution of

11
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Figure 1: The left hemisphere spatial distribution of the qMRI parameters at each mag-
netic field strength (top row) and of the respective first and second PLS components
(bottom two rows) projected on the inflated FreeSurfer fsaverage brain. The qMRI
parameter plots show the mean over vertices and subjects in each area of the HCP-
MMP1.0 atlas (units: MTsat/p.u.; Ry /s™'; Ry*/s™!). The PLS component plots show
the score-vectors (Rosipal and Kramer, 2006) of the (gene x Rol) matrix for each qMRI
parameter, giving a visual representation of the latent PLS variables (in arbitrary units).
PLS components are only plotted when they explain > 10% of the spatial variance of
a qMRI parameter (Table 1). In each case, top: lateral view, bottom: medial view. A:
anterior, P: posterior, I: inferior, S: superior. The regions marked in grey represent ar-
eas with no data, i.e. non-cortical tissue (mostly corpus callosum) and regions with-
out robust cortical samples in the AHBA. Lower and upper limits of the colour maps
in each plot are the 5th and 95th percentiles of the data, respectively. Colours from
http://colorbrewer.org by Cynthia A. Brewer, Geography, Pennsylvania State Uni-
versity via https://github.com/DrosteEffect/BrewerMap.
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PLS Spatial variance explained in:
component gene distribution gMRI parameter
MTsat 3T ; 23)52 gi’gz

Table 1: Variance explained by the PLS components for each gqMRI parameter.

the parameter in this region. The second component (plotted when the variance explained
in the qMRI parameter was > 10%) captures more of the differences between the spatial
distributions of the gMRI parameters.

Table 1 shows that the first PLS component explained more than 50% of the spatial
variance of Ry at 3T and of Ry," at both 3T and 7T, but less than 50% of the spatial
variance of Ry at 7T or of MTsat at 3T. For R; at 3T and 7T and MTsat at 3T the
second PLS component explained more than 10% of the spatial variance and was therefore
included in the further analysis.

The EWCE analysis results are summarised in Figure 2 and detailed for each qMRI
parameter separately in Figures 3—5. The robust cell type-associations are shown in black
in Figure 2. In the following we go through the results for each qMRI parameter in turn.

At 3T Ry* showed robust associations with astrocytes, GABAergic neurons, and glu-
tamatergic neurons (Figures 2 and 3). There was also a significant association at the
top 5% level with microglia in the DroNc-seq dataset and with OPCs in the SMART-
seq dataset, but these each only replicated at the top 10% level in the other dataset
(Figures 2, S2, and S5).

At 7T the Ry" results were similar to those at 3T (Figures 2 and 3). Robust associa-
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Ry" 3T 5%

Ry 7T
10%
MTsat 3T

20%

Replication level

Ry 3T

R, 7T n.s./n.r.

Figure 2: Summary of the significant, replicated associations found between cell type
specific gene expression in the genes associated with each qMRI parameter. Replica-
tions at the level of the top 5% of genes associated with each qMRI parameter (robust
associations) are shown in black, with replications at lower levels in shades of grey. Non-
significant (n.s.) and non-replicating (n.r.) associations are in white.

tions were seen with GABAergic and glutamatergic neurons. Significant associations with
astrocytes and OPCs were seen at the top 5% level in the SMART-seq dataset, but these
only replicated at the top 10% level in the DroNc-seq dataset (Figures 2, 3, and S5).

MTsat showed robust associations with endothelial cells, GABAergic neurons, gluta-
matergic neurons, and microglia (Figures 2 and 4). A significant association was seen with
OPCs at the top 5% level in the SMART-seq dataset for the first PLS component and in
the DroNc-seq dataset for the second PLS component, but these results only replicated
at the top 20% level in the respective other dataset (Figures S6, and S9).

At 3T R; showed robust associations with endothelial cells, GABAergic neurons,
glutamatergic neurons, and microglia (Figures 2 and 5), showing some similarity to the
MTsat results (Figure 4). Significant associations were also seen with astrocytes and
OPCs at the top 5% level in the SMART-seq dataset for the first PLS component, but

these only replicated at the top 10% (Figure S5) and top 20% (Figure S6) levels in the
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Figure 3: EWCE results showing the cell type associations of the top 5% of genes asso-
ciated with Ry* at 3T and 7T (first PLS component only). Plotted are the number of
standard deviations (stds) by which the EWCE value deviated from the mean value over
bootstrapped target lists. Results from the two cell type-specific datasets are plotted in
different colours: SMART-seq in black, DroNc-seq in grey. Top: 3T. Bottom: 7T. Bars
are only plotted when FDR-corrected p < 0.5. *: FDR-corrected p < 0.05. Significant
cell type associations which replicated between both cell type-specific datasets (robust
results) are underlined and in bold.
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Figure 4: EWCE results showing the cell type associations of the top 5% of genes associ-
ated with MTsat at 3T. Plotted are the number of standard deviations (stds) by which
the EWCE value deviated from the mean value over bootstrapped target lists. Results
from the two cell type-specific datasets are plotted in different colours: SMART-seq in
black, DroNc-seq in grey. Left: First component of the PLS. Right: Second component of
the PLS. Bars are only plotted when FDR-corrected p < 0.5. *: FDR-corrected p < 0.05.
Significant cell type associations which replicated between both cell type-specific datasets
(robust results) are underlined and in bold.
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DroNc-seq dataset, respectively. Similarly, associations with astrocytes and OPCs were
also seen at the top 5% level in the DroNc-seq dataset for the second PLS component,
but these only replicated at the top 20% (Figure S9) and top 10% (Figure S8) levels,
respectively, in the SMART-seq dataset.

The 7T R, associations differed from the 3T results. Robust associations were seen
with astrocytes, GABAergic neurons, glutamatergic neurons, microglia, and ODCs (Fig-
ures 2 and 5). Further associations with endothelial cells and OPCs were seen at the
top 5% level in the DroNc-seq dataset, but these only replicated at the top 20% in the
SMART-seq dataset (Figures S3 and S9).

The results after excluding regions potentially strongly affected by B, and By artefacts
from the 7T R; data (the orbitofrontal complex and area TE2 anterior (Glasser et al.,
2016)) can be found in the Supplementary Material. Excluding these regions resulted in
a decrease in the variance explained in R; by the first PLS component, but an increase

in the variance explained by the second PLS component (Table S1), such that overall
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Figure 5: EWCE results showing the cell type associations of the top 5% of genes as-
sociated with R; at 3T and 7T. Plotted are the number of standard deviations (stds)
by which the EWCE value deviated from the mean value over bootstrapped target lists.
Results from the two cell type-specific datasets are plotted in different colours: SMART-
seq in black, DroNc-seq in grey. Top: 3T. Bottom: 7T. Left: First component of the PLS.
Right: Second component of the PLS. Bars are only plotted when FDR~corrected p < 0.5.
*. FDR-corrected p < 0.05. Significant cell type associations which replicated between
both cell type-specific datasets (robust results) are underlined and in bold.
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the variance explained in R; by the two components increased. There were some changes
in the cell type associations (Figure S13): a robust association with genes enriched in
GABAergic neurons was seen in both PLS components compared to only in the second
PLS component, and a robust association with genes enriched in OPCs was seen in the
second PLS component which was not present in the previous results (cf. Figures 2 and 5).
The full Ry EWCE results after excluding potentially strongly affected regions can be
found in Figures S14 and S15.

Discussion

The EWCE results showed robust associations of excitatory and inhibitory neurons with
all gqMRI parameters under consideration at both 3T and 7T, implying that neurons
are (i.e. cytoarchitecture is) the main predictor of these cortical gMRI contrasts. This
observation is in line with previous observations of general cortical gradients between
sensorimotor and higher areas in many different modalities (Huntenburg et al., 2018),
which are also visible in Figure 1. In addition, Ry* at 3T showed robust associations with
astrocytes; MTsat at 3T showed robust associations with endothelial cells and microglia;
Ry at 3T showed robust associations with microglia and endothelial cells; and R, at 7T
showed robust associations with microglia, ODCs, and astrocytes.

Figure 2 gives a visual impression of the associations. It shows that while the gqMRI
parameters are highly correlated — as would be expected due to their dependence on
the same underlying biological substrate — they are not identical in their associations.
The differential associations of the spatial distribution of the qMRI parameters with
different cell types implies that by combining them, we could become sensitive to specific
cell types. As an example, combination of Ry* at 3T and at 7T could potentially allow
inference of the spatial distribution of astrocytes, as despite otherwise similar associations,
Ry at 3T is robustly associated with astrocytes, but Ry* at 7T is not. This presents an
interesting direction for future research. Figure 2 is intended to allow other such parameter

combinations to be easily read off.
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The regional distribution of Ry* in the cortex was robustly associated with excitatory
and inhibitory (GABAergic) neurons, and this association was very consistent between
field strengths. This association is in line with the observations by McColgan et al. (2021)
at 7T (who linked cytoarchitecture from post-mortem histology to the same 7T data as
used here) and by Wen et al. (2018) at 3T, providing further evidence that cortical Ry*
is sensitive to neuron density (Zhao et al., 2016). The relationship to cytoarchitecture
suggests an indirect link to myelin, as local neurons are both the source of local myelinated
axons (Braitenberg, 1962; Hellwig, 1993; Dinse et al., 2015; Micheva et al., 2018), and
their dendrites are the target of remote axons entering the cortex. However the existence
of general cortical gradients (Huntenburg et al., 2018) make the direction of the effect
difficult to determine.

We did not see robust associations of Ry* with endothelial cells or some of the glia
types (microglia and OPCs) observed by Wen et al. (2018), though we did see an associ-
ation with astrocytes at 3T, which could reflect the sensitivity of Ry* to iron (Edwards
et al., 2018; Moller et al., 2019). We note, however, that associations with microglia (37T)
and OPCs (3T and 7T) were each significant in one of the two cell type-specific datasets
(Figure 2).

The lack of robust associations of Ry* with endothelial cells, microglia and OPCs
is potentially because our algorithm to estimate Ry" differed significantly from that in
Wen et al. (2018). Wen et al. (2018) used the extensive range of echo times in their
MRI protocol to separate the signal decay into fast relaxing (interpreted as vascular) and
slow relaxing (interpreted as tissue) components (Ulrich and Yablonskiy, 2016), while we
assumed a common single exponential Ry* decay between the weighted images (Weiskopf
et al., 2014), allowing robust estimation of Ry* over the smaller set of echo times in our
higher-resolution (thus lower signal-to-noise ratio [SNR]) data. The assumption of single
exponential decay will mix decay rates of the slow and fast relaxing components; on top
of this, the assumption of a common Ry,* decay between different weightings can break
down in complex multi-compartment systems like brain tissue (Chan and Marques, 2020).

Unfortunately, neither our 3T nor our 7T protocol allows us to apply the algorithm used
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by Wen et al. (2018) to explore this further.

MTsat is commonly interpreted as representing macromolecular content, as it cleanly
differentiates between GM, WM, and cerebrospinal fluid (Helms et al., 2008; Callaghan
et al., 2015) and correlates with post mortem tissue metrics of myelin (Georgiadis et al.,
2021), one of the largest sources of macromolecules in the brain. Interestingly, MTsat
did not show robust associations with ODCs or OPCs (which would represent a direct
relation to myelin), but was robustly associated with genes enriched in excitatory and
inhibitory neurons, i.e. cytoarchitecture, like Ro*, suggesting a potential indirect link to
myelin. It should also be noted that there is significant cortical macromolecular content
that is not associated with myelin (Mezer et al., 2013), which would not be captured by
ODC and OPC associations.

The robust association of MTsat with genes enriched in endothelial cells suggests an
association with cortical vasculature, as these cells line the walls of blood vessels (Du-
vernoy et al., 1981). A relationship between MTsat and vasculature is surprising when
one considers the interpretation of MTsat as a myelin marker. One possible explanation
is that the macromolecules in the endothelial cells could give rise to an observable MT
effect. Another explanation could be a mechanism of magnetization transfer studied in
the context of functional MRI (Pike et al., 1992; Kim et al., 2008; Schulz et al., 2020).
In short, off-resonance MT-saturation pulses can efficiently saturate the water spins in
cortical tissue, but not those in blood. Perfusion of this non-saturated blood into the
saturated tissue via capillaries will give a local increase in signal, with the amount of
perfused blood and thus the signal increasing proportionally to the amount of local vas-
cularisation. As the amount of local vascularisation is spatially varying (e.g. primary
cortical areas have a highly vascularised layer IV (Schmid et al., 2019)), this could give
rise to spatial variance in MTsat, explaining the observed relationship between MTsat
and endothelial cells. Relatedly, the robust association of MTsat with microglia could be
due to “off-resonance saturation” (Zurkiya and Hu, 2006; Delangre et al., 2015; Bossoni
et al., 2022) in the neighbourhood of iron-rich microglia. Off-resonance saturation has

been shown to be additive to the MT effect (Zurkiya and Hu, 2006; Delangre et al.,
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2015).

Like for Ry", the regional distribution of R; at both 3T and 7T was robustly as-
sociated with genes enriched in excitatory (glutamatergic) and inhibitory (GABAergic)
neurons. The similarity of the R; associations to those of Ry* was particularly strong at
3T (compare Figures 3 and 5).

In addition to the neuronal associations, R; at 3T was robustly associated with
gene expression associated with endothelial cells and microglia, showing similarity to
the MTsat results. A similarity between R; and MTsat results is expected because of
MT contributions to R; modulated by the excitation pulse (Teixeira et al., 2019; Ols-
son et al., 2020). However the associations could alternatively be due to iron-induced
contributions (Rooney et al., 2007; Stiiber et al., 2014) to the R; (Méller et al., 2019).

Ry at 7T showed, in addition to the neuronal associations, robust associations with
genes enriched in astrocytes and microglia, which could, like similar associations at 3T,
reflect iron-induced contributions to the relaxation (Méller et al., 2019); the lack of the
astrocyte association at 3T and the endothelial cell association at 7T could suggest a
magnetic field strength dependence of the relaxation contributions from these cell types.
It should be noted, however, that the magnetic field strength dependence of iron contri-
butions to R; is expected to be small (Rooney et al., 2007; Wang et al., 2020).

The regional distribution of R; at 7T was also robustly associated with genes enriched
in ODCs. This is consistent with the use of 7T R; as a cortical myelin marker (Edwards
et al., 2018), though it should be noted that ODCs are also iron rich (Moller et al., 2019),
and myelin and iron concentration are correlated (Kirilina et al., 2020).

Our observation of a robust association of Ry at 7T with ODCs suggests that R, at
7T could be more sensitive to myelin than at 3T. This appears to contradict to the results
of Rooney et al. (2007) and Wang et al. (2020), who found that the contribution of myelin
to Ry decreases going from 3T to 7T. However the analysis of Wang et al. (2020) did
show that going from 3T to 7T increases the MT with the macromolecular pool; this MT
increase could explain the increased apparent myelin sensitivity, as our R; estimates are

affected by MT (Teixeira et al., 2019; Olsson et al., 2020). It should be noted that this
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assessment is somewhat contradicted by the MTsat results (Figure 4) being more similar
to the 3T than the 7T R; results (Figure 5).

The observation of a robust association of 12; with endothelial cells at 3T but not at 7T
could be due to relative changes in the R; of grey matter and venous blood with magnetic
field strength, which, based on literature values of the respective R; values (Deistung
et al., 2008), would lead to a relative decrease in the contribution of blood going from
3T to 7T. However, we cannot rule out that it could also be due to differences in the
contribution of flow artefacts. These are likely to be more prevalent in the 7T data
because while at 3T the scanner’s RF body coil was used for excitation, giving spatially
non-selective spin excitation over a large region, at 7T a head-only RF transmit coil was
used, meaning spin excitation was more localised. The localised transmission means that
spins in the blood flowing into the brain are not excited: the effects of in-flow from these
non-excited spins could blur the image contrast by giving rise to a spatially-differentiated
increase in physiological noise correlated with spatial variations in cortical vascularisation.

It is of interest to note that the spatial distribution of the score vectors of the
(gene x Rol) matrix of the first and second PLS components of R; and MTsat at 3T
show similar spatial patterns (Figure 1), following the general gradient observed in neu-
roimaging (Huntenburg et al., 2018; Goulas et al., 2021). This stands in contrast to the
score vector of the second PLS component of the R; at 7T, which is visibly different with
an apparent superior—inferior gradient. The difference in the spatial distributions of the
second PLS component could give clues to the source of the differences, but could also
be a result of this component reflecting stronger B; and By artefacts at 7T compared to
3T (Hoult, 2000; Van de Moortele et al., 2002; Stockmann and Wald, 2018).

To investigate the possibility that artefacts at 7T drive our results, we repeated the
7T R; analysis excluding regions expected to be potentially affected. This did give rise to
an increase in the variance explained by the first two PLS components, suggesting that
in so doing we removed a source of variance that could not be explained using the gene
expression distribution, i.e. that these areas were affected by artefacts. Exclusion of these

regions did not result in removing any of the robust cell type associations, however. The
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only difference was that in this case R; was also robustly associated with genes enriched
in OPCs, in line with cortical Ry at 7T reflecting myelin.

The 3T results for MTsat and R; deviated from the results for MTR and R; in Patel
et al. (2020). As the dataset used here gave results comparable to Patel et al. (2020) when
using a similar pipeline to the one they used (Edwards et al., 2019), we can attribute
the discrepancy to the different analysis pipeline used here. The two major differences
(although other differences such as gene normalisation could also play a role (Markello
et al., 2021)) were that we used (1) a finer cortical atlas (180 cortical areas vs. 34) and
(2) human-derived gene lists (Habib et al., 2017; Hodge et al., 2019) rather than mouse-
derived lists (Zeisel et al., 2015).

(1) The sampling density of gene expression over the cortical surfaces in the AHBA
is relatively sparse, and so averaging expression levels over regions of interest (Rols)
helps to increase the robustness of the results (Arnatkeviciuté et al., 2019). If the Rols
are too large, however, then spatial specificity is lost, as functionally and anatomically
distinct cortical areas get merged together. The HCP-MMP1.0 atlas is derived based on
boundaries found from in vivo anatomical and functional MRI data (Glasser et al., 2016),
allowing reasonable specificity, while the Rols are sufficiently large that a reasonable
et al., 2019).

(2) Mouse-derived cell type-specific gene expression has been found to be less able to
discriminate cell types in human because of species-specific features, especially for non-
neuronal cell types (Hodge et al., 2019). Human-derived lists should thus be preferred

where possible.

Limitations

The investigated qMRI parameters have previously been shown to exhibit a dependence
on the orientation of the brain microstructure with respect to the static magnetic field
of the scanner (Cohen-Adad et al., 2012; Pampel et al., 2015; Schyboll et al., 2020).

This is because the microscopic myelin distribution in cortex is relatively ordered, with
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most myelinated axons running either tangentially or radially with respect to the cortical
surface (Edwards et al., 2018). This regular structure can give rise to an orientation
dependence of the quantitative parameters, which for R,* arises from the anisotropic
susceptibility distribution of myelin (Bender and Klose, 2010; Cohen-Adad et al., 2012)
and for R; and MTsat arises from the anisotropic tumbling of water bound to myelin
which is mediated by the oriented nature of lipid bilayers of the myelin sheaths (Pampel
et al., 2015; Schyboll et al., 2020). As the former mechanism depends on susceptibility,
we would expect the orientation dependence to scale with field strength. However, the
similarity of our Ry* results at 3T and 7T would suggest that this effect does not play a
major role in our analysis. The absence of this effect is likely because the averaging over
cortical areas also averages over cortex oriented at a range of angles; this averaging will
also have reduced orientation effects in the other parameters.

The first PLS component explained the majority of the variance in the spatial distri-
bution of Ry* at 3T and 7T and R; at 3T, while a second PLS component was additionally
needed to explain the majority of the variance in MTsat. In the case of Ry at 7T, how-
ever, the explained variance was still not over 50%, implying that there could be major
sources of variance (e.g. additional cell types or imaging artefacts) that are important for
the spatial contrast distribution in this case which are not included in our model. Ex-
cluding potentially artefact-affected areas from the 7T R; analysis increased the variance
explained slightly (compare Tables 1 and S1), in line with this hypothesis (as the spatial
distribution of imaging artefacts will not be explicable in terms of cell types), but the
variance explained still did not reach 50%.

We only examined associations with MRI parameters sampled on the central cortical
surface. This choice was made to exclude as far as possible the contribution of partial
volume effects with the white matter and CSF when comparing between the 3T and
7T data, and thus mitigate any confounding effects from the lower resolution of the
3T data. Our previous work using the 7T data presented here has shown that across
the depth of the cortex Ry* (but not R;) has strong associations with genes specific to

cytoarchitectonic cortical layers II, III, IV and V (McColgan et al., 2021).
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Our test of the association of MPMs with cell types is indirect, relying on the cell
type-specificity of genes. Future analyses could refine the analysis by including maps of
neurotransmitter receptors (Dukart et al., 2021; Goulas et al., 2021), as these could give
greater specificity when testing the associations with neurons.

Our in vivo data comes from young adults. In contrast, the post mortem gene ex-
pression atlases and cell type-specific gene expression datasets come from donors with a
broader range of ages, most of which are older than our subjects (Hawrylycz et al., 2015;
Habib et al., 2017; Hodge et al., 2019). During the mapping of gene expression from the
AHBA donor datasets to the HCP-MMP1.0 atlas (Arnatkeviciute et al., 2019), the genes
were filtered based on differential stability to mitigate subject-specific effects (Hawrylycz
et al., 2015). However, as the cortical cell distribution (e.g. of glia) is dynamic (Edwards
et al., 2018; Arnatkeviciuté et al., 2019; Marsh et al., 2022), the regional gene expres-
sion atlas may not be entirely representative of our cohort. This could potentially affect
the sensitivity of the method to individual cell types. It should be noted, though, that
regional variation in cortical gene expression has previously been found to be relatively
conserved between individuals (Hawrylycz et al., 2015).

Our results suggest that interareal-variations in MPMs largely reflect differences in
gene expression associated with neurons, i.e. with cytoarchitecture. These results are
however not necessarily applicable to longitudinal or inter-subject/-group comparisons,
which can give rise to different associations. An example is provided by Patel et al. (2019):
their gene expression analysis results showed that while the spatial distribution of MTR
was not significantly associated with ODCs at either age 14 or five years later at age 19,
the change in MTR between the two time points was significantly associated with ODCs.
The results presented here imply that it would be interesting to examine such cases using

the broad range of qMRI parameters and static magnetic field strengths examined here.

Conclusions

The spatial distribution of all of the quantitative MRI parameters at both 3T and 7T

robustly covaried with the distribution of genes enriched in neurons. This reflects the
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importance of cytoarchitecture in determining MRI contrast.

In addition to the general association with neurons, the spatial distribution of the
parameters was found to robustly covary with the distribution of genes enriched in astro-
cytes (Ry" at 3T, Ry at 7T), endothelial cells (R; and MTsat at 3T), microglia (R; and
MTsat at 3T, Ry at 7T), and ODCs (R, at 7T). As the differences in spatial distributions
of the parameters were associated with different cell types, these results imply it may be
possible to extract information about individual cell types by combining the quantitative
parameters.

The results complement the traditional interpretation of gMRI parameters in terms
of iron and myelin, and advance the possible use of QMRI parameters as biomarkers for

specific cell types, bringing us closer to the goal of in vivo histology using MRI.
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Supplementary Material

Full EWCE results

Below are the complete results of the EWCE analyses. These results include cell types
only present as a cell type in one of the cell type-specific datasets, which were for this
reason omitted from the main manuscript as this meant a replication analysis could not
performed (see Materials and Methods). They also include the results at the level of the
top 10 and 20% of genes associated with each parameter in addition to those at the top
5% level (most of which were presented in Figures 3-5 in the main text).

Figures S1-S3 show the EWCE results with the SMART-seq dataset for the top 5,
10, and 20% of genes positively (upweighted) and negatively (downweighted) associated
with each qMRI parameter in the first PLS component.

Figures S4-S6 show the EWCE results with the DroNc-seq dataset for the top 5, 10,
and 20% of genes positively (upweighted) and negatively (downweighted) associated with
each qMRI parameter in the first PLS component.

Figures S7-S9 show the EWCE results with the SMART-seq dataset for the top 5,
10, and 20% of genes positively (upweighted) and negatively (downweighted) associated
with each qMRI parameter in the second PLS component.

Figures S10-S12 show the EWCE results with the DroNc-seq dataset for the top 5,
10, and 20% of genes positively (upweighted) and negatively (downweighted) associated

with each qMRI parameter in the second PLS component.
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Figure S1: EWCE results

on top 5% of up- and downweighted genes associated with

PLS component 1 of each parameter using SMART-seq gene lists. MT: MTsat, VLMC:
vascular and leptomeningeal cells, OPC: oligodendrocyte precursor cells. Bars are only
plotted when FDR-corrected p < 0.5. *: FDR-corrected p < 0.05.
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Figure S2: EWCE results

W

on top 10% of up- and

downweighted genes associated with

PLS component 1 of each parameter using SMART-seq gene lists. MT: MTsat, VLMC:
vascular and leptomeningeal cells, OPC: oligodendrocyte precursor cells. Bars are only
plotted when FDR-corrected p < 0.5. *: FDR-corrected p < 0.05.
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Figure S3: EWCE results on top 20% of up- and downweighted genes associated with
PLS component 1 of each parameter using SMART-seq gene lists. MT: MTsat, VLMC:
vascular and leptomeningeal cells, OPC: oligodendrocyte precursor cells. Bars are only
plotted when FDR-corrected p < 0.5. *: FDR-corrected p < 0.05.
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Figure S4: EWCE results on top 5% of up- and downweighted genes associated with
PLS component 1 of each parameter using DroNc-seq gene lists. MT: MTsat, ASC: as-
trocytes, END: endothelial cells, exCA: pyramidal neurons from the hippocampal CA
region, exDG: granule neurons from the hippocampal dentate gyrus region, exPFC: glu-
tamatergic neurons from the prefrontal cortex, GABA: GABAergic (inhibitory) neurons,
MG: microglia, NSC: neuronal stem cells, ODC: oligodendrocytes, OPC: oligodendrocyte
precursor cells. Bars are only plotted when FDR-corrected p < 0.5. *: FDR-corrected

p < 0.05.
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Figure S5: EWCE results on top 10% of up- and downweighted genes associated with
PLS component 1 of each parameter using DroNc-seq gene lists. MT: MTsat, ASC: as-
trocytes, END: endothelial cells, exCA: pyramidal neurons from the hippocampal CA
region, exDG: granule neurons from the hippocampal dentate gyrus region, exPFC: glu-
tamatergic neurons from the prefrontal cortex, GABA: GABAergic (inhibitory) neurons,
MG: microglia, NSC: neuronal stem cells, ODC: oligodendrocytes, OPC: oligodendrocyte
precursor cells. Bars are only plotted when FDR-corrected p < 0.5. *: FDR-corrected
p < 0.05.
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Figure S6: EWCE results on top 20% of up- and downweighted genes associated with
PLS component 1 of each parameter using DroNc-seq gene lists. MT: MTsat, ASC: as-
trocytes, END: endothelial cells, exCA: pyramidal neurons from the hippocampal CA
region, exDG: granule neurons from the hippocampal dentate gyrus region, exPFC: glu-
tamatergic neurons from the prefrontal cortex, GABA: GABAergic (inhibitory) neurons,
MG: microglia, NSC: neuronal stem cells, ODC: oligodendrocytes, OPC: oligodendrocyte
precursor cells. Bars are only plotted when FDR-corrected p < 0.5. *: FDR-corrected
p < 0.05.

vil


https://doi.org/10.1101/2022.04.07.487457
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.07.487457; this version posted April 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

SMART-seq 3T R1
upweighted top 5% PLS 2

SMART-seq 3T MTsat

SMART-seq 3T R2* upweighted top 5% PLS 2

upweighted top 5% PLS 2

©

10

< S 8 § 6
3 15 o £
E E £
[} [} £4
<10 £ £
: £ :
£ £ =2

5 »
%) o 2 hel
el =] -
k7] k7] «

0 0 0

O 1o}
< 7 xe < 7 xe Q° N O o e
?5“(; ‘f;o\‘\g o e\% @“\\o‘og ‘\df q\,\x“ g\d‘od‘ \>~°~‘\‘(; ‘{;0\‘\2 o e‘g @\J\\C"Og ‘\d‘\\e’ q\}\ O (o ?\9'@(260\‘\6 P@P@‘ s \\\\o@g o S \ o o 6‘°d\
SN
» o “e“‘ o o o ‘\“e\> o o 0@“‘ o
e % $0
R RO
SMART-seq 7T R1 SMART-seq 7T R2*
upweighted top 5% PLS 2 upweighted top 5% PLS 2

c [=
g 10 g 10
£ £
(0] (0]
£ E=
§ s §°
:Z ;
el el
17 7]

0 O 0 C

N P\ R~ e X © e R @
gxﬂ‘g\do\‘\a ?\QP@@ \G‘Q;No‘(‘g ‘\0“‘ \l\)‘\ ;\&od\ P&\@ddo\\\a ?\%W‘g e‘g;‘\\o@g ‘\o‘!‘ \1\’ ?\&00*\
WO (\6\“ O\'\Q0 © @ (\6\“0 0\'@.0
W V\°‘\’<\ W
SMART-seq 3T R1 SMART-seq 3T R2 SMART-seq 3T MTsat

ighted top 5% PLS 2

dowr

downweighted top 5% PLS 2 downweighted top 5% PLS 2

n
o

o

o

stds from the mean
>

0

o8

¥]
5@ K e
P\Q\“géo’\“e gaP‘ 50
oW

a@:\\do() ‘Gq\e “\)‘\
0O “B& o

N

SMART-seq 7T R1
downweighted top 5% PLS 2

0

stds from the mean
o (4] 8
O
)
2, o
stds from the mean
= - n n
o o (& o (52

G e o
P@\‘oé:;o\‘\e\vgw‘g Q’;‘\o“ﬁ x\G“:\e oo ?&\\oqdo\“e P@F@‘g eS \‘\o\og \o‘!\e ot Oé o©
<«
e\ e o) e ‘\e‘>‘ o o 0«(\6\)‘0 O\\QO
W SN
SMART-seq 7T R2*

IS

stds from the mean
o 8
QO
o

IN)

stds from the mean

o

QC
N oQ\ e O @
Pé“; 60*6\6@? e \0& \d\ <\é“oo‘l\

e “zv‘ o

N

Figure S7: EWCE results
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on top 5% of up- and downweighted genes associated with

PLS component 2 of each parameter using SMART-seq gene lists. MT: MTsat, VLMC:
vascular and leptomeningeal cells, OPC: oligodendrocyte precursor cells. Bars are only
plotted when FDR-corrected p < 0.5. *: FDR-corrected p < 0.05.
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Figure S8: EWCE results

on top 10% of up- and downweighted genes associated with

PLS component 2 of each parameter using SMART-seq gene lists. MT: MTsat, VLMC:
vascular and leptomeningeal cells, OPC: oligodendrocyte precursor cells. Bars are only
plotted when FDR-corrected p < 0.5. *: FDR-corrected p < 0.05.
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Figure S9: EWCE results
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on top 20% of up- and downweighted genes associated with

PLS component 2 of each parameter using SMART-seq gene lists. MT: MTsat, VLMC:
vascular and leptomeningeal cells, OPC: oligodendrocyte precursor cells. Bars are only
plotted when FDR-corrected p < 0.5. *: FDR-corrected p < 0.05.
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Figure S10: EWCE results on top 5% of up- and downweighted genes associated with
PLS component 2 of each parameter using DroNc-seq gene lists. MT: MTsat, ASC: as-
trocytes, END: endothelial cells, exCA: pyramidal neurons from the hippocampal CA
region, exDG: granule neurons from the hippocampal dentate gyrus region, exPFC: glu-
tamatergic neurons from the prefrontal cortex, GABA: GABAergic (inhibitory) neurons,
MG: microglia, NSC: neuronal stem cells, ODC: oligodendrocytes, OPC: oligodendrocyte
precursor cells. Bars are only plotted when FDR-corrected p < 0.5. *: FDR-corrected
p < 0.05.
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Figure S11: EWCE results on top 10% of up- and downweighted genes associated with
PLS component 2 of each parameter using DroNc-seq gene lists. MT: MTsat, ASC: as-
trocytes, END: endothelial cells, exCA: pyramidal neurons from the hippocampal CA
region, exDG: granule neurons from the hippocampal dentate gyrus region, exPFC: glu-
tamatergic neurons from the prefrontal cortex, GABA: GABAergic (inhibitory) neurons,
MG: microglia, NSC: neuronal stem cells, ODC: oligodendrocytes, OPC: oligodendrocyte
precursor cells. Bars are only plotted when FDR-corrected p < 0.5. *: FDR-corrected
p < 0.05.
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Figure S12: EWCE results on top 20% of up- and downweighted genes associated with
PLS component 2 of each parameter using DroNc-seq gene lists. MT: MTsat, ASC: as-
trocytes, END: endothelial cells, exCA: pyramidal neurons from the hippocampal CA
region, exDG: granule neurons from the hippocampal dentate gyrus region, exPFC: glu-
tamatergic neurons from the prefrontal cortex, GABA: GABAergic (inhibitory) neurons,
MG: microglia, NSC: neuronal stem cells, ODC: oligodendrocytes, OPC: oligodendrocyte
precursor cells. Bars are only plotted when FDR-corrected p < 0.5. *: FDR-corrected
p < 0.05.
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Ry 7T results excluding potentially artefact-affected areas

Below are the results of the EWCE analyses for both the SMART-seq and DroNc-seq
cell type-specific datasets with gene lists comprising the top 5, 10, and 20% of genes
positively (upweighted) and negatively (downweighted) associated with R; at 7T in each
PLS component after removal of areas potentially strongly affected by B; and By arte-
facts (see Materials and Methods). Table S1 shows the variance explained in the PLS
components after removal of these areas, Figure S13 shows the results for the top 5% of
genes associated with Ry at 7T (cf. Figure 5), and Figures S14 and S15 show the full

EWCE results for the first and second PLS component, respectively (cf. Figures S1-S12).

PLS Spatial variance explained in:
component gene distribution qMRI parameter

1 17% 18%

By 7T 2 9% 20%

Table S1: Variance explained by the PLS components for R, at 7T after removal of areas
potentially strongly affected by By and By artefacts (cf. Table 1 in the main manuscript).
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Figure S13: EWCE results showing the cell type associations of the top 5% of genes asso-
ciated with Ry at 7T after excluding inferior regions associated with B; and B, artefacts
(cf. Figure 5 in the main manuscript). Plotted are the number of standard deviations
(stds) by which the EWCE value deviated from the mean value over bootstrapped tar-
get lists. Results from the two cell type-specific datasets are plotted in different colours:
SMART-seq in black, DroNc-seq in grey. Left: First component of the PLS. Right: Sec-
ond component of the PLS. Bars are only plotted when FDR-corrected p < 0.5. *: FDR-
corrected p < 0.05. Significant cell type associations which replicated between both cell
type-specific datasets (robust results) are underlined and in bold.
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Figure S14: EWCE results on top 5, 10 and 20% of up- and downweighted genes associated
with PLS component 1 of R; in both cell type-specific gene lists after excluding inferior
regions associated with B; and B, artefacts. ASC: astrocytes, END: endothelial cells,
exCA: pyramidal neurons from the hippocampal CA region, exDG: granule neurons from
the hippocampal dentate gyrus region, exPFC: glutamatergic neurons from the prefrontal
cortex, GABA: GABAergic (inhibitory) neurons, MG: microglia, NSC: neuronal stem
cells, ODC: oligodendrocytes, OPC: oligodendrocyte precursor cells, VLMC: vascular
and leptomeningeal cells. Bars are only plotted when FDR-corrected p < 0.5. *: FDR-
corrected p < 0.05.
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Figure S15: EWCE results on top 5, 10 and 20% of up- and downweighted genes associated
with PLS component 2 of R; in both cell type-specific gene lists after excluding inferior
regions associated with B; and B, artefacts. ASC: astrocytes, END: endothelial cells,
exCA: pyramidal neurons from the hippocampal CA region, exDG: granule neurons from
the hippocampal dentate gyrus region, exPFC: glutamatergic neurons from the prefrontal
cortex, GABA: GABAergic (inhibitory) neurons, MG: microglia, NSC: neuronal stem
cells, ODC: oligodendrocytes, OPC: oligodendrocyte precursor cells, VLMC: vascular
and leptomeningeal cells. Bars are only plotted when FDR-corrected p < 0.5. *: FDR-
corrected p < 0.05.
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