

1 Learning-related contraction of grey matter in rodent sensorimotor
2 cortex is associated with adaptive myelination

3

4 Tomás Mediavilla^a, Özgün Özalay^a, Héctor M. Estévez-Silva^a, Bárbara Frias^a, Greger Orädd^a,
5 Fahad R. Sultan^a, Claudio Brozzoli^b, Benjamín Garzón^{b,c}, Martin Lövdén^{b,c} and Daniel J.
6 Marcellino^{a*}

7 ^a Department of Integrative Medical Biology, Umeå University, 90 187 - Umeå, Sweden

8 ^b Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska
9 Institute, 17 165 - Solna, Sweden

10 ^c Department of Psychology, University of Gothenburg, 405 30 - Gothenburg, Sweden

11 *Corresponding author

12

13

14 **Materials & Correspondence:**

15 Daniel J. Marcellino

16 Department of Integrative Medical Biology, Umeå University, 90 187 - Umeå, Sweden

17 **Email:** daniel.marcellino@umu.se

18

19

20

21

22 **Abstract**

23 From observations in rodents, it has been suggested that the cellular basis of learning-dependent
24 changes, detected using structural magnetic resonance imaging (MRI), may be increased dendritic
25 spine density, alterations in astrocyte volume, and adaptations within intracortical myelin. Myelin
26 plasticity is crucial for neurological function and active myelination is required for learning and
27 memory. However, the dynamics of myelin plasticity and how it relates to morphometric-based
28 measurements of structural plasticity remains unknown. We used a motor skill learning paradigm
29 to evaluate experience-dependent brain plasticity by voxel-based morphometry (VBM) in
30 longitudinal MRI, combined with a cross-sectional immunohistochemical investigation. Whole brain
31 VBM revealed non-linear decreases in grey matter (GM) juxtaposed to non-linear increases in white
32 matter (WM) that were best modelled by an asymptotic time course. Using an atlas-based cortical
33 mask, we found non-linear changes with learning in primary and secondary motor areas and in
34 somatosensory cortex. Analysis of cross-sectional myelin immunoreactivity in forelimb
35 somatosensory cortex confirmed an increase in myelin immunoreactivity followed by a return
36 towards baseline levels. The absence of significant histological changes in cortical thickness further
37 suggests that non-linear morphometric changes are likely due to changes in intracortical myelin for
38 which morphometric WM volume (WMV) data significantly correlated with myelin immunoreactivity.
39 Together, these observations indicate a non-linear increase of intracortical myelin during learning
40 and support the hypothesis that myelin is a component of structural changes observed by VBM
41 during learning.

42

43 **Introduction**

44

45 Longitudinal structural magnetic resonance imaging (sMRI) of the human brain has revealed
46 experience-dependent local changes in estimates of grey matter volume (GMV)[1]. Recent
47 evidence suggests that these grey matter (GM) changes follow a non-linear pattern[2]. The specific
48 biological components that elicit these volumetric changes are not understood. From observations
49 in rodents, it has been suggested that the cellular basis of changes detected using sMRI may, in
50 part, be due to learning-dependent changes reported for increased dendritic spine density[3],
51 alterations in astrocyte volume[4, 5], and adaptations within intracortical myelin[6-9]. Macroscopic
52 plasticity of brain structure determined by sMRI has been directly associated with neuronal dendritic
53 spine plasticity together with astrocyte reorganization in the absence of cell proliferation[3, 10], in
54 which these plastic changes were observed to be transient. Furthermore, observations using two-
55 session sMRI (before vs. after training), indicated macrostructural volumetric increases within areas
56 involved in motor control, sensory processing, learning and memory[11]. At the microstructural

57 level, using *ex vivo* diffusion tensor imaging (DTI), significant white matter (WM) differences have
58 been observed in WM underlying motor cortex[12] as well as experience-dependent DTI
59 differences observed in GM structure[13]. Estimates of changes in GM using sMRI reflect a
60 composite mixture of these biological changes. For example, changes in astrocytes or synaptic
61 remodeling may explain changes in regional GMV. However, changes in intracortical myelin may
62 also affect estimates of GMV, such that increases in intracortical myelin may reduce, and decreases
63 in myelin may increase, estimates of GMV. Despite more recent developments of quantitative
64 magnetic resonance imaging[14, 15], the mix and interplay between GM and WM changes that
65 result in non-linear, experience-dependent, adaptive brain responses observed both in rodents and
66 human studies remains unknown

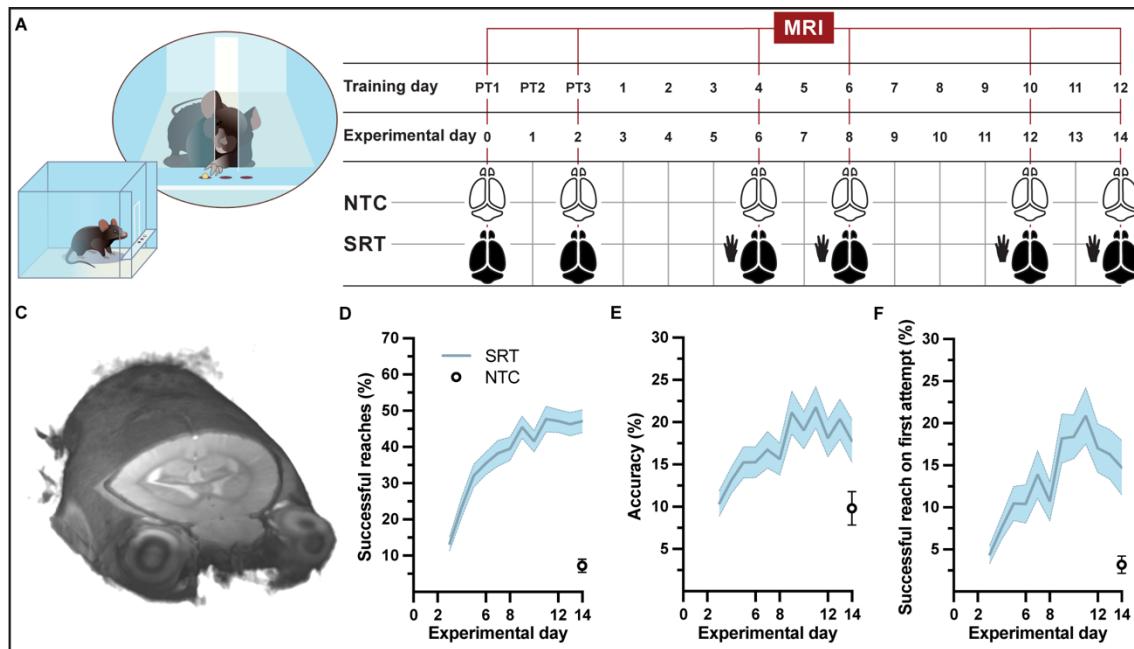
67 Myelin plasticity is critical for learning and memory and myelin plasticity driven by both neuronal
68 activity and experience has been described[16-21]. Active myelination by newly recruited
69 oligodendrocytes, has been shown to be necessary for learning and memory[6, 22-24]. In addition,
70 the learning of a novel skilled reaching task in rodents is associated with functional reorganization
71 of cortical motor maps, including an expanded representation of the trained limb[25-27]. This
72 functional remapping is accompanied by a variety of structural and functional changes, including
73 synaptogenesis, increased spine formation, and glial changes[26, 28]. It was very recently
74 described that learning in a forelimb skilled-reaching paradigm transiently suppresses
75 oligodendrogenesis while increasing oligodendrocyte precursor cell (OPC) differentiation,
76 oligodendrocyte maturation and myelin sheath remodeling in forelimb motor cortex[19]. Learning-
77 induced suppression of oligodendrocytes was transient but left OPC differentiation unaffected,
78 which suggests that learning may temporarily decrease survival and integration of differentiated
79 OPCs as mature myelinating oligodendrocytes[19], in line with previous work in the developing
80 CNS[29]. However, it is unknown whether adaptive myelination is restricted to discrete brain areas
81 to enable fine-tuning of adaptive circuit responses. Furthermore, the temporal dynamics of myelin
82 plasticity and how it relates to volumetric-based measurements of structural plasticity remains
83 unknown.

84 In the present study, we used the single pellet skilled reaching task, a well-established paradigm
85 for motor skill learning research in rodents[30], combined with longitudinal MRI and cross-sectional
86 immunohistochemical analyses, to evaluate the time-course of experience-dependent brain
87 changes and the related links between micro- and macrostructural changes. To analyze MRI data,
88 we used voxel-based morphometry (VBM), a key technique to evaluate macroscopic changes in
89 GMV that is frequently used to investigate a broad spectrum of neurological processes spanning
90 from learning[11] and memory[3] to neurodegeneration[31, 32] and cognitive impairment[33]. This
91 morphometric technique calculates voxel-wise estimates of GMV, and in the cortex, GMV is
92 dependent upon local cortical thickness and surface area[34]. Studies in brain plasticity using sMRI

93 often rely on T1-weighted MR images that are sensitive to myelin, rendering the signal of a single
94 voxel highly dependent on the presence of myelin, thereby influencing the estimated volume.
95 Through longitudinal *in vivo* sMRI of rodent brain, using a specific MR sequence with a
96 magnetization transfer (MT) pulse to increase tissue contrast, we describe structural plasticity
97 dynamics during motor skill learning and the associated adaptive cortical myelination. This was
98 studied in *wild type* (WT) animals during learning of a skilled, single-pellet forelimb reaching task.
99 Plasticity in human brain structure have been typically assumed to follow a continuous linear or
100 asymptotic increase throughout the time of training. However, a recent study in humans revealed
101 GM expansion in motor cortex during the first 4 weeks of training followed by partial
102 renormalization[2]. In this study, we found that motor learning dynamically modulates
103 macrostructural brain plasticity, identified non-linear decreases in GMV juxtaposed to non-linear
104 increases in white matter volume (WMV) and that these changes are associated with adaptive
105 myelination in forelimb sensorimotor cortex.

106

107 **Results**


108

109 **Behavioral improvement after forelimb reach-and-grasp training**

110 A group of mice were trained ($n = 39$) each day on a forelimb-specific motor learning paradigm, the
111 single-pellet reaching task (SRT) over the course of 15 consecutive days (including 3 pre-training
112 days) and whole-brain structural images were acquired at six time points during the learning
113 paradigm (Fig. 1A-C; *SI Appendix*, Supplementary Video S1). Successful reaches and accuracy
114 during motor skill training significantly increased with time ($F_{11,364} = 25.50, P < .001$ and $F_{11,364} =$
115 $7.976, P < .001$, respectively) in trained mice (Fig. 1D, E). A higher level of skill was attained by the
116 group of trained mice compared to a group of non-trained controls ($n = 16$). The ability of control
117 mice to reach, grasp and retrieve pellets was measured on the final day of the motor learning
118 paradigm. At experimental day 14, trained animals successfully retrieved $47 \pm 3\%$ pellets with
119 accuracy of $18 \pm 3\%$ while non-trained control mice performed significantly lower ($t = 8.641, df =$
120 $45, P < .001$) than trained mice with only $7 \pm 2\%$ successful reaches and an average accuracy of
121 $10 \pm 2\%$.

122 An additional group of mice were trained ($n = 64 + 8$ from the previous group), yet individuals were
123 sacrificed at specific time points during the learning paradigm for cross-sectional analysis of brain
124 tissue. This group of trained mice showed similar improvements in successful reaches and
125 accuracy over the 12 days of training ($F_{11,336} = 36.36, P < .001$ and $F_{11,336} = 5.806, P < .001$
126 respectively; *SI Appendix*, Fig. S1A, B). On the final training day, trained animals that completed

127 the 15-day learning paradigm ($n = 12$) successfully reached-to-grasp an average of $54 \pm 5\%$ of
128 pellets with an average accuracy of $22 \pm 3\%$, whereas non-trained controls ($n = 3 + 9$ from the
129 previous group) exhibited only an average of $7 \pm 2\%$ successful reaches with an average accuracy
130 of $11 \pm 3\%$. Skilled reaching performance of trained mice was significantly better than performance
131 of non-trained control animals at the end of the behavioral paradigm ($t = 7.425$, $df = 20$, $P < .001$),
132 confirming motor skill learning in trained mice.

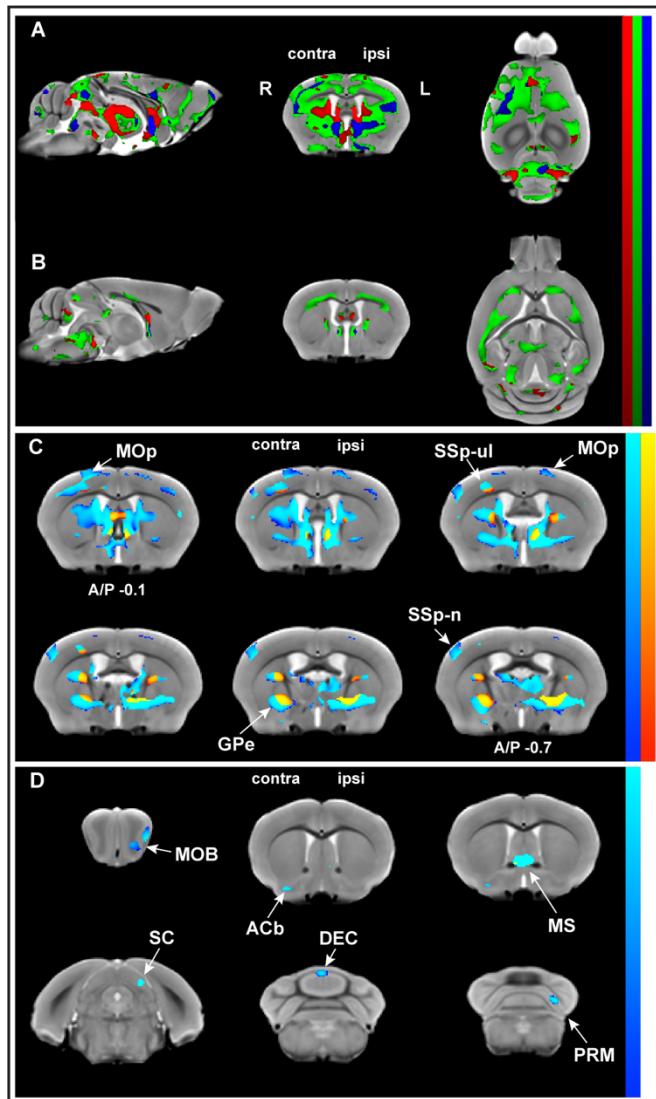
133
134 **Figure 1. Experimental setup and forelimb reach-and-grasp skill learning.** **A, B,** Illustration (**A**)
135 and MR imaging timeline (**B**) during a motor skill behavioral paradigm (SRT: skill reaching trained;
136 NTC: non-trained controls). **C,** Example of an individual *in vivo* T1-weighted MRI at 9.4T at native
137 resolution (0.1 mm isotropic, radiological display). **D,** Mean performance scores during training of
138 a skilled, single-pellet forelimb reach task, calculated as percentage (47 ± 1) of successful reaches
139 (**D**) and percent (18 ± 1) accuracy (**E**) or percentage of successful reaches on the first attempted
140 reach (19 ± 1) **F,** during the 12-day training paradigm.

141
142 **Whole-brain structural analysis identified non-linear decreases in grey matter volume**
143 **juxtaposed to non-linear increases in white matter volume during motor learning**

144 We performed *in vivo* T1-weighted MR imaging at baseline, immediately prior to motor skill training
145 (last day of 'pre-training') and at four time points during motor skill learning ('training'). VBM analyses
146 revealed changes in GM and WM structure in trained and in non-trained control mice (*SI Appendix*,
147 Fig. S2A, B; Supplementary Table S1). To discriminate the effects of motor learning from those of
148 time, the learning effects were evaluated using whole-brain VBM analysis of longitudinal sMRI data
149 on trained mice relative to non-trained controls (*i.e.*, group by time interactions). Three different

150 regression models (linear, asymptotic and quadratic), representing three different time courses,
151 were used and revealed statistically significant changes in both GMV and WMV ($P_{FDR\ corr} < 0.01$).
152 Significant non-linear decreases in GMV relative to the control group were observed juxtaposed
153 with significant non-linear increases in WMV during learning (Fig. 2A, B). Interestingly, the
154 asymptotic model provided a much higher number of significant voxels than either the linear or
155 quadratic models and there were no significant linear changes in WM associated with learning
156 (Table 1). Areas well-known to be involved in motor learning were identified by VBM analysis,
157 following an asymptotic time course model in trained animals relative to non-trained controls (SI/
158 Appendix, Fig. S3). Significant decreases in GM and significant increases in WM were observed in
159 both cortical and subcortical brain areas.

160


161 **Table 1.** Grey and white matter training by group interaction effects. Whole-brain between-group
162 analysis presenting the significant number of voxels ($P_{FDR\ corr.} < 0.01$ and < 0.001) together with the
163 change in volume (mm^3).

164

	grey matter (GM) changes		white matter (WM) changes	
	increase	decrease	increase	decrease
$P_{FDR\ corr} < 0.01$				
Linear	-	45158 (23.12)	12407 (6.35)	-
Asymptotic	-	241549 (123.68)	78442 (40.16)	-
Quadratic	-	28615 (14.65)	2250 (1.15)	-
$P_{FDR\ corr} < 0.001$				
Linear	-	1834 (0.94)	-	-
Asymptotic	-	109811 (56.22)	22095 (11.31)	-
Quadratic	-	2780 (1.42)	288 (0.15)	-

165

166 In addition, whole brain analysis indicated that, in some brain areas, one model fit the time courses
167 better than the others. Akaike information criterion (AIC) values were used to distinguish these
168 specific areas. Clusters for which AIC values indicated asymptotic modelling revealed GM
169 decreases in discrete brain areas including primary motor cortex (MOp), primary somatosensory
170 cortex for the forelimb (SSp-ul) and globus pallidus (GPe) (Fig. 2C). Whereas clusters for which
171 AIC values indicated preferred quadratic modelling revealed GM decreases in the paramedian
172 lobule (PRM) and vermian lobule VI of cerebellum (DEC), superior colliculus (SC) and nucleus
173 accumbens (ACb; Fig. 2D).

174

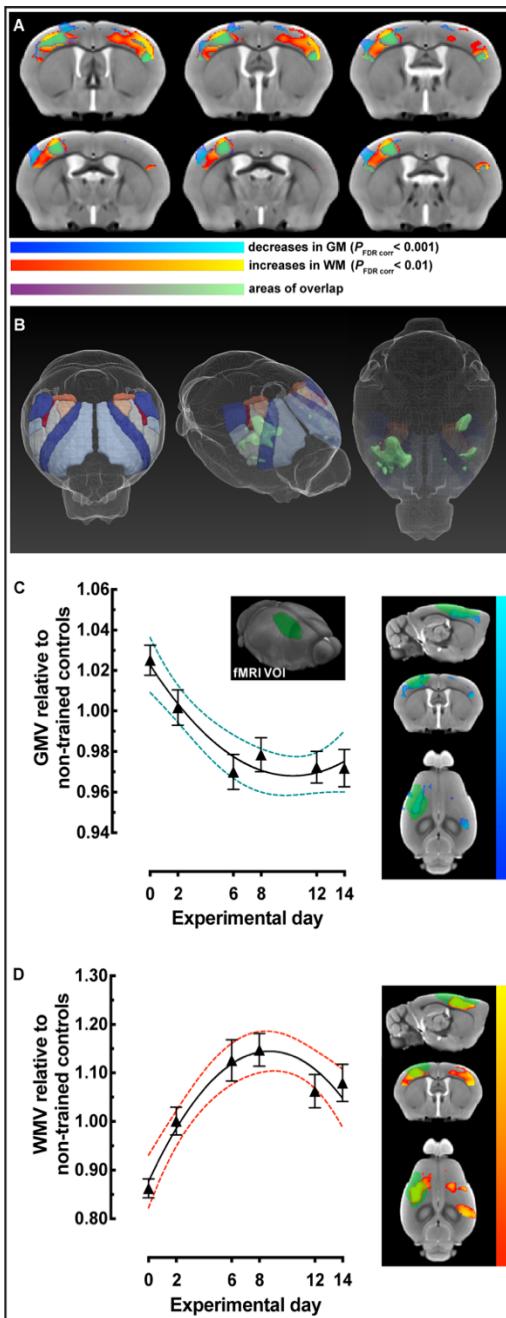
175 **Figure 2. Whole brain structural analysis revealed non-linear decreases in grey matter**
176 **volume juxtaposed to non-linear increases in white matter volume with learning.** Changes in
177 GM (A) and WM (B) volumes modelled by three different time courses (linear model in red,
178 asymptotic model in green, and quadratic model in blue) overlaid on the *in vivo* MRI template
179 created from this study. The decreases in GM volume (cold blue scale) and the increases in WM
180 volume (warm red scale), in coronal sections ranging from A/P Bregma -0.1 to -0.7 mm, defined
181 using the asymptotic model ($P_{FDR \text{ corr}} < 0.01$) and thresholded at $\Delta_{AIC} > 10$ for asymptotic versus
182 linear and/or quadratic models (C). Cortical and subcortical areas following an asymptotic model
183 displaying GM decreases include primary motor cortex (MOp), primary somatosensory cortex for
184 the forelimb (SSp-ul) and globus pallidus (GPe) contralateral to the trained limb, among others.
185 Clusters for which AIC values indicated a preferred quadratic model (D). Preferred quadratic
186 clusters are observed in the paramedian lobule of cerebellum (PRM), superior colliculus (SC) and
187 main olfactory bulb (MOB) ipsilateral to the trained limb, medial septum and vermian lobule VI
188 (DEC), and nucleus accumbens (ACb) contralateral to the trained limb.

189

190 **VBM restricted to cortical sensorimotor areas identified non-linear decreases in grey matter**
191 **volume together with non-linear increases in white matter volume during motor learning**

192 To explicitly investigate changes within cortical regions known to be involved in motor-skill learning,
193 based on previous observations, we generated a bilateral atlas-based mask of primary motor cortex
194 (MOp), secondary motor cortex (MOs) and primary somatosensory cortex (SSp) (Fig. 3A, B). Using
195 this cortical mask, the three different regression models were tested and compared (Table 2). This
196 analysis demonstrated that asymptotic modelling was clearly preferred and that statistically
197 significant decreases in GMV ($P_{FDR \text{ corr}} < 0.001$) overlapped with significant increases in WMV (P_{FDR}
198 $\text{corr} < 0.01$) in trained animals relative to non-trained controls (Fig. 3A, B). These were observed in
199 primary motor areas (MOp) and somatosensory cortex for forelimb and hindlimb (SSp-ul and SSp-
200 II) contralateral to the trained limb, somatosensory barrel field (SSp-bf) ipsilateral to the trained
201 limb, and bilateral secondary motor areas (MOs) and bilateral somatosensory area for the mouth
202 (SSp-m). Additionally, we found GM decreases in contralateral somatosensory area for the nose
203 (SSp-n) and bilateral GM decreases in primary motor areas (MOp) and somatosensory cortex for
204 the forelimb and hindlimb (SSp-ul and SSp-II), as well as in barrel field (SSp-bf). Furthermore, we
205 observed bilateral increases in WMV in primary motor area (MOp), somatosensory cortex for the
206 forelimb and hindlimb (SSp-ul and SSp-II), somatosensory area for the barrel field (SSp-bf) and
207 somatosensory area for the nose (SSp-n).

208


209 **Table 2.** Grey and white matter training by group interaction effects. Masked cortical areas (MOp
210 + MOs + SSp) between-group analysis presenting the significant number of voxels ($P_{FDR \text{ corr.}} < 0.01$)
211 together with the change in volume (mm^3).
212

	grey matter (GM) changes		white matter (WM) changes	
	increase	decrease	increase	decrease
$P_{FDR \text{ corr}} < 0.01$				
Linear	-	-	-	-
Asymptotic	-	33817 (17.31)	13356 (6.83)	-
Quadratic	-	-	-	-

213

214 To further constrain our analysis, structural data were extracted and analyzed using a non-biased
215 volume of interest (VOI) for sensorimotor cortex, based on fMRI maps of forepaw stimulation
216 reported by Jung and colleagues in 2019[35] (Fig. 3C, D). Non-linear decreases in GMV and
217 increases in WMV relative to non-trained controls were observed contralateral to the trained limb.
218 These changes followed a non-linear model rather than a linear one ($\Delta \text{AICc} > 2$; Table 3). In

219 addition, we created two additional VOIs based on known areas of reorganization of forelimb
220 representation using multielectrode recordings and skill reaching[27]. Structural data were
221 extracted and plotted for the caudal forelimb area (CFA) and the rostral forelimb area (RFA)
222 contralateral to the trained limb (Table 3; *SI Appendix*, Fig. S4) and similar non-linear changes were
223 observed. Changes in both GMV and WMV followed a quadratic/non-linear pattern rather than
224 linear ($\Delta \text{AICc} > 2$) except for WM in RFA where it was not possible to discriminate which model fit
225 best ($\Delta \text{AICc} < 2$).

226

227 **Figure 3. Sensorimotor-restricted VBM analysis in cortex identified non-linear decreases in**
228 **GMV together with non-linear increases in WMV during motor learning.** **A**, VBM analysis using
229 an atlas-based bilateral mask for primary motor cortex (MOp), secondary motor cortex (MOs) and
230 primary sensory areas (SSp) revealed significant decreases in GMV (cold blue scale) and increases
231 in WMV (warm red scale) following an asymptotic model ($P_{\text{FDR corr}} < 0.001$ and < 0.01 , respectively).
232 **B**, 3D representations of the atlas-based mask for MOp+MOs+SSp together with the overlap of
233 significant GMV and WMV changes (green). **C**, GMV changes, relative to non-trained controls, in
234 sensorimotor cortex contralateral to the trained forelimb extracted using a VOI based on fMRI
235 mapping of forepaw stimulation (VOI represented in green). **D**, WMV changes, relative to non-
236 trained controls, from the same VOI in **C**. Non-linear decreases in GMV are observed together, and
237 overlap, with non-linear increases in WMV.

238
239 **Motor learning evokes non-linear plasticity of cortical white matter components that are**
240 **associated with adaptive myelination**
241 Although we employed a T1-weighted sequence specifically chosen for increased myelin detection
242 within GM, MRI metrics do not provide direct myelin measures. We therefore immunolabelled
243 myelin basic protein (MBP) in coronal brain sections at six different intervals during the learning
244 paradigm (*SI Appendix*, Fig. S5A). These intervals were matched to those used for MRI: baseline,
245 immediately prior to motor skill training and at four time points during motor skill training. Myelin
246 immunoreactivity was quantified in an area of SSp-ul that presented with a highly significant VBM
247 cluster contralateral to the trained limb, as well as significant changes in ipsilateral SSp-ul when an
248 atlas-based cortical mask was applied to our data (Fig. 4A). We observed a significant correlation
249 between WMV, extracted using an unbiased fMRI-based VOI from an independent study[35], with
250 myelin immunoreactivity in trained animals (Fig. 4B; Pearson's $r = .75$, $P = .03$). In line with this
251 result, we found a non-significant trend between GMV and myelin immunoreactivity (Fig. 4B;
252 Pearson's $r = -.38$, $P = .35$). The quantification of myelin immunoreactivity within the bilateral cluster
253 located in SSp-ul revealed significant changes with training (one-way ANOVA, $F_{5,62} = 2.333$, $P <$
254 .05; Fig. 4C). Specifically, myelin immunoreactivity increased up until experimental day 6 after
255 which it began to decrease towards baseline levels. From baseline measurements, at experimental
256 day 0, average MBP immunoreactivity increased by 15 % at experimental day 6 followed by an 8
257 % decrease from experimental day 6 to experimental day 14. In line with our observations using
258 VBM, the differences detected in myelin immunoreactivity preferentially followed a non-linear model
259 rather than linear ($\Delta \text{AICc} > 2$) with an 87.8 % probability of a preferred non-linear model compared
260 to a linear model. No significant differences were observed in myelin immunoreactivity between
261 trained animals and non-trained controls at experimental day 14 ($t = 0.4096$, $df = 22$, $P > .05$) (*SI*
262 *Appendix*, Fig. S6A) nor in non-trained controls between baseline experimental day 0 and
263 experimental day 14 (*SI Appendix*, Fig. S6B).

264 In addition to myelin immunoreactivity, cortical thickness was also quantified in histological sections
265 in sensorimotor cortex where myelin was evaluated (Fig. 4D-F). No significant difference was
266 observed in cortical thickness between trained mice and non-trained controls ($t = 0.5561$, $df = 98$,
267 $P > .05$, n animals = 72 for trained mice, n animals = 28 for non-trained controls). Similarly, no

268 difference was found in the cumulative distribution of cortical thickness between groups (*K-S test*,
269 $P > .05$, $D = 0.08949$, $n = 424$ for trained mice, $n = 191$ for non-trained controls).

270

271 **Table 3.** Comparison of AIC values for changes in grey and white matter taken from structural data
272 extracted using three unbiased cortical volumes.

273

Grey matter (GM) changes						
	fMRI VOI		RFA VOI		CFA VOI	
	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic
AICc	-1271	-1278	-1833	-1835	-1337	-1358
probability of correctness	3.50%	96.50%	24.09%	75.91%	<0.01%	>99.99%
White matter (WM) changes						
	fMRI VOI		RFA VOI		CFA VOI	
	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic
AICc	-664.3	-686.6	-94.80	-95.33	-682.2	-699.8
probability of correctness	<0.01%	>99.99%	43.45%	56.55%	0.02%	99.98%

274

275 Morphometric changes in WMV and myelin immunoreactivity in SSp-ul were observed to follow a
276 non-linear trajectory in which we observed significant increases followed by a total, or partial, return
277 to baseline levels during skill learning. To explore the relationship between learning and adaptive
278 myelination, we evaluated whether learning rate correlates with the asymptotic changes for the
279 WMV. We evaluated WM data extracted from the fMRI VOI contralateral to the trained limb at
280 experimental day 14 and found a correlation between learning rate and WMV (Fig. 4G) (Pearson's
281 $r = -0.378$, $P = 0.0360$). Animals in which changes in WMV presented a larger similarity to an
282 asymptotic time course (lower AICc values) exhibited a higher learning rate.

284 **Figure 4. Motor learning evokes non-linear plasticity of cortical white matter components**
285 **that are associated with structural changes.** **A**, Representative image of myelin
286 immunohistochemistry. **B**, Positive correlation between cortical WMV values and myelin
287 immunoreactivity at the individual level in trained animals (Pearson's $r = .75$, $P = .03$) and non-
288 significant negative correlation between GMV and myelin immunoreactivity (Pearson's $r = -.38$, $P = -.35$). **C**, Myelin immunoreactivity increases until experimental day 6, after which it decreases
289 towards baseline levels. The changes detected in myelin immunoreactivity follow a quadratic model
290 rather than a linear one ($AICc > 2$). Data are represented as mean \pm s.e.m. **D**, Illustrative
291 representative of the three measurements acquired at the sensorimotor cortex in the same area
292 where myelin was quantified. **E**, No significant changes were observed in sensorimotor cortical
293 thickness between trained animals and non-trained controls and no differences in the cumulative
294 distribution of cortical thickness were observed between groups in SSp-ul (**F**). **G**, Correlation
295 between learning rate and the asymptotic fit (measured as $AICc$) for WMV on an individual level
296 (Pearson's $r = -0.378$, $P = 0.0360$) in which animals with WMV that best fit an asymptotic model
297 (lower $AICc$ values) exhibited higher learning rates.

298

299

300 Discussion

301

302 Myelination, like synaptic plasticity, contributes to learning by activity-dependent modification of an
303 initially 'hard-wired' circuitry[36]. The dynamics of myelin plasticity and how it relates to volumetric-
304 based measurements of experience-dependent brain changes remain unknown. In this study, we
305 combined motor skill learning in mice with longitudinal sMRI and immunohistochemistry to study
306 the nature of structural changes that take place in the brain during learning.

307

308 Longitudinal *in vivo* sMRI acquired throughout learning a skilled, single-pellet forelimb reach task
revealed bilateral non-linear decreases in GM juxtaposed to non-linear increases in WM modelled

309 by an asymptotic time course function. Specifically, using an atlas-based cortical mask, we found
310 bilateral non-linear changes with learning in primary and secondary motor areas and in
311 somatosensory cortex. Supporting these results, a cross-sectional analysis unveiled an increase in
312 myelin immunoreactivity in the somatosensory cortex for the forelimb, followed by a return towards
313 baseline. The complementary cortical thickness analysis did not reveal any significant difference
314 between trained animals and non-trained controls. This multimodal approach indicates that non-
315 linear changes observed in cortical GM and WM using VBM are likely caused by changes in tissue
316 composition (e.g., more intracortical myelin, as suggested by the immunodetection analyses) rather
317 than changes in cortical thickness or surface areas of SSp-ul, which are unlikely to happen in the
318 relatively short period of a 15-day learning paradigm. These results are further corroborated by the
319 additional finding of a significant correlation between morphometric WMV and myelin
320 immunoreactivity in the same cortical area. Therefore, WMV calculated from segmented T1-
321 weighted MRI using an MT pulse represents myelin to a substantial degree. Altogether, these
322 observations indicate a non-linear increase of intracortical myelin with learning.

323 Consistent with this idea, oligodendrocyte development has been reported to be required for motor
324 learning in adult mice within the first hours after being introduced to the complex wheel running
325 learning paradigm[37]. Furthermore, a recent study demonstrated that forelimb-skill reaching
326 dynamically modulates myelination through oligodendrocyte precursor cell (OPC)
327 differentiation[19]. As well, the non-linear changes observed in somatosensory cortex for the
328 forelimb match with the well-characterized reorganization of forelimb representation during motor
329 skill learning using electrophysiological measurements[27].

330 As previously described in humans[2], and in mice[11], our *in vivo* morphometric analysis revealed
331 bilateral changes in several brain regions, including SSp-ul. While structural changes contralateral
332 to the trained forelimb were expected, strong cortical changes ipsilateral to the trained limb are still
333 controversial. Changes in ipsilateral motor cortices are consistent with fMRI findings in humans
334 showing bilateral MOp activation during the execution of a unilateral high-precision motor task[38].
335 This bilateral activation was later attributed to an inhibitory effect from ipsilateral motor cortex on
336 contralateral motor cortex. Interestingly, this inhibitory effect was modulated by the demand on
337 accuracy of the motor task[39]. Thus, ipsilateral changes in GM and WM with learning, may be
338 attributed to existing interhemispheric connectivity that is enhanced and re-wired during learning,
339 or possible enhanced ipsilateral inhibitory activity may also lead to changes in volume.

340 In contrast with our findings of GMV decreases, the study of experience-dependent volumetric
341 changes in primary motor cortex in human adults, trained to write and trace with their non-dominant
342 hand, revealed a bilateral GMV expansion followed by a partial renormalization[2]. It is possible
343 that the different motor skill learning paradigm used here triggered different structural changes in
344 the brain. On the other hand, these differences could also be attributed to the use of a higher

345 magnetic field in mice than in humans (9.4T vs. 3T, respectively) or, perhaps most likely, a
346 consequence of the MRI sequence, optimized for an enhanced detection of myelin. The use of *in*
347 *vivo* sMRI in mice using two-session sMRI (before vs. after training) unveiled significant
348 enlargements in GMV in multiple brain regions[11]. In addition, rodent studies using *ex vivo* DTI
349 with similar motor skill paradigms, reported an overall increase in WM in cerebellum[11] and in
350 corpus callosum directly below primary motor cortex[12] after either 23-27 and 11 days of training,
351 respectively. These studies were limited to trained animals versus non-trained control animals at
352 endpoint and therefore, it is not possible to draw conclusions regarding the temporal dynamics of
353 brain plasticity with learning.

354 The WM enlargement we observed by VBM and by myelin immunohistochemistry exhibits an initial
355 expansion, followed by a (partial) renormalization. These observations support the hypothesis that
356 myelin is, at least in part, a component of an expansion-renormalization model comprising
357 exploration, selection, and refinement stages[40-42]. It is likely that newly formed connections are
358 strengthened in response to repetitive firing of neural circuits produced by a discrete sequence of
359 movements[43]. The increased activity within these circuits likely stimulates additional myelination
360 of involved axons to provide increased efficiency. Experiments utilizing two-photon imaging after
361 inducing monocular deprivation revealed neuron-class specific myelin plasticity, suggesting that
362 reconfiguration of network connectivity after sensory deprivation requires precise tuning of
363 individual myelination profiles instead of a broad addition of myelin[44]. Thus, the exploration phase
364 of learning involves an expected rise in myelination during initial motor skill improvement, or
365 acquisition. In later stages of motor learning, optimal circuitry is selected to perform the motor task
366 that is subsequently refined through reinforcement and the non-efficient candidate circuits are
367 pruned away[45]. Interestingly, once the optimal circuitry is selected and refined, active myelination
368 is no longer required to support recall and execution of a pre-learned skill[6]. Our whole brain
369 analysis comparing the different possible time-course models identified that the majority of
370 structural changes with learning follow a non-linear pattern, suggesting that expansion followed by
371 (partial) renormalization is a rather general phenomenon across regions and may be a common
372 principle that unites many manifestations of structural plasticity. Moreover, there is an interestingly
373 large, yet non-significant increase in myelin immunoreactivity during the pre-training days,
374 suggesting that pre-training and task familiarization is sufficient to trigger formation of new neuronal
375 connections, stimulating myelination. Consistent with this idea, a previous study in mice showed
376 that the proliferation of OPCs was accelerated in motor cortex within just 4 hours of exposure to
377 the complex wheel. In addition, the introduction to a novel skill learning paradigm stimulated OPC
378 differentiation into newly-forming oligodendrocytes after just 2.5 hours of self-training[37]. Although
379 previous results using the single-pellet reaching task[19] suggested that production of myelin does
380 not appear until days or weeks later (for Review see[46]), here we observe that myelination is a
381 rapid and dynamic plastic change throughout learning.

382 Higher learning rates were associated with a non-linear/asymptotic model of the changes in the
383 MRI-derived WMV. We could speculate that the selection and refinement phases of the expansion-
384 renormalization model highly influence the proficiency of learning at the individual level. During the
385 exploration phase, a large production of candidate circuits that could potentially elicit effective
386 movements takes place, increasing myelination/myelin levels. However, the magnitude of increase
387 in candidate circuits does not imply a better performance. With a large pool of candidate circuits,
388 the serial activation of the different candidate circuits could lead to behavioral variability (a wide
389 range of diverse performances). Nevertheless, the selection and reinforcement of the circuits that
390 can reliably produce the target movement and the pruning of the non-efficient candidates to carry
391 out the task leads to a decrease in myelin levels and appears to be related with higher learning
392 rates. Decreasing the number of circuits reduce the behavioral variability and could imply a better
393 performance.

394 VBM, a method that has been widely used during the past two decades to identify and characterize
395 brain changes among populations, is used to detect systematic density differences of a particular
396 tissue class. In VBM, each voxel in smoothed images contains the average amount of GM around
397 that voxel[34]. Although modulated GM density (mGM) and cortical thickness are completely
398 different measures, both are commonly used to assess GMV. However, Chung and colleagues
399 found discordances between mGM and cortical thickness analyses[47]. A strong correlation
400 between T1-weighted signal intensity and mGM was reported while no correlation was found
401 between signal intensity and cortical thickness. In cortical VBM, if each voxel is a combination of
402 mGM density, cortical thickness and surface area, the interpretation of VBM results as volume
403 alone is not entirely correct. Since we did not find significant changes in cortical thickness during
404 learning and that it is unlikely that changes in surface area were produced during the 15-day
405 learning paradigm, we can assume that the morphometric changes observed during learning are
406 consequence of changes in GM and WM density and not volume. Furthermore, this assumption is
407 in line with the changes we observed in myelin immunoreactivity at the histological level.

408 In this study, we observed the temporal dynamics of experience-dependent macrostructural brain
409 changes during motor skill learning, identified non-linear decreases in grey matter volume
410 juxtaposed to non-linear increases in white matter volume, and found that these changes are
411 associated with adaptive myelination in forelimb sensorimotor cortex. Our results empirically back
412 up the idea that myelination is a rapid initial and partly transient plastic change in learning and
413 support the use of VBM on WM structural data to evaluate myelinated fibers in cortex.

414

415 **Materials and Methods**

416

417 **Experimental design.** To study the structural changes that occur in the brain during the acquisition
418 of a novel motor skill, two independent sets of experiments were performed:

419 i) Motor skilled training was combined with *in vivo* longitudinal sMRI: trained animals (SRT, $n =$
420 39) and non-trained control animals (NTC, $n = 16$) were scanned at PT1 (baseline), PT3, T4,
421 T6, T10 and T12 (Fig. 1B). Animals were sacrificed at endpoint (T12).
422 ii) Motor skilled training was performed and animals at different time points during the learning
423 paradigm were sacrificed for a cross-sectional evaluation of myelin immunoreactivity (Fig. 4A).
424 For the SRT group, 12 animals were sacrificed at PT1, PT3, T4, T6 and T10 and 4 animals at
425 T12. For the NTC group, 3 animals were sacrificed at T12. Tissue from animals sacrificed at
426 endpoint (T12) from i) above were also used for evaluation of myelin immunoreactivity (8 trained
427 animals and 9 non-trained controls for a total of 12 animals per time point).
428

429 **Animal care.** All procedures were in accordance with protocols approved by the Umeå Regional
430 Ethics Committee for Animal Research (ethical permit: Dnr A 35/2016). A total of 123 young-adult
431 (8- to 11-week-old) male C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME, USA) were used
432 in the study. Animals were housed in a 12-h/12h light-dark cycle under controlled humidity and
433 temperature (23°C). During initial acclimation after delivery, animals were provided food and water
434 *ad libitum*. All animal handling and behavioral training was carried out during the light phase of the
435 light-dark cycle. Mice were food restricted one week prior to behavioral training. Food restriction
436 was performed gradually to reach 85-90 % of their free-feeding weight (calculated by a non-food-
437 restricted control group). To familiarize mice with the precision pellets (20 mg Purified Rodent
438 Tablet, TestDiet, Richmond, IN, USA) used during motor skill training, 1 g pellets/day were placed
439 into the homecage on the two days prior to pre-training. Animal weight was monitored during the
440 entire experiment to ensure that individuals did not fall under 85 % of their calculated free-feeding
441 weight on an individual basis.

442 **Behavioral training - Single-pellet Reaching Task.** A skilled, single-pellet forelimb reach
443 paradigm was performed as previously described in rat[48] with some modifications to the training
444 cage (26.5 cm x 9 cm x 20 cm; with grooves to position pellets located 1 cm from inside the cage,
445 see Fig.1A). Mice were trained to reach through a narrow slit to grasp and retrieve food pellets
446 positioned within a small indentation located contralateral to the preferred forelimb for each
447 individual animal. Prior to motor skill training, mice were handled and habituated to the behavioral
448 cage during three days ('pre-training'; 3 days of 15-min sessions). During the first pre-training day,
449 pellets were placed onto the floor close to the narrow opening at the front of the training cage.
450 During the second and the third pre-training days, pellets were placed onto the shelf located at the
451 front of the cage, outside of the narrow opening and animals occasionally reached to grasp pellets
452 which was used to determine handedness. During the subsequent 12 days ('training'; 12

453 consecutive days of 15-min sessions), each animal in the trained group was given a 15-minute
454 training session each day that consisted of 30 discrete trials (one pellet/trial). During the entire 15-
455 day experimental paradigm, age-matched non-trained control mice ($n = 16$) were placed into
456 identical training cages for 15 minutes and were provided 30 pellets on the cage floor for each
457 experimental day.

458 **Behavioral analysis.** Each of the 12 training sessions were recorded using a digital camera
459 positioned at the front of the training cage. To evaluate motor performance, the number of
460 successful reaches were tallied in addition to the total number of grasping attempts per trial. Video
461 recordings were reviewed if clarification of the score was required. Grasp-to-reach success was
462 calculated as the percent of trials for which food pellets were successfully retrieved from the groove
463 without exhibiting any abnormal behavior (*i.e.*, reaching with the non-trained forelimb, or the use of
464 tongue to retrieve to pellet) divided and normalized by the number of trials completed by each
465 individual animal during the 15-minute daily training session. Accuracy was calculated as the
466 percentage of successful reaches normalized by the number of attempts performed for each
467 successful trial. The learning rate for each individual was calculated by the slope of a logarithmic
468 model fitted to the learning curve for each individual animal. To evaluate a possible improvement
469 in successful reaches and accuracy over time, restricted maximum likelihood (REML) analysis
470 (allowing for missing values from the animals sacrificed at different timepoints during the learning
471 paradigm) was calculated for the SRT group. To compare the performance of the SRT group and
472 NTC group we carried out a t-test analysis on successful reaches at experimental day 14.

473 **MRI.** Animals were scanned and at least 2 h transpired after waking from anesthesia to behavioral
474 training on any of the MR scan days along the experimental timeline. To prevent any possible
475 isoflurane-induced memory impairment, mice were administered a very low dose (0.7 mg/kg, s.c.)
476 of the highly selective α_5 GABA A receptor inverse agonist, L-655,708 (Sigma-Aldrich, Stockholm,
477 Sweden AB) 15 min prior to the induction of anesthesia[49]. Anesthesia was induced using 4.0 %
478 isoflurane mixed with oxygen that was subsequently lowered to 1.5 - 2 % for maintenance during
479 experimental scans. T1-weighted images were acquired using a magnetization transfer (MT) pulse
480 for increased contrast between tissue types with different transfer susceptibilities. We used a T1
481 3D FLASH sequence (TR/TE = 50/8 ms, flip angle = 20°, using 4 repetitions) with MT-weighting by
482 Gaussian-shaped off-resonance irradiation (30 μ T MT pulse, frequency offset 1.5 kHz, pulse
483 duration 1.8 ms, flip angle 351.2°) performed at 9.4 T (Bruker BioSpec 94/20, running Paravision
484 6.0 software) with 100 μ m isotropic spatial resolution using a 1H Quadrature transmit/receive MRI
485 cryogenic mouse brain RF coil (MRI CryoProbe, Bruker, Germany) for signal reception. The total
486 scan time was 38 min. At the end of each scan, mice were administered saline (10 mL/kg, *i.p.*) for
487 rehydration and individually placed into a cage to recover from anesthesia before it was returned
488 to its homecage.

489

490 **MRI Data Preprocessing Analysis.** T1-weighted images were reoriented to match FSL standard
491 orientation convention and were skull stripped using a template-based approach[50]. Skull stripped
492 images were then bias-corrected for intensity inhomogeneities using the N4 Bias Correction
493 algorithm included in ANTs software package[51].

494 Bias corrected, skull stripped brains were manually realigned in SPM8 to approximate the
495 orientation of the stereotaxic, population-averaged, tissue-segmented *in vivo* brain templates for
496 *wild type* C57Bl/6 mice; described and provided in Hikishima *et al.*, 2017[52]. The origin was also
497 set to match the template. The longitudinally acquired scans for each subject were registered using
498 serial longitudinal registration SPM12 to create an average image for each subject. These averages
499 were then used to create a brain template encompassing all subjects using a serial longitudinal
500 registration of the average from each subject (*SI Appendix*, Fig. 7A, B). Our study-specific template
501 was subsequently coregistered and resampled (from 0.1 to 0.08 mm isotropic resolution) to C57Bl/6
502 template provided in Hikishima *et al.*, 2017[52]. Next, the individual scans, from all subjects and
503 timepoints, were coregistered and resampled to the *in vivo* study-specific brain template at 0.08
504 mm isotropic resolution.

505 A two-stage process was used create our own study- and sequence-specific tissue probability
506 maps (TPMs) based on the grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF)
507 TPMs provided together with the *in vivo* C57Bl/6 template provided in Hikishima *et al.*, 2017. The
508 pre-process segmentation tool from the SPMmouse toolbox[53] (SPM8) was used for the serial
509 longitudinal average of 44 subjects, for which both handedness and training were balanced among
510 the 44 subjects, to create preliminary TPMs from our data. The data were segmented into GM, WM,
511 and CSF images using a mixture of Gaussians and tissue probability maps (TPMs) in SPMmouse.
512 An initial study-specific *in vivo* brain template was created using the DARTEL toolbox of
513 SPMmouse, which improves registration with an inverse consistent, diffeomorphic transformation.
514 This process was repeated a second time, segmentation followed by DARTEL, but using the
515 preliminary TPMs generated from the first DARTEL step to create our study- and MR sequence-
516 specific tissue probability maps (TPMs; *SI Appendix*, Fig. 7C). These final TPMs were then used
517 to segment the individual scans, from all subjects and timepoints. Modulated and normalized
518 images of GM, WM and CSF were obtained with DARTEL, multiplied by the Jacobian determinants
519 derived from the spatial normalization. The images were spatially smoothed by convolving with an
520 isotropic Gaussian kernel (full width at half maximum) of five times the voxel size to minimize risk
521 of false positives in statistical analysis.

522 The individual smoothed and modulated GM and WM tissue probability maps were thresholded at
523 0.2 (20%) to create GM and WM masks for removal of low probability voxels. All timepoint data for
524 each subject were then concatenated into a single 4D image for further statistical analysis.

525 **VBM Statistical Analysis.** Linear Mixed Effects (LME) statistical approach was used to test our
526 hypothesis on whether there are significant changes in GM and WM probabilities because of skilled
527 training over time between trained and control groups. LME was chosen as it is capable of handling
528 missing data and enables modeling of random effects in a longitudinal dataset. For this purpose,
529 Total Intracranial Volume (TIV) and amount of training sessions (or time) were defined as fixed
530 effects and subjects defined as random effects for intercept and time to analyze the data. We used
531 R version 4.0.3 (R Core Team, 2017) with lme4 version 1.1-23[54] to perform LME analysis using
532 an in-house coded R script on Ubuntu 18.04.05 LTS workstation. FDR correction was used to
533 correct for multiple comparisons at $P < .05$ significance level.

534 To test for different patterns of change in GM and WM, we used three different regression models
535 (and their opposite function) representing three different time courses; 1) Linear, 2) Increase
536 followed by a stabilization (inverse-quadratic-asymptotic), and 3) Increase followed by a
537 renormalization (inverse-quadratic) as depicted in *SI Appendix*, Fig. S8. We tested all three
538 regression models for each subject in separate LME analysis to detect changes in GM and WM
539 volumes, both between and within groups.

540 To study changes in GM and WM with learning specific to cortical areas, we restricted our
541 analysis to M1, M2 and S1 regions using a mask based on the Turone Mouse Brain Template
542 Atlas (TMBTA)[55] registered to our *in vivo* brain template.

543 **Tissue processing and histology.** Animals were anesthetized using 100 mg/kg pentobarbital
544 sodium (*i.p.*, 60 mg/ml, Apotek Produktion & Laboratorier - APL, Kungens Kurva, SE) and
545 transcardially perfused using Tyrode's solution followed by 4 % (w/v) paraformaldehyde (PFA)
546 freshly prepared on the same day. After perfusion, brains were post-fixed in 4 % PFA at 4° C for
547 48 h. Then, PFA was removed and the brains were stored in phosphate buffer (PB) pH 7.40
548 containing 0.01 % (w/v) sodium azide at 4° C. Previous to histology, the brains were cryoprotected
549 in 10 % (w/v) sucrose in PB ($\text{Na}_2\text{HPO}_4 \times 2\text{H}_2\text{O}$, $\text{Na}_2\text{HPO}_4 \times \text{H}_2\text{O}$) with 0.01 % (w/v) sodium azide
550 at 4° C. Brains were mounted in O.C.T compound (VWR chemicals, VWR International, Inc. US),
551 snap frozen using high pressure CO_2 and sectioned coronally from Bregma AP 1.70 mm to AP -
552 1.34 mm at 20 μm using a rotatory microtome cryostat (Microm Microtome Cryostat HM 500M). For
553 each brain, at least 10 series of 3 slides (Superfrost Plus, Thermo Fisher Scientific, Waltham, MA,
554 USA) each containing 6 sections per slide were obtained.

555 **Immunofluorescent staining.** Immunodetection of myelin was performed using anti-myelin basic
556 protein on coronal sections ranging from Bregma AP -0.1 mm to AP -0.7 mm. Tissue sections were
557 re-hydrated in PBS 0.1 M ($\text{Na}_2\text{HPO}_4 \times 2\text{H}_2\text{O}$, $\text{Na}_2\text{HPO}_4 \times \text{H}_2\text{O} + \text{NaCl} + \text{KCl}$) and subsequently
558 blocked using 5 % (v/v) goat serum in PBS containing 0.3 % Triton X-100 (PBST) for 1 hour at
559 room temperature. Sections were then incubated with rat monoclonal anti-Myelin Basic Protein

560 primary antibody (1:400; Abcam - ab7349) in PBST containing 2 % (v/v) goat serum for 48 hours
561 at 4° C in a humidified chamber. Sections were washed to remove primary antibody (PBS 0.1 M)
562 and then incubated with fluorescently labelled secondary antibody (goat anti-rat Alexa Fluor 594;
563 Invitrogen - Molecular Probes A21211) in PBST containing 2 % (v/v) goat serum for 1 h at room
564 temperature in a humidified chamber. Secondary antibody was removed by washing with PBS 0.1
565 M and coverslips were mounted using Mowiol 4-88 (Sigma Aldrich, St. Louis, MO, USA) with 2.5
566 g/100 ml DABCO (Sigma Aldrich, St. Louis, MO, USA). Immunolabelled sections were stored at 4°
567 C.

568 **Image acquisition and quantification.** Sections ranging from Bregma AP -0.1 mm to AP -0.7 mm
569 for each animal ($n = 84$ animals; $n = 211$ sections), were selected for fluorescence-based
570 microscopy imaging. Images were acquired using a TxRed filter (excitation = 540-580 nm; emission
571 = 600-660 nm) on a Nikon Eclipse Ti-E inverted microscope with an DU897 ANDOR EMCCD
572 camera controlled by Nikon NIS Elements interface, equipped with Nikon CFI Plan Apochromat
573 20x (N.A 0.75) objective. Prior to analysis, all the images were aligned using Amira-Avizo Software
574 (version 6.3.0, Thermo Fisher Scientific, Waltham, MA, USA). A region of interest (ROI) was
575 selected based upon a significant VBM cluster in SSp-ul described in this study. The ROIs were
576 manually positioned and saved for each section using FIJI[56]. Signal to noise (specific myelin
577 immunoreactivity versus background fluorescence) was determined by the segmentation of each
578 image using FIJI's Multi Otsu Threshold plugin using three different levels of classification. This
579 plugin is based on Otsu's original Method but also implements an algorithm described by Liao and
580 Chung[57]. The specific signal was quantified for each section per individual to calculate a mean
581 immunoreactive value for each subject ($n = 12$ per time point).

582 **Cortical thickness analysis.** Cortical thickness (layers I to VI) was measured in SSp-ul at the
583 location of the ROI used to quantify myelin immunoreactivity. Three measurements were made in
584 both hemispheres for each animal corresponding to the area of the significant cluster observed
585 from whole-brain VBM analysis. The measurements were acquired from the length of three lines
586 that were drawn based on the ROIs for myelin immunoreactivity. Data from 60 trained animals and
587 24 non-trained controls. In total, 424 measurements from trained animals and 191 measurements
588 from non-trained animals were used. Data from any images in which cortex was partially damaged,
589 confounding a proper measurement, were not included.

590 **Statistical analysis.** Student's T-test was used to compare two groups and One-Way ANOVA with
591 Tukey's test for multiple comparisons. Akaike's Information Criterion was used to calculate the
592 goodness of fit. The probability of correctness for a model was computed using the next equation:
593 $\text{probability} = e^{0.5\Delta}/1+e^{0.5\Delta}$ where Δ is the difference between the AICc values. Figure legends specify
594 the statistical test used in each case and the number of independent measurements (n) evaluated.

595 Behavioral improvement, myelin immunoreactivity mean intensities and cortical thickness were
596 analyzed using Prism 9.0.0 for macOS (GraphPad Software, San Diego, California USA).

597

598 **Acknowledgments**

599

600 This work was supported by Umeå University Medical Faculty, Umeå Sweden (D.M.); StratNeuro,
601 Umeå University, Umeå Sweden (D.M.); Swedish Research Council, Stockholm, Sweden (Grant
602 2018-01047) (M.L.); Kempe Foundation, Örnsköldsvik, Sweden (Grant JCK-1922.2) (D.M., F.S.);
603 *Insamlingsstiftelsen för medicinsk forskning* 2019 (D.M.); *Magnus Bergvalls Stiftelse*, Stockholm,
604 Sweden (Grant 2016-01639) (D.M.); Swedish Research Council, Stockholm, Sweden (2015-
605 01717) (C.B.); Agence Nationale pour la Recherche (ANR-16-CE28-0008-01) (C.B.). H.M.E-S was
606 supported by a grant from the *Agencia Canaria de Investigación, Innovación y Sociedad de la*
607 *Información* (ACIISI) of the *Regional Consejería de Economía, Industria y Comercio*, Canary
608 Islands Government and European Social Fund [Canarias 2014-2020, Axis 3 Priority Theme 74
609 (85%)]. We also would like to acknowledge the Small Animal Research and Imaging Facility
610 (SARIF) at Umeå University for providing the MRI equipment to perform the study and the
611 Biochemical Imaging Center at Umeå University (BICU) and National Microscopy Infrastructure,
612 NMI (VR-RFI 2019-00217) for providing assistance in microscopy. With great appreciation, we also
613 thank Dr. Seong-Gi Kim and Dr. Won Beom Jung for providing the mask of the fMRI-based
614 sensorimotor cluster reported in Jung *et al.*, *NeuroImage*, 2019.

615

616 **Competing Interest Statement:** The authors declare no competing interests.

617

618 **Author Contributions:** T.M., H.M.E-S., C.B., M.L. and D.J.M. designed research; T.M., H.M.E-S.,
619 B.F., and D.J.M. performed research; T.M., Ö.Ö., G.O., F.R.S., B.G., and D.J.M. analyzed data;
620 T.M. and D.J.M. wrote the paper; and T.M., Ö.Ö., H.M.E-S., B.F., G.O., C.B., B.G., M.L., and
621 D.J.M. contributed to the revision and all authors approved the final submission.

622

623

624 **References**

625

- 626 1. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes
627 in grey matter induced by training. *Nature*. 2004;427(6972):311-2.
- 628 2. Wenger E, Kuhn S, Verrel J, Martensson J, Bodammer NC, Lindenberger U, et al. Repeated Structural Imaging Reveals Nonlinear Progression of Experience-Dependent Volume
629 Changes in Human Motor Cortex. *Cereb Cortex*. 2017;27(5):2911-25.
- 630 3. Keifer OP, Jr., Hurt RC, Gutman DA, Keilholz SD, Gourley SL, Ressler KJ. Voxel-based
631 morphometry predicts shifts in dendritic spine density and morphology with auditory fear
632 conditioning. *Nat Commun*. 2015;6:7582.
- 633 4. Kleim JA, Markham JA, Vij K, Freese JL, Ballard DH, Greenough WT. Motor learning
634 induces astrocytic hypertrophy in the cerebellar cortex. *Behav Brain Res*. 2007;178(2):244-9.
- 635 5. Woo J, Min JO, Kang DS, Kim YS, Jung GH, Park HJ, et al. Control of motor coordination
636 by astrocytic tonic GABA release through modulation of excitation/inhibition balance in cerebellum.
637 *Proc Natl Acad Sci U S A*. 2018;115(19):5004-9.
- 638 6. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, et al. Motor skill learning
639 requires active central myelination. *Science*. 2014;346(6207):318-22.
- 640 7. Keiner S, Niv F, Neumann S, Steinbach T, Schmeer C, Hornung K, et al. Effect of skilled
641 reaching training and enriched environment on generation of oligodendrocytes in the adult
642 sensorimotor cortex and corpus callosum. *BMC Neurosci*. 2017;18(1):31.
- 643 8. Kougioumtzidou E, Shimizu T, Hamilton NB, Tohyama K, Sprengel R, Monyer H, et al.
644 Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by
645 enhancing oligodendrocyte survival. *Elife*. 2017;6.
- 646 9. Zatorre RJ, Fields RD, Johansen-Berg H. Plasticity in gray and white: neuroimaging
647 changes in brain structure during learning. *Nat Neurosci*. 2012;15(4):528-36.
- 648 10. Schmidt S, Gull S, Herrmann KH, Boehme M, Irinchev A, Urbach A, et al. Experience-
649 dependent structural plasticity in the adult brain: How the learning brain grows. *Neuroimage*.
650 2021;225:117502.
- 651 11. Badea A, Ng KL, Anderson RJ, Zhang J, Miller MI, O'Brien RJ. Magnetic resonance
652 imaging of mouse brain networks plasticity following motor learning. *PLoS One*.
653 2019;14(5):e0216596.
- 654 12. Sampaio-Baptista C, Khrapitchev AA, Foxley S, Schlagheck T, Scholz J, Jbabdi S, et al.
655 Motor skill learning induces changes in white matter microstructure and myelination. *J Neurosci*.
656 2013;33(50):19499-503.
- 657 13. Sampaio-Baptista C, Valles A, Khrapitchev AA, Akkermans G, Winkler AM, Foxley S, et al.
658 White matter structure and myelin-related gene expression alterations with experience in adult rats.
659 *Prog Neurobiol*. 2020;187:101770.
- 660 14. Natu VS, Gomez J, Barnett M, Jeska B, Kirilina E, Jaeger C, et al. Apparent thinning of
661 human visual cortex during childhood is associated with myelination. *Proc Natl Acad Sci U S A*.
662 2019;116(41):20750-9.
- 663 15. Weiskopf N, Suckling J, Williams G, Correia MM, Inkster B, Tait R, et al. Quantitative multi-
664 parameter mapping of R1, PD(*), MT, and R2(*) at 3T: a multi-center validation. *Front Neurosci*.
665 2013;7:95.
- 666 16. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, et al. Neuronal activity
667 promotes oligodendrogenesis and adaptive myelination in the mammalian brain. *Science*.
668 2014;344(6183):1252304.
- 669 17. Mensch S, Baraban M, Almeida R, Czopka T, Ausborn J, El Manira A, et al. Synaptic
670 vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. *Nat
671 Neurosci*. 2015;18(5):628-30.
- 672 18. Swire M, Ffrench-Constant C. Seeing Is Believing: Myelin Dynamics in the Adult CNS.
673 *Neuron*. 2018;98(4):684-6.
- 674 19. Bacmeister CM, Barr HJ, McClain CR, Thornton MA, Nettles D, Welle CG, et al. Motor
675 learning promotes remyelination via new and surviving oligodendrocytes. *Nat Neurosci*.
676 2020;23(7):819-31.
- 677

678 20. Wake H, Lee PR, Fields RD. Control of local protein synthesis and initial events in
679 myelination by action potentials. *Science*. 2011;333(6049):1647-51.

680 21. Makinodan M, Rosen KM, Ito S, Corfas G. A critical period for social experience-dependent
681 oligodendrocyte maturation and myelination. *Science*. 2012;337(6100):1357-60.

682 22. Geraghty AC, Gibson EM, Ghanem RA, Greene JJ, Ocampo A, Goldstein AK, et al. Loss
683 of Adaptive Myelination Contributes to Methotrexate Chemotherapy-Related Cognitive Impairment.
684 *Neuron*. 2019;103(2):250-65 e8.

685 23. Pan S, Mayoral SR, Choi HS, Chan JR, Kheirbek MA. Preservation of a remote fear
686 memory requires new myelin formation. *Nat Neurosci*. 2020;23(4):487-99.

687 24. Steadman PE, Xia F, Ahmed M, Mocle AJ, Penning ARA, Geraghty AC, et al. Disruption
688 of Oligodendrogenesis Impairs Memory Consolidation in Adult Mice. *Neuron*. 2020;105(1):150-
689 64.e6.

690 25. Kleim JA, Barbay S, Nudo RJ. Functional reorganization of the rat motor cortex following
691 motor skill learning. *J Neurophysiol*. 1998;80(6):3321-5.

692 26. Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M. Cortical
693 synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill
694 learning. *J Neurosci*. 2004;24(3):628-33.

695 27. Tennant KA, Adkins DL, Donlan NA, Asay AL, Thomas N, Kleim JA, et al. The organization
696 of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical
697 microstimulation and cytoarchitecture. *Cereb Cortex*. 2011;21(4):865-76.

698 28. Xu T, Yu X, Perlak AJ, Tobin WF, Zweig JA, Tennant K, et al. Rapid formation and selective
699 stabilization of synapses for enduring motor memories. *Nature*. 2009;462(7275):915-9.

700 29. Hill RA, Patel KD, Goncalves CM, Grutzendler J, Nishiyama A. Modulation of
701 oligodendrocyte generation during a critical temporal window after NG2 cell division. *Nat Neurosci*.
702 2014;17(11):1518-27.

703 30. Whishaw IQ, O'Connor WT, Dunnett SB. The contributions of motor cortex, nigrostriatal
704 dopamine and caudate-putamen to skilled forelimb use in the rat. *Brain*. 1986;109 (Pt 5):805-43.

705 31. Kim JS, Lee HJ, Lee S, Lee HS, Jeong YJ, Son Y, et al. Conductive Hearing Loss
706 Aggravates Memory Decline in Alzheimer Model Mice. *Front Neurosci*. 2020;14:843.

707 32. Sawiak SJ, Wood NI, Williams GB, Morton AJ, Carpenter TA. Voxel-based morphometry
708 in the R6/2 transgenic mouse reveals differences between genotypes not seen with manual 2D
709 morphometry. *Neurobiol Dis*. 2009;33(1):20-7.

710 33. Bagdatlioglu E, Porcari P, Greally E, Blamire AM, Straub VW. Cognitive impairment
711 appears progressive in the mdx mouse. *Neuromuscul Disord*. 2020;30(5):368-88.

712 34. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. *Neuroimage*. 2000;11(6
713 Pt 1):805-21.

714 35. Jung WB, Shim HJ, Kim SG. Mouse BOLD fMRI at ultrahigh field detects somatosensory
715 networks including thalamic nuclei. *Neuroimage*. 2019;195:203-14.

716 36. Bechler ME, Swire M, Ffrench-Constant C. Intrinsic and adaptive myelination-A sequential
717 mechanism for smart wiring in the brain. *Dev Neurobiol*. 2018;78(2):68-79.

718 37. Xiao L, Ohayon D, McKenzie IA, Sinclair-Wilson A, Wright JL, Fudge AD, et al. Rapid
719 production of new oligodendrocytes is required in the earliest stages of motor-skill learning. *Nat
720 Neurosci*. 2016;19(9):1210-7.

721 38. Buetefisch CM, Revill KP, Shuster L, Hines B, Parsons M. Motor demand-dependent
722 activation of ipsilateral motor cortex. *J Neurophysiol*. 2014;112(4):999-1009.

723 39. Wischniewski M, Kowalski GM, Rink F, Belagaje SR, Haut MW, Hobbs G, et al. Demand
724 on skillfulness modulates interhemispheric inhibition of motor cortices. *J Neurophysiol*.
725 2016;115(6):2803-13.

726 40. Wenger E, Brozzoli C, Lindenberger U, Lovden M. Expansion and Renormalization of
727 Human Brain Structure During Skill Acquisition. *Trends Cogn Sci*. 2017;21(12):930-9.

728 41. Makino H, Hwang EJ, Hedrick NG, Komiyama T. Circuit Mechanisms of Sensorimotor
729 Learning. *Neuron*. 2016;92(4):705-21.

730 42. Lindenberger U, Lövdén M. Brain Plasticity in Human Lifespan Development: The
731 Exploration-Selection-Refinement Model. *Annual Review of Developmental Psychology*.
732 2019;1(1):197-222.

733 43. Milner B, Squire LR, Kandel ER. Cognitive neuroscience and the study of memory. *Neuron*.
734 1998;20(3):445-68.

735 44. Yang SM, Michel K, Jokhi V, Nedivi E, Arlotta P. Neuron class-specific responses govern
736 adaptive myelin remodeling in the neocortex. *Science*. 2020;370(6523).

737 45. Kilgard MP. Harnessing plasticity to understand learning and treat disease. *Trends
738 Neurosci*. 2012;35(12):715-22.

739 46. Bonetto G, Belin D, Karadottir RT. Myelin: A gatekeeper of activity-dependent circuit
740 plasticity? *Science*. 2021;374(6569):eaba6905.

741 47. Chung S, Wang X, Lui YW. Influence of T1-Weighted Signal Intensity on FSL Voxel-Based
742 Morphometry and FreeSurfer Cortical Thickness. *AJNR Am J Neuroradiol*. 2017;38(4):726-8.

743 48. Molina-Luna K, Pekanovic A, Rohrich S, Hertler B, Schubring-Giese M, Rioult-Pedotti MS,
744 et al. Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. *PLoS One*.
745 2009;4(9):e7082.

746 49. Saab BJ, Maclean AJ, Kanisek M, Zurek AA, Martin LJ, Roder JC, et al. Short-term memory
747 impairment after isoflurane in mice is prevented by the alpha5 gamma-aminobutyric acid type A
748 receptor inverse agonist L-655,708. *Anesthesiology*. 2010;113(5):1061-71.

749 50. Delora A, Gonzales A, Medina CS, Mitchell A, Mohed AF, Jacobs RE, et al. A simple rapid
750 process for semi-automated brain extraction from magnetic resonance images of the whole mouse
751 head. *J Neurosci Methods*. 2016;257:185-93.

752 51. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK:
753 improved N3 bias correction. *IEEE Trans Med Imaging*. 2010;29(6):1310-20.

754 52. Hikishima K, Komaki Y, Seki F, Ohnishi Y, Okano H, Okano H. In vivo microscopic voxel-
755 based morphometry with a brain template to characterize strain-specific structures in the mouse
756 brain. *Sci Rep*. 2017;7(1):85.

757 53. Sawiak SJ, Wood NI, Williams GB, Morton AJ, Carpenter TA. Voxel-based morphometry
758 with templates and validation in a mouse model of Huntington's disease. *Magn Reson Imaging*.
759 2013;31(9):1522-31.

760 54. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4.
761 2015. 2015;67(1):48.

762 55. Barriere DA, Ella A, Szeremeta F, Adriaensen H, Meme W, Chaillou E, et al. Brain
763 orchestration of pregnancy and maternal behavior in mice: A longitudinal morphometric study.
764 *Neuroimage*. 2021;230:117776.

765 56. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an
766 open-source platform for biological-image analysis. *Nat Methods*. 2012;9(7):676-82.

767 57. Liao PS, Chew TS, Chung PC. A fast algorithm for multilevel thresholding. *J Inf Sci Eng*.
768 2001;17(5):713-27.

769

770

Supplementary Information for:

Learning-related contraction of grey matter in rodent sensorimotor cortex is associated with adaptive myelination

Tomas Mediavilla, Özgün Özalay, Héctor M. Estévez-Silva, Bárbara Frías, Greger Orädd, Fahad R. Sultan, Claudio Brozzoli, Benjamín Garzón, Martin Lövdén and Daniel J. Marcellino*

^a Department of Integrative Medical Biology, Umeå University, 90 187 - Umeå, Sweden

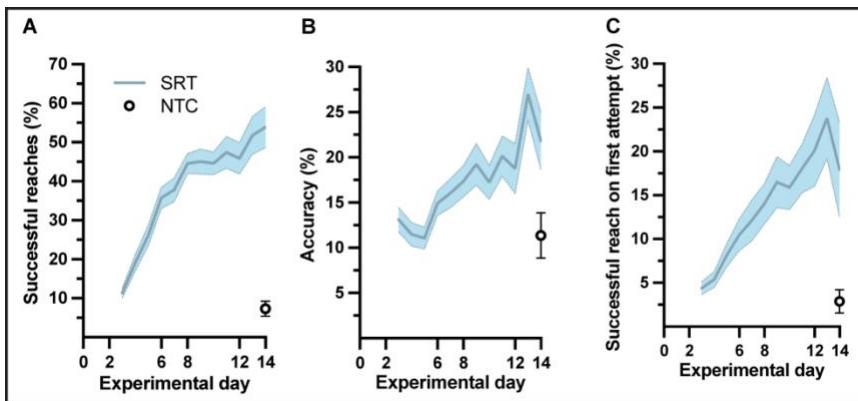
^b Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 17 165 - Solna, Sweden

^c Department of Psychology, University of Gothenburg, 405 30 - Gothenburg, Sweden

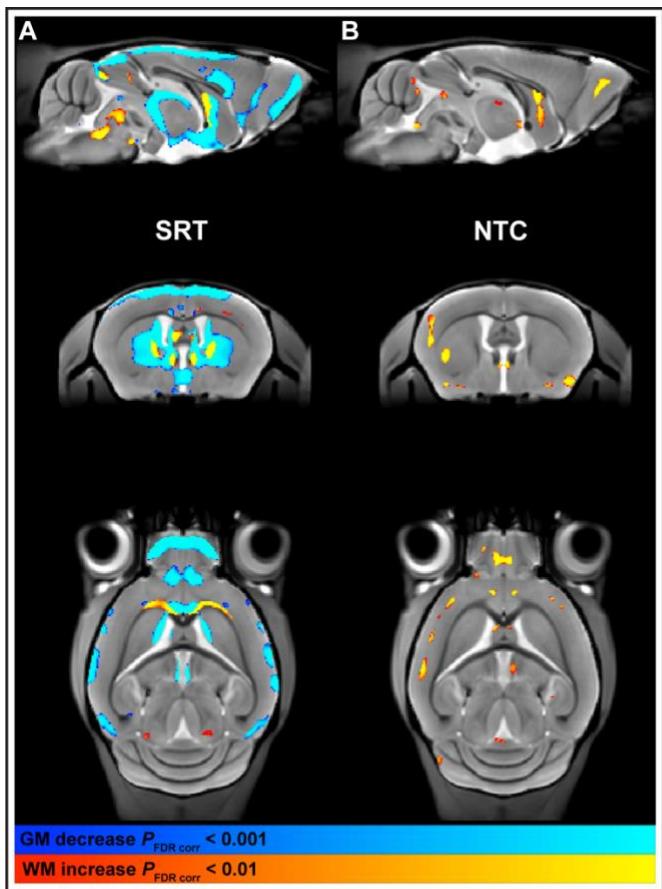
*Corresponding author

Email: daniel.marcellino@umu.se

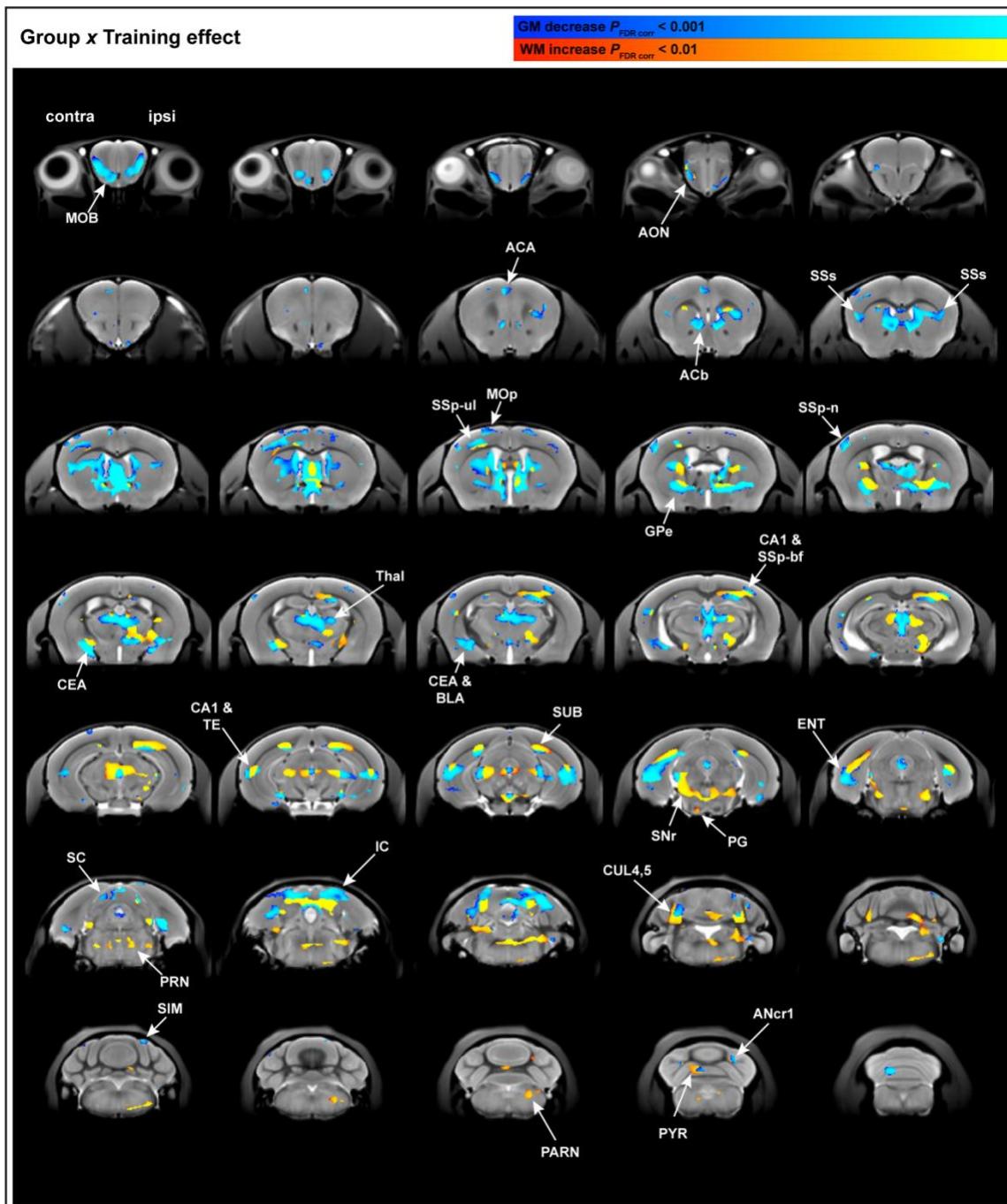
Supplementary Information includes:

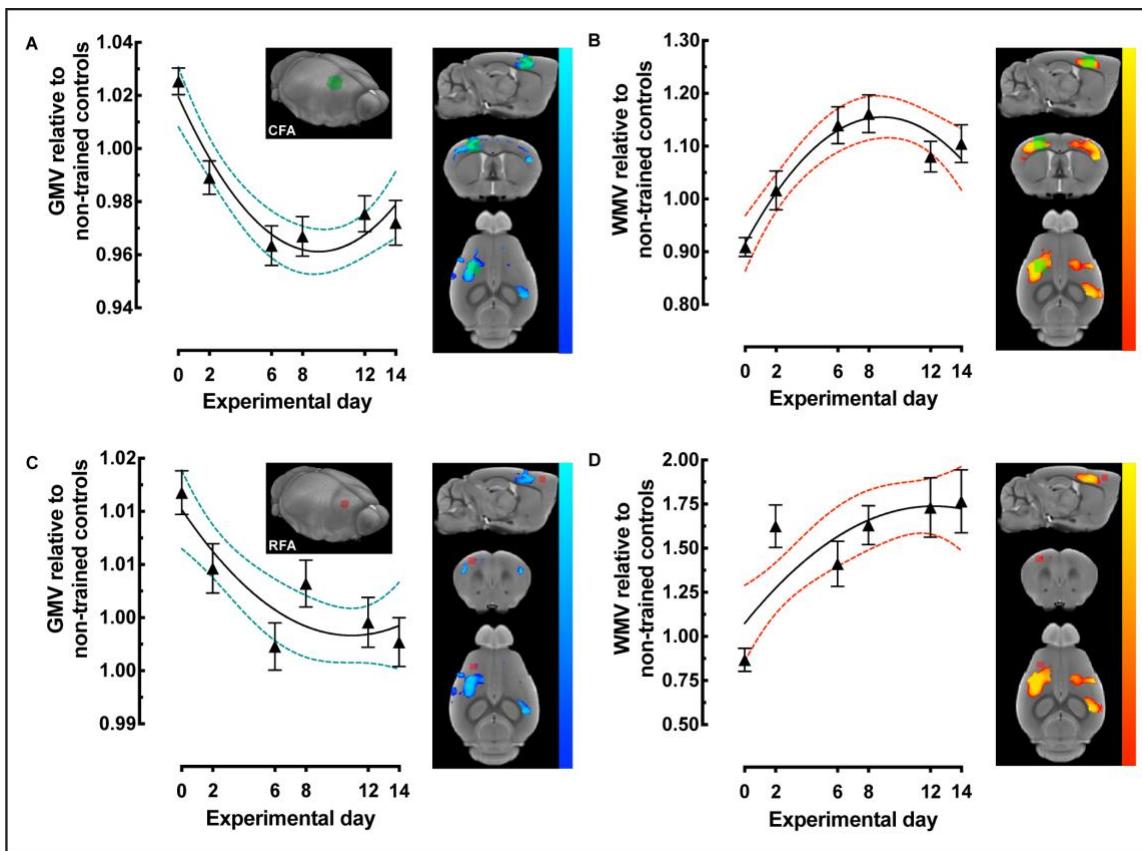

Figures S1 to S8

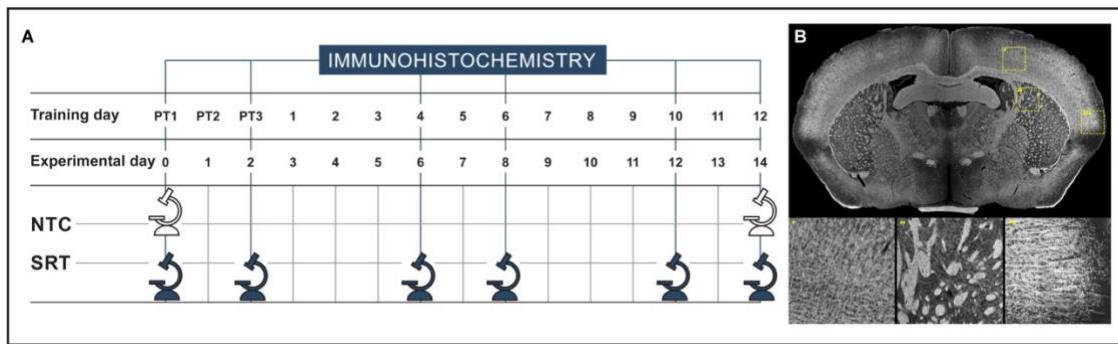
Tables S1

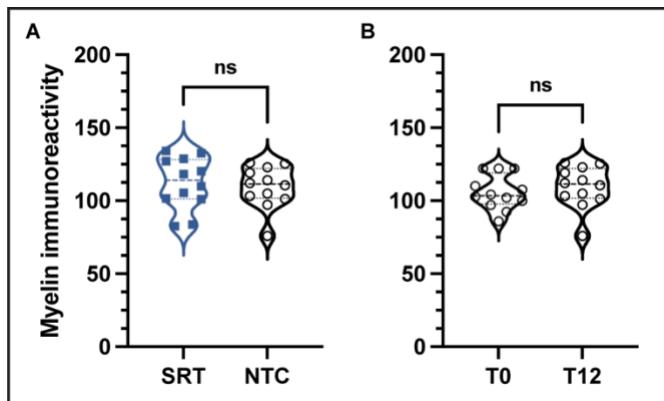

Legends for Movies S1

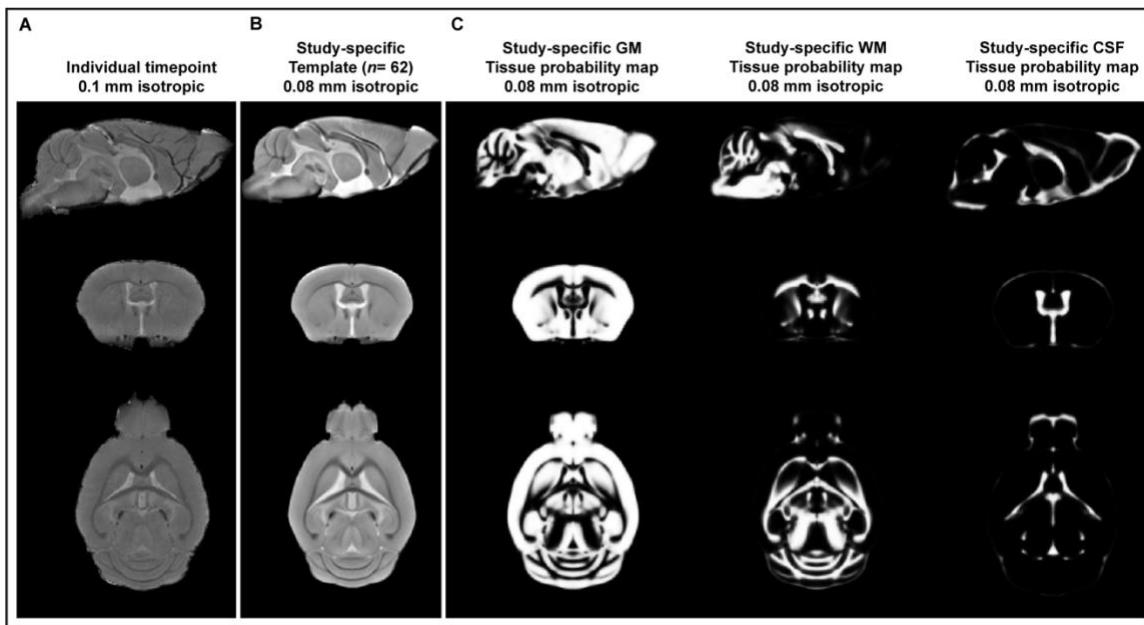
Other supplementary materials for this manuscript include the following:


Movies S1


Fig. S1. Mean performance scores of animals used for a cross-sectional myelin immunoreactivity during learning of a skilled, single-pellet forelimb reach task. Performance calculated as percentage (54 ± 5) of successful reaches (**A**) and percent (22 ± 3) accuracy (**B**) or percentage of successful reaches on the first attempted reach (**C**), during the 12-day training paradigm.


Fig. S2. Forelimb reach-and-grasp training dynamically modulates macrostructural brain plasticity. Training mice in the single-pellet forelimb reach task produces non-linear decreases in grey matter volume (GMV) ($P_{FDR \text{ corr}} < 0.001$) and non-linear increases in white matter volume (WMV) ($P_{FDR \text{ corr}} < 0.01$) (A), whereas a linear increase in GMV was observed in non-trained control animals with time (B), whole-brain statistical maps ($P_{FDR \text{ corr}} < 0.01$) are represented on a study-specific *in vivo* template (AP -0.1 mm, DV -3.0 mm from Bregma; 0.08 mm isotropic, radiological display).


Fig. S3. Whole brain structural analysis of non-linear decreases in grey matter volume juxtaposed to non-linear increases in white matter volume with learning. Changes in GMV and WMV modelled using the asymptotic model and overlaid on the *in vivo* MRI template created from this study. Whole-brain decreases in GMV (cold blue scale) and the increases in WMV (warm red scale), in coronal sections ranging from A/P Bregma -4.3 to -7.5 mm.


Fig. S4. CFA- and RFA-restricted VBM analysis identified non-linear decreases in GMV together with non-linear increases in WMV during motor learning. **A**, GMV, relative to non-trained controls, in CFA contralateral to the trained forelimb (VOI represented in green). **B**, WMV extracted and plotted from CFA VOI in **A**. **C**, GMV, relative to non-trained controls, in RFA contralateral to the trained forelimb (VOI represented in red). **D**, WMV extracted and plotted from the same RFA VOI in **C**.

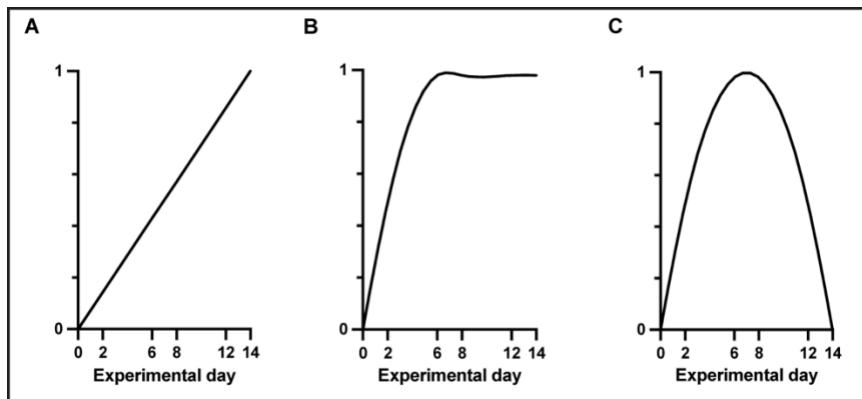

Fig. S5. Experimental design for the cross-sectional immunohistochemistry analysis of myelin immunoreactivity (**A**) and representative image of myelin basic protein immunohistochemistry (**B**) highlighting the specificity of the immunodetection of myelin in cortex and striatum.

Fig. S6. There are no differences in myelin immunoreactivity between trained animals and non-trained control animals (**A**) at the last training day (training day 12). In addition, no differences in myelin immunoreactivity were observed between non-trained control animals at experimental day 0 and at training day 12 (**B**).

Fig. S7. Sagittal, coronal, and horizontal sections of an *in vivo* microscopic T1-weighted image from one individual scan during the longitudinal study (**A**) and the study-specific template created for mouse brain (**B**). Study- and MR sequence-specific brain tissue probability maps (**C**). Sagittal, coronal, and horizontal sections of tissue probability maps (TPMs) of grey matter (GM), white matter (WM), cerebrospinal fluid (CSF).

Fig. S8. Three different regression models representing three different time-courses were used to test for different patterns of change in GM and WM; **(A)** Linear, **(B)** Increase followed by a stabilization (inverse-quadratic-asymptotic), and **(C)** Increase followed by a renormalization (inverse-quadratic).

Table S1. Effect of training on grey and white matter in trained mice and the effect of time in non-trained control mice. Whole-brain within-group analysis presenting the significant number of voxels ($P_{\text{FDR corr.}} < 0.01$ and < 0.001) together with the change in volume (mm^3).

grey matter (GM) changes				
	Trained mice ($n = 39$)		Non-trained controls ($n = 16$)	
	increase	decrease	increase	decrease
$P_{\text{FDR corr}} < 0.01$				
Linear	-	-	29327 (15.02)	-
Asymptotic	2832 (1.45)	139233 (71.29)	-	-
Quadratic	-	39493 (20.22)	-	-
$P_{\text{FDR corr}} < 0.001$				
Linear	-	-	14316 (7.33)	-
Asymptotic	1643 (0.84)	97106 (46.72)	-	-
Quadratic	-	15477 (7.91)	-	-
white matter (WM) changes				
	Trained mice ($n = 39$)		Non-trained controls ($n = 16$)	
	increase	decrease	increase	decrease
$P_{\text{FDR corr}} < 0.01$				
Linear	-	-	-	-
Asymptotic	26453 (13.54)	2510 (1.29)	-	-
Quadratic	91 (0.05)	-	-	-
$P_{\text{FDR corr}} < 0.001$				
Linear	-	-	-	-
Asymptotic	16590 (6.96)	1196 (0.61)	-	-
Quadratic	-	-	-	-

Movie S1. A forelimb-specific motor learning paradigm (single pellet skilled reaching task) providing examples of successful skilled reaches as well as unsuccessful attempts to reach and grasp the pellet.

