

1 **CyTOF-Lec: Single-cell Glycomics Analysis Reveals Glycan Features Defining Cells**
2 **Differentially Susceptible to HIV**

3

4 Tongcui Ma^{1, 2}, Matthew McGregor^{1, 2}, Leila B. Giron³, Guorui Xie^{1, 2}, Ashley F. George^{1, 2},
5 Mohamed Abdel-Mohsen^{3, *}, and Nadia R. Roan^{1, 2, *}

6

7 ¹ Gladstone Institutes, San Francisco, CA, USA

8 ² Department of Urology, University of California, San Francisco, CA, USA

9 ³ The Wistar Institute, Philadelphia, PA, USA

10

11 *Co-Correspondence:

12 nadia.roan@gladstone.ucsf.edu, mmohsen@wistar.org

13 ABSTRACT

14 High-parameter single-cell phenotyping has enabled in-depth classification and
15 interrogation of immune cells, but to date has not allowed for glycan characterization. Here, we
16 develop CyTOF-Lec as an approach to simultaneously characterize many protein and glycan
17 features of human immune cells at the single-cell level. We implemented CyTOF-Lec to
18 compare glycan features between different immune subsets from blood and multiple tissue
19 compartments, and to characterize HIV-infected cell cultures. Using bioinformatics approaches
20 to distinguish preferential infection of cellular subsets from viral-induced remodeling, we
21 demonstrate that HIV upregulates the levels of cell surface fucose and sialic acid in a cell-
22 intrinsic manner, and that memory CD4+ T cells co-expressing high levels of fucose and sialic
23 acid are highly susceptible to HIV infection. Sialic acid levels were found to distinguish memory
24 CD4+ T cell subsets expressing different amounts of viral entry receptors, pro-survival factors,
25 homing receptors, and activation markers, and to play a direct role in memory CD4+ T cells'
26 susceptibility to HIV infection. The ability of sialic acid to distinguish memory CD4+ T cells with
27 different susceptibilities to HIV infection was experimentally validated through sorting
28 experiments. Together, these results suggest that HIV remodels not only cellular proteins but
29 also glycans, and that glycan expression can differentiate memory CD4+ T cells with vastly
30 different susceptibility to HIV infection.

31 **INTRODUCTION**

32 Viruses generally need to hijack multiple host cell processes to complete their replication
33 cycle. This virus-mediated manipulation of host processes is called viral-induced remodeling,
34 and has been studied using a variety of approaches, most entailing virally-infected cell lines
35 analyzed in bulk. More recently, viral remodeling of primary cells was studied at the single-cell
36 level by characterizing, via cytometry by time of flight (CyTOF), human tonsillar T cells infected
37 *ex vivo* by varicella zoster virus (VZV) (Sen et al., 2014). Bioinformatics analyses of high-
38 dimensional CyTOF datasets of VZV-infected cells revealed that VZV infection elicits significant
39 host cell remodeling and alters the skin-trafficking property of subsets of infected cells. We
40 recently implemented a follow-up approach, termed predicted precursor as determined by
41 single-cell linkage using distance estimation (PP-SLIDE), to document HIV-induced remodeling
42 of T cells from blood, lymph node, and genital tract, define the subsets of cells most susceptible
43 to HIV infection, and characterize the phenotypes of HIV-infected cells in viremic and virally-
44 suppressed people living with HIV (Cavrois et al., 2017; Ma et al., 2020; Neidleman et al.,
45 2020b; Xie et al., 2021).

46 One important feature of PP-SLIDE is that it enables assessment of whether a receptor
47 differentially expressed on HIV-infected cells reflects HIV-induced remodeling or preferential
48 infection of cells harboring that pattern of expression of the receptor. For example, PP-SLIDE
49 established that HIV-infected T cells express low levels of CD4 and CD28 not because HIV
50 preferentially infects CD4^{low}CD28^{low} T cells, but rather because HIV downregulates these
51 receptors (Cavrois et al., 2017; Ma et al., 2020; Neidleman et al., 2020b; Xie et al., 2021), which
52 were independently shown to be down-modulated by HIV accessory genes (Garcia and Miller,
53 1991; Swigut et al., 2001). Other HIV-remodeled surface receptors identified by PP-SLIDE
54 include those involved in T cell migration to lymph nodes, and markers of Tfh cells (Cavrois et
55 al., 2017; Ma et al., 2020; Neidleman et al., 2020b; Xie et al., 2021). By contrast, the low levels
56 of surface CD127 expression on HIV-infected tonsillar T cells reflected preferential sparing of

57 CD127^{high} T cells from productive infection (Cavrois et al., 2017; Ma et al., 2020; Neidleman et
58 al., 2020b; Xie et al., 2021). Subsequent studies demonstrated that CD127^{high} memory T cells
59 preferentially undergo latent infection by HIV (Hsiao et al., 2020). These and other PP-SLIDE-
60 generated findings of preferential infection of cellular subsets have been experimentally
61 validated through a variety of sorting experiments (Cavrois et al., 2017; Ma et al., 2020;
62 Neidleman et al., 2020b; Xie et al., 2021). Together, these studies suggest that important
63 insights into HIV pathogenesis and persistence can be gained from characterizing HIV-induced
64 remodeling of primary cells at a single-cell level.

65 However, such remodeling studies – and in fact all phenotypic characterizations of
66 virally-infected cells to date – have only examined the cells' proteomes. Completely overlooked
67 has been the diverse collection of glycans that are assembled on the surface of all living cells
68 (Williams and Thorson, 2009). Cell surface glycosylation plays critical roles in regulating multiple
69 cellular processes and immune functions (Barrera et al., 2002), as well as cell-cell (de Freitas
70 Junior et al., 2011) and cell-pathogen (Colomb et al., 2019; Everest-Dass et al., 2012; Giron et
71 al., 2020c) interactions. Furthermore, multiple viruses (e.g., HSV-1, CMV, and HTLV1) have
72 been shown to alter the surface glycosylation of infected cells (Hiraiwa et al., 2003; Kambara et
73 al., 2002; Nystrom et al., 2007; Nystrom et al., 2009). To date, studies of host glycomes have
74 been limited to analysis of bulk cells, using techniques such as mass spectrometry, liquid
75 chromatography, and lectin microarrays (Chen et al., 2021). A recent study analyzing bulk
76 populations of cells with different glycan features demonstrated that they harbor different levels
77 of HIV transcripts (Colomb et al., 2020b), suggesting that the host cell glycome can affect HIV
78 susceptibility and/or replication. However, robust tools to deeply-characterize, at the single-cell
79 level, the glycan features of immune cells – including HIV-infected ones – are lacking to date.

80 In this study, we developed a new approach taking advantage of the high-parameter
81 analysis capabilities of CyTOF (Bendall et al., 2011), to phenotype cells simultaneously for
82 protein and glycan features. This was achieved through conjugating a collection of lectins

83 (proteins that specifically bind different types of glycans) to metal lanthanides, an approach that
84 has previously been validated at the bulk level (Leipold et al., 2009). We call our approach
85 CyTOF-Lec – as it combines traditional CyTOF (using lanthanide-conjugated antibodies) with
86 lanthanide-conjugated lectins to characterize surface glycosylation patterns of cells – and
87 applied it on both blood and tissue cells. Taking advantage of the high-dimensional nature of our
88 resulting CyTOF-Lec datasets and our PP-SLIDE analysis pipeline, we set out to address the
89 following two fundamental questions about HIV infection: 1) Does HIV preferentially infect cells
90 exhibiting distinct glycan features, and 2) To what extent does HIV remodel the glycan features
91 of its host cell?

92

93 **RESULTS**

94

95 **Development and validation of CyTOF-Lec**

96 To establish a methodology that could simultaneously characterize protein and glycan
97 features at the single-cell level, we developed a panel of lanthanide metal-conjugated antibodies
98 and lectins compatible with CyTOF, which we refer to as CyTOF-Lec ([Table S1](#)). As tonsils
99 provide an abundant source of both T and B cells, we used these cells for our initial validation of
100 the panel. First we confirmed that the staining patterns of the lanthanide-conjugated antibodies
101 were consistent with the known differential expression of their target antigens on tonsillar T vs.
102 B cells ([Figure S1](#)), and with results previously reported using CyTOF without lectin staining (Ma
103 et al., 2020). To ensure that the lectin staining did not displace or alter the antibodies bound to
104 their protein targets, we developed a protocol whereby surface antibody staining was completed
105 prior to lectin staining (see Methods). We confirmed that all five lectins (AOL, MAL-1, WGA,
106 UEA-1, ABA, see [Table S2](#)) conjugated to lanthanides stained both T and B cells ([Figure S1](#)).
107 Furthermore, we confirmed that antibody binding to CD3, CD4, and CD8 was the same whether
108 or not the specimens were subsequently stained with lectins ([Figure 1A](#)). To establish the

109 specificity of lectin binding, we assessed the effect of sialidase, which degrades cell-surface
110 sialic acid. As expected, binding by WGA and MAL-1, which detect different forms of sialic acid
111 (Table S2), was decreased after sialidase treatment of the cells (Figure 1B). By contrast,
112 binding by AOL and UEA-1, which detect different forms of fucose, and ABA, which detects T
113 antigen (Table S2), were all increased (Figure 1C-D). This was expected as removal of sialic
114 acid should enable better detection of these other glycan structures, and is consistent with prior
115 reports (Giron et al., 2020b).

116 To determine whether the conjugated lectins could detect differences in cell-surface
117 glycans between subsets of immune cells, we compared binding by each of the 5 lectins to B
118 cells, memory CD8+ T cells (CD8+ Tm cells), naïve CD8+ T cells (CD8+ Tn cells), memory
119 CD4+ T cells (CD4+ Tm cells), and naïve CD4+ T cells (CD4+ Tn cells). We assessed the
120 expression of glycans on these subsets not only among tonsillar cells, but also among PBMCs
121 and endometrial T cells for comparison. For all three sites, the fucose-specific lectins AOL and
122 UEA1 bound more to CD4+ Tm and CD8+ Tm cells than to their respective naïve counterparts,
123 although the difference only reached significance for AOL binding in tonsils (Figure 2A). These
124 results are consistent with the known role of core surface fucosylation for T cell activation, which
125 is more prominent within the memory compartment (Fujii et al., 2016; Liang et al., 2018). The
126 sialic acid binding lectins WGA and MAL1 also consistently bound to memory T cells more than
127 to their naïve counterparts, although this only reached statistical significance for MAL1 binding
128 of endometrial CD8+ T cells (Figure 2B). Binding by ABA did not show a consistent pattern
129 between memory vs. naïve T cells (Figure 2C). Binding by all five lectins was low on B cells,
130 particularly as compared to memory CD8+ T cells (Figure 2A-C).

131 These results establish CyTOF-Lec as a panel that can quantitate glycan and protein
132 expression at the single-cell level, and detect differential glycan expression between different
133 subsets of immune cells.

134

135 **HIV alters expression of fucose and sialic acid in a tissue site-dependent manner**

136 We next applied CyTOF-Lec to determine the extent to which glycans are remodeled on
137 the surface of HIV-infected cells. Fresh endometrial biopsies (n=6 donors) and whole tonsils
138 from tonsillectomies (n=4 donors) from HIV seronegative individuals were processed into single-
139 cell suspensions, and then immediately exposed to the HIV-F4.HSA, a replication-competent
140 and Nef-sufficient virus that harbors the CCR5-tropic 109FPB4 transmitted/founder (T/F) Env
141 (Cavrois et al., 2017). In addition, PBMCs were isolated from whole blood of HIV seronegative
142 individuals (n=4 donors) and exposed to HIV-F4.HSA. To limit potential confounding effects of
143 ex vivo induced T cell activation, infection was carried on unstimulated cells. Infection was
144 allowed to proceed for 3 days, after which the cells, as well as cells from paired uninfected
145 control cultures, were harvested for CyTOF-Lec analysis. CD4+ T cells were identified as intact,
146 live singlet CD3+CD8- cells, while infected cells were identified as intact, live singlet CD3+CD8-
147 CD4^{Low} cells ([Figure S2](#)), to account for the down-regulation of cell-surface CD4 by HIV (Doms
148 and Trono, 2000; Garcia and Miller, 1991; Lama, 2003; Piguet et al., 1999). Consistent with our
149 prior studies (Ma et al., 2020), endometrial T cells were the most susceptible to HIV-F4.HSA
150 infection ([Figure S3A](#)). HIV-infected cells from all three sites were remodeled, as established
151 qualitatively by assessing their locations on a tSNE ([Figure S3B](#)) as well as quantitatively using
152 SLIDE (Sen et al., 2014) ([Figure S3C](#)). The remodeling of the infected cells is consistent with
153 prior studies (Cavrois et al., 2017; Ma et al., 2020; Xie et al., 2021), and confirms that CyTOF-
154 Lec is a valid panel for the analysis of remodeling.

155 To identify specific glycans that were remodeled, we implemented PP-SLIDE to identify
156 the Predicted Precursor (PRE) cells (Cavrois et al., 2017; Ma et al., 2020; Neidleman et al.,
157 2020b; Xie et al., 2021). PRE cells harbor the predicted original (pre-remodeling) features of T
158 cells infected by HIV and are identified using k-nearest neighbor approaches by matching, in the
159 high-parameter CyTOF space, the T cells in the uninfected culture most similar in phenotype to
160 every HIV-infected cell ([Figure S4A](#)). As expected (Ma et al., 2020), the PRE cells from all 3

161 sites were preferentially memory CD4+ T cells (Figure S4B, S4C). Having identified the PRE
162 cells, we then determined which glycans, if any, were remodeled by HIV infection. This was
163 accomplished by assessing for lectins that differentially bound the PRE as compared to the
164 infected cells. Glycans were quantitated by reporting the median signal intensity (MSI) of their
165 corresponding lectins among each population of cells from each donor. Interestingly, we found
166 that both fucose and sialic acid were upregulated during HIV infection. Infected cells from all 3
167 sites potently upregulated total fucose as assessed by AOL binding (Figure 3A), although this
168 upregulation did not reach statistical significance (after correcting for multiple comparisons) for
169 the endometrium. Binding by UEA1, however, was not significantly different between infected
170 and PRE cells, and tended to be downregulated in the endometrium and tonsils, and
171 upregulated in PBMCs (Figure 3A). As UEA1 binds α 1-2 branched fucose (Table S2), these
172 results suggest that fucosylation is globally upregulated upon infection of tissue CD4+ T cells
173 with HIV, though not the type of fucosylation that creates α 1-2 branched structure. In contrast to
174 the fucose-binding lectins, both sialic acid-binding lectins were increased on infected compared
175 to PRE cells (Figure 3B), and this was observed for all three sites although results did not reach
176 statistical significance for the endometrium. These results are consistent with an upregulation of
177 both total sialic acid (recognized by WGA; which also binds to *N*-acetylglucosamine (GlcNAc))
178 (Schwarz et al., 1999) and α 2-3 linked sialic acid (recognized by MAL-1) by HIV during infection.
179 In contrast to fucose and sialic acid, we did not observe any marked upregulation of T antigen
180 on infected cells (Figure 3C).

181

182 **HIV preferentially infects memory CD4+ T cells with higher fucose and sialic acid levels**

183 In addition to revealing antigens that have been remodeled by infection, the PP-SLIDE
184 approach can also identify antigens that are differentially expressed on cells before infection. In
185 particular, antigens more abundant on PRE than uninfected cells correspond to antigens

186 preferentially expressed on HIV-susceptible cells, while those less abundant on PRE cells
187 correspond to those preferentially expressed on HIV-resistant cells. We used as our uninfected
188 population CD4+ Tm cells, excluding CD4+ Tn, CD8+ Tm, and CD8+ Tn cells because these
189 latter three populations harbored negligible numbers of HIV-susceptible cells ([Figure S4B](#)). This
190 exclusion was important because otherwise antigens differentially expressed between
191 uninfected and PRE cells could just reflect phenotypic differences between these major subsets.
192 Significant differences in lectin binding between PRE and uninfected (CD4+ Tm) cells were only
193 observed in PBMCs, with AOL, UEA1, WGA, and MAL-1 all bound at significantly higher levels
194 on PRE cells ([Figure 3](#)). Tonsillar PRE cells also bound these lectins more than their uninfected
195 counterparts did, but these results did not reach statistical significance. Endometrial PRE cells
196 did not show significant differences in lectin binding relative to their uninfected counterparts.

197 These results together with the remodeling analysis suggest that in blood and tonsils
198 (but not endometrium), HIV preferentially infects memory CD4+ T cells with higher levels of
199 fucose and sialic acid, and then further upregulates these cell surface glycans through viral
200 remodeling.

201

202 **HIV infection alters the surface glycome of bystander immune cells in tonsils**

203 Remodeling of cells can occur in a cell-intrinsic manner as a result of direct infection, but
204 may also result from bystander effects. For example, the inflammatory environment elicited by
205 HIV replication may elicit phenotypic changes in bystander (uninfected) cells in the infected
206 culture. We therefore assessed whether HIV infection elicits any glycosylation alterations in
207 bystander cells. To identify bystander memory CD4+ T cells, we gated the infected culture on
208 CD4+ Tm cells that were HSA-negative. Increased binding by all five lectins was observed
209 among bystander tonsillar CD4+ Tm cells relative to their counterparts from uninfected cultures
210 ([Figure S5](#)), suggesting that in at least some tissue sites, remodeling of glycans on bystander
211 CD4+ T cells occurs. Interestingly, however, relative to the bystander CD4+ Tm cells, the

212 infected cells still exhibited higher levels of total fucose and sialic acid (as assessed by AOL and
213 WGA binding, respectively), suggesting possible additional cell-intrinsic glycan remodeling by
214 replicating virus (Figure S5).

215 To examine whether HIV alters glycan expression in other bystander cellular subsets,
216 we compared glycan levels on multiple subsets of B and T cells from the uninfected vs. infected
217 cultures (Figure S6). Only tonsils exhibited significant differences between uninfected vs.
218 bystander cells, and these differences were observed among all subsets. For example, sialic
219 acid levels (as assessed by both WGA and MAL-1 binding) were significantly higher in all the
220 analyzed subsets of bystander B, CD8+, and CD4+ T cells, relative to their counterparts from
221 uninfected cultures. Fucose expression was also uniformly higher among bystander cells,
222 although the difference among CD8+ Tm cells did not reach statistical significance. Differences
223 in levels of T antigen were also observed among B cells, CD8+ T m cells, and CD4+ Tm cells
224 (Figure S6). These glycan changes may be elicited by HIV infection-induced inflammatory
225 cytokines (Breen et al., 1990; Contreras et al., 2003; Sugawara et al., 2019), which can alter cell
226 surface glycosylation patterns (Dewald et al., 2016; Giron et al., 2020a).

227

228 **HIV preferentially infects memory CD4+ T cells from tonsils and PBMCs co-expressing
229 high levels of fucose and sialic acid**

230 The data presented thus far suggest that although there are differences between blood
231 vs. the tissue sites examined, fucose and sialic acid are upregulated on HIV productively-
232 infected cells, and CD4+ T cells expressing high levels of fucose or sialic are preferentially
233 targeted for infection. We next conducted manual gating to assess whether the HIV-susceptible
234 cells express high levels of both fucose or sialic acid, or whether they belong to distinct subsets
235 of fucose+ vs. sialic acid+ cells. We focused on the AOL and WGA datasets, as they cover total
236 fucose and different forms of sialic acid, respectively. We first examined, within the HIV-infected
237 cultures, the infection rates among CD4+ Tm cells expressing high vs. low levels of AOL or

238 WGA. In both blood and both tissue compartments, AOL^{High} and WGA^{High} cells exhibited
239 significantly higher HIV infection rates than did AOL^{Low} and WGA^{Low} cells, respectively (Figure
240 [4A](#)). To assess the extent to which this high level of infection was due to preferential infection of
241 the AOL^{High} and WGA^{High} CD4+ Tm cells, we next compared, among the uninfected CD4+ Tm
242 cells and PRE cells, the percentages of cells that were AOL^{High}, WGA^{High}, or AOL^{High} WGA^{High}.
243 Consistent with the MSI data, the percentages of cells expressing high levels of AOL or WGA
244 were higher among PRE cells in both tonsils and PBMCs ([Figure 4B](#)), suggesting preferential
245 infection of fucose- and sialic acid-expressing cells by HIV at these sites. Interestingly, AOL^{High}
246 WGA^{High} cells were also significantly over-represented among PRE cells at these sites ([Figure](#)
247 [4B](#)), suggesting that the HIV-susceptible Tm cells co-express fucose and sialic acid. Indeed,
248 visualization of the PRE cells by tSNE revealed cells binding high levels of both AOL and WGA
249 among the tonsillar and blood compartments ([Figure 4C](#)). Although PRE cells from the
250 endometrium did not preferentially express fucose or sialic acid ([Figure 4B](#)), PRE cells co-
251 expressing AOL and WGA could be detected from this site ([Figure 4C](#)), suggesting the
252 endometrium, like the other two sites, harbors HIV-susceptible cells co-expressing fucose and
253 sialic acid. To better understand why the HIV-susceptible endometrial CD4+ Tm cells, unlike
254 their tonsillar and blood counterparts, did not *preferentially* express high levels sialic acid or
255 fucose, we compared the levels of WGA and AOL binding on uninfected CD4+ Tm cells from
256 the three sites. This analysis revealed WGA, but not AOL, to be expressed at the highest levels
257 on the endometrial cells ([Figure 4D](#)). These results suggest that the reason WGA^{high} cells are
258 not preferentially targeted for infection in the endometrium may be that endometrial CD4+ Tm
259 cells all express high levels of sialic acid. Fucose levels, however, are higher in PBMCs than
260 endometrium, suggesting that the fact that AOL^{high} endometrial CD4+ Tm cells aren't
261 preferentially targeted for infection cannot be explained by exceptionally high levels of fucose
262 expression.

263 We then implemented a more global method of subset identification, using FlowSOM
264 (Van Gassen et al., 2015). We combined the uninfected CD4+ Tm and PRE cells from all the
265 donors, and identified 20 clusters for each of the 3 sites (Figure 5A). Endometrial T cells, which
266 had the highest population of PRE cells, were represented among most of the 20 endometrial
267 cell clusters. To determine the extent of enrichment of each cluster among PRE cells, we
268 calculated the ratio of the size of each cluster in the PRE vs. total uninfected CD4+ Tm cells.
269 Enriched clusters identified in this manner (corresponding to those preferentially harboring HIV-
270 susceptible cells, see Methods) were detected among all three sites, with 8 clusters from the
271 endometrium, 9 from tonsils, and 6 from PBMCs (Figure 5B). Interestingly, the fold-enrichment
272 was highest among the tonsils (reaching almost 20-fold in one donor), suggesting that of all 3
273 sites, this one exhibits the most preferential selection of subsets for infection. Compared to the
274 other two sites, the tonsils also harbored more enriched clusters with significantly elevated
275 levels of fucose, sialic acid, and T antigens relative to their expression levels on uninfected
276 CD4+ Tm cells (Figure S7). To assess whether the enriched clusters co-express fucose and
277 sialic acid, we assessed by tSNE heatmaps the levels of AOL and WGA binding on
278 concatenated files of all the enriched clusters from each site. This analysis revealed regions of
279 the tSNEs co-expressing high levels of fucose and sialic acid (Figure 5C), confirming the
280 manual gating data that HIV-susceptible cells co-express these two classes of glycans.

281

282 **Total sialylated glycan is a valid marker of highly-susceptible of CD4+ Tm cells
283 expressing HIV entry receptors and activation markers, and may play a direct role in
284 susceptibility**

285 The results presented thus far suggest that CD4+ Tm cells from endometrium, tonsils,
286 and blood are preferentially susceptible to HIV infection compared to their naïve counterparts,
287 but only in tonsils and blood can high levels of fucose and sialic acid further distinguish HIV-
288 susceptible CD4+ Tm cells from non-susceptible CD4+ Tm cells. To experimentally validate

289 these findings, we conducted sorting experiments. As endometrial and tonsillar T cells do not
290 maintain good viability after sorting, we limited these studies to blood specimens. CD4+ Tm
291 cells from blood expressing low (WGA^{Low}), medium (WGA^{Medium}), or high (WGA^{High}) levels of
292 sialic acid were isolated through sorting (Figure 6A). These sorted populations (along with total
293 CD4+ Tm cells as a comparison control) were then exposed to HIV-F4.HSA for 3 days and then
294 assessed by FACS for infection rates. Infection rates directly correlated with the expression
295 levels of sialic acid, with the WGA^{Low} cells being the least susceptible and the WGA^{High} the most
296 (Figure 6B, C). These results provide experimental confirmation that in PBMCs, differentially
297 susceptible CD4+ Tm cells can be isolated based solely on sialic acid expression levels.

298 To better understand the mechanism behind the differential susceptibility of cells
299 expressing high vs. low levels of sialic acid, we returned to our CyTOF datasets and manually
300 gated on CD4+ Tm cells expressing high vs. low levels of total sialic acid as assessed by WGA
301 binding, to assess what was differentially expressed among these two populations. The WGA^{High}
302 cells preferentially expressed fucose (as assessed by AOL binding) (Figure 6D), consistent with
303 earlier observations of co-expression of fucose and sialic acid on HIV-susceptible CD4+ T cells.
304 Relative to their WGA^{Low} counterparts, the WGA^{High} cells also preferentially expressed higher
305 levels of CD4 and the HIV co-receptor CCR5 (Figure 6E), potentially explaining the increased
306 susceptibility of these cells to infection. As activated T cells are known to be preferentially
307 susceptible to infection (Stevenson et al., 1990), we also compared expression levels of
308 activation markers on the WGA^{Low} and WGA^{High} cells, and found that six markers of T cell
309 activation (HLADR, CD69, CD38, CD25, CD28, and ICOS) were all elevated on the latter
310 population (Figure 6F). To further validate the notion that the high susceptibility of WGA^{High}
311 CD4+ Tm cells is closely associated with the activation status of these cells, we phenotyped
312 CD4+ Tm cells from resting vs. PHA-stimulated PBMCs. As expected, the stimulated CD4+ Tm
313 cells expressed higher levels of multiple activation markers (Figure S8A). Importantly, the
314 stimulated CD4+ Tm cells also bound higher levels of WGA, consistent with upregulation of

315 sialic acid upon T cell activation (Figure S8B). Furthermore, activated cells, as defined as those
316 expressing high levels HLADR, CD69, CD38, CD25, CD28, or ICOS, all expressed higher levels
317 of sialic acid as compared to cells with low levels of these activation markers (Figure S8C).
318 These data together strongly support the notion that high sialic expression identifies the most
319 activated subsets of CD4+ Tm cells.

320 We also considered the possibility that WGA^{High} cells may support higher levels of
321 productive infection because these cells better survive the cytopathic effects of HIV replication.
322 Consistent with this hypothesis, we found that WGA^{High} cells expressed higher levels of CD127,
323 a marker of long-lived self-renewing cells, and Ox40 and BIRC5, which are involved in
324 protecting HIV-infected cells from apoptosis (Kuo et al., 2018) (Figure 6G). In comparison,
325 markers preferentially expressed on the WGA^{Low} cells were those of central memory T cells,
326 including CD27, CCR7, and CD62L (Figure 6H). Additional markers in our CyTOF panel
327 differentially expressed between the WGA^{Low} and WGA^{High} cells included other glycans,
328 transcription factors, homing receptors, and exhaustion markers (Figure S9).

329 Although these results suggest that high levels of sialic acid may simply be a biomarker
330 of the most HIV-susceptible CD4+ Tm cells, it did not rule out the possibility that sialic acid plays
331 a direct role in HIV susceptibility. To test this, we tried two approaches to diminish cell-surface
332 sialic acid expression: transient treatment with either sialic acid synthetase inhibitor P-3F_{AX}-
333 Neu5Ac or sialidase. Inhibitor treatment did not decrease cell-surface sialic acid levels (Fig.
334 S8D), but sialidase did (Figure 6I). We therefore exposed mock- or sialidase-treated cells to
335 HIV-F4.HSA for 3 days and then assessed infection rates by FACS. We found that infection
336 rates were decreased in a sialidase dose-dependent manner (Figure 6J, K). These results
337 suggest that a single glycan – sialic acid – may not only be capable of distinguishing memory
338 CD4+ T cells with vastly different phenotypic features and HIV susceptibility but may also play a
339 direct role in promoting infection by the virus.

340

341 **DISCUSSION**

342

343 We describe here the development and implementation of CyTOF-Lec, a high-parameter
344 single-cell method to simultaneously quantitate multiple glycans and proteins on the surface of
345 human cells. We used CyTOF-Lec to identify glycomic and phenotypic differences between
346 immune subsets from blood and multiple tissues, and between uninfected and HIV-infected
347 CD4+ T cells. Moreover, by performing PP-SLIDE bioinformatics on our datasets of HIV-infected
348 blood and tissue cells, we identified unique glycan features characteristic of HIV-susceptible
349 CD4+ T cells, and identified glycan structures that were remodeled as a result of cell-intrinsic
350 HIV replication.

351 Multiple studies have demonstrated remodeling of host cells upon HIV infection. HIV
352 infection of cell lines (Matheson et al., 2015) as well as primary cells (Cavrois et al., 2017; Ma et
353 al., 2020; Xie et al., 2021) leads to up- and down-regulation of a variety of host proteins,
354 reflecting the ability of the virus to hijack host processes to complete its replication cycle. We
355 demonstrate in the current study that HIV also remodels the surface glycome of infected cells.
356 By implementing PP-SLIDE to discern antigens differentially expressed as a result of
357 remodeling from those differentially expressed as a reflection of HIV selection, we found that
358 both fucose and sialic acid were upregulated on CD4+ T cells after infection. As core
359 fucosylation on the cell surface is critical for CD4+ T cell activation (Fujii et al., 2016; Liang et
360 al., 2018) and activated cells are more permissive to HIV infection (Stevenson et al., 1990), HIV
361 may upregulate fucosylation to maintain an elevated state of activation facilitating the
362 completion of its replication. We cannot rule out, however, that upregulation of fucose is a
363 byproduct of T cell activation, and not a direct consequence of HIV infection. Of note,
364 fucosylation is also important for lymphocyte trafficking (Colomb et al., 2020b), and the
365 upregulation of fucose on infected cells, even if not directly promoting viral replication, may

366 facilitate the circulation of infected cells from blood into tissues where ample populations of HIV-
367 permissive CD4+ T cells reside.

368 Sialic acid, like fucose, was also upregulated as a result of HIV infection. In general,
369 sialylated glycans on the surface of cells can elicit an immunosuppressive response by effector
370 cells of the immune system. For example, binding of sialic acid on the surface of cancer cells to
371 Siglec-7 and Siglec-9 proteins on the surface of NK cells can diminish NKG2D-mediated
372 activation of the NK cells (Xiao et al., 2016). Moreover, NKG2D may play an important role in
373 NK cell-mediated killing of HIV-infected cells and NKG2D ligands are actively downregulated by
374 HIV Nef to escape immune recognition (Jost and Altfeld, 2012). We postulate that through a
375 combination of upregulating sialic acid and down-regulating NKG2D ligands, HIV may evade
376 NKG2D-mediated killing by NK cells.

377 Interestingly, sialic acid was also preferentially expressed on the memory CD4+ T cells
378 that were preferentially targeted for infection by HIV. These results suggest that the high levels
379 of sialic acid on HIV-infected cells results from preferential infection of cellular subsets with high
380 levels of cell-surface sialic acid, followed by further upregulation of this glycan. Interestingly,
381 however, the preferential selection of WGA^{high} memory CD4+ T cells for HIV infection was only
382 observed in tonsils and PBMCs, but not in the endometrium (Fig. 4B). Because memory CD4+
383 T cells from the endometrium express higher levels of cell-surface sialic acid than those from
384 tonsils or PBMCs (Fig. 4D), most endometrial memory CD4+ T cells may already have the
385 WGA^{high} HIV-permissive phenotype, resulting in minimal selection of these cells by HIV. Indeed,
386 this would be consistent with the many subsets of endometrial memory CD4+ T cells that are
387 susceptible to HIV infection, as compared to a markedly lower number of HIV-susceptible
388 memory CD4+ T cell subsets from the blood compartment (Ma et al., 2020). It is also worthwhile
389 to note that the endometrium is a unique tissue in that it serves as the site of blastocyst
390 implantation and development of a semi-allogenic fetus. The unusually high levels of sialic acid

391 on immune cells from this tissue may be important to prevent immune-mediated rejection of
392 spermatozoa or the developing fetus.

393 Importantly, HIV's preference for cells expressing high levels of sialic acid was validated
394 by demonstrating via sorting experiments that blood-derived memory CD4+ T cells expressing
395 high levels of WGA were significantly more susceptible to infection than those expressing low
396 levels of WGA. The WGA^{high} population exhibits many features that could explain its high
397 susceptibility: higher expression levels of HIV receptor/co-receptor, higher activation status, and
398 higher expression of markers associated with survival of HIV-infected cells. However, our
399 somewhat surprising finding that sialidase-treated cells are more poorly susceptible to HIV
400 additionally suggest that sialic acid may exert a direct role in promoting HIV infection; the
401 precise step in the viral replication cycle affected by sialic acid should be interrogated in future
402 studies. Regardless, since thus far markers that distinguish memory CD4+ T cells with differing
403 susceptibilities to HIV have been difficult to identify, our findings that WGA may be useful as a
404 tool to isolate a highly susceptible population of CD4+ T cells could be of practical use for the
405 field. On a more fundamental level, our results suggest that host glycan expression can very
406 much influence HIV replication dynamics.

407 Of note, we cannot rule out the possibility that the high levels of fucose and sialic acid on
408 HIV-infected cells may also result in part from binding of HIV virions to the surface of the
409 infected CD4+ T cells. HIV particles contain cell-derived glycolipids, including the sialic acid-
410 containing GM3 ganglioside (Puryear et al., 2012). Furthermore, HIV gp120 is heavily N-
411 glycosylated, with a majority of high-mannose N-glycan structures and a lower proportion of
412 complex N-glycans carrying lactosamine residues and terminal sialic acid. Sialic acid on gp120
413 is recognized by multiple members of the Siglec family of lectins, and these lectins can facilitate
414 *trans*- or cell-to-cell infection of CD4+ T cells (Izquierdo-Useros et al., 2012; Varchetta et al.,
415 2013; Zou et al., 2011). However, we note that our studies characterizing infected cells defined
416 these cells as those that express HSA – which is not on the surface of input virions – and that

417 have downregulated cell-surface CD4, a hallmark of productive HIV infection. The fact that we
418 found unique glycan features of these cells relative to bystander CD4+ T cells suggests that
419 productively-infected cells have distinct cell-surface glycan features in a manner not attributable
420 to just surface virion sticking.

421 Our study focused on characterizing cells productively-infected with HIV-1, identified as
422 those expressing on their cell surface the LTR-driven HSA reporter protein. We envision,
423 however, that CyTOF-Lec will also be useful for studying the HIV reservoir that persists despite
424 antiretroviral therapy (ART). Recent observations suggest that a significant portion of the
425 reservoir in ART-suppressed people living with HIV (PLWH) is transcriptionally active,
426 expressing short and incomplete HIV transcripts in the absence of *ex vivo* stimulation (Yukl et
427 al., 2018). Interestingly, we recently demonstrated using cells from ART-suppressed PLWH that
428 CD4+ T cells expressing high levels of fucose contain significantly more transcriptionally-active
429 HIV reservoir cells than those expressing low levels of fucose (Colomb et al., 2020a). With the
430 development of CyTOF-Lec as a single-cell analysis tool, we will now be able to interrogate
431 glycan expression patterns on transcriptionally-active, as well as transcriptionally-silent HIV
432 reservoir cells. Specifically, we envision combining CyTOF-Lec with PP-SLIDE analysis of
433 reservoir cells from PLWH. This will entail using bioinformatics approaches to trace *ex vivo*
434 reactivated cells to their original pre-stimulation states by PP-SLIDE, an approach we previously
435 described and validated experimentally (Neidleman et al., 2020b), but under conditions where
436 we incorporate assessment of the glycan features of the reservoir cells with the CyTOF-Lec
437 panel.

438 Beyond HIV, CyTOF-Lec has potentially wide-ranging applications. Glycosylated host
439 receptors play important roles in enabling the attachment of virus. For example, influenza virus
440 enters cells by binding of its hemagglutinin (HA) protein to terminal sialic acid moieties attached
441 to surface proteins of host cells (Li et al., 2021). The novel beta-coronavirus SARS-CoV-2 may
442 also exploit host cell glycosylation for infection, as its primary receptor ACE2 is heavily

443 glycosylated. Indeed, blockage of *N*- and *O*-glycan synthesis on the host cell can inhibit SARS-
444 CoV-2 entry by diminishing the ability of the viral spike protein to bind ACE2 (Yang et al., 2020).
445 Better understanding the surface glycans of virally-susceptible host cells through single-cell
446 glycomic analysis by CyTOF-Lec, in conjunction with identifying the protein backbones
447 harboring the glycans, will improve our understanding of viral pathogenesis and can potentially
448 lead to novel prophylactic or therapeutic agents for clinically-relevant viral pathogens.

449 Further development of CyTOF-Lec taking advantage of next-generation sequencing
450 approaches will also be valuable for developing the tools to better understand how glycan
451 expression associates with or directly regulates host cell processes. A recent report combined
452 glycomic analysis with single-cell RNAseq (Kearney et al., 2021) by incubating cells with a
453 biotinylated version of the lectin L-Pha followed by a DNA-barcoded anti-biotin antibody.
454 Subsequent droplet encapsulation and sequencing revealed the transcriptomes of cells with
455 different levels of L-Pha binding. We envision that by directly conjugating lectins to barcoded
456 DNA oligos, we can expand the numbers of lectins we can simultaneously monitor.
457 Furthermore, additional inclusion of DNA-barcoded antibodies (Peterson et al., 2017; Stoeckius
458 et al., 2017) will enable simultaneous surface proteome analysis. Such a technology, while not
459 as high-throughput, scalable, and cost-effective as CyTOF-Lec, will enable a genome-wide
460 analysis of cellular processes associated with differential surface glycosylation.

461

462 **METHODS**

463 **Tissue processing and cell isolation**

464 Endometrial tissues were obtained from the Women's Health Clinic of Naval Medical Center
465 Portsmouth (NMCP) in Virginia (CIP # NMCP.2016.0068) under standard operating procedures
466 (Fassbender et al., 2014). The biopsies were transported to San Francisco in MCDB-105
467 (Sigma-Aldrich M6395) containing 10% heat-inactivated fetal bovine (FBS) and 1%
468 Penicillin/Streptomycin (P/S). The collection of endometrial T cells was performed similar to

469 recently described methods (Ma et al., 2020). Briefly, endometrial tissue was washed once with
470 SCM media, which consisted of 75% phenol red-free Dulbecco's Modified Eagle's Medium
471 (DMEM, Life Technologies), 25% MCDB-105, 10% FBS, 1% L-glutamine with P/S (Gemini), 1
472 mM sodium pyruvate (Sigma-Aldrich), and 5 mg/ml insulin (Sigma-Aldrich). The tissues were
473 then digested at 37°C for 2 hours under rotation in SCM media mixed at a 1:1 dilution with
474 Digestion Media, which consisted of HBSS containing Ca²⁺ and Mg²⁺ supplemented with 3.4
475 mg/ml collagenase type 1 (Worthington Biochemical Corporation LS004196) and 100 U/ml
476 hyaluronidase (Sigma-Aldrich H3631). Cells were then filtered through a Falcon 40-µm cell
477 strainer. The filtrate was then centrifuged, washed once with R10 media (RPMI 1640 containing
478 10% FBS and 1% P/S), and the cells were cultured in 96-well U-bottom polystyrene plates at a
479 concentration of 10⁶ cells/well in 200 µl R10 media.

480

481 **Processing of human lymphoid aggregate cultures (HLAC)**

482 Human tonsils obtained from the Cooperative Human Tissue Network (CHTN) were processed
483 similarly to methods recently described (Ma et al., 2020). Briefly, tonsils were rinsed in tonsil
484 media (RPMI supplemented with 15% FBS, 100 µg/ml gentamicin, 200 µg/ml ampicillin, 1 mM
485 sodium pyruvate, 1% non-essential amino acids (Mediatech), 1% Glutamax (Thermo Fisher),
486 and 1% Fungizone (Invitrogen)), dissected into small pieces, and then pressed through a 40-µm cell
487 strainer using a syringe plunger. The cells were then filtered through a second 40-µm cell
488 strainer, centrifuged, and resuspended with 200 µl tonsil media per 10⁶ cells. For sialidase
489 treatment, 10⁶ tonsil cells were resuspended in 1 ml of tonsil media, and then treated with 20 µg
490 of the sialidase for 1 hour at 37°C. The cells were washed once with PBS and processed for
491 CyTOF analysis as described further below.

492

493 **PBMC isolation**

494 PBMCs were isolated from reduction chambers obtained from Vitalant Research Institute and
495 Stanford Blood Bank using Ficoll-Hypaque density gradients, and then cultured in R10. For
496 sorting experiments, CD4+ T cells were purified by negative selection using the EasySep™ CD4
497 enrichment kit (Stem cell Technologies), and further enriched for memory cells by depletion of
498 naïve T cells using CD45RA beads (Miltenyi Biotec), prior to lectin staining and sorting as
499 described further below. Where indicated, PBMCs were first stimulated for 3 days with 5 µg/ml
500 PHA in the presence of 10 IU/ml IL-2 prior to CyTOF-Lec analysis.

501

502 **Virus preparation and infection assays**

503 Viral stocks of the previously described HIV-1 reporter virus F4.HSA (Cavrois et al., 2017) were
504 prepared similarly to recently described methods (Ma et al., 2020). Briefly, 293T cells were
505 seeded in T175 flasks and transfected using polyethylenimine (PEI, Polysciences) with F4.HSA
506 proviral DNA (70 µg / flask) (Longo et al., 2013). Two days after transfection, supernatants from
507 293T cultures were harvested, filtered through a 0.22-µm filter and concentrated by
508 ultracentrifugation at 20,000 rpm (Beckman Coulter Optima XE-90) for 2 hours at 4°C. p24^{Gag}
509 concentrations were quantitated using the Lenti-X p24^{Gag} Rapid Titer Kit (Clontech). For
510 infection, 10-20 ng/ml p24^{Gag} of F4.HSA was incubated with 10⁶ cells in 200 µl R10 media in 96-
511 well U-bottom polystyrene plates. After 2 hours, cells were fed with fresh R10 media and
512 cultured for another 3 days. Where indicated, PBMCs were first treated with the sialic acid
513 inhibitor P-3F_{AX}-Neu5Ac (Tocris) for 24 hours, or sialidase for 1 hour, prior to infection with
514 F4.HSA.

515

516 **Flow cytometry**

517 For sorting experiments, purified memory CD4+ cells (see above) were washed once with FACS
518 buffer in 96-well V-bottom polystyrene plates, and then stained at room temperature for 15 min
519 with a 1:200 dilution of the LIVE/DEAD Zombie Aqua™ Fixable Viability Kit (Biolegend) reagent

520 to exclude dead cells. The cells were washed and stained for 30 min at 4°C with 5 µg/ml FITC-
521 WGA (Vector Laboratories). After the wash, cells were resuspended at a concentration of 10
522 million cells/ml, and sorted on an Aria II flow cytometer (BD Biosciences) into WGA^{low},
523 WGA^{medium}, and WGA^{high} populations. Total CD4+ Tm cells were also sorted as a control. The
524 purity of the sorted cells was confirmed by analysis on Aria II immediately after sorting. All
525 sorted populations were infected with F4.HSA for 3 days. For FACS analysis of the samples,
526 0.1-1 million cells of each sample were transferred into 96-well V-bottom polystyrene plates,
527 washed once with FACS buffer (PBS containing 2% FBS and 2 mM EDTA), and stained for 30
528 min on ice with an antibody cocktail consisting of APC/Cy7-CD3 (SK7, Biolegend), PE/Cy7-CD4
529 (A161A1, Biolegend), APC-CD8 (SK1, Biolegend), FITC-CD24 (HSA, M1/69, BD Biosciences),
530 and the LIVE/DEAD Zombie Aqua™ Fixable Viability Kit (Biolegend). The cells were then
531 washed twice, fixed with 1% PFA (Electron Microscopy Sciences) in PBS, and analyzed by flow
532 cytometry on an LSRFortessa™ (BD Biosciences).

533

534 **CyTOF data generation**

535 A 39-parameter CyTOF panel was designed for this study, which included antibodies against
536 markers of T cell differentiation states, activation markers, transcription factors, and homing
537 receptors, and an antibody against HSA to identify productively-infected cells. The panel also
538 included numerous lectins enabling the characterization of glycan features (Table S2). X8
539 antibody-labeling kits (Fluidigm) were used to label antibodies that required in-house
540 conjugation. The conjugated antibodies were quantitated for protein content by Nanodrop
541 (Thermofisher). Prior to storage at 4°C, specimens were diluted 1:1 using a PBS-based
542 Antibody Stabilizer (Boca Scientific) supplemented with 0.05% sodium azide.

543 Preparation of samples for CyTOF staining was conducted as previously described (Ma
544 et al., 2020; Neidleman et al., 2020a; Neidleman et al., 2020b). Briefly, 1-6 million cells were
545 washed once with CyFACS (metal contaminant-free PBS (Rockland) supplemented with 0.1%

546 bovine serum albumin and 0.1% sodium azide). Where indicated, cells were first treated with 20
547 µg/ml of sialidase or PBS as control and incubated for 1 hour at 37°C. Sialidase was prepared
548 in-house using the *Vibrio cholerae* *nanH* gene cloned into the pCVD364 vector, which was
549 provided by Dr. Eric R. Vimr from the University of Illinois Urbana (Taylor et al., 1992). After
550 centrifugation, the cells were resuspended with contaminant-free PBS (Rockland) supplemented
551 with 2 mM EDTA (PBS/EDTA), and then treated with 25 µM cisplatin (Sigma-Aldrich) in 4 ml
552 PBS/EDTA for 60 seconds at room temperature. The samples were then immediately quenched
553 with CyFACS, centrifuged, resuspended in 2% PFA in CyFACS, and incubated for 10 min at
554 room temperature. The cells were then washed three times with CyFACS, resuspended in 100
555 µl of CyFACS containing 10% DMSO, and frozen at -80°C until CyTOF staining.

556 To stain multiple specimens in the same reaction, cells were barcoded using the Cell-ID
557 20-Plex Pd Barcoding Kit according to manufacturer's instructions (Fluidigm). Briefly, 1-3 million
558 cisplatin-treated cells were thawed and transferred into Nunc 96 DeepWell polystyrene plates
559 (Thermo Fisher). After two washes with Barcode Perm buffer (Fluidigm), the cells were
560 incubated with selected barcodes for 30 min. Cells were then washed with 0.8 ml Maxpar® Cell
561 Staining buffer (Fluidigm) followed by 0.8 ml CyFACS. Barcoded samples were combined and
562 pelleted, and then blocked on ice for 15 min with sera from mouse (Thermo Fisher), rat (Thermo
563 Fisher), and human (AB serum, Sigma-Aldrich). Cells were then washed twice with CyFACS,
564 and stained on ice for 45 min with a cocktail of CyTOF surface-staining antibodies ([Table S1](#)) in
565 a final volume of 100 µl / well. Cells were then washed three times with CyFACS buffer, and
566 stained on ice for 45 min with the cocktail of lanthanide-conjugated lectins ([Table S1](#)) in a final
567 volume of 100 µl/well. Cells were then washed 3 times with CyFACS buffer and fixed overnight
568 at 4°C with 2% PFA in metal contaminant-free PBS. The next day, cells were incubated at 4°C
569 for 30 min with fix/perm buffer (eBioscience), and then washed twice with Permeabilization
570 Buffer (eBioscience). After another round of Fc blocking on ice for 15 min with sera from mouse

571 (Thermo Fisher) and rat (Thermo Fisher), cells were washed twice with Permeabilization Buffer
572 (eBioscience), and stained on ice for 45 min with a cocktail of CyTOF intracellular-staining
573 antibodies ([Table S1](#)) in a final volume of 100 μ l/well. Cells were then washed with CyFACS and
574 incubated for 20 min at room temperature with 250 nM Cell-IDTM DNA Intercalator-Ir (Fluidigm)
575 in PBS containing 2% PFA. After two more washes with CyFACS, cells were washed once with
576 Maxpar[®] Cell Staining Buffer (Fluidigm), once with Maxpar[®] PBS (Fluidigm), and once with
577 Maxpar[®] Cell Acquisition Solution (Fluidigm). Immediately prior to sample loading, cells were
578 resuspended to a concentration of 7×10^5 /ml in EQTM calibration beads (Fluidigm) diluted 1:9 in
579 Maxpar[®] Cell Acquisition Solution. Cells were acquired on a Helios-upgraded CyTOF2
580 instrument (Fluidigm) at a rate of 250-350 events/sec, at the UCSF Flow Core Facility.

581

582 **CyTOF data analysis**

583 Data were normalized to EQTM calibration beads and then exported as FCS files. The data were
584 then de-barcoded with CyTOF software (Fluidigm) and imported into FlowJo (BD) for gating.
585 This study's raw datasets, pre-gated on live, singlet events, are available for download via the
586 following link in the Dryad public repository:

587 <https://doi.org/10.7272/Q6FT8J92>

588 Total T cells were identified by sequential gating on intact, live, singlet CD3+CD19- cells ([Figure](#)
589 [S2](#)). Total T cells were then re-exported as FCS files and imported into Cytobank for
590 calculations of median signal intensity (MSI), and high-dimensional analyses by t-SNE and
591 FlowSOM. t-SNE and FlowSOM plots were generated with default settings except for a
592 modification of total metaclusters from 10 to 20 for FlowSOM analysis. t-SNE and FlowSOM
593 plots were generated excluding all parameters those used upstream in the gating strategy
594 (CD19 and HSA) and all glycan characterization parameters. To map defined populations onto

595 t-SNE plots, subsets were defined by manual gating, and then pseudo-colored on the t-SNE
596 plots using FlowJo software. Box plot graphs were generated using ggplot2 in R.

597 Identification of predicted precursor (PRE) cells by PP-SLIDE was implemented using
598 recently described methods (Ma et al., 2020; Neidleman et al., 2020b) to match each infected
599 cell against every CD4+ T cell in the uninfected sample and using k-nearest neighbor (kNN)
600 calculations to identify the phenotypically most similar. The degree of enrichment of each
601 FlowSOM cluster in PRE cells was calculated by dividing each cluster's relative size within the
602 PRE cells by its relative size within total uninfected CD4+ Tm cells:

603 *Enrichment ratio (Cluster X) = Number of Cluster X cells relative to PRE cells/Number of Cluster*
604 *X cells relative to uninfected Tm cells*

605 Clusters with ratios > 1 were designated as enriched and those with ratios > 0 and < 1 as non-
606 enriched, while clusters with undetectable PRE cells were not shown.

607

608 **Statistical Analysis**

609 Expression levels were reported as median signal intensity (MSI) for each parameter (protein or
610 glycan) within each cell population analyzed. Student's two-sided paired t-tests were used to
611 test for differences in MSI among phenotypic subsets (B cell, CD8+ Tm, CD8+ Tn, CD4+ Tm,
612 and CD4+ Tn cells); among uninfected and bystander cells; or among uninfected cells, PRE
613 cells, and infected cells. P-values were adjusted for multiple testing using False Discovery Rate
614 (FDR) via the Benjamini-Hochberg or Holm method as indicated in figure legends. FDR
615 adjusted p-values that were less than 0.05 were considered as significant.

616 SLIDE analysis was conducted using the R package SLIDE (Mukherjee et al., 2018) as
617 recently described (Ma et al., 2020). SLIDE was developed as a nearest-neighbor approach to
618 identify and quantify viral-induced remodeling (Sen et al., 2014). The ratios between two
619 distance measures in SLIDE (the remodeling score) provides a relative measure of remodeling,

620 and is compared to a background remodeling score generated from SLIDE analysis of non-
621 infected cells, as recently described (Mukherjee et al., 2018).

622 **Figure Legends**

623

624 **Figure 1. Validation of CyTOF-Lec.** **(A)** Antibody staining for protein markers is not altered by
625 lectins. Shown are histograms of tonsil cells expressing CD3, CD8, or CD4, as detected by
626 CyTOF after antibody staining followed or not by staining with metal-conjugated lectins (AOL:
627 Aspergillus Oryzae; MAL-1: Maackia Amurensis I; WGA: Wheat Germ Agglutinin; UEA-1: Ulex
628 Europaeus I; and ABA: Agaricus Bisporus Agglutinin). Protein expression (y axis) is represented
629 as the percentage of the maximal expression level detected for each staining. **(B-D)** Sialidase
630 treatment elicits expected changes in lectin binding. Tonsil cells were treated with sialidase (20
631 µg/ml) for 1h at 37°C, and then stained with the CyTOF-Lec panel. Shown are histograms
632 depicting the extent of interaction with sialic acid-binding **(B)**, fucose-binding **(C)** or T antigen-
633 binding **(D)** lectins. Removal of sialic acid by sialidase decreases binding by sialic acid-binding
634 lectins, while increasing binding by the fucose- and T antigen-binding lectins, as expected.

635

636 **Figure 2. Glycan expression in lymphocytes from human endometrium, tonsils, and**
637 **blood.** **(A)** Box plots showing staining by fucose-binding lectins on B and T cells from the
638 endometrium, tonsils, and PBMCs, quantified as median signal intensity (MSI). T cells were
639 subdivided into memory CD8+ T cells (CD8+Tm), naïve CD8+ T cells (CD8+Tn), memory CD4+
640 T cells (CD4+Tm), and naïve CD4+ T cells (CD4+Tn) based on their expression of Tm- and Tn-
641 specific CyTOF markers. AOL binds to total/core fucose, UEA1 binds to α1-2 branched fucose.
642 Although there were some differences in binding between sites and between the different
643 lectins, in all instances fucose-binding proteins bound CD4+Tm at higher levels than they did
644 CD4+Tn. **(B)** Box plots showing binding by sialic-acid binding lectins WGA and MAL-1. Results
645 are presented as in panel A. WGA binds to total sialylated glycans and MAL-1 binds to α2-3
646 sialylated glycans. Overall, the sialic acid-binding lectins bound CD8+ T cells at higher levels

647 than they did CD4+ T cells and B cells. **(C)** Box plots showing binding by the T antigen-binding
648 lectin ABA. Results are presented as in *panel A*. Overall, ABA bound T cells at higher levels
649 than they did B cells. * $p<0.05$, ** $p<0.01$, *** $p<0.001$ as assessed using the Student's paired t
650 test and adjusted for multiple testing using the Holm.

651

652 **Figure 3. HIV alters expression of fucose and sialic acid in a tissue site-dependent**
653 **manner. (A)** HIV preferentially infects fucose-expressing cells and further upregulates fucose
654 expression in a tissue site-dependent manner. Box plots showing binding by fucose-binding
655 proteins on uninfected (UI), predicted precursor (PRE), and infected (INF) CD4+ T cells from the
656 endometrium, tonsils, and PBMCs. All populations were pre-gated on live, singlet CD4+ Tm
657 cells. AOL binds total/core fucose, while UEA1 binds α 1-2 branched fucose. **(B)** HIV
658 preferentially infects sialic acid-expressing cells and further upregulates sialic acid in a tissue
659 site-dependent manner. Box plots showing binding by sialic acid-binding lectins. Results are
660 presented as in *panel A*. WGA binds total sialylated glycans and MAL1 binds recognizes α 2-3
661 sialylated glycans. **(C)** Box plots showing binding by T antigen-binding lectin ABA. Results are
662 presented as in *panel A*. * $p < 0.05$, ** $p < 0.01$ as assessed using the Student's paired t test and
663 adjusted for multiple testing using the Benjamini-Hochberg for FDR.

664

665 **Figure 4. HIV preferentially infects memory CD4+ T cells from tonsils and PBMCs with**
666 **high levels of fucose and sialic acid. (A)** The proportions of CD4+ Tm cells that were
667 productively-infected (as assessed by HSA positivity) are higher among the AOL^{High} and
668 WGA^{High} cells than among their AOL^{Low} and WGA^{Low} counterparts for all 3 sites. * $p < 0.05$, ** $p <$
669 0.01, and *** $p < 0.001$ as assessed using the Student's paired t test. Each color corresponds to
670 a different donor. **(B)** Proportion of uninfected CD4+ Tm and PRE cells expressing high levels of
671 fucose, sialic acid, or both (as determined by high binding by AOL or WGA, respectively), as

672 assessed by manual gating. In tonsils and PBMCs, cells expressing fucose and sialic acid were
673 preferentially selected for infection by HIV. *p < 0.05, **p < 0.01 as assessed using the
674 Student's paired t test. **(C)** Co-expression of fucose and sialic acid on PRE cells in the indicated
675 specimens, as depicted by t-SNE heatmaps. Shown are cells concatenated from all donors
676 analyzed in the study. Regions of the tSNE co-expressing fucose and sialic acid are circled. **(D)**
677 Levels of fucose and sialic acid differ between CD4+ Tm cells from different origins, as shown
678 by MSI for binding by WGA (sialic acid-binding) and AOL (fucose-binding). *p < 0.05, **p < 0.01,
679 ***p < 0.001, ****p < 0.0001 as assessed using a one-way ANOVA and adjusted for multiple
680 testing using the Bonferroni.

681

682 **Figure 5. FlowSOM clustering confirms that HIV-susceptible subsets from tonsils and**
683 **PBMCs harbor high levels of fucose and sialic acid. (A)** tSNE plots based on FlowSOM
684 analysis of uninfected CD4+ Tm and PRE cells from endometrium, tonsil, and PBMC
685 specimens, showing 20 color-labelled clusters of cells. **(B)** Enrichment of clusters among PRE
686 cells. PRE enrichment-folds were determined by dividing the sizes of each cluster in PRE cells
687 by that in the corresponding uninfected CD4+ Tm cells. Enriched clusters (those with an
688 enrichment fold above 1) correspond to cells preferentially selected for infection. Note that the
689 highest enrichment-folds were observed in tonsils, suggesting the most preferential selection of
690 subsets for infection in this specimen type. Each color corresponds to a different donor. Labels
691 on the x-axis refer to the cluster name. **(C)** Clusters enriched among PRE cells express high
692 levels of fucose and sialic acid, as depicted by t-SNE. For each specimen set, the left-hand t-
693 SNE plot depicts clusters enriched among PRE (red) against total cells (grey), while the t-SNE
694 plots on the right depict by heatmaps the expression levels of fucose (as assessed by AOL
695 binding) and sialic acid (as assessed by WGA binding) among the enriched clusters. Note that
696 the enriched clusters from all three sites include cells expressing high levels of both fucose and
697 sialic acid (highlighted by arrows).

698

699 **Figure 6. High levels of sialylated glycans identifies highly-susceptible and activated**
700 **CD4+ Tm cells, and plays a direct role in susceptibility. (A)** Histograms showing the
701 expression of total sialylated glycans on three populations (WGA^{Low} [red], WGA^{Medium} [yellow],
702 and WGA^{High} [blue]) of sorted uninfected CD4+ Tm cells (CD3+CD4+CD45RA-), as assessed by
703 WGA binding. One of three representative donors is shown. **(B-C)** The sorted uninfected cells in
704 *panel A*, along with total CD4+ Tm cells, were exposed to F4.HSA and assessed by flow
705 cytometry for infection rates 3 days later. Results are gated on live, singlet CD3+CD8- cells.
706 Shown are representative FACS plots from one donor (*B*) and compiled results from 3 donors
707 (*C*). For each donor, experimental duplicates were performed for each condition. Each datapoint
708 shown corresponds to one donor. *p < 0.05 as assessed using a one-way ANOVA and adjusted
709 for multiple testing using the Bonferroni. **(D)** WGA^{High} Tm cells bind more AOL than WGA^{Low} Tm
710 cells do. Shown are the histogram plots from one representative PBMC donor (*left*) and box
711 plots from all 4 PBMC donors (*right*). **(E)** WGA^{High} Tm cells express more CD4 and CCR5 than
712 WGA^{Low} Tm cells do. Shown are the histogram plots from one representative PBMC donor (*left*)
713 and box plots from all 4 PBMC donors (*right*). **(F)** WGA^{High} Tm cells express higher levels of
714 activation markers than WGA^{Low} Tm cells do. Shown are the histogram plots from one
715 representative PBMC donor (*top*) and box plots from all 4 PBMC donors (*bottom*). **(G)** WGA^{High}
716 Tm cells express higher levels of the pro-survival factors CD127, BIRC5, and Ox40 than
717 WGA^{Low} Tm cells do. Shown are the histogram plots from one representative PBMC donor (*left*)
718 and box plots from all 4 PBMC donors (*right*). **(H)** The CD127, CCR7 and CD62L receptors are
719 expressed at lower levels in WGA^{High} relative to WGA^{Low} Tm cells. Shown are the histogram
720 plots from one representative PBMC donor (*left*) and box plots from all 4 PBMC donors (*right*).
721 For panels D-G, *p < 0.05 as assessed using the Student's paired t test and adjusted for
722 multiple testing using the Benjamini-Hochberg for FDR. **(I)** Transient treatment with sialidase
723 decreases cell-surface levels of sialidase on CD4+ T cells. PBMCs were treated for 1 h with

724 sialidase prior to assessment of cell-surface WGA binding. Shown are overlaid histograms
725 demonstrating a decrease in cell-surface sialic acid levels (as reflected by WGA binding) in the
726 sialidase-treated cells. Results are gated on live, singlet CD3+CD8-CD4+ cells. Numbers
727 correspond to percent of cells within the indicated gate. **(J-K)** PBMCs treated for 1 h with the
728 indicated concentrations of sialidase were exposed to F4.HSA and assessed by flow cytometry
729 for infection rates 3 days later. Results are gated on live, singlet CD3+CD8- cells. Shown are
730 representative FACS plots from two donors (*J*) and the results of experimental triplicates from
731 each of these donors (*K*). **p < 0.01 and **** p < 0.0001 as assessed using a one-way ANOVA
732 and adjusted for multiple testing using the Bonferroni.

733 **ACKNOWLEDGEMENTS**

734 This work was supported by the National Institutes of Health (R01AI127219, R01AI147777, and
735 P01AI131374 to N.R.R., and R01DK123733, R01AG062383, R01NS117458, and R21AI143385
736 to M.A-M. We also acknowledge NIH for the sorter (S10-RR028962), support from CFAR
737 (P30AI027763), and the James B. Pendleton Charitable Trust. We acknowledge the PFCC
738 (RRID:SCR_018206) for assistance in CyTOF data acquisition, enabled by an instrument that
739 was supported in part by the DRC Center Grant NIH P30 DK063720 and NIH S10
740 1S10OD018040-01. The funders had no role in study design, data collection and analysis,
741 decision to publish, or preparation of the manuscript. We thank Claudia Bispo and Stanley
742 Tamaki for CyTOF assistance at the Parnassus Flow Core, Jane Srivastava and Nandhini
743 Raman for flow cytometry assistance at the Gladstone Flow Core. We also thank Françoise
744 Chanut for editorial assistance, and Robin Givens for administrative assistance.

745

746 **AUTHOR CONTRIBUTIONS**

747 T.M. designed and performed experiments, conducted data analyses, and participated in
748 manuscript writing; M.M. wrote scripts for data analysis; L.B.G. and G.X. provided guidance and
749 established protocols for FACS and CyTOF data analysis; A.G. processed endometrial
750 specimens; M.A-M. conceived ideas for the study, performed supervision, conducted data
751 analyses, and participated in manuscript writing; N.R.R. conceived ideas for the study,
752 performed supervision, conducted data analyses, and wrote the manuscript. All authors read
753 and approved the manuscript.

754

755 **COMPETING FINANCIAL INTERESTS**

756 The authors declare no competing financial interests.

757 **REFERENCES**

758 Barrera, C., Espejo, R., and Reyes, V.E. (2002). Differential glycosylation of MHC class II
759 molecules on gastric epithelial cells: implications in local immune responses. *Human*
760 *immunology* 63, 384-393.

761 Bendall, S.C., Simonds, E.F., Qiu, P., Amir el, A.D., Krutzik, P.O., Finck, R., Bruggner, R.V.,
762 Melamed, R., Trejo, A., Ornatsky, O.I., *et al.* (2011). Single-cell mass cytometry of differential
763 immune and drug responses across a human hematopoietic continuum. *Science* 332, 687-696.

764 Breen, E.C., Rezai, A.R., Nakajima, K., Beall, G.N., Mitsuyasu, R.T., Hirano, T., Kishimoto, T.,
765 and Martinezmaza, O. (1990). Infection with Hiv Is Associated with Elevated IL-6 Levels and
766 Production. *J Immunol* 144, 480-484.

767 Cavrois, M., Banerjee, T., Mukherjee, G., Raman, N., Hussien, R., Rodriguez, B.A., Vasquez,
768 J., Spitzer, M.H., Lazarus, N.H., Jones, J.J., *et al.* (2017). Mass Cytometric Analysis of HIV
769 Entry, Replication, and Remodeling in Tissue CD4+ T Cells. *Cell Rep* 20, 984-998.

770 Chen, S., Qin, R., and Mahal, L.K. (2021). Sweet systems: technologies for glycomics analysis
771 and their integration into systems biology. *Crit Rev Biochem Mol Biol*, 1-20.

772 Colomb, F., Giron, L.B., Kuri-Cervantes, L., Adeniji, O.S., Ma, T., Dweeb, H., Battivelli, E.,
773 Verdin, E., Palmer, C.S., Tateno, H., *et al.* (2020a). Sialyl-Lewis(X) Glycoantigen Is Enriched on
774 Cells with Persistent HIV Transcription during Therapy. *Cell Rep* 32, 107991.

775 Colomb, F., Giron, L.B., Kuri-Cervantes, L., Adeniji, O.S., Ma, T.C., Dweeb, H., Battivelli, E.,
776 Verdin, E., Palmer, C.S., Tateno, H., *et al.* (2020b). Sialyl-Lewis(X) Glycoantigen Is Enriched on
777 Cells with Persistent HIV Transcription during Therapy. *Cell Reports* 32.

778 Colomb, F., Giron, L.B., Premeaux, T.A., Mitchell, B.I., Niki, T., Papasavvas, E., Montaner, L.J.,
779 Ndhlovu, L.C., and Abdel-Mohsen, M. (2019). Galectin-9 Mediates HIV Transcription by
780 Inducing TCR-Dependent ERK Signaling. *Front Immunol* 10, 267.

781 Contreras, X., Bennasser, Y., Chazal, N., and Bahraoui, E. (2003). [HIV-1 Tat induces TNF-
782 alpha production by human monocytes: involvement of calcium and PKC pathways]. *J Soc Biol*
783 197, 267-275.

784 de Freitas Junior, J.C., Silva Bdu, R., de Souza, W.F., de Araujo, W.M., Abdelhay, E.S., and
785 Morgado-Diaz, J.A. (2011). Inhibition of N-linked glycosylation by tunicamycin induces E-
786 cadherin-mediated cell-cell adhesion and inhibits cell proliferation in undifferentiated human
787 colon cancer cells. *Cancer chemotherapy and pharmacology* 68, 227-238.

788 Dewald, J.H., Colomb, F., Bobowski-Gerard, M., Groux-Degroote, S., and Delannoy, P. (2016).
789 Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell
790 Signaling in Inflammatory Diseases and Cancer. *Cells* 5.

791 Doms, R.W., and Trono, D. (2000). The plasma membrane as a combat zone in the HIV
792 battlefield. *Gene Dev* 14, 2677-2688.

793 Everest-Dass, A.V., Jin, D., Thaysen-Andersen, M., Nevalainen, H., Kolarich, D., and Packer,
794 N.H. (2012). Comparative structural analysis of the glycosylation of salivary and buccal cell
795 proteins: innate protection against infection by *Candida albicans*. *Glycobiology* 22, 1465-1479.

796 Fassbender, A., Rahmioglu, N., Vitonis, A.F., Vigano, P., Giudice, L.C., D'Hooghe, T.M.,
797 Hummelshoj, L., Adamson, G.D., Becker, C.M., Missmer, S.A., *et al.* (2014). World
798 Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation
799 Project: IV. Tissue collection, processing, and storage in endometriosis research. *Fertil Steril*
800 102, 1244-1253.

801 Fujii, H., Shinzaki, S., Iijima, H., Wakamatsu, K., Iwamoto, C., Sobajima, T., Kuwahara, R.,
802 Hiyama, S., Hayashi, Y., Takamatsu, S., *et al.* (2016). Core Fucosylation on T Cells, Required
803 for Activation of T-Cell Receptor Signaling and Induction of Colitis in Mice, Is Increased in
804 Patients With Inflammatory Bowel Disease. *Gastroenterology* 150, 1620-1632.

805 Garcia, J.V., and Miller, A.D. (1991). Serine phosphorylation-independent downregulation of
806 cell-surface CD4 by nef. *Nature* 350, 508-511.

807 Giron, L.B., Colomb, F., Papasavvas, E., Azzoni, L., Yin, X., Fair, M., Anzurez, A., Damra, M.,
808 Mounzer, K., Kostman, J.R., *et al.* (2020a). Interferon-alpha alters host glycosylation machinery
809 during treated HIV infection. *EBioMedicine* 59, 102945.

810 Giron, L.B., Tanes, C.E., Schleimann, M.H., Engen, P.A., Mattei, L.M., Anzurez, A., Damra, M.,
811 Zhang, H., Bittinger, K., Bushman, F., *et al.* (2020b). Sialylation and fucosylation modulate
812 inflammasome-activating eIF2 Signaling and microbial translocation during HIV infection.
813 *Mucosal Immunol* 13, 753-766.

814 Giron, L.B., Tanes, C.E., Schleimann, M.H., Engen, P.A., Mattei, L.M., Anzurez, A., Damra, M.,
815 Zhang, H., Bittinger, K., Bushman, F., *et al.* (2020c). Sialylation and fucosylation modulate
816 inflammasome-activating eIF2 Signaling and microbial translocation during HIV infection.
817 *Mucosal Immunol.*

818 Hiraiwa, N., Yabuta, T., Yoritomi, K., Hiraiwa, M., Tanaka, Y., Suzuki, T., Yoshida, M., and
819 Kannagi, R. (2003). Transactivation of the fucosyltransferase VII gene by human T-cell
820 leukemia virus type 1 Tax through a variant cAMP-responsive element. *Blood* 101, 3615-3621.

821 Hsiao, F., Frouard, J., Gramatica, A., Xie, G., Telwatte, S., Lee, G.Q., Roychoudhury, P.,
822 Schwarzer, R., Luo, X., Yukl, S.A., *et al.* (2020). Tissue memory CD4+ T cells expressing IL-7
823 receptor-alpha (CD127) preferentially support latent HIV-1 infection. *PLoS Pathog* 16,
824 e1008450.

825 Izquierdo-Useros, N., Lorizate, M., Puertas, M.C., Rodriguez-Plata, M.T., Zanger, N., Erikson,
826 E., Pino, M., Erkizia, I., Glass, B., Clotet, B., *et al.* (2012). Siglec-1 Is a Novel Dendritic Cell
827 Receptor That Mediates HIV-1 Trans-Infection Through Recognition of Viral Membrane
828 Gangliosides. *Plos Biol* 10.

829 Jost, S., and Altfeld, M. (2012). Evasion from NK cell-mediated immune responses by HIV-1.
830 *Microbes Infect* 14, 904-915.

831 Kambara, C., Nakamura, T., Furuya, T., Nishiura, Y., Kawakami, A., Ichinose, K., Shirabe, S.,
832 and Eguchi, K. (2002). Increased sialyl Lewis(x) antigen-positive cells mediated by HTLV-1

833 infection in peripheral blood CD4(+) T lymphocytes in patients with HTLV-1-associated
834 myelopathy. *J Neuroimmunol* 125, 179-184.

835 Kearney, C.J., Vervoort, S.J., Ramsbottom, K.M., Todorovski, I., Lelliott, E.J., Zethoven, M.,
836 Pijpers, L., Martin, B.P., Semple, T., Martelotto, L., *et al.* (2021). SUGAR-seq enables
837 simultaneous detection of glycans, epitopes, and the transcriptome in single cells. *Sci Adv* 7.

838 Kuo, H.H., Ahmad, R., Lee, G.Q., Gao, C., Chen, H.R., Ouyang, Z., Szucs, M.J., Kim, D.,
839 Tsibris, A., Chun, T.W., *et al.* (2018). Anti-apoptotic Protein BIRC5 Maintains Survival of HIV-1-
840 Infected CD4(+) T Cells. *Immunity* 48, 1183-1194 e1185.

841 Lama, J. (2003). The physiological relevance of CD4 receptor down-modulation during HIV
842 infection. *Curr HIV Res* 1, 167-184.

843 Leipold, M.D., Herrera, I., Ornatsky, O., Baranov, V., and Nitz, M. (2009). ICP-MS-based
844 multiplex profiling of glycoproteins using lectins conjugated to lanthanide-chelating polymers. *J*
845 *Proteome Res* 8, 443-449.

846 Li, Y.Q., Liu, D.Q., Wang, Y.T., Su, W.Q., Liu, G., and Dong, W.J. (2021). The Importance of
847 Glycans of Viral and Host Proteins in Enveloped Virus Infection. *Frontiers in Immunology* 12.

848 Liang, W., Mao, S., Sun, S., Li, M., Li, Z., Yu, R., Ma, T., Gu, J., Zhang, J., Taniguchi, N., *et al.*
849 (2018). Core Fucosylation of the T Cell Receptor Is Required for T Cell Activation. *Front*
850 *Immunol* 9, 78.

851 Longo, P.A., Kavran, J.M., Kim, M.S., and Leahy, D.J. (2013). Transient mammalian cell
852 transfection with polyethylenimine (PEI). *Methods Enzymol* 529, 227-240.

853 Ma, T., Luo, X., George, A.F., Mukherjee, G., Sen, N., Spitzer, T.L., Giudice, L.C., Greene,
854 W.C., and Roan, N.R. (2020). HIV efficiently infects T cells from the endometrium and remodels
855 them to promote systemic viral spread. *Elife* 9.

856 Matheson, N.J., Sumner, J., Wals, K., Rapiteanu, R., Weekes, M.P., Vigan, R., Weinelt, J.,
857 Schindler, M., Antrobus, R., Costa, A.S., *et al.* (2015). Cell Surface Proteomic Map of HIV

858 Infection Reveals Antagonism of Amino Acid Metabolism by Vpu and Nef. *Cell Host Microbe* 18,
859 409-423.

860 Mukherjee, G., Panda, A., Arvin, A.M., Sen, A., and Sen, N. (2018). SLIDE: Single Cell Linkage
861 by Distance Estimation, R package version 1.0.0, <https://CRAN.R-project.org/package=SLIDE>.

862 Neidleman, J., Luo, X., Frouard, J., Xie, G., Gill, G., Stein, E.S., McGregor, M., Ma, T., George,
863 A.F., Kosters, A., *et al.* (2020a). SARS-CoV-2-Specific T Cells Exhibit Phenotypic Features of
864 Helper Function, Lack of Terminal Differentiation, and High Proliferation Potential. *Cell Rep Med*
865 1, 100081.

866 Neidleman, J., Luo, X., Frouard, J., Xie, G., Hsiao, F., Ma, T., Morcilla, V., Lee, A., Telwatte, S.,
867 Thomas, R., *et al.* (2020b). Phenotypic analysis of the unstimulated *in vivo* HIV CD4 T cell
868 reservoir. *Elife* 9.

869 Nystrom, K., Grahn, A., Lindh, M., Brytting, M., Mandel, U., Larson, G., and Olofsson, S. (2007).
870 Virus-induced transcriptional activation of host FUT genes associated with neo-expression of
871 Ley in cytomegalovirus-infected and sialyl-Lex in varicella-zoster virus-infected diploid human
872 cells. *Glycobiology* 17, 355-366.

873 Nystrom, K., Norden, R., Muylaert, I., Elias, P., Larson, G., and Olofsson, S. (2009). Induction of
874 sialyl-Lex expression by herpes simplex virus type 1 is dependent on viral immediate early
875 RNA-activated transcription of host fucosyltransferase genes. *Glycobiology* 19, 847-859.

876 Peterson, V.M., Zhang, K.X., Kumar, N., Wong, J., Li, L., Wilson, D.C., Moore, R., McClanahan,
877 T.K., Sadekova, S., and Klappenbach, J.A. (2017). Multiplexed quantification of proteins and
878 transcripts in single cells. *Nat Biotechnol* 35, 936-939.

879 Piguet, V., Schwartz, O., Le Gall, S., and Trono, D. (1999). The downregulation of CD4 and
880 MHC-I by primate lentiviruses: a paradigm for the modulation of cell surface receptors. *Immunol
881 Rev* 168, 51-63.

882 Puryear, W.B., Yu, X., Ramirez, N.P., Reinhard, B.M., and Gummuluru, S. (2012). HIV-1
883 incorporation of host-cell-derived glycosphingolipid GM3 allows for capture by mature dendritic
884 cells. *Proc Natl Acad Sci U S A* **109**, 7475-7480.

885 Schwarz, R.E., Wojciechowicz, D.C., Picon, A.I., Schwarz, M.A., and Paty, P.B. (1999).
886 Wheatgerm agglutinin-mediated toxicity in pancreatic cancer cells. *Br J Cancer* **80**, 1754-1762.

887 Sen, N., Mukherjee, G., Sen, A., Bendall, S.C., Sung, P., Nolan, G.P., and Arvin, A.M. (2014).
888 Single-cell mass cytometry analysis of human tonsil T cell remodeling by varicella zoster virus.
889 *Cell Rep* **8**, 633-645.

890 Stevenson, M., Stanwick, T.L., Dempsey, M.P., and Lamonica, C.A. (1990). Hiv-1 Replication Is
891 Controlled at the Level of T-Cell Activation and Proviral Integration. *Embo Journal* **9**, 1551-1560.

892 Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P.K.,
893 Swerdlow, H., Satija, R., and Smibert, P. (2017). Simultaneous epitope and transcriptome
894 measurement in single cells. *Nat Methods* **14**, 865-868.

895 Sugawara, S., Thomas, D.L., and Balagopal, A. (2019). HIV-1 Infection and Type 1 Interferon:
896 Navigating Through Uncertain Waters. *AIDS Res Hum Retroviruses* **35**, 25-32.

897 Swigut, T., Shohdy, N., and Skowronski, J. (2001). Mechanism for down-regulation of CD28 by
898 Nef. *EMBO J* **20**, 1593-1604.

899 Taylor, G., Vimir, E., Garman, E., and Laver, G. (1992). Purification, crystallization and
900 preliminary crystallographic study of neuraminidase from *Vibrio cholerae* and *Salmonella*
901 *typhimurium* LT2. *J Mol Biol* **226**, 1287-1290.

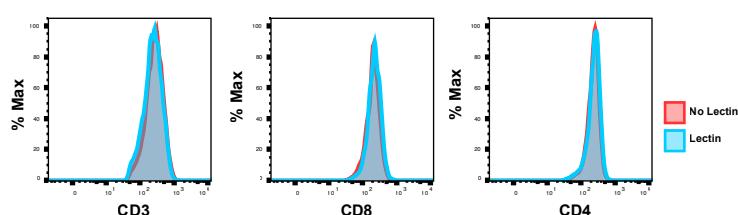
902 Van Gassen, S., Callebaut, B., Van Helden, M.J., Lambrecht, B.N., Demeester, P., Dhaene, T.,
903 and Saeys, Y. (2015). FlowSOM: Using self-organizing maps for visualization and interpretation
904 of cytometry data. *Cytom Part A* **87a**, 636-645.

905 Varchetta, S., Lusso, P., Hudspeth, K., Mikulak, J., Mele, D., Paolucci, S., Cimbro, R., Malnati,
906 M., Riva, A., Maserati, R., *et al.* (2013). Sialic acid-binding Ig-like lectin-7 interacts with HIV-1
907 gp120 and facilitates infection of CD4pos T cells and macrophages. *Retrovirology* **10**, 154.

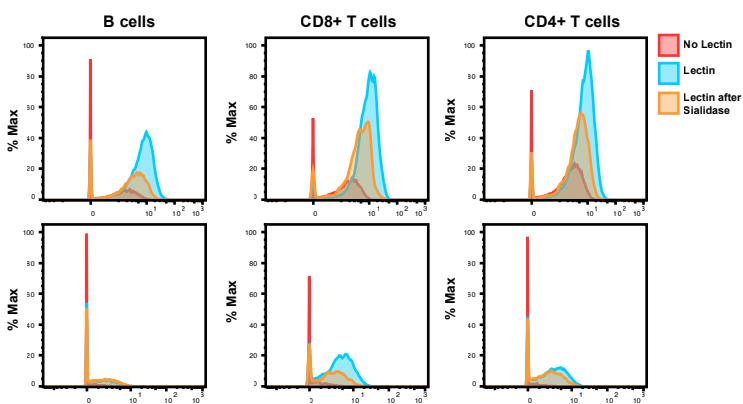
908 Williams, G.J., and Thorson, J.S. (2009). Natural product glycosyltransferases: properties and
909 applications. *Advances in enzymology and related areas of molecular biology* 76, 55-119.

910 Xiao, H., Woods, E.C., Vukojicic, P., and Bertozzi, C.R. (2016). Precision glycocalyx editing as a
911 strategy for cancer immunotherapy. *P Natl Acad Sci USA* 113, 10304-10309.

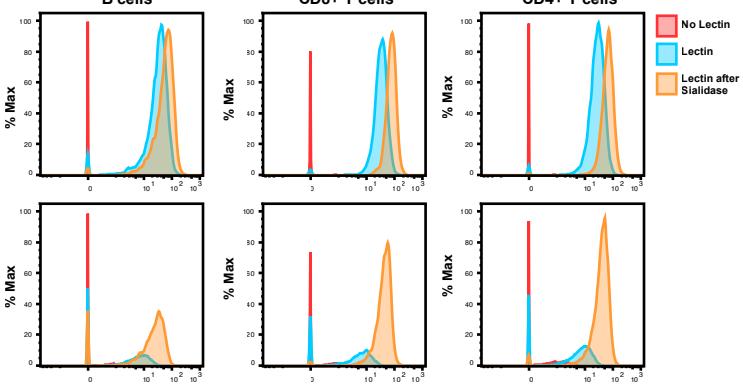
912 Xie, G., Luo, X., Ma, T., Frouard, J., Neidleman, J., Hoh, R., Deeks, S.G., Greene, W.C., and
913 Roan, N.R. (2021). Characterization of HIV-induced remodeling reveals differences in infection
914 susceptibility of memory CD4(+) T cell subsets in vivo. *Cell Rep* 35, 109038.

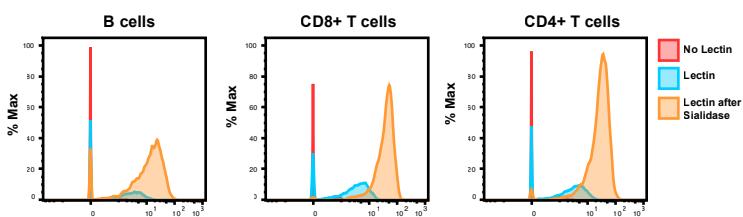

915 Yang, Q., Hughes, T.A., Kelkar, A.J., Yu, X.H., Cheng, K., Park, S., Huang, W.C., Lovell, J.F.,
916 and Neelamegham, S. (2020). Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-
917 glycan elaboration. *Elife* 9.

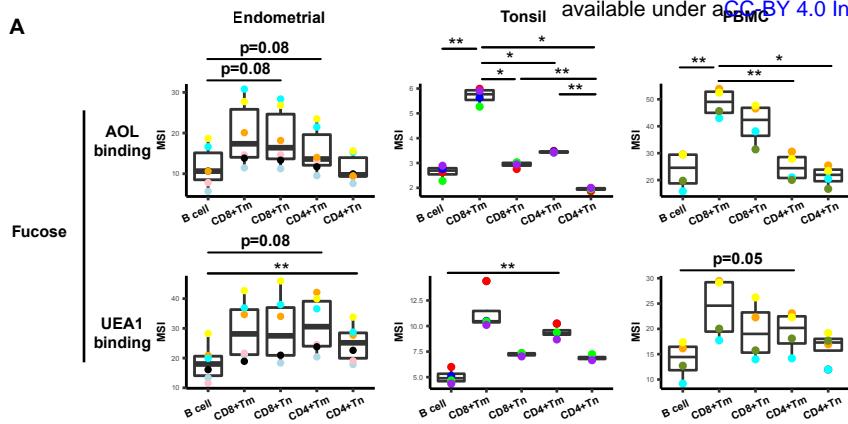
918 Yukl, S.A., Kaiser, P., Kim, P., Telwatte, S., Joshi, S.K., Vu, M., Lampiris, H., and Wong, J.K.
919 (2018). HIV latency in isolated patient CD4(+) T cells may be due to blocks in HIV
920 transcriptional elongation, completion, and splicing. *Sci Transl Med* 10.

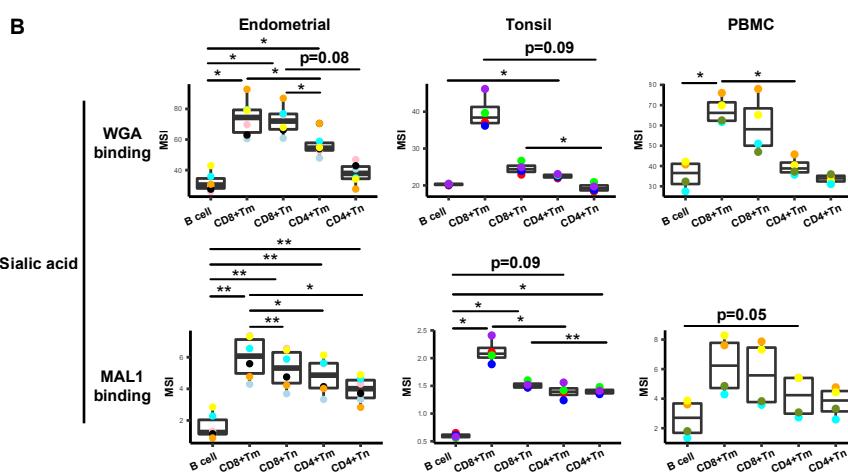

921 Zou, Z.C., Chastain, A., Moir, S., Ford, J., Trandem, K., Martinelli, E., Cicala, C., Crocker, P.,
922 Arthos, J., and Sun, P.D. (2011). Siglecs Facilitate HIV-1 Infection of Macrophages through
923 Adhesion with Viral Sialic Acids. *Plos One* 6.

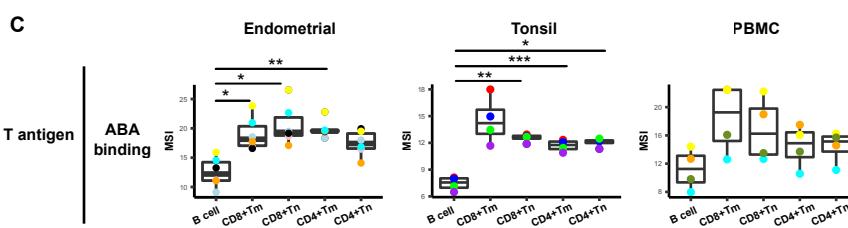
924

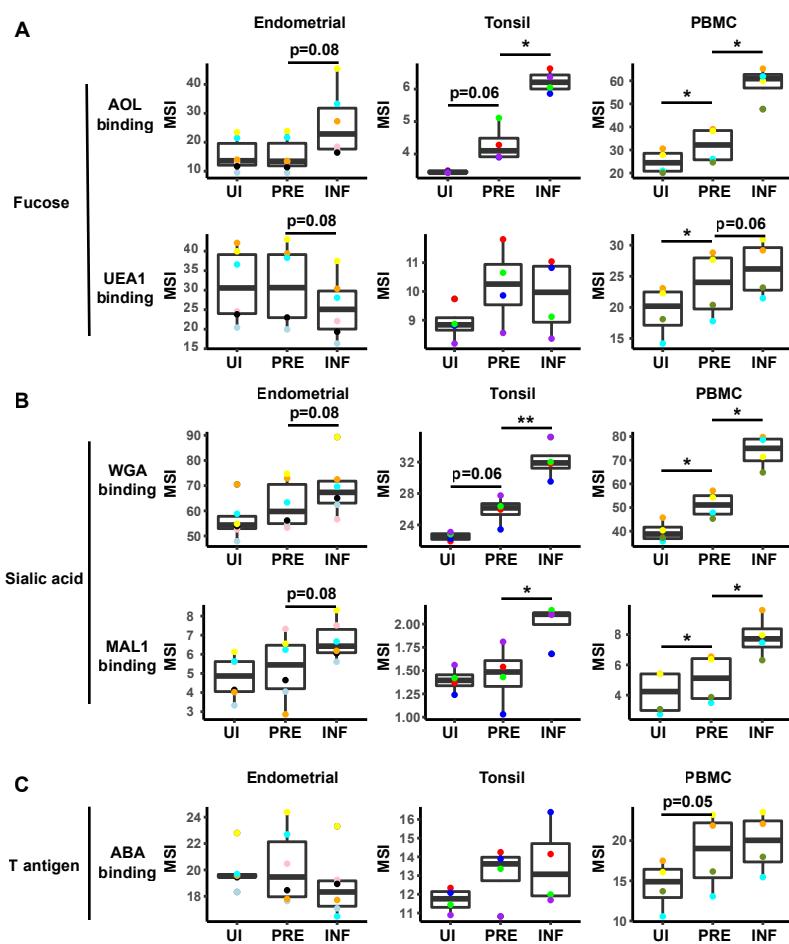

A


B


C


D


A


B

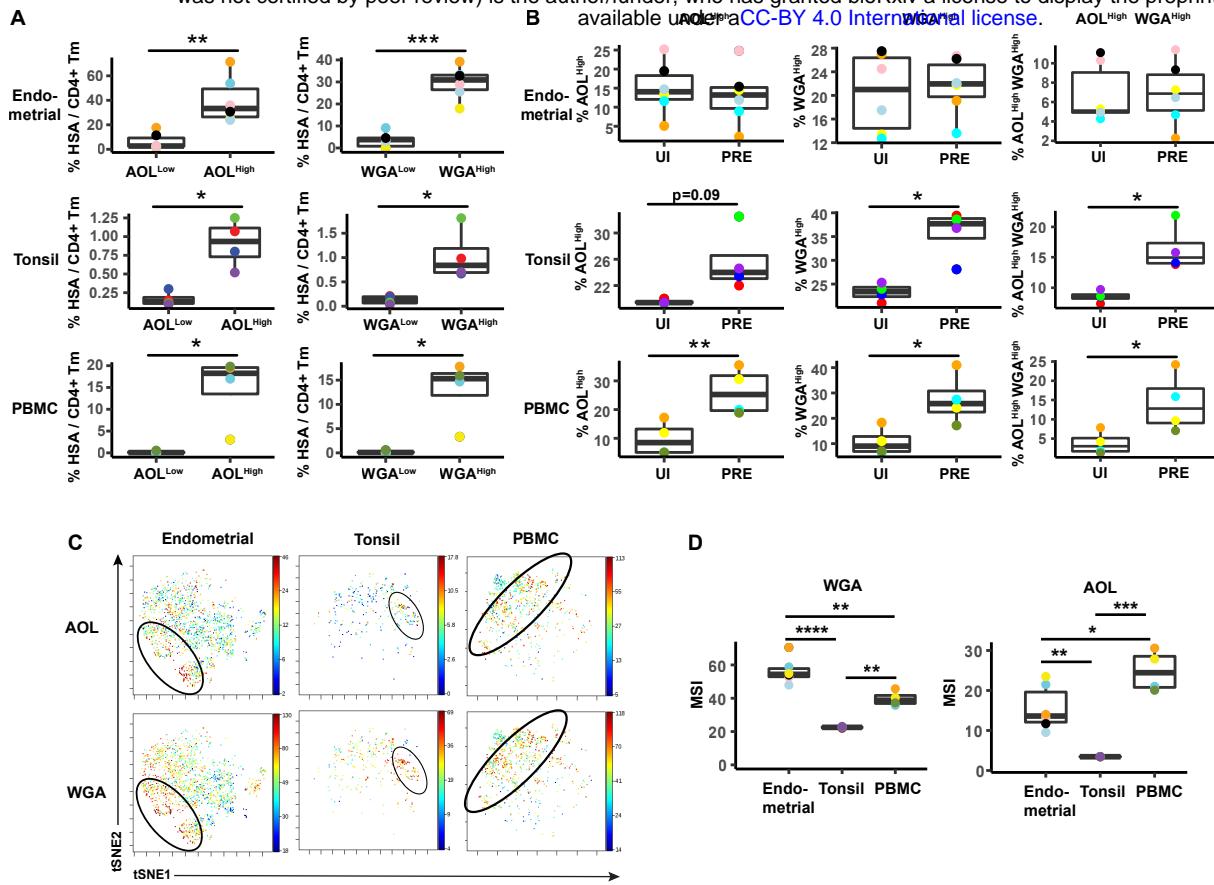

C

Figure 3

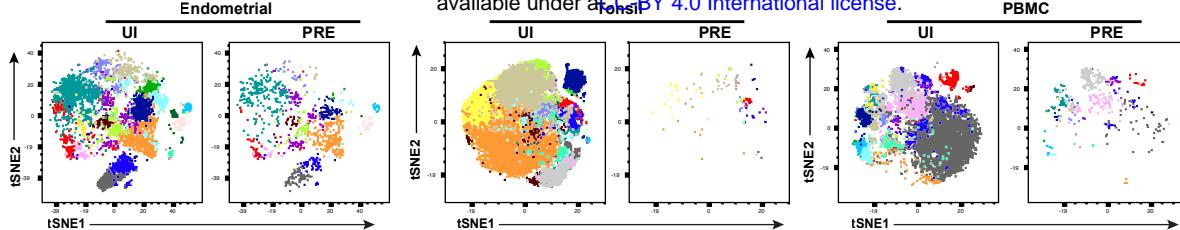


Figure 4 bioRxiv preprint doi: <https://doi.org/10.1101/2022.04.06.487312>; this version posted April 8, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

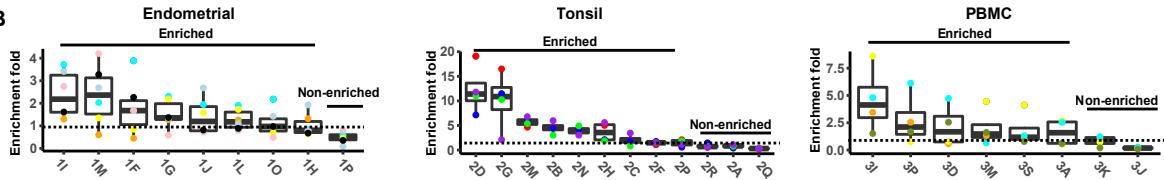
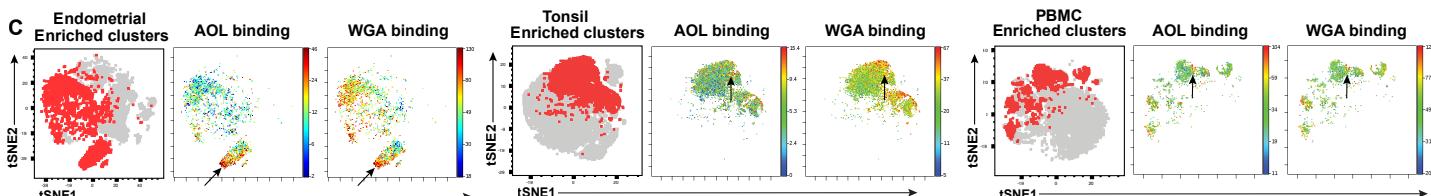
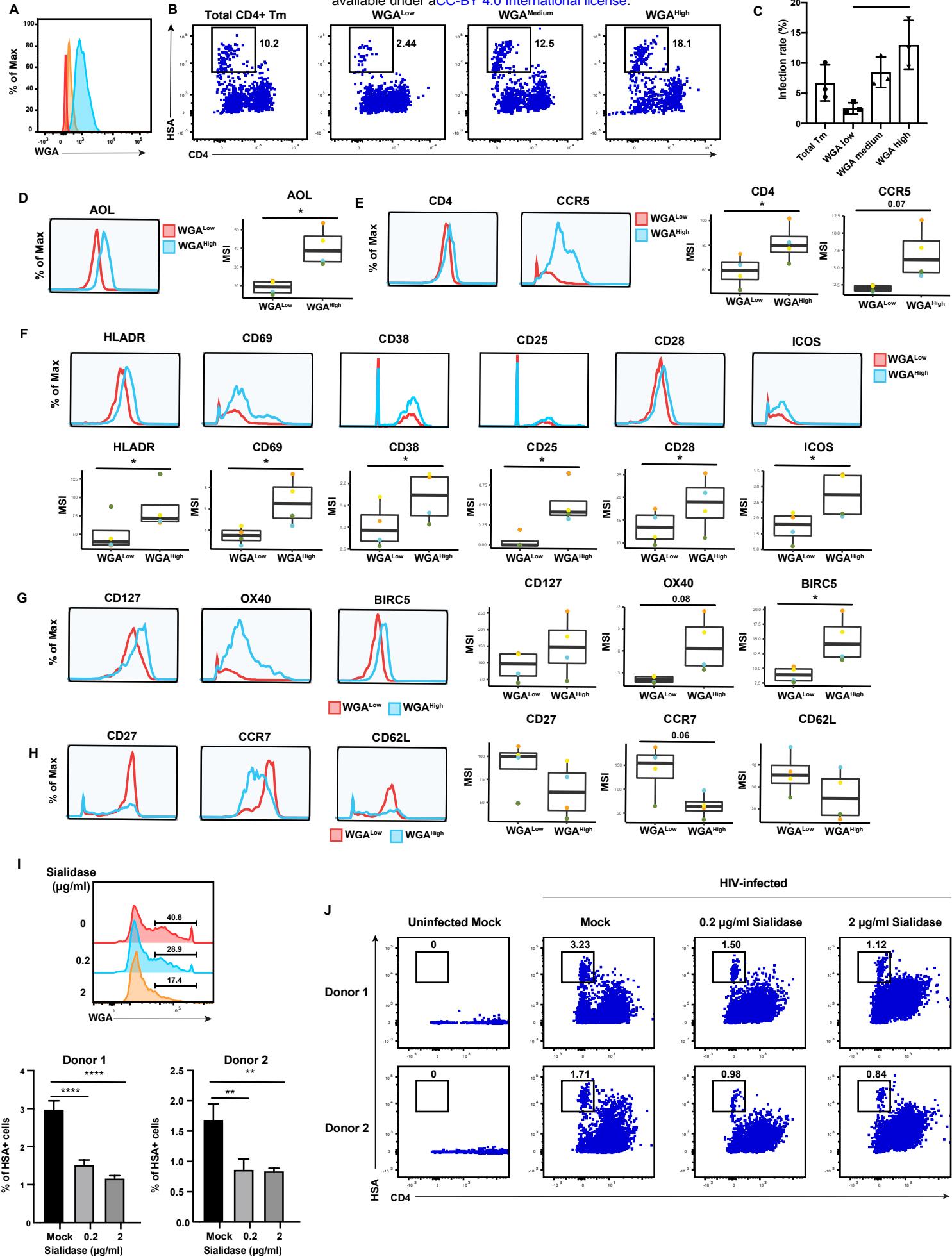


Figure 5 bioRxiv preprint doi: <https://doi.org/10.1101/2022.04.06.487312>; this version posted April 8, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


A


B

C

Figure 6 bioRxiv preprint doi: <https://doi.org/10.1101/2022.04.06.487312>; this version posted April 8, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Validation of antibodies and lectins used for CyTOF analysis. (A) Expression levels of each protein antigen and glycan (the latter identified by their lectin) on tonsillar T and B cells, as assessed by CyTOF. As demonstrated schematically in the upper left, the top population of each plot corresponds to T cells (CD3+) while the bottom population corresponds to B cells (CD3-). Each antibody in the panel was validated by standard two-dimensional plots showing expression of CD3 (y-axis) versus each indicated antibody or lectin (x-axis). The observed expression patterns of the protein antigens are consistent with known expression patterns on T cells and B cells. Results are gated on live, singlet cells. **(B)** The intracellular protein antigens NFAT1, Birc5, CTAL-4, ROR γ t, and Tbet were further assessed for differential expression among CD4+ memory (Tm) vs. CD4+ naïve (Tn) populations by monitoring for expression levels on CD45RO+ (marker of memory) vs. CD45RA+ (marker of naïve) cells. These antigens were all preferentially expressed in the memory compartment, consistent with their known expression patterns

Figure S2. CyTOF gating strategy to identify uninfected and HIV-infected T cells.

Productively-infected cells were defined as those that were CD3+CD8-CD4 $^{\text{low}}$ HSA+. The plots on the far right show specimens from a representative uninfected (*top*) and infected (*bottom*) sample.

Figure S3. HIV remodels T cells from both tissues and blood. (A) Cells from each of the indicated specimens from a representative donor were mock-treated or inoculated with the CCR5-tropic HIV-1 reporter virus F4.HSA, and monitored 3 days later for levels of productive infection. Results are gated on live, singlet CD3+CD8- cells. Numbers correspond to the percentage of infected cells in each sample. **(B)** t-SNE plots of uninfected and infected cells

from all donors combined. The observation that infected cells (*red*) reside in unique regions of the t-SNEs suggest viral-induced remodeling in all specimen types. Data are representative of a total of 4-6 donors per specimen type. **(C)** Quantification of viral-induced remodeling by SLIDE reveals viral-induced remodeling in all specimen types. The dashed line corresponds to the SLIDE score in the absence of remodeling (see Methods).

Figure S4. HIV preferentially infects memory CD4+ T cells from both tissues and blood.

(A) Schematic showing how Predicted Precursor (PRE) cells are identified. Blood or tissue cells, represented as different colored ovals, were mock-treated (*top left*) or infected with the CCR5-tropic HIV reporter virus F4.HSA (*bottom left*) for 3 days. HIV-infected cells (identified as those with a black border) were identified as cells expressing HSA that had down-regulated CD4 ([Figure S2](#)). The HIV-infected cells are distinct from cells in the uninfected (UI) culture as they have been remodeled. However, by implementing PP-SLIDE, we identify, in CyTOF high-dimensional space, the phenotypically most similar CD4+ T cells in the uninfected culture (purple and blue cells in schematic) for every HIV-infected cell (red and pink cells in schematic). The “predicted precursor” (PRE) cells thus identified display the predicted phenotypes of the original cells targeted for HIV infection, prior to HIV-induced remodeling. **(B)** t-SNE plots of uninfected and predicted precursor (PRE) cells demonstrate that CD4+ Tm is the dominant population of T cells targeted for infection in all of the 3 specimen types. CD4+ Tm, CD4+ Tn, CD8+ Tm, and CD8+ Tn cells were identified by manual gating and colored as indicated. Shown is one representative donor from each site, with the remaining donors shown in [Figure S5](#). **(C)** Quantification of preferential infection of CD4+ Tm cells among all donors reveals enrichment of CD4+ Tm cells among PRE cells. ***p<0.001, ****p<0.0001 as assessed using the Student’s paired t test.

Figure S5. HIV infection alters expression of fucose and sialic acid in bystander cells. (A)

HIV infection upregulates fucose expression in bystander cells. Box plots showing binding by fucose-binding proteins on uninfected (UI), bystander (Bys), and infected (INF) CD4+ T cells from the endometrium, tonsils, and PBMCs. Bystander CD4+ T cells were defined as CD4+ T cells in the infected cultures that did not express the HIV reporter HSA. All populations were pre-gated on live, singlet CD4+ Tm cells. AOL binds total/core fucose, while UEA1 binds α 1-2 branched fucose. **(B)** HIV infection upregulates sialic acid in bystander cells. Box plots showing binding by sialic acid-binding lectins. Results are presented as in *panel A*. WGA binds total sialylated glycans and MAL1 α 2-3 sialylated glycans. **(C)** Box plots showing binding by T antigen-binding lectin ABA. Results are presented as in *panel A*. * $p < 0.05$ as assessed using the Student's paired t test and adjusted for multiple testing using the Benjamini-Hochberg for FDR. P values between 0.05-0.1 were shown in values. UI: Uninfected; Bys: Bystander.

Figure S6. HIV upregulates fucose, sialic acid, and T antigen expression in subsets of bystander cells. (A) Box plots showing staining by fucose-binding proteins on uninfected and bystander (Bys) B and T cells from the endometrium, tonsils, and PBMCs. Bystander CD4+ T cells were defined as those that did not express the HIV reporter HSA. AOL binds to total/core fucose, and UEA1 binds to α 1-2 branched fucose. **(B)** Box plots showing staining by sialic-acid-binding lectins WGA and MAL1. Results are presented as in *panel A*. WGA binds to total sialylated glycans and MAL-1 binds to α 2-3 sialylated glycans. **(C)** Box plots showing staining by the T antigen-binding lectin ABA. Results are presented as in *panel A*. Elevation of fucose, sialic acid, and T antigen on Bys relative to uninfected (UI) cells were most apparent in tonsils.

* $p < 0.05$, ** $p < 0.01$ as assessed using the Student's paired t test and adjusted for multiple testing using the Benjamini-Hochberg for FDR. CD8+ Tm: memory CD8+ T cells; CD8+ Tn: naive CD8+ T cells; CD4+ Tm: memory CD4+ T cells; CD4+ Tn: naive CD4+ T cells

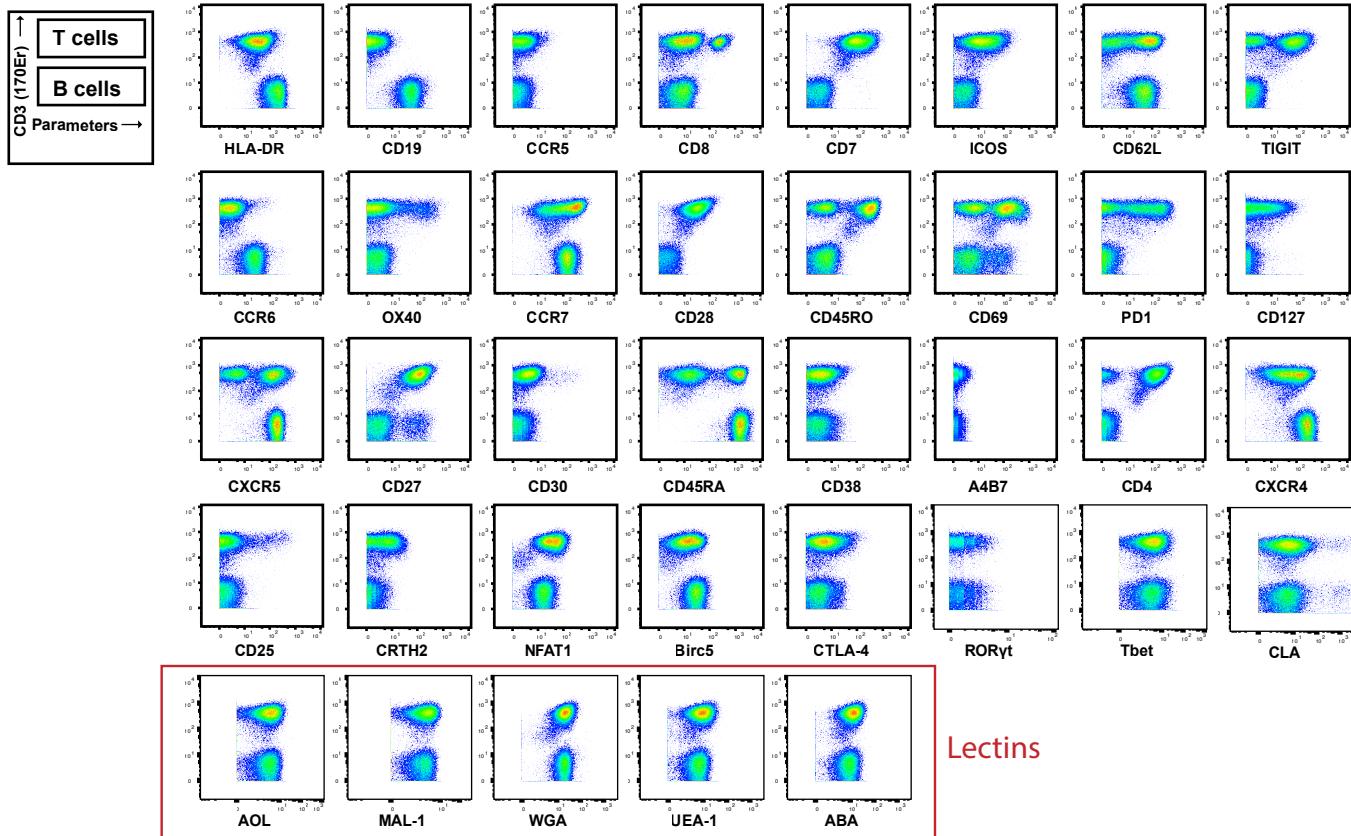
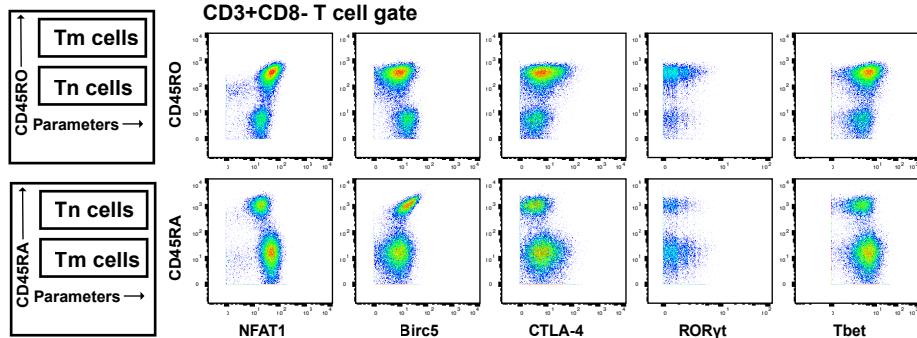
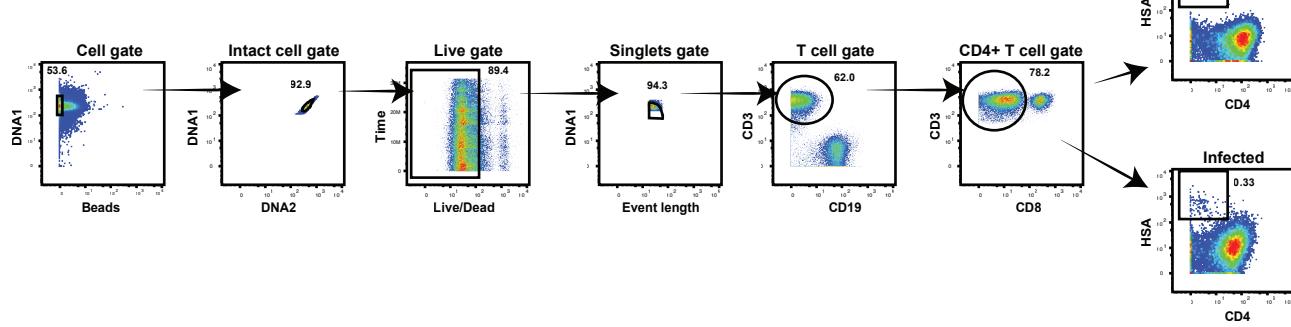
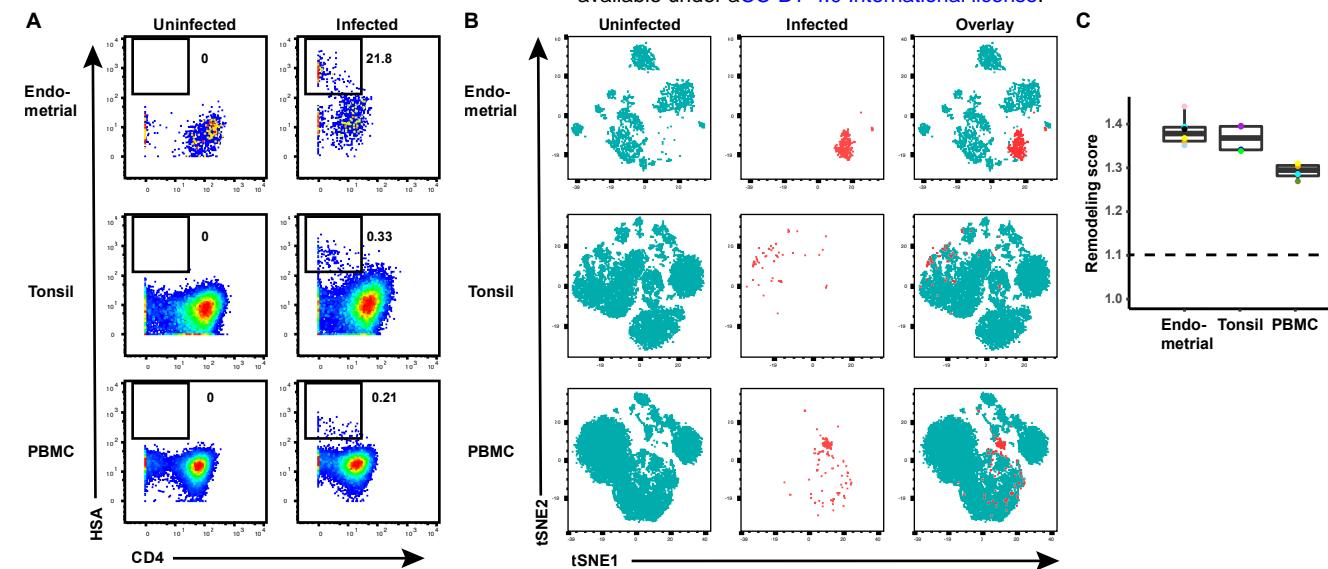

Figure S7. Levels of glycans on FlowSOM-defined clusters. An enrichment ratio was determined for each cluster by dividing the frequencies of the cells of that cluster among the PRE cells by their frequency among the uninfected CD4+ Tm cells. Clusters with an enrichment ratio above 1 correspond to those preferentially selected for infection. Relative binding by proteins specific for fucose (*panel A*), sialic acid (*panel B*), or T antigen (*panel C*) were assessed by reporting median signal intensity (MSI) of the bound lectins. Enriched clusters included those with high levels of the examined glycans. Total Tm cells are shown for comparation. *p<0.05, **p<0.01, ***p<0.001 as assessed using the Student's paired t test and adjusted for multiple testing using the Benjamini-Hochberg for FDR, and correspond to statistically significant differences between each cluster and total memory CD4+ T cells.

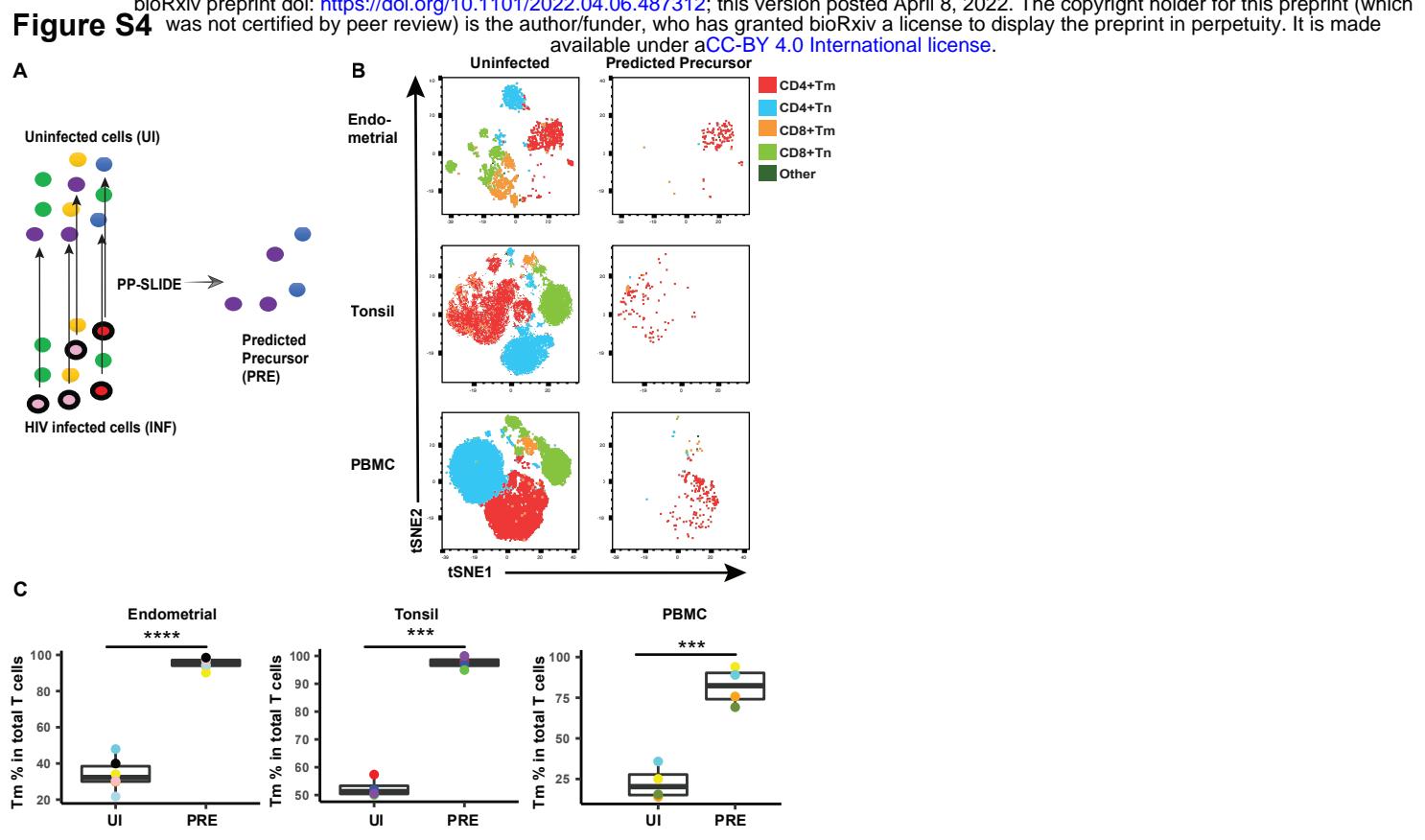
Figure S8. Activated CD4+ Tm cells express high levels of sialic acid. (A) Histograms showing the expression of activation markers on CD4+ Tm cells from resting (blue) and PHA-stimulated PBMCs (red). One of four representative donors is shown. **(B)** Stimulated CD4+ Tm cells express more sialic acid than resting CD4+ Tm cells do. Shown are the 4 PBMC donors. **(C)** HLADR^{High}, CD69^{High}, CD38^{High}, CD38^{High}, CD25^{High}, CD28^{High}, and ICOS^{High} CD4+ Tm cells bind more WGA than CD4+ Tm cells expressing low levels of these activation markers. Shown are the 4 PBMC donors. For panels B-C, *p < 0.05, **p < 0.01 as assessed using the Student's paired t test and adjusted for multiple testing using the Benjamini-Hochberg for FDR. **(C)** Treatment with the sialic acid synthase inhibitor P-3F_{zx}-Neu5Ac does not decrease cell-surface levels of sialidase on CD4+ T cells. PBMCs were treated for 24 h with the indicated concentrations of P-3F_{zx}-Neu5Ac prior to assessment of cell-surface WGA binding. Shown are overlaid histograms demonstrating no decrease in cell-surface sialic acid levels (as reflected by WGA binding) in the inhibitor-treated cells. Results are gated on live, singlet CD3+CD8-CD4+ cells. Numbers correspond to percent of cells within the indicated gate.

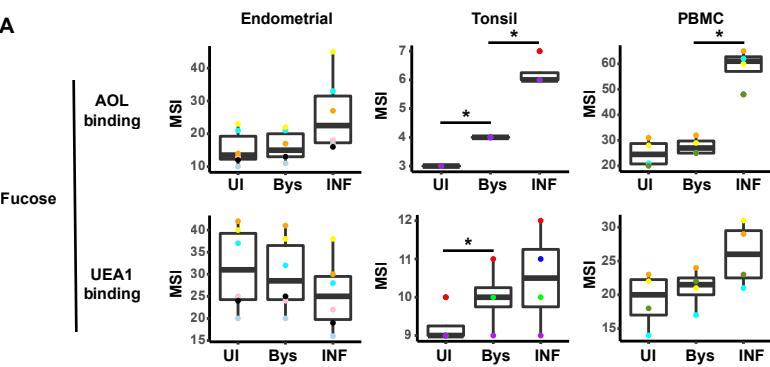
Figure S9. Expression levels of CyTOF antigens on WGA^{Low} and WGA^{High} Tm cells. Shown are histogram and box plots depicting antibody and lectin staining of the WGA^{Low} (red) and WGA^{High} (blue) Tm cells. Shown are antigens not already depicted in [Figure 6](#). Data from one of four representative PBMC donors is shown in histogram plots. Data from four independent PBMC donors is shown in box plots. *p<0.05 as assessed using the Student's paired t test and adjusted for multiple testing using the Benjamini-Hochberg for FDR.


Figure S1


A T cell gate


Lectins


B


Figure S3 bioRxiv preprint doi: <https://doi.org/10.1101/2022.04.06.487312>; this version posted April 8, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

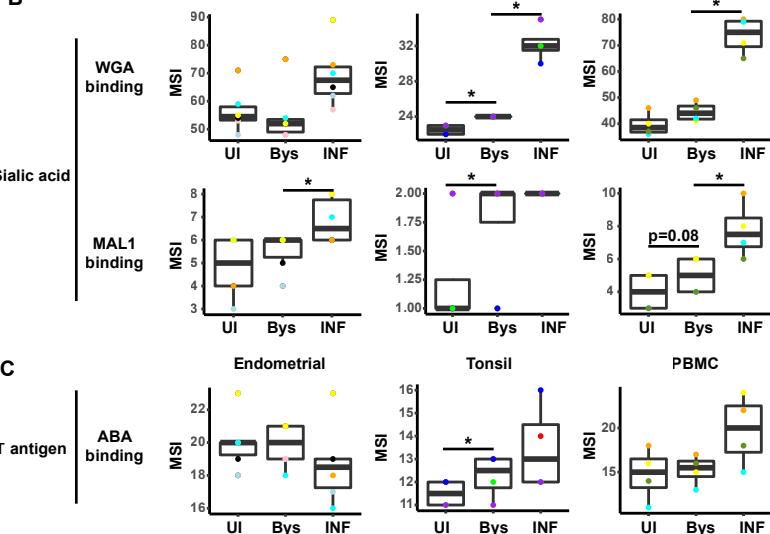
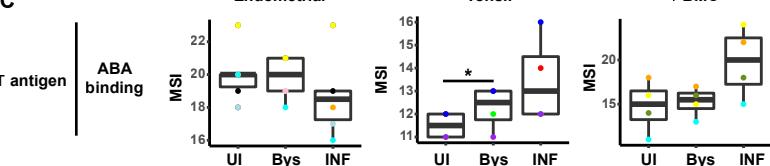
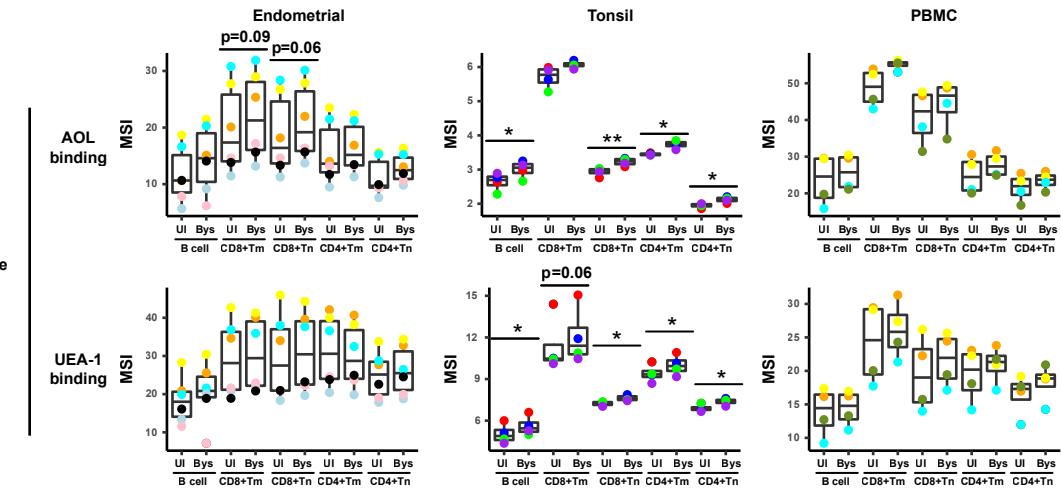


Figure S5


A

B



C

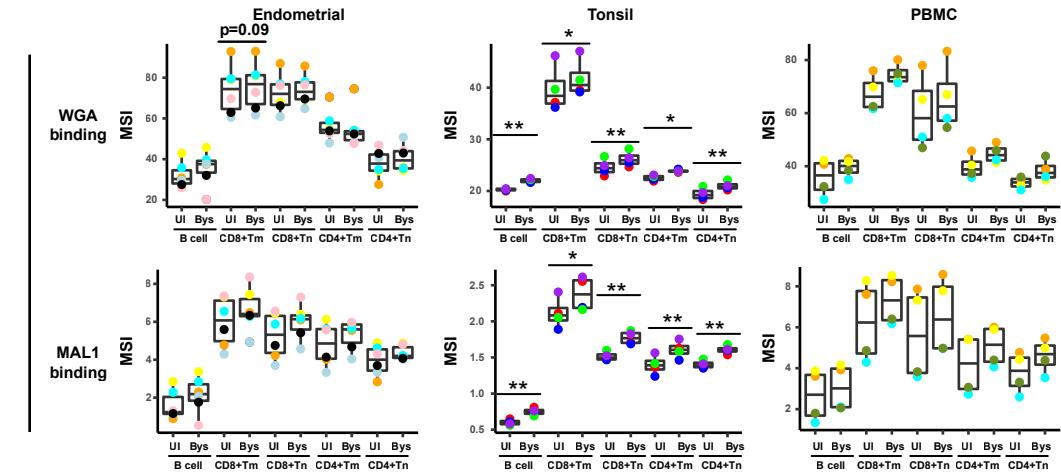
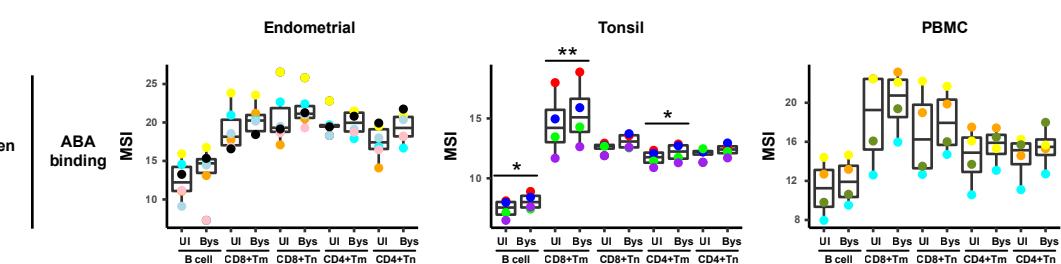
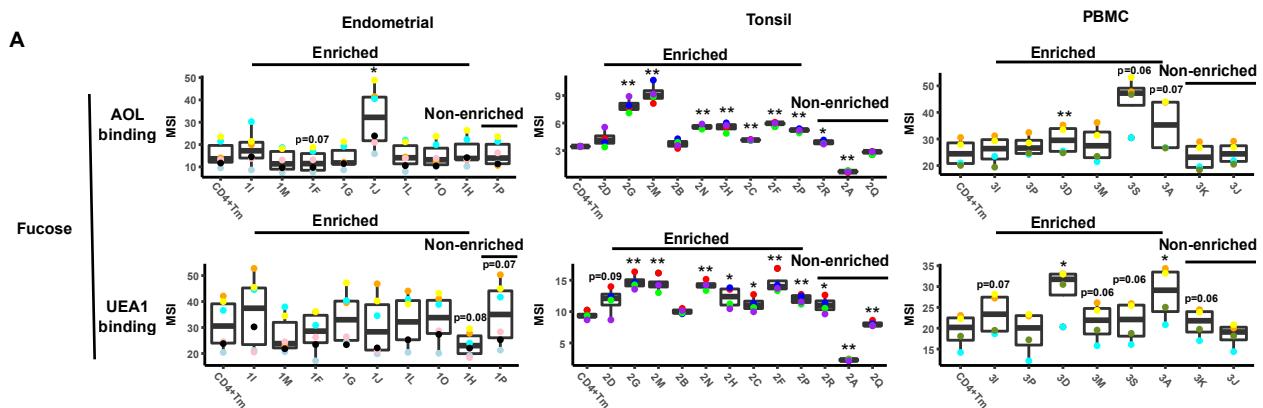
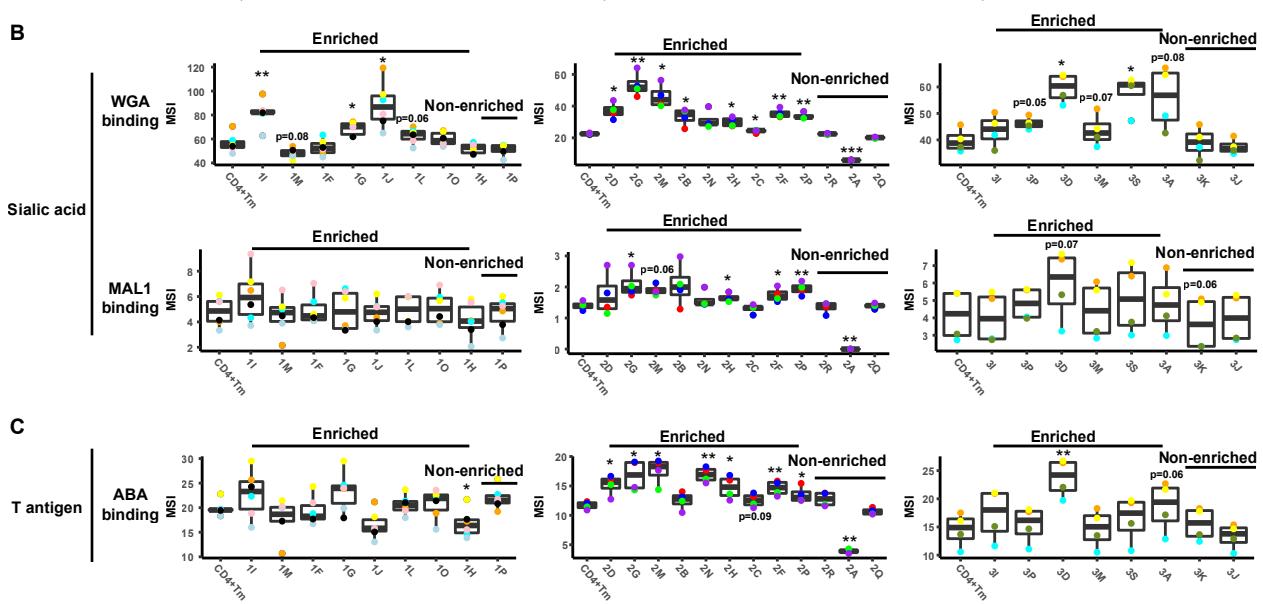
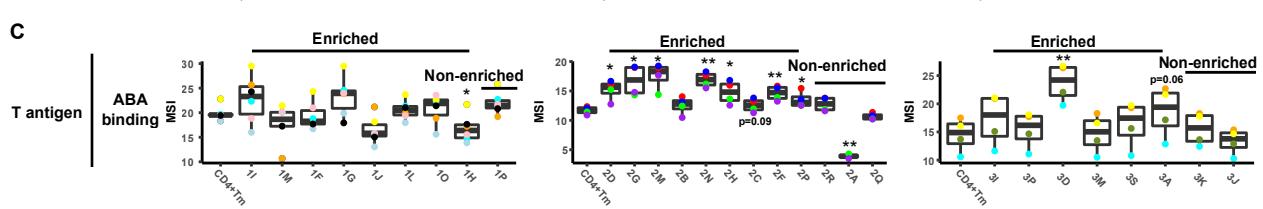


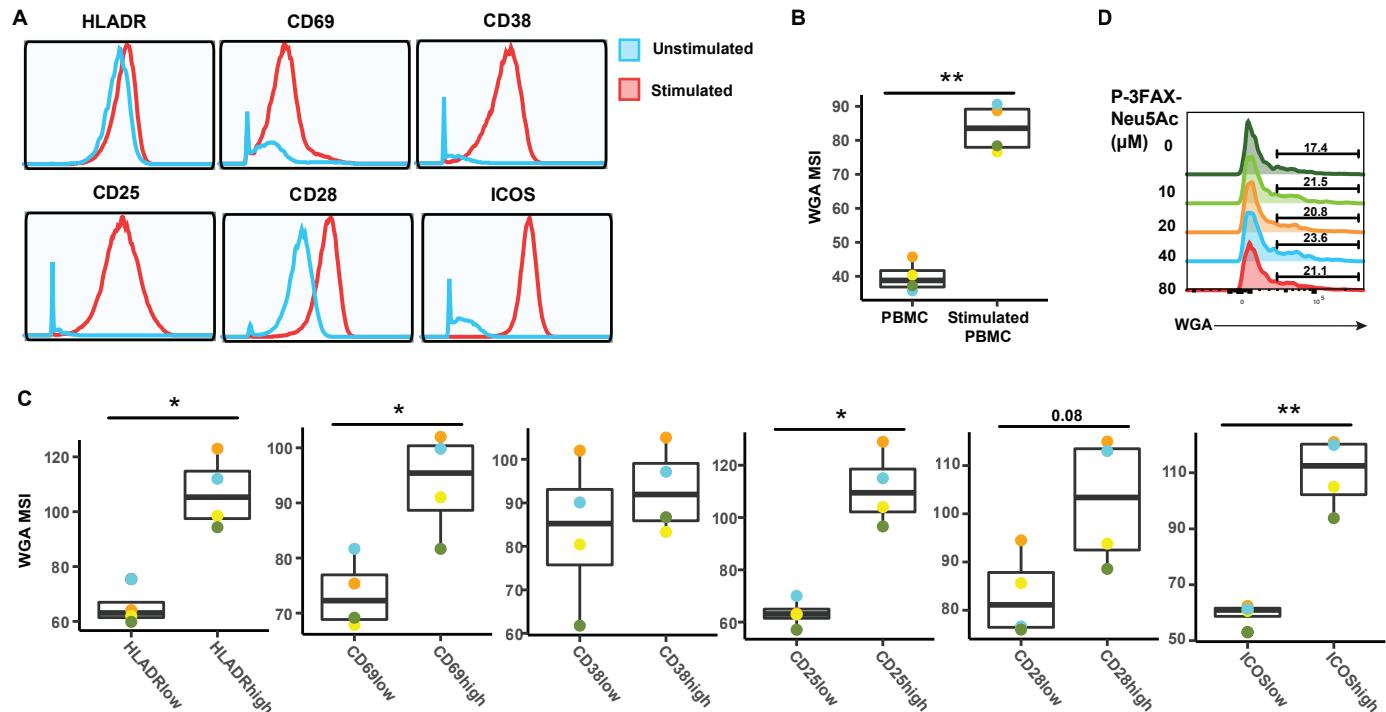
Figure S6

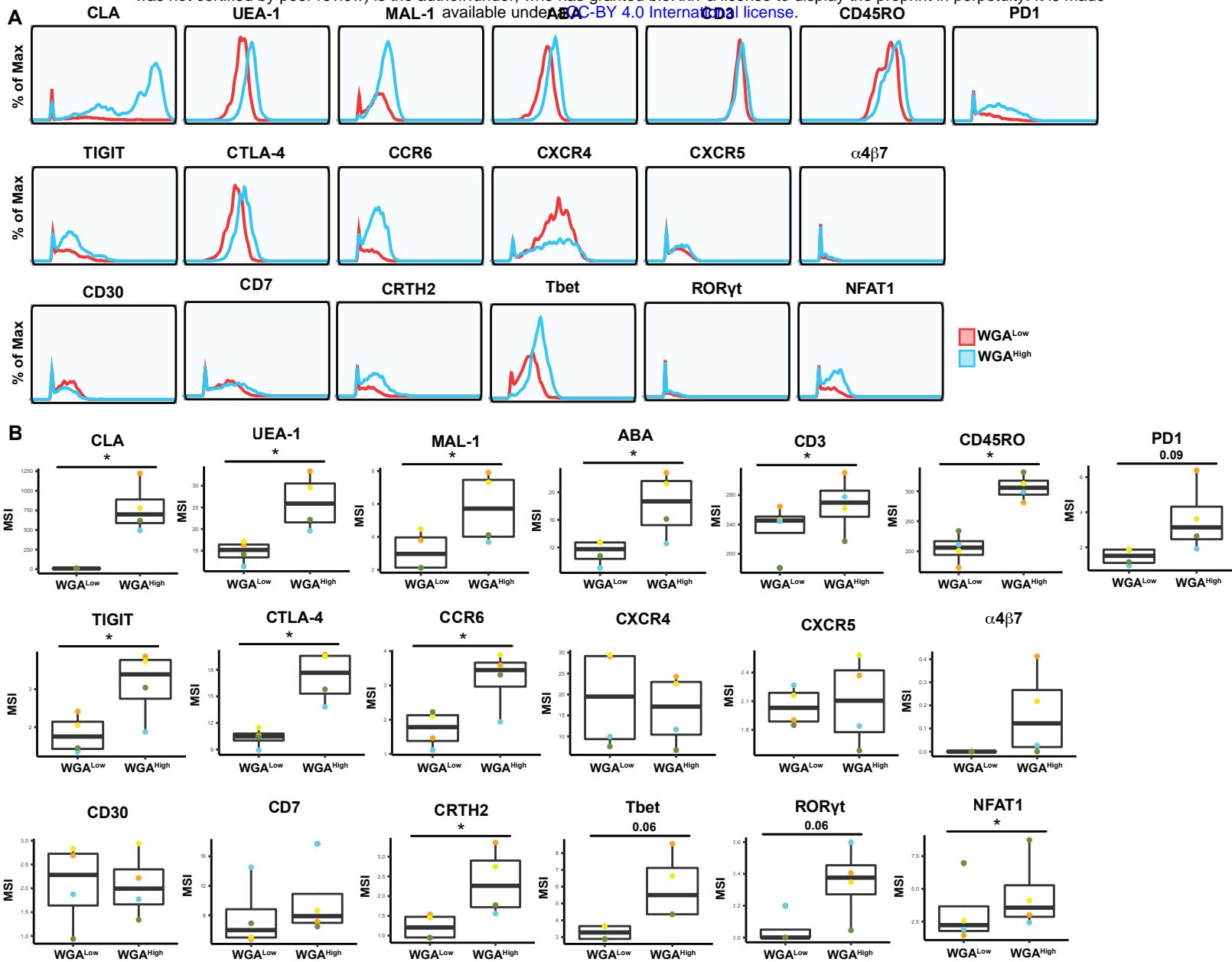

A


B


C


A


B



C

Figure S8

SUPPLEMENTARY TABLES

Table S1. List of CyTOF staining antibodies

Antibody	Metal label	Clone	Vendor
AOL*	141Pr	N/A	In-house
CD19	142Nd	HIB19	Fluidigm
CCR5	144Nd	NP6G4	Fluidigm
CD8	146Nd	RPAT8	Fluidigm
CD7	147Sm	CD76B7	Fluidigm
ICOS	148Nd	C398.4A	Fluidigm
HSA	150Nd	M1/69	In-house
MAL-1*	151Eu	N/A	In-house
WGA*	152Sm	N/A	In-house
CD62L	153Eu	DREG56	Fluidigm
TIGIT	154Sm	MBSA43	Fluidigm
CCR6	155Gd	G034E3	In-house
UEA-1*	156Gd	N/A	In-house
OX40	158Gd	ACT35	Fluidigm
CCR7	159Tb	G043H7	Fluidigm
CD28	160Gd	CD28.2	Fluidigm
CD45RO	161Dy	UCHL1	In-house
CD69	162Dy	FN50	Fluidigm
CRTH2	163Dy	BM16	Fluidigm
PD1	164Dy	EH12.1	In-house
CD127	165Ho	A019D5	Fluidigm
CXCR5	166Er	RF8B2	In-house
CD27	167Er	L128	Fluidigm
CD30	168Er	BerH8	In-house
CD45RA	169Tm	HI100	Fluidigm
CD3	170Er	UCHT1	Fluidigm
ABA*	171Yb	N/A	In-house
CD38	172Yb	HIT2	Fluidigm
α 4 β 7	173Yb	Act1	In-house
CD4	174Yb	SK3	Fluidigm
CXCR4	175Lu	12G5	Fluidigm

CD25	176Yb	M-A251	In-house
CLA	209Bi	HECA-452	In-house
HLADR	112Cd	Tu36	Invitrogen
ROR γ #	115Di	AFKJS-9	In-house
NFAT1#	143Nd	D43B1	Fluidigm
BIRC5#	145Nd	91630	In-house
Tbet#	149Sm	eBio4B10 (4B10)	In-house
CTLA4#	157Gd	14D3	In-house

*lectins, #Intracellular antibodies

Table S2. Binding properties of lectins used in this study

Property	MAL-1	WGA	UEA-1	AOL	ABA
Full Name/Source	Maackia Amuren-sis I	Wheat Germ Agglutinin	Ulex Euro-paeus I	Aspergillus Oryzae	Agaricus Bisporus Agglutinin
Subunits Number	2	2	2	1	4
Molecular Weight (Da)	130 k	36 k	63 k	35 k	68 k
Carbohydrate specificity	Sia(α2-3)Gal (β1-4) GlcNAc	Sialic acid/ β1-4 GlcNAc	α1-2 branched fucose	total/α1-6 core fucose	T antigen, Galβ1-3GalNAcα1
Sialic acids binding	α2-3 linked	Total	No	No	No

GlcNAc: N-acetylglucosamine, GalNAc: N-acetylgalactosamine