

1 **Salicin modifies osteoarthritis progression by binding on IRE1 α and inhibiting**
2 **IRE1 α mediated endoplasmic reticulum stress**

3 Zhenglin Zhu^{1,2}, Shengqiang Gao^{1,2}, Cheng Chen¹, Wei Xu¹, Pengcheng Xiao^{1,2},
4 Zhiyu Chen¹, Chengcheng Du^{1,2}, Bowen Chen^{1,2}, Yan Gao³, Chunli Wang³, Junyi
5 Liao^{1*} and Wei Huang^{1*}

6 ¹Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing
7 Medical University, Chongqing, 400016, China.

8 ²Orthopaedic Research Laboratory, Chongqing Medical University, Chongqing,
9 400016, China

10 ³National Innovation and Attracting Talents “111” base, Key Laboratory of
11 Biorheological Science and Technology, Ministry of Education, College of
12 Bioengineering, Chongqing University, Chongqing, 400030, China

13 ***Correspondences**

14 **Junyi Liao, MD, PhD**

15 Department of Orthopaedic Surgery
16 The First Affiliated Hospital of Chongqing Medical University
17 Chongqing 400016, China

18 Tel. 86-23 89011222

19 Fax: 86-23 89011211

20 E-mail: liaojunyi@cqmu.edu.cn

21 **Wei Huang, MD, PhD**

22 Department of Orthopaedic Surgery
23 The First Affiliated Hospital of Chongqing Medical University
24 Chongqing 400016, China

25 Tel. 86-23 89011222

26 Fax: 86-23 89011211

27 E-mail: huangwei68@263.net

28 **Salicin modifies osteoarthritis progression by binding on IRE1 α and inhibiting**
29 **IRE1 α mediated endoplasmic reticulum stress**

30 **Abstract**

31 **Objectives:** To investigate the effect and mechanisms of salicin (SA) on osteoarthritis
32 (OA) progression.

33 **Methods:** Primary rat chondrocytes were stimulated with TNF- α and treated with or
34 without SA. CCK-8 was utilized to determine the cytotoxicity of SA. RT-qPCR,
35 Western Blotting and immunofluorescence staining were used to detect inflammatory
36 factors, cartilage matrix degeneration markers, cell proliferation and apoptosis
37 markers expression at mRNA and protein levels respectively. EdU assay and flow
38 cytometer analysis were utilized for evaluating cell proliferation and apoptosis.
39 RNA-sequencing, molecular docking, drug affinity responsive target stability and WB
40 were applied to clarify mechanisms. Rat OA model was used to evaluate the effect of
41 intra-articular injection of SA on OA progression.

42 **Results:** No obvious cytotoxicity was found with the treatment of 10 μ M SA. SA
43 rescued TNF- α induced degeneration of cartilage matrix, inhibition of chondrocytes
44 proliferation, and promotion of chondrocytes apoptosis. In mechanism, we clarified
45 SA could directly bind on IRE1 α and occupy IRE1 α phosphorylation site, followed
46 with inhibiting IRE1 α phosphorylation and regulating IRE1 α mediated endoplasmic
47 reticulum (ER) stress by IRE1 α -IkB α -p65 signaling. Finally, intra-articular injection
48 of SA loaded PLGA could ameliorate OA progression by inhibiting IRE1 α mediated
49 ER stress in OA model.

50 **Conclusions:** SA alleviates OA by directly binding on ER stress regulator IRE1 α and
51 inhibits IRE1 α mediated ER stress by IRE1 α -IkB α -p65 signaling. Topical use of
52 small molecular drug SA holds the potential of modifying OA progression.

53 **Key words:** osteoarthritis, salicin, endoplasmic reticulum stress, IRE1 α ,
54 intra-articular injection

55 **1. Introduction**

56 Osteoarthritis (OA) is the most prevalent joint disease which affects an estimated
57 more than 500 million people worldwide¹. Exploring disease-modifying OA drugs
58 (DMOADs) for modifying the structural progression of OA is considered a potential
59 strategy for the treatment of early or middle stage OA^{2,3}.

60 Willow bark is regarded as one of the successful examples of the modern drug
61 developed from herbal remedy, which is originally recognized around two hundred
62 years ago. Salicin (SA) is the main chemically standardized willow bark extract, its
63 chemical oxidation resulted in a new substance termed “salicylic acid”, and the
64 acetylated derivative is finally turned into the famous drug called “Aspirin”^{4,5}. SA is
65 metabolized into salicylic acid after oral administration, and then plays roles in the
66 treatment of pain, headache, and inflammatory conditions^{5,6}. However, the formation
67 of salicylic acid alone is unlikely to explain analgesic or anti-rheumatic effects of
68 willow bark⁷, which indicates potential mechanisms that need to be further clarified.
69 On the other hand, as a small molecule drug, SA is characterized by easy to
70 manufacture, absorb and can cross cell membrane directly. Recently, studies reported
71 SA held anti-inflammatory effects and further presented inhibiting angiogenesis
72 effects⁸, prevented cellular senescence⁹, and exhibited anti-irritation and anti-aging
73 effects in dermatological applications¹⁰. However, based on our knowledge, the
74 effects and mechanisms of SA on OA cartilage degeneration have not been studied.
75 In the present study, we investigated the effects of SA on cartilage degeneration by
76 both in *vitro* and in *vivo* tests. We clarified that SA prevented cartilage degeneration
77 by alleviating the function of inositol-requiring enzyme 1 α (IRE1 α) signaling
78 mediated endoplasmic reticulum (ER) stress. Our findings indicated the potential
79 therapeutic effects of SA on OA progression by intra-articular injection.

80 2. Materials and Methods

81 2.1 Chondrocyte culture and chemicals

82 Experiment protocols were approved by the Institutional Review Board (IRB) of
83 Chongqing Medical University (NO.2020-018). Male Sprague-Dawley (SD) rats

84 (n=30) were fed in the Specific Pathogen Free animal facilities. Primary rat knee
85 chondrocytes were isolated from articular cartilage of 4-day-old neonatal rat, as
86 described previously¹¹. Each treatment group has three rats, and the chondrocytes
87 from each rat was subjected to following experiments. Passage 0 or 1 chondrocytes
88 were subjected to following experiments.

89 SA (Selleck Chemicals, S2351, TX, USA) was dissolved in 0.1%
90 dimethylsulfoxide (DMSO), and 0.1% DMSO was used as control. Tumor necrosis
91 factor α (TNF- α) was purchased from Peprotech (400-14, NJ, USA), 4-Phenylbutyric
92 acid (4-PBA) was purchased from Med Chem Express (Shanghai, China). Unless
93 indicated otherwise, all chemicals were purchased from Sigma-Aldrich or Corning.

94 **2.2 Cell viability**

95 Cell viability was determined by Cell Counting Kit-8 (CCK-8, Med Chem Express,
96 Shanghai, China) following the manufacturer's protocol. For the toxicity of dosage,
97 chondrocytes were treated with SA in gradient concentration (0-100 μ M) for 48 hours.
98 For the sustained toxicity of SA, chondrocytes were cultured in a medium containing
99 SA in different concentrations for 5 days. The optical density (OD) values were
100 determined at a wavelength of 450 nm. The non-linear regression analysis was used to
101 calculate the half-maximal inhibitory concentration (IC₅₀) values (percent cell
102 proliferation versus concentration).

103 **2.3 Reverse transcription-quantitative polymerase chain reaction (RT-qPCR)**

104 Total RNA was extracted from the chondrocytes with TRIZOL reagent (Thermo
105 Fisher Scientific, MA, USA) according to the manufacturer's instructions. Reverse
106 transcriptions were carried out by using EvoScript Universal cDNA Master Reagent
107 Kit (Med Chem Express, Shanghai, China). The SYBR Green qPCR Master Mix
108 (Med Chem Express, Shanghai, China), cDNA and primer were mixed according to
109 the manufacturer's instructions. QPCR reaction protocols were as follows: 5 minutes
110 at 95°C, 40 cycles of 10 seconds at 95°C, 20 seconds at optimal temperature for each
111 pair of the primers, and 20 seconds at 72°C respectively. Melting curves were

112 generated at every endpoint of amplification for 10 seconds at 95°C before 30
113 increments of 0.5°C from 65 to 95 °C. GAPDH was used as a reference gene. All
114 sample values were normalized to GAPDH expression by using $2^{-\Delta\Delta CT}$ method. All
115 qPCR were performed with three independent experiments. The qPCR primer
116 sequences are shown in Table 1.

117 Table 1. List of RT-qPCR primers.

Genes	Primer sequences (forward/reverse)
rat IL1- β	5'-TGACTTCACCATGGAACCCG-3'/5'-GACCTGACTTGGCAGAGGAC -3'
rat IL-6	5'-CTTCACAGAGGATACCACCCACA -3'/5'-AATCAGAATTGCCATTGCACAAC-3
rat MMP13	5'-ACCCAGCCCTATCCCTTGAT -3'/5'- TCTCGGGATGGATGCTCGTA -3'
rat COL2A1	5'-AATTGGTGTGGACATAGGG -3'/5'- AAGTATTGGGTCTTGGG -3'
rat ACAN	5'-AACTTCTTCGGAGTGGGTGGT -3'/5'- CAGGCTCTGAGACAGTGGGG -3'
rat BCL2	5'-GGTGGGGTCATGTGTGTGG -3'/5'- CAGCGGTAGGTGTCGAAGC -3'
rat CDK1	5'-TCCTCCAGGGGATTGTGTTTT -3'/5'- GCCAGTTGATTGTTCCCTTGTC -3'
rat MKI67	5'-GCCCTGGAAGATTATGGTGG -3'/5'- GGGTTCTGACTGGTTGTGGTTGT -3'
rat GAPDH	5'-TCTCGGGATGGATGCTCGTA -3'/5'- CAGATCCACAAACGGATACAT -3'

118

119 **2.4 Western blotting (WB)**

120 Chondrocytes treated with or without SA were lysed in cold
121 Radioimmunoprecipitation (RIPA, Beyotime, Shanghai, China) buffer containing
122 phosphatase and protease inhibitor, then centrifuged at 13000 g at 4 °C for 15minutes.
123 Equivalent quantity of protein (30 μ g) in each group was separated by 10-12%
124 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a
125 polyvinylidene difluoride (PVDF) membrane (Roche, Basel, Switzerland). As for
126 detection aggrecan, samples were deglycosylated with manufacturer's instructions.
127 After blocking with 5% skimmed milk, membranes were probed with primary
128 antibodies against Col2 α 1 (Abcam, ab34712), Aggrecan (Abcam, ab3773), MMP13
129 (Zen Bio, 820098), BCL2 (Zen Bio, R22494), CDK1 (Abcam, ab134175),
130 total-ERK1/2 (CST, #4695), phospho-ERK1/2 (CST, #4370), total-I κ B α (CST,
131 #4812), phospho-I κ B α (CST, #2859), phospho-IRE1 α (Zen Bio, R26310), IRE1 α
132 (bs-16696R), GRP78 (Zen bio, R24509), NF- κ B p65 antibody (CST, #8242),
133 Phospho-NF- κ B p65 antibody (CST, #3033), GAPDH (Zen Bio, 380626) overnight at

134 4 °C. Horseradish peroxidase-conjugated anti-mouse or anti-rabbit IgG (Abcam,
135 ab6728, ab6721) was used as secondary antibodies. Enhanced Chemiluminescence
136 (ECL, Thermo Fisher Scientific, MA, USA) detection system was used to detect the
137 protein bands on the membrane. The intensity of the protein bands was analyzed by
138 Image J software, using GAPDH as reference protein.

139 **2.5 Cell immunofluorescence (IF) assays**

140 Cells on coverslips were incubated with 6% normal goat serum and 4% bovine serum
141 albumin in phosphate buffer solution (PBS) for 1 hour at 37°C. Then, cells were
142 incubated with the NF-κB p65 antibody (CST, #8242), Phospho-NF-κB p65 antibody
143 (CST, #3033) overnight at 4°C. Next day, the fluorescein isothiocyanate (FITC/CY3)
144 labeled goat anti-rabbit IgG was used as a secondary antibody and incubated for 1
145 hour at room temperature. ER-Tracker Red (C1041 Beyotime) was applied according
146 to the manufacturer's protocols. Cells were washed with 1 × PBS for 5 times to clear
147 the dyes. Finally, the cells were counterstained with 4',6-diamidino-2-phenylindole
148 (DAPI) and observed by fluorescence microscopy.

149 **2.6 Cell proliferation assay**

150 Chondrocyte proliferation was quantified by an ethynyl deoxyuridine (EdU) DNA in
151 vitro proliferation detection kit (Ribobio, Guangzhou, China) according to the
152 manufacturer's instructions. The number of EdU-labelled cells was calculated from
153 fields randomly selected in each well by two independent laboratory technicians in a
154 blinded, random fashion.

155 **2.7 Cell apoptosis assay**

156 Chondrocytes in each treatment group were trypsinized, collected and washed three
157 times with cold PBS. About 4×10^5 cells/ml suspensions per group were mixed with
158 the Annexin V-FITC and PI binding buffer for 20 minutes according to the standard
159 protocol of the Annexin V-FITC kit (Beyotime, Beijing, China). Finally, the mixtures
160 were subjected to a flow cytometer (BD Biosciences, CA, USA) for apoptosis
161 analysis.

162 **2.8 ELISA**

163 The levels of MMP13 in chondrocyte supernatants were measured using the ELISA
164 kits (E-EL-R0045c, Elabscience, Wuhan, China) according to the manufacturer's
165 instructions, OD value was recorded at a wavelength of 450 nm.

166 **2.9 RNA-sequencing (RNA-Seq) and bioinformatics analysis**

167 Total RNA extracted from chondrocytes treated with or without SA were subjected to
168 RNA-Seq. RNA samples were sent to OE Biomedical Technology Co., Ltd.
169 (Shanghai, China) for RNA-Seq. RNA sequencing was done on the HiSeq2500
170 system (Illumina, CA, USA). The R language program was used to analyze the raw
171 data and identify differentially expressed genes (DGEs). Selecting differential
172 transcripts with p -values ≤ 0.05 and fold change ≥ 2 were followed with gene
173 ontology (GO) biological function enrichment analysis and Kyoto gene and genome
174 encyclopedia (KEGG) signal pathway enrichment analysis.

175 **2.10 Target prediction and molecular docking**

176 SA structure was downloaded from the Pubchem database and converted to mol2
177 format. The three-dimensional structure of the IRE1 α (PDB ID: 6HX1) protein was
178 downloaded from the Research Collaboratory for Structural Bioinformatics (RCSB)
179 protein database. Autodock vina 1.1.2 was used for semiflexible docking with SA and
180 IRE1 α . The parameter exhaustiveness was set as 20 to increase calculation accuracy.
181 The best affinity (-8.567 kcal/mol) conformation was selected as the final docking
182 conformation.

183 **2.11 Drug affinity responsive target stability (DARTS)**

184 DARTS was done as previously described^{12,13}. Briefly, chondrocytes were treated
185 with cold M-PER lysis buffer (Thermo Fisher, MA, USA) containing a protease
186 inhibitor cocktail (1 mM Na3VO4 and 1 mM NaF). Protein lysates were firstly mixed
187 with 10x TNC buffer (500 mM Tris-HCl pH=8.0, 500 mM NaCl and 100 mM CaCl2
188 at a ratio of 1:1), then subjected to incubate with DMSO or SA for 1 hour at room
189 temperature. Next, sample was proteolyzed in gradient concentrations of pronase

190 (Roche, Basel, Switzerland) for 10 minutes following with adding 2 μ l of cold 20x
191 protease inhibitor cocktail. Coomassie blue staining (Beyotime, Shanghai, China) was
192 carried out for estimation of relative abundance of proteins. An equal portion of each
193 sample was loaded onto SDS-PAGE gel for Western blotting.

194 **2.12 Animal model**

195 SD rats were randomizely devided into four groups. After anesthesia and standard
196 aseptic surgical procedures ACLT was performed in SD rats' (200 ± 20 g) right knee
197 to establish an OA model (duration: four weeks)^{14,15}, rats only open knee joints were
198 regarded as a sham group (n=5). Poly (lactic-co-glycolic acid) (PLGA)
199 (Sigma-Aldrich, MO, USA) was dissolved in CH_2Cl_2 and mixed with ultrasonic
200 dissolved SA, then PLGA loaded SA was obtained by double-emulsion method as
201 reported previously^{16,17}. The animals that received ACLT were randomly divided into
202 three groups: ACLT (PBS only, n=5), vehicle (PLGA vehicle, n=5), and SA (PLGA
203 vehicle with SA, n=5). Four weeks after surgery, intra-articular injection of 100 μ L
204 PLGA + SA suspension (the equivalent of 1 mM SA, PLGA loaded), PLGA only and
205 PBS only were done respectively. Four weeks post intra-articular injection, rats were
206 sacrificed and knee joints were harvested.

207 **2.13 Histological analysis**

208 Samples were fixed in 4% paraformaldehyde (Beyotime, Beijing, China), decalcified
209 in 0.5 M ethylenediaminetetraacetic acid (EDTA) and embedded in paraffin. Serial
210 5- μ m-thick sections were obtained and subjected to histological and other specialty
211 staining evaluations. Hematoxylin-eosin (H&E) and safranin-O/green stainings were
212 carried out as previously described¹⁸⁻²⁰. The articular surface of the femur and tibia in
213 coronal sections of the knee joint was qualitatively and semi-quantitatively analyzed
214 as previously characterized^{14,15}. Each specimen was scored by three orthopaedic
215 surgeons following the double-blind principle according to Osteoarthritis Research
216 Society International (OARSI) criterion for rat²¹.

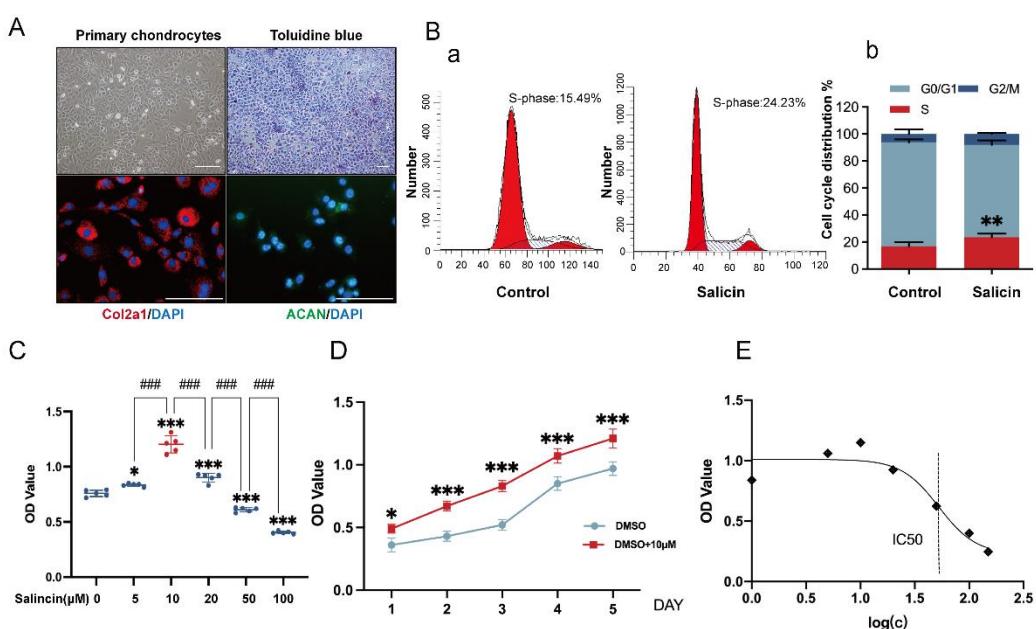
217 As for Immunohistochemistry (IHC) staining, dewaxed slices were immersed in
218 sodium citrate buffer and heated in gradient temperature for antigen retrieving, soaked
219 in 3% H₂O₂ to remove the endogenous peroxidase activity and blocked with caprine
220 serum. Then slices were incubated with primary MMP13 (Zen Bio, 820098), GRP78
221 (Zen Bio, R24509), p-IRE1 α (Zen Bio, 530878) antibody respectively at 4°C
222 overnight. Biotin-labeled secondary antibody (ZSGB-BIO, ZLI-9017) and
223 3,3'-Diaminobenzidine (DAB) were used for IHC.

224 As for IF staining, frozen sections were fixed with 4% paraformaldehyde, dehydrated
225 in 30% sucrose solution, permeabilized with 0.1 % Triton X-100 and blocked with 5 %
226 BSA. Then sections were incubated overnight at 4 °C with primary Phospho-NF- κ B
227 p65 (CST, #3033) antibody. Sections were dealt with appropriate
228 fluorescein-conjugated secondary antibodies. DAPI was utilized for nuclear staining.

229 **2.14 Sample size determinations**

230 For in vitro experiments analyzed as fold changes or quantitative analysis, we
231 calculated a minimum sample size ($n \geq 3$) with three independent experiments. For
232 *in vivo* experiments, based on the previous experiments, we yielding a sample size n
233 ≥ 4 at alpha level of 0.05 and power of 80%^{22,23}.

234 **2.15 Statistical analysis**

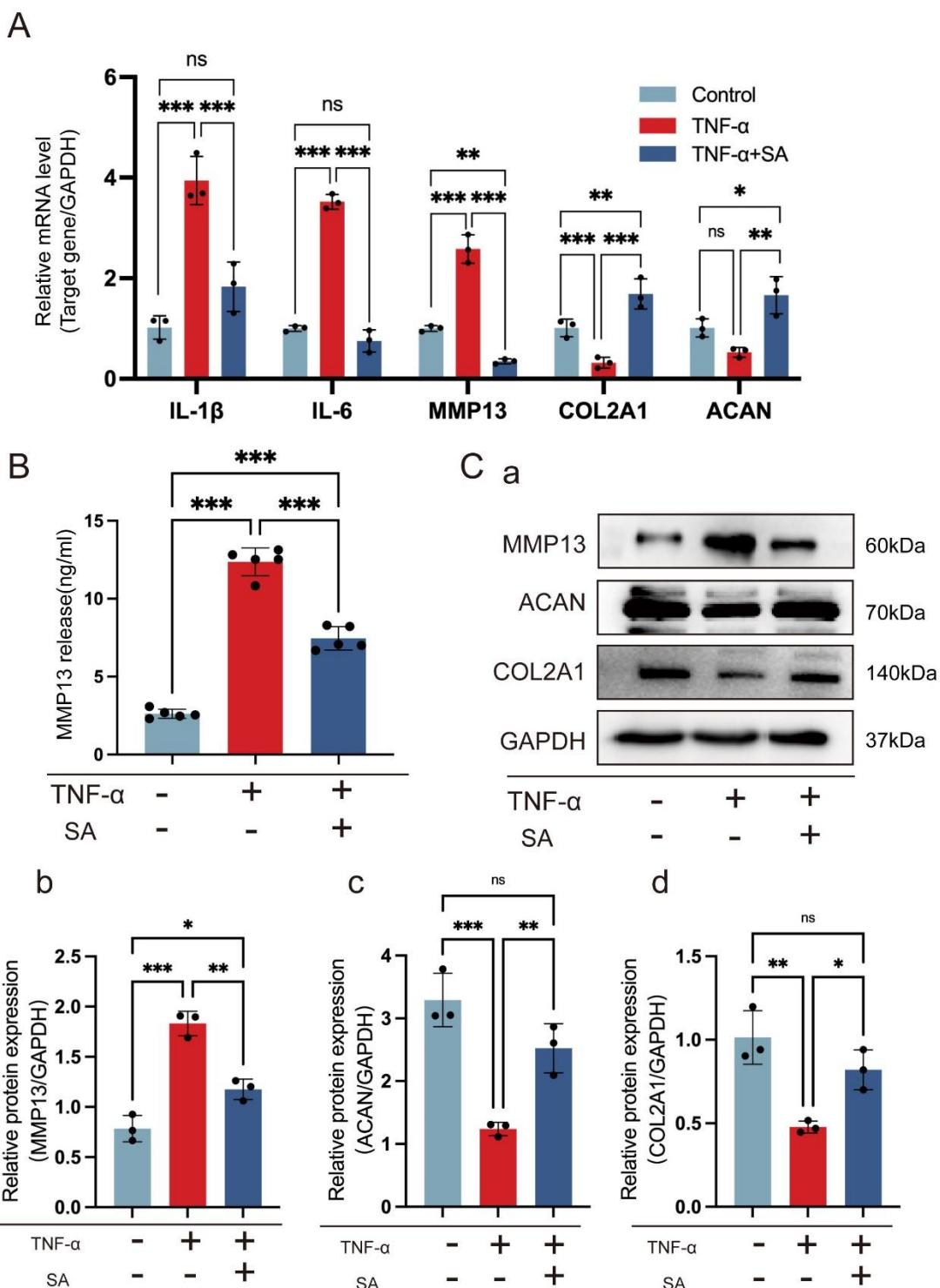

235 All data sets were compared using GraphPad Prism (GraphPad Software, La Jolla,
236 CA) version 9.0. Data are shown as mean \pm standard deviation (SD). For *in vivo*
237 and *vitro* studies, Unpaired Student's t test (for two groups), one-way ANOVA (for
238 multiple groups) were used followed by the Tukey-Kramer test. Values of $P < 0.05$
239 were considered statistically significant.

240 **3. Results**

241 **3.1 Phenotypic characterization of primary articular chondrocytes and** 242 **cytotoxicity of SA on chondrocytes.**

243 Primary articular chondrocytes were characterized by Toluidine Blue staining and IF
244 staining with Col2a1(red) and ACAN (green) (Figure 1A). We firstly identified the

245 effects of SA on cell cycle and found that SA promoted chondrocytes proliferation
246 (Figure 1Ba), quantitative analysis (Figure 1Bb) showed SA increased S-phase
247 chondrocytes significantly. Next, cytotoxicity of SA to chondrocytes was assessed. As
248 shown in Figure 1C, 5 μ M, 10 μ M and 20 μ M SA statistically promoted chondrocytes
249 proliferation and 10 μ M was the highest, however, 50 μ M and 100 μ M SA
250 dramatically reduced cell viability. Furthermore, we found 10 μ M SA treatment
251 promoted chondrocytes proliferation from day 1 to day 4 compared with DMSO
252 group. From these experiments, IC50 of SA was 42.30 μ M (Figure 1E). Taken
253 together, 10 μ M SA was considered not toxic to chondrocytes and selected as the
254 optimal dose for next investigations.



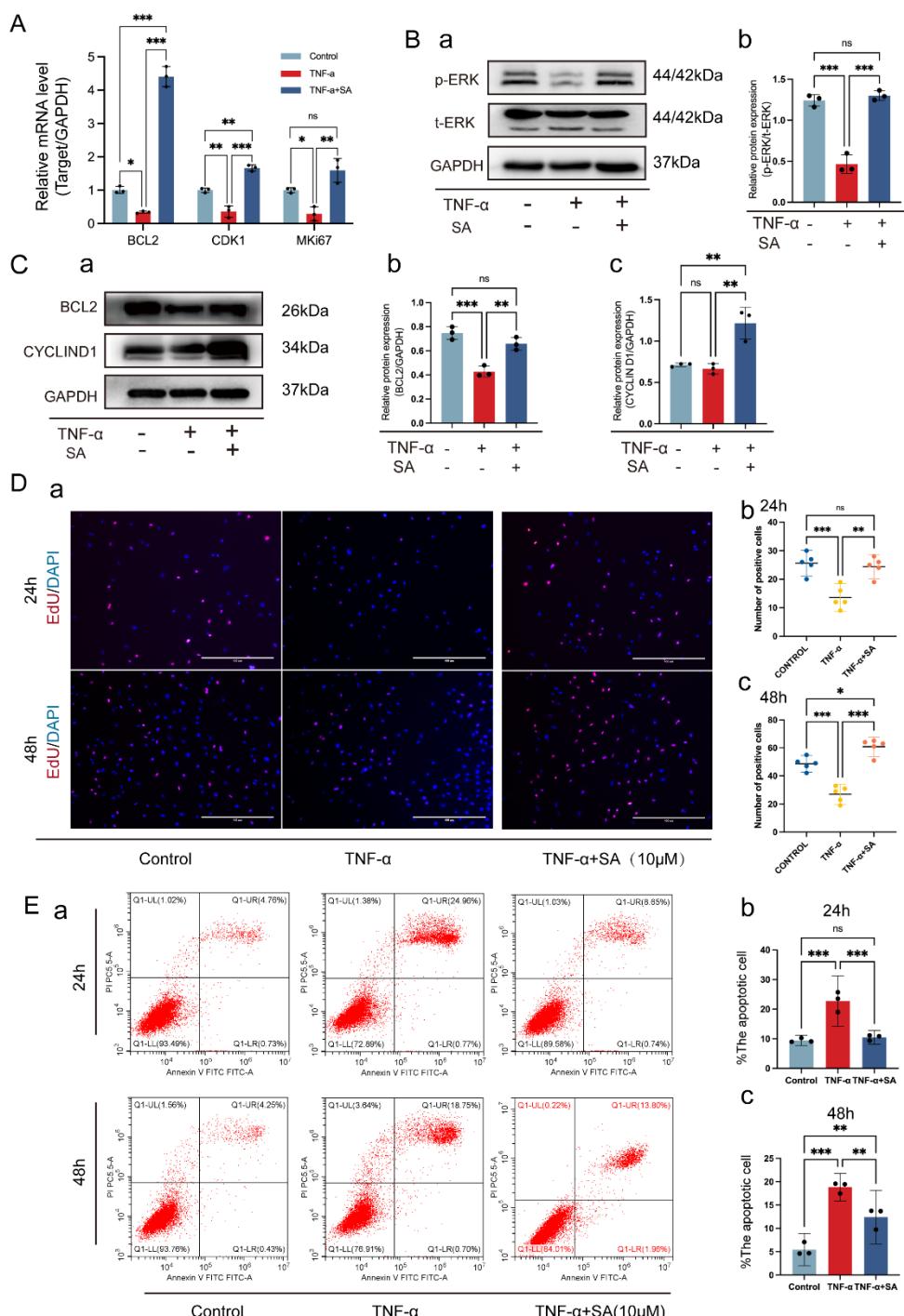
255
256 *Figure 1: Phenotypic characterization of primary articular chondrocytes and*
257 *cytotoxicity of SA on chondrocytes. (A) Staining of articular chondrocytes in primary*
258 *cultures with Toluidine Blue. Immunostaining of primary articular chondrocytes with*
259 *Col2a1(red), ACAN (green) and DAPI (blue). (B) Flow cytometry for cell cycle*
260 *progression of chondrocytes with or without SA(a), quantitative analysis(b) found SA*
261 *promotes S-phase cells significantly (n=3, Student's t test). (C) Chondrocytes were*
262 *treated with SA in gradient concentration (0-100 μ M) for 48 hrs and subjected to*
263 *CCK-8 analysis. From 5 μ M to 20 μ M SA treatment, OD values were statistically*

264 *higher than 0 μ M (DMSO) group, and for 50 μ M and 100 μ M SA treatment, OD*
265 *values were statistically lower than 0 μ M (DMSO) group (n=5, one-way ANOVA). (D)*
266 *Chondrocyte proliferation curve of SA treatment from day 1 to day 5, 10 μ M SA*
267 *treatment statistically promoted cell proliferation from day 1 to day 5 compared with*
268 *DMSO group.(n=5, Student's t test). (E) IC50 of SA on chondrocytes, concentrations*
269 *were transferred to Log(c). The data are expressed as mean \pm SD, *p < 0.05, **p <*
270 *0.01, ***p < 0.001, * compared with DMSO group, #p < 0.05, ##p < 0.01, ###p <*
271 *0.001, # compared with 10 μ M group and ns, not significant.*

272 **3.2 SA inhibits TNF- α induced chondrocytes inflammatory factor expression and**
273 **extracellular matrix degeneration**

274 We firstly explored the effects of SA on TNF- α induced chondrocytes inflammatory
275 factors and matrix gene expressions. As shown in Figure 2A, TNF- α dramatically
276 increased interleukin-1 β (IL-1 β), interleukin-6 (IL-6), matrix metalloproteinase 13
277 (MMP13) gene expression and inhibited Col2a1 and ACAN gene expression in
278 chondrocytes when compared with the control group. However, these effects could be
279 diminished by 48 hours' treatment of 10 μ M SA *in vitro*. What was more, we found
280 TNF- α induced chondrocytes matrix degeneration by elevating the expression and
281 secretion of MMP13 would be reverted by SA at protein level (Figure 2B-C).
282 Meanwhile, we found SA could rescue TNF- α induced cartilage matrix degradation
283 by detecting expressions of Col2a1 and ACAN at protein level (Figure 2C).
284 Quantitative analysis showed the same trend. These results indicated that SA inhibited
285 TNF- α induced chondrocytes degeneration *in vitro*.

286


287 *Figure 2: SA inhibits TNF- α induced chondrocytes inflammatory factors expression*
288 *and extracellular matrix degeneration. Chondrocytes were stimulated with TNF- α*
289 *and then treated or not treated with 10 μ M SA for 48 hrs. (A) Relative mRNA*
290 *expression levels of IL1 β , IL-6, MMP13, COL2A1 and ACAN were detected by*
291 *RT-qPCR (n=3, one-way ANOVA). (B) Expression of active MMP13 protein was*

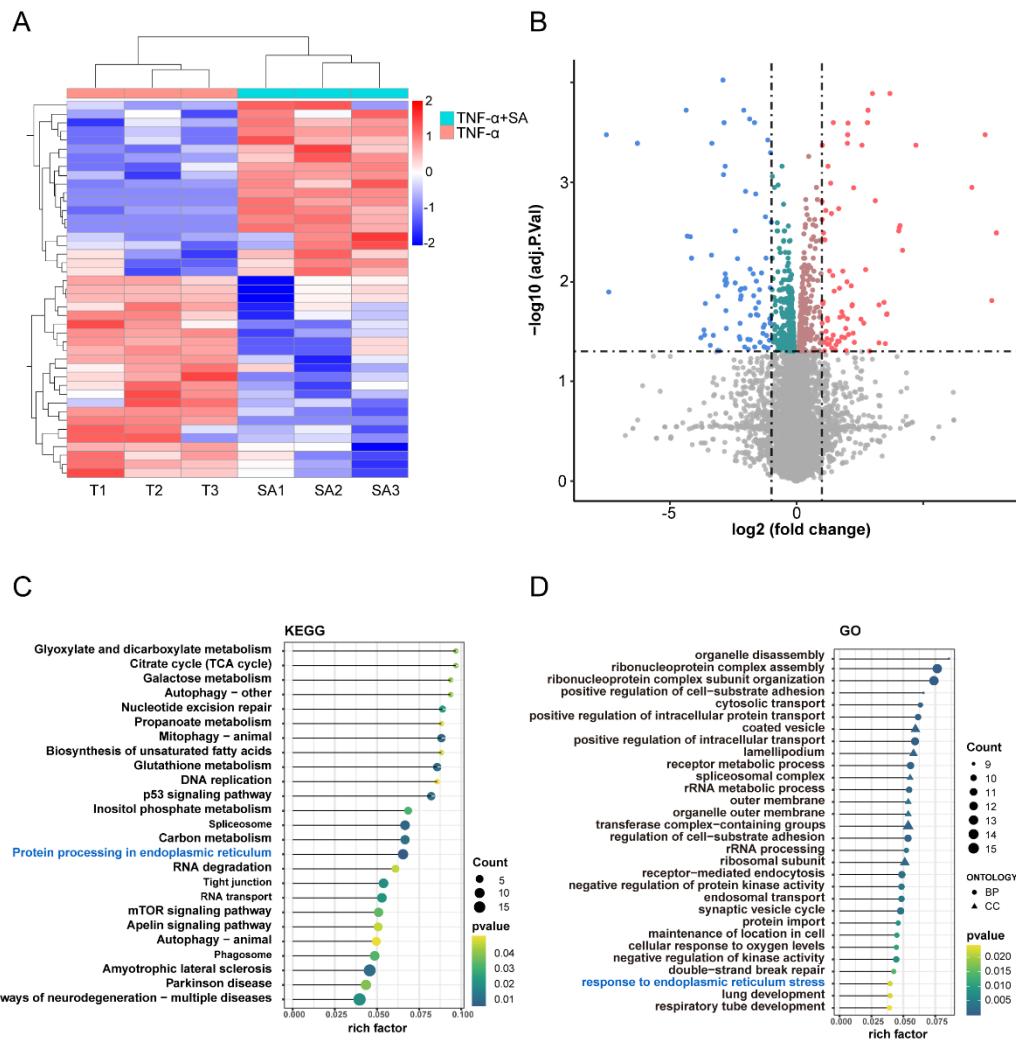
292 *reduced by the chondrocytes when stimulated with SA (n=3, one-way ANOVA). (C)*
293 *WB analysis for detecting cartilage matrix markers MMP13, ACAN and COL2A1 in*
294 *different groups (a). Quantitative analysis of MMP13(b), ACAN (c) and COL2A1(d)*
295 *in protein level, GAPDH was used as reference protein (n=3, one-way ANOVA). The*
296 *data are expressed as mean \pm SD, *p < 0.05, **p < 0.01, ***p < 0.001, and ns, not*
297 *significant.*

298 **3.3 SA ameliorated cartilage degeneration by enhancing chondrocytes**
299 **proliferation and inhibiting chondrocyte apoptosis.**

300 We next investigated the effects of SA on TNF- α mediated chondrocytes apoptosis
301 and proliferation. We found TNF- α significantly inhibited antiapoptotic gene BCL-2
302 and promoting cell cycle genes CDK1 and MKi67 in chondrocytes. However, when
303 chondrocytes were treated with 10 μ M SA simultaneously, these inhibiting effects
304 could be eliminated (Figure 3A). As for the phosphorylation of ERK, we found that
305 TNF- α did not influence the total ERK (t-ERK) expression nor p-ERK statistically,
306 however, SA could elevate the ratio of p-ERK and t-ERK compared with TNF- α
307 treatment group (Figure 3B). Meanwhile, we determined the effects of SA on TNF- α
308 mediated inhibiting of BCL2 and CDK1 expressions at the protein level, we found
309 that SA eliminated these inhibiting effects mediated by TNF- α as well (Figure 3Ca).
310 Quantitative analysis showed the same trend (Figure 3Cb-c). These results suggested
311 that SA eliminated TNF- α mediated inhibition of cell cycle related markers
312 expression.

313 Furthermore, cell proliferation by EdU staining showed SA could rescue TNF- α
314 induced inhibition of DNA duplication in dose-dependent manner at both 24h and 48h
315 (Figure 3Da). Quantitative analysis showed the same trend (Figure 3Db). Cell
316 apoptosis and quantitative analysis also confirmed that SA eliminated TNF- α induced
317 promotion of cell apoptosis at both 24h and 48h (Figure 3E).

318

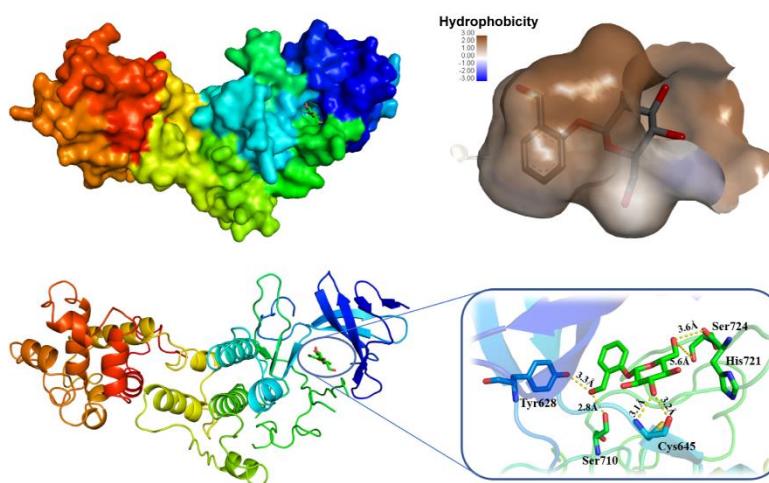

319 **Figure 3: SA rescues TNF-α induced inhibition of chondrocytes proliferation and**
 320 **TNF-α induced promotion of chondrocyte apoptosis. (A) SA rescues TNF-α induced**
 321 **apoptosis markers expression at mRNA level. Chondrocytes were stimulated with**
 322 **TNF-α and then treated or not treated with 10 μM SA for 48 h, relative mRNA**
 323 **expression levels of BCL2, CDK1 and MKi67 were detected (n=3, one-way ANOVA).**

324 **(B) Western blot analysis for detecting t-ERK and p-ERK in different group with the**

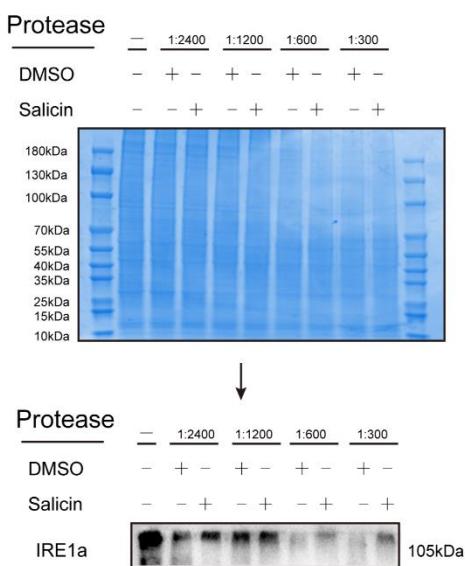
325 *treatment of SA for 48 h(a). Quantitative analysis of ratio of p-ERK/t-ERK, GAPDH*
326 *was used as reference protein (b) (n=3, one-way ANOVA). (C) WB for detecting cycle*
327 *proliferation markers BCL2 and CYCLIN D1 in different group 48 hours after*
328 *treatment at protein level. Quantitative analysis of BCL2 (b) and CyclinD1 (c) at*
329 *protein level, GAPDH was used as reference protein (n=3, one-way ANOVA). (D)*
330 *Fluorescent staining of EdU assay for detecting DNA synthesis indicating cell*
331 *proliferation with 24 h and 48 h treatment (a), scale bar 400 μ m. Percentage of EdU*
332 *(red) positive staining statistical analysis at 24hrs (b) and 48hrs (c), (n = 5, random*
333 *fields, one-way ANOVA). (E) Flow cytometry for cell apoptosis analysis of*
334 *chondrocytes in each treatment group at 24hrs and 48hrs (a). Percentage of apoptotic*
335 *cell in each treatment group at 24hrs (b) and 48hrs (c) (n=3, one-way ANOVA). The*
336 *data are expressed as mean \pm SD, *p <0.05, **p <0.01, ***p <0.001, and ns, not*
337 *significant.*

338 **3.4 DEGs identification and pathway enrichment analysis**

339 All sequencing data are available through the NCBI Sequence Read Archive under
340 the accession number PRJNA820304. To figure out the potential mechanisms,
341 RNA-seq was performed in chondrocytes cultured with or without SA under TNF- α
342 stimulation. As exhibited in Figure 4A-B, for differentially expressed genes (DEGs),
343 we found that 94 DEGs were up-regulated, and 96 DEGs were downregulated. Then
344 DEGs were subjected to GO and KEGG signaling pathway enrichment analysis
345 (Figure 4C-D). It comes to our attention that DEGs were highly enriched in biological
346 process (BP) through GO analysis which including response to ER stress and cellular
347 response to oxygen levels etc. What was more, KEGG signaling pathway enrichment
348 analysis showed that protein processing in endoplasmic reticulum (Figure 4C-D
349 marked with blue) was one of the most highly enriched signaling pathways.



350
351 **Figure 4: Bioinformatics analysis and potential mechanisms prediction.** (A)
352 Heatmap for global gene expression with group clusters ($n=3$). (B) Volcano map of
353 DEGs in SA group vs control group (up-regulation: 75 genes and down-regulation:
354 32 genes), FC (fold change) ≥ 2 was accepted as positive DEGs. (C) Pathway
355 enrichment bubble map based on the KEGG enrichment analysis, rich factor
356 indicates a higher degree of enrichment, the larger p value ($-\log_{10}$) indicates a
357 higher statistical significance, the larger bubble indicates a higher degree of
358 enrichment. (D) GO enrichment of those DEGs, rich factor indicates a higher degree
359 of enrichment, the larger p value ($-\log_{10}$) indicates a higher statistical significance,
360 the larger bubble indicates a higher degree of enrichment, BP: biological process,
361 CC: cellular component.


362 **3.5 SA inhibiting IRE1 α -IkBa-p65 signaling mediated ER stress by directly
363 binding on IRE1 α .**

364 As the ER transmembrane sensor, IRE1 α is the key factor for ER stress. Therefore,
365 we analyzed the potential combination of SA and IRE1 α . Three dimensional (3D)
366 structures of SA and IRE1 α were subjected to molecular docking. The score of SA
367 docking with IRE1 α was -8.567 kcal/mol, and the theoretical binding mode was
368 shown in Figure 5A. As shown, the compound and the amino acid residue TYR628
369 formed a hydrogen bond with a bond length of 3.3 Å, the amino acid residue CYS645
370 formed a hydrogen bond with a bond length of 3.2 Å, and the amino acid residue
371 SER724 (phosphorylation site) formed a hydrogen bond with a bond length of 3.6 Å.
372 These interactions guaranteed the stability of the combination of IRE1 α and SA.
373 Further, by DARTS assay we found that SA protected IRE1 α from does dependent
374 protease digestion compared with the control group (Figure 5B), which indicates the
375 direct combination of SA and IRE1 α protein. At the same time, ER-Tracker Red
376 staining showed that TNF- α induced ER stress damage was rescued by SA treatment
377 (Figure 5C). These results indicated that SA could binds on IRE1 α and rescue TNF- α
378 induced ER stress damage.

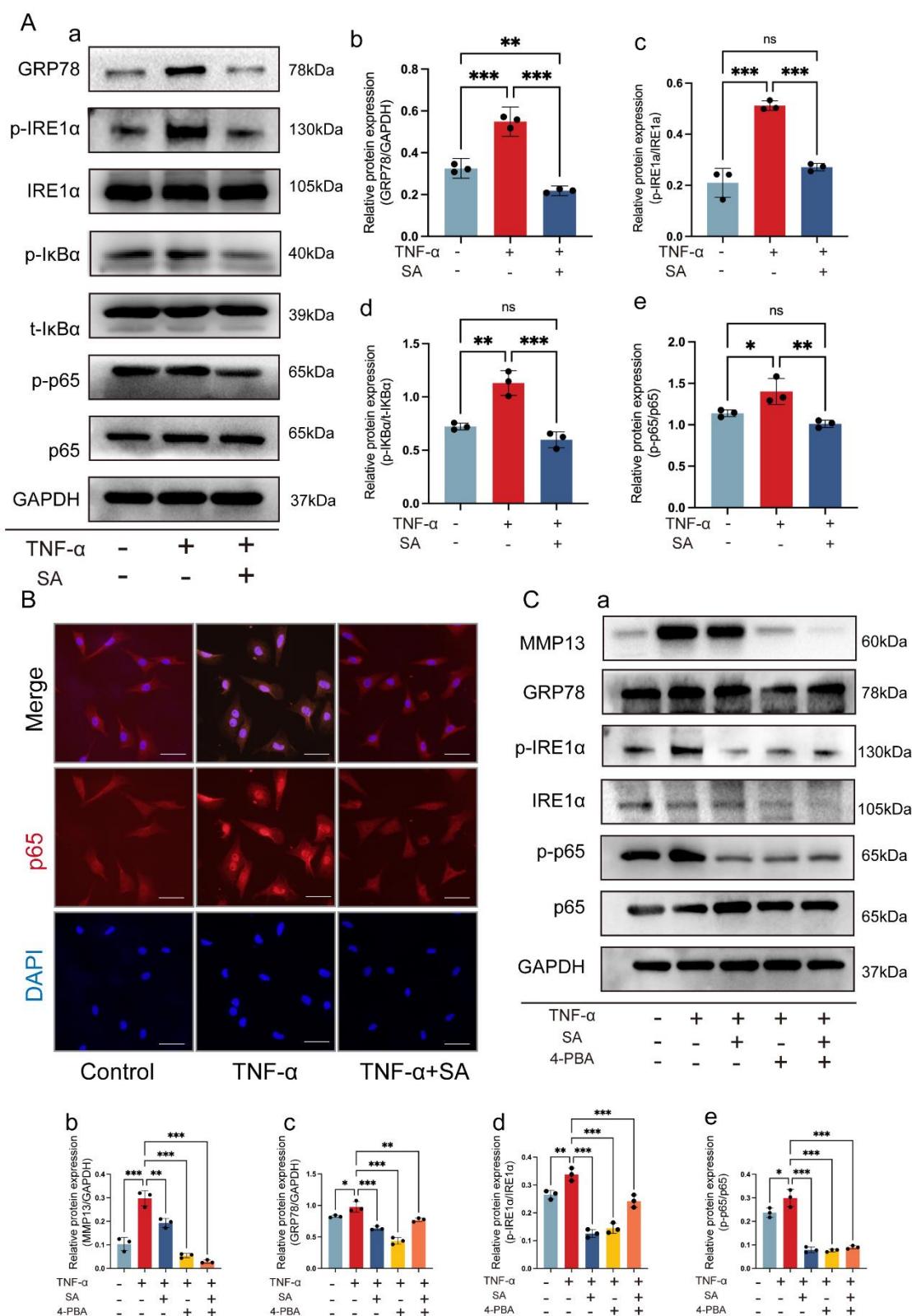
A

B

C

379

380 **Figure 5: SA directly binded on IRE1 α and inhibits IRE1 α mediated ER stress. (A)**
381 Molecular docking for estimating combination site of IRE1 α and SA.
382 Three-dimensional (3D) structure of IRE1 α and SA were subjected for molecular
383 docking, combination site was obtained according to the software scoring system.
384 Upper left panel: SA was located in the cavity formed by IRE1 α 3D structure, upper
385 right panel: magnification of the cavity; lower left panel: combination site of SA and
386 IRE1 α , lower left panel: magnification shown the hydrogen bonds (yellow dot line)
387 formed between SA and IRE1 α . (B) DARTS assay for confirmation of IRE1 α and SA


388 combination, protease was used to digest IRE1 α protein, with the addition of SA, the
389 digestion of IRE1 α was significantly blocked at each concentration of protease
390 compared with DMSO group.(C) Illustrative live-cell fluorescence microscopy images
391 of ER damage labeled with ER-Tracker Red, chondrocytes exposed to TNF- α were
392 treated with or without SA, ER damage was stained with red (upper panel), cell
393 nucleus were stained with DAPI (middle panel) and merged images were shown
394 (lower panel).(scale bar: 50 μ m).

395 Next, we investigated the regulation of SA on IRE1 α mediated ER stress. Firstly, we
396 detected the expression level of ER stress marker GRP78, and found SA inhibited
397 TNF- α initiated GRP78 expression by WB (Figure 6Aa) and quantitative analysis
398 (Figure 6Ab). Total IRE1 α and p-IRE1 α were also detected by WB, compared with
399 control group, TNF- α did not influence total IRE1 α expression, but downregulated
400 phosphorylated IRE1 α expression, which could be rescued by the treatment of SA
401 (Figure 6Ac). Then we detected IRE1 α downstream gene NF-kappa-B inhibitor alpha
402 (IkB α) and p65 expression at protein level. The results showed that TNF- α induced
403 high expressions of p-IkB α and p65 could be diminished by SA treatment (Figure
404 6Ad-e).

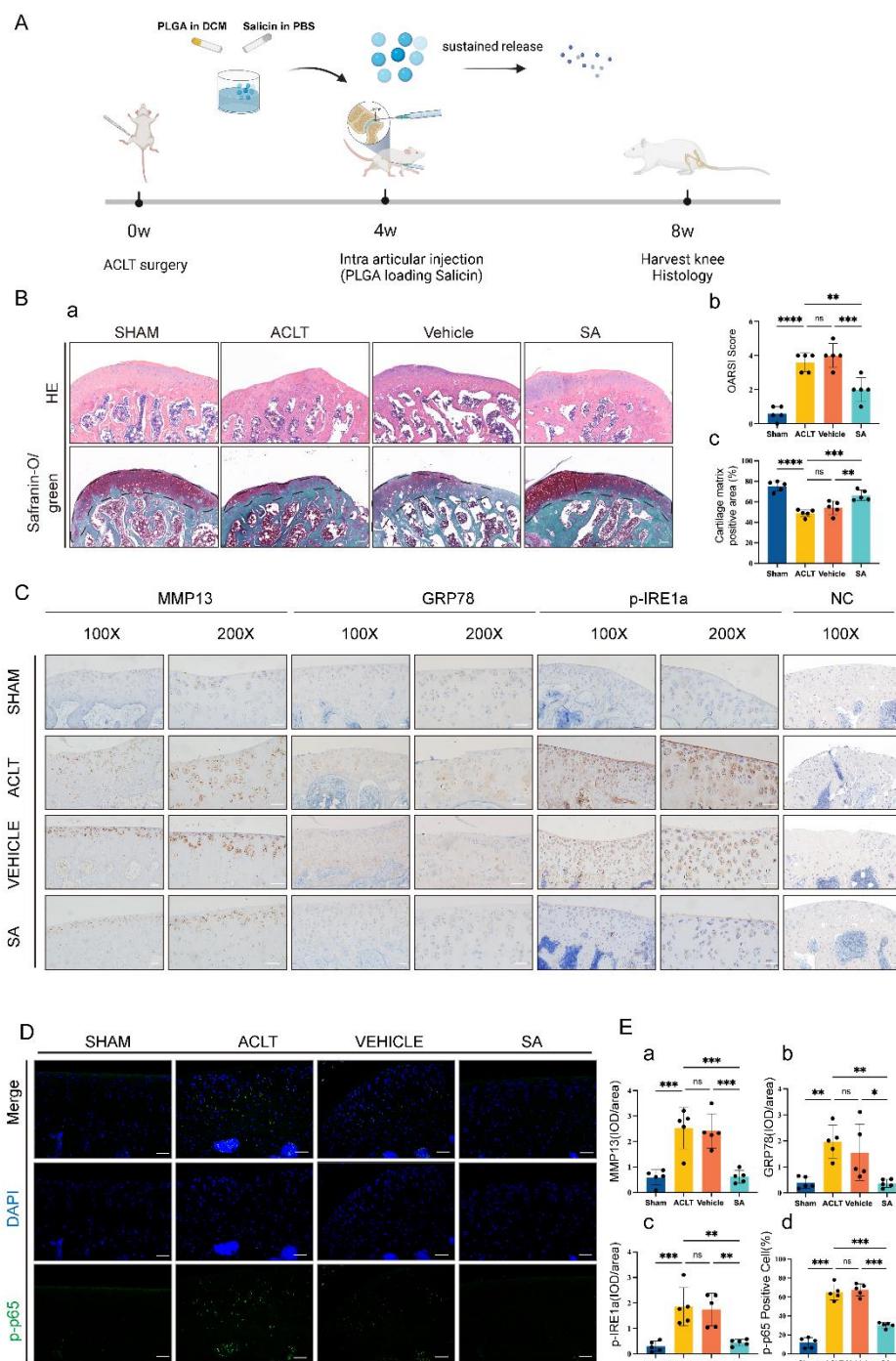
405 Subsequently, we explored whether SA influenced TNF- α induced localization
406 distribution of p65 protein in chondrocytes by IF. As expected, TNF- α induced p65
407 translocated from the cytoplasm into the nucleus were eliminated by SA treatment
408 (Figure 6B). These findings indicated that SA inhibited IRE1 α -IkB α -p65 signaling
409 mediated ER stress by occupying the phosphorylation site of IRE1 α .

410 Lastly, ER stress inhibitor 4-PBA was utilized for confirmation the function of SA.
411 We found that 4-PBA dramatically inhibited TNF- α induced ER stress marker GRP78,
412 p-IRE1 α , p-p65 and cartilage matrix degeneration marker MMP13 expressions at
413 protein level, and SA exhibited the similar function (Figure 6C). Taken together, these
414 results suggested that SA directly could bind on IRE1 α and inhibited IRE1 α

415 phosphorylation, which further blocked IRE1 α -I κ B α -p65 signaling mediated ER
 416 stress.

417

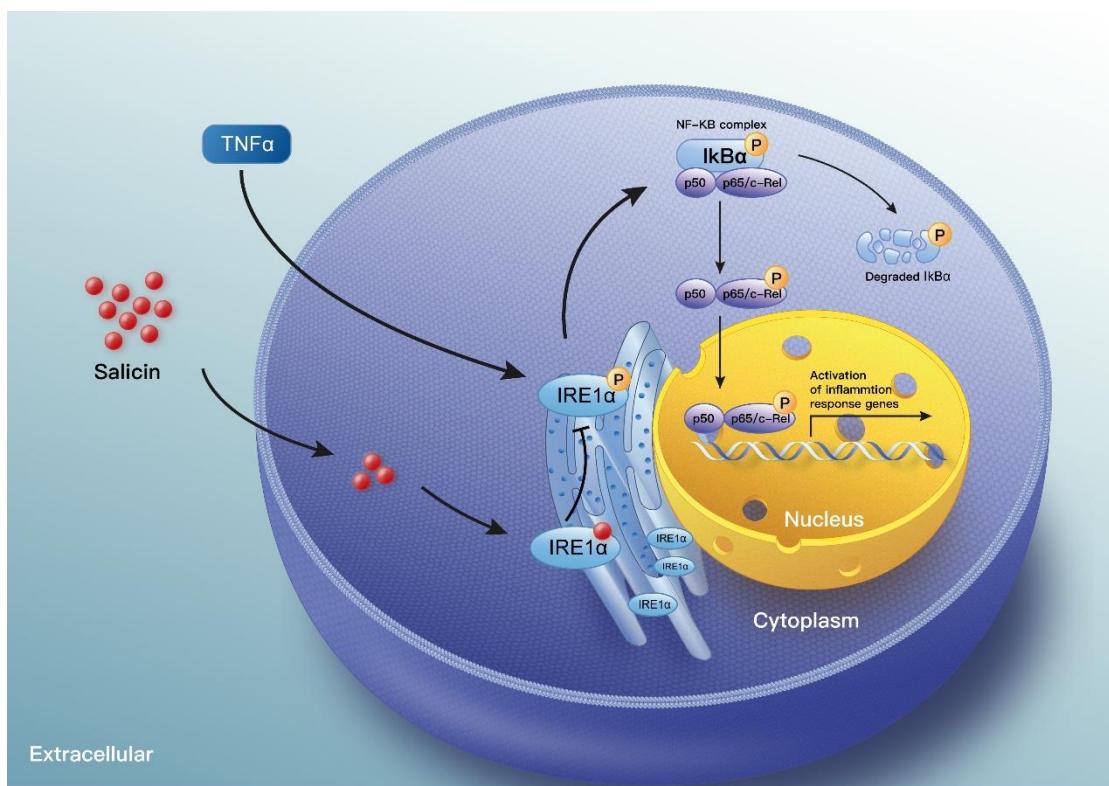
418 **Figure 6: SA regulates IRE1 α mediated ER stress by IRE1 α -I κ B α -p65 signaling. (A)**
 419 **WB analysis for detecting IRE1 α and downstream genes expression at protein level.**


420 *ER stress associated protein GRP78, pIRE1 α , IRE1 α , p-I κ B α , t-I κ B α , p-p65 and p65*
421 *were detected in each group (a). Quantitative analysis of GRP78 (b), ratio of*
422 *p-IRE1 α /t-IRE1 α (c), ratio of p-I κ B α /t-I κ B α (d) and ratio of p-p65/t-p-p65 (e) at*
423 *protein level, GAPDH was used as reference protein (n=3, one-way ANOVA). (B)*
424 *P65 nucleus translocation in each treatment group. IF was used to detect the p-65 in*
425 *nucleus, DAPI was used to staining cell nucleus, scale bar: 50 μ m. (C) ER stress*
426 *inhibitor 4-PBA blocked TNF- α mediated ER stress. Chondrocytes were stimulated*
427 *with TNF- α and then treated with 10 μ M SA or 15 μ M 4-PBA for 48 h, MMP13,*
428 *GRP78, IRE1 α , p-IRE1 α , p-p65 and p65 were detected by WB analysis (a).*
429 *Quantitative analysis of MMP13 (b), GRP78 (c), ratio of p-IRE1 α /t-IRE1 α (d), and*
430 *ratio of p-p65/t-p65 (e) at protein level, GAPDH was used as reference protein (n=3,*
431 *one-way ANOVA). The data are expressed as mean \pm SD, *p <0.05, **p <0.01, ***p*
432 *<0.001, and ns, not significant.*

433 **3.5 SA intra-articular injection ameliorates ACLT induced OA progression by**
434 **inhibiting IRE1 α mediated ER stress**

435 Rat ACLT induced OA model was constructed for further research. A diagram
436 summarized the progress of *in vivo* study (Figure 7A), SA loaded PLGA scaffolds
437 were intraarticular injected for controlled release SA as reported previously^{16,17}. As
438 shown in Figure 7Ba, no obvious cartilage degeneration was found in the sham group.
439 In ACLT and Vehicle groups, cartilage cell number, cartilage matrix and cartilage
440 thickness decreased obviously compared with the sham group, which would be
441 diminished in SA group. Knee joint OARSI scoring (Figure 7Bb) and quantitative
442 analysis of articular cartilage area (Figure 7Bc) showed that SA treatment could
443 reverse ACLT induced cartilage degeneration.

444 To further prove the mechanisms of SA inhibiting IRE1 α mediated ER stress, IHC
445 and IF were carried out. We first detected that MMP13 was highly expressed in the
446 articular cartilage matrix area in ACLT and vehicle groups compared with the sham
447 group, and SA treated group decreased the expression of MMP13 in the cartilage


448 matrix area. Then, we determined the ER stress marker GRP78 expression, we found
449 that OA induced a high expression of GRP78 in cartilage cell could be reversed by
450 SA treatment. Thirdly, we found OA induced high phosphorylation level of IRE1 α
451 was alleviated by SA treatment (Figure 7C). Finally, we identified that OA induced
452 p-p65 nuclear translocation was inhibited by SA treatment (Figure 7D). Quantitative
453 analysis of IHC and IF were shown in Figure 7Ea-d. These results suggested SA
454 ameliorates ACLT induced OA progression by inhibiting IRE1 α mediated ER stress
455 *in vivo*.

457 **Figure 7: SA intra-articular injection ameliorates ACLT induced OA progression by**
458 *inhibiting IRE1 α mediated ER stress. (A) Diagram summarized the animal*
459 *experiments. ACLT was used for the construction of knee OA model. Four weeks later,*
460 *intra-articular injection of SA-loaded PLGA was done, and intra-articular injection*
461 *of PLGA only was used as control. Four weeks after treatment, rats in each group*
462 *were sacrificed and knee joints were subjected to histological analysis respectively.*

463 (B) *H&E and Safranin-O/green staining for each treatment group. H&E (upper panel)*
464 *and Safranin-O/green staining (lower panel) showed that ACLT resulted in the*
465 *thicker of cartilage and degeneration of cartilage matrix compared with sham group,*
466 *and intra-articular injection of SA-loaded PLGA ameliorated this progression*
467 *compared with vehicle (PLGA only) group or sham group. OARSI scoring (b) and*
468 *cartilage matrix area quantitative analysis (c) showed that, although OARSI score in*
469 *ACLT, vehicle and SA groups were statistically higher than sham group, OARSI score*
470 *in SA group significantly lower than ACLT and vehicle groups (n=5, one-way*
471 *ANOVA). (C) IHC for detecting cartilage matrix degeneration MMP13, ER stress*
472 *marker GRP78 and p-IRE1 α , NC, negative control, scale bar 50 μ m. (D) P-p65*
473 *nucleus translocation in each treatment group, scale bar 50 μ m. (E) Quantitative*
474 *analysis showed that the expression of MM13 (a), GRP78 (b) and p-IRE1 α (c) in*
475 *ACLT group or vehicle group were significantly more than that in sham group, and*
476 *the expression of MMP13, GRP78 and p-IRE1 α in SA group were significantly less*
477 *than those in ACLT group and vehicle group (n=5, one-way ANOVA). Quantitative*
478 *analysis showed that P-p65 nucleus translocation in ACLT group or vehicle group*
479 *was significantly more than that in sham group, and p-p65 nucleus translocation in*
480 *SA group was obviously less than that in ACLT group and vehicle group (d) (n=5,*
481 *random fields, one-way ANOVA). ACLT group indicates the group with PBS injection;*
482 *Vehicle group indicates only inject PLGA vehicle; SA group indicates injection of SA*
483 *loaded PLGA. Dash lines indicate cartilage surface. The data are expressed as mean*
484 $\pm SD$, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, and ns, not significant.

485 In summarize, our *in vitro* and *in vivo* tests showed that SA bound on IRE1 α and
486 blocked IRE1 α phosphorylation, then inhibits IRE1 α mediated ER stress by
487 IRE1 α -I κ B α -p65 signaling (Figure 8).

488

489 **Figure 8: A proposed model of action. SA bound on IRE1 α and blocked IRE1 α
490 phosphorylation, then inhibits IRE1 α mediated ER stress by IRE1 α -I κ B α -p65
491 signaling.**

492 **4. Discussion**

493 With the population aged, the morbidity of OA is increasing year by year²⁴. The
494 discovery and development of DMOADs have been identified as potential methods
495 for ameliorating the effect of increasing OA prevalence^{2,25}. In the present study, we
496 identified SA not only inhibits TNF- α induced chondrocytes inflammatory factor
497 expression and extracellular matrix degeneration but also enhances chondrocytes
498 proliferation and inhibits chondrocytes apoptosis. In mechanism, we clarified SA
499 bound with IRE1 α directly and blocked IRE1 α mediated downstream ER stress.

500 As the main chemically standardized of willow bark extract, SA also belongs to
501 non-steroidal anti-inflammatory drugs (NSAIDs), which may cause gastrointestinal,
502 renal, and cardiovascular toxicity^{6,25}. Therefore, topical use should be considered
503 rather than oral administration. As a natural small molecular drug, SA can cross the
504 cell membrane and bound with intracellular targets, thus relieve serious side effects

505 caused by oral administration. By directly adding SA to chondrocytes medium and
506 intra-articular injection of SA loaded PLGA, we demonstrated the anti-inflammatory,
507 promotes proliferation and anti-apoptosis effect of SA in the progression of OA.
508 These results indicate the efficiency of intra-articular use of SA.

509 Recently, except the anti-inflammatory, antipyretic, antirheumatic, and antiseptic
510 properties¹⁰, Gao et al²⁶ found that SA prevents collagen type II degradation by
511 inhibiting the activation of NF- κ B proinflammatory pathway. However, the
512 underlying mechanisms in detail are still unclear. In current study, we obtained
513 similar results by detecting cartilage matrix degeneration and inflammatory markers.
514 Furthermore, DGEs found by RNA sequencing and KEGG enrichment analysis
515 showed that ER stress was highly involved in SA mediated protective effects of
516 cartilage degeneration. Next, molecule docking and DARTS analysis showed SA
517 could occupy the phosphorylation sites of IRE1 α and block IRE1 α phosphorylation
518 mediated p65 nucleus translocation and downstream gene expression. Thus, the
519 current study applied a new field of version for understanding SA mediated protective
520 effects of cartilage degeneration.

521 The ER is a multifunctional organelle, where protein folding occurs prior to transport
522 to extracellular surface or to different intracellular sites²⁷⁻³⁰. Three ER transmembrane
523 proteins mediated UPR, including IRE1, pancreatic endoplasmic reticulum kinase
524 (PERK), and activating transcription factor 6 (ATF6)^{28,29}. Among them, IRE1 is the
525 most conserved gene from yeast to human, and it has two subtypes: IRE1 α and IRE1 β .
526 IRE1 α is commonly expressed in most cells and tissues, while IRE1 β is limited to
527 gastrointestinal epithelial cells³¹. Worth mention, IRE1 α plays key role in
528 chondrocytes proliferation, ECM production etc.³², which indicates the regulatory
529 function of IRE1 α mediated ER stress in chondrocytes proliferation and degeneration.
530 Jacqueline et al³³ found two top risk factors for OA, age and obesity, were highly
531 associated with ER stress, and resveratrol could mitigate early joint degeneration by
532 inhibiting ER stress. Benedetta et al³⁴ found that chronic ER stress decreased

533 chondrocyte proliferation. Kung et al^{35,36} reported that hypertrophic chondrocytes
534 hold limited potential to cope with increased ER stress, they also found increased ER
535 stress is sufficient to reduce chondrocyte proliferation. Rajpar et al's research
536 identified that ER stress play a direct role in cartilage pathology³⁷. Meanwhile, it is
537 widely accepted that ER stress is directly associated with chondrocytes apoptosis and
538 death³⁸⁻⁴⁰. What's more, recent studies confirmed OA inflammation is also related to
539 ER stress⁴¹⁻⁴⁵. Be similar with these obtained conclusions, we found by directly bound
540 with IRE1 α , SA inhibited IRE1 α mediated ER stress and subsequently promotes
541 chondrocytes proliferation, decreases inflammatory factors expression and inhibits
542 chondrocytes apoptosis.

543 Recently, ER stress regulators were identified as new drug targets for several
544 diseases^{27-29,46}. During the progression of OA, chondrocytes are responsible for the
545 biogenesis and maintenance of cartilage ECM. Several cellular stresses including
546 hypoxia, oxidative stress, nutrient deprivation, aging or injury etc. could cause
547 excessive unfolding or misfolded proteins on ER and trigger ER stress^{33,40}. Huang et
548 al³² reported that IRE1 α regulates chondrocytes apoptosis by activating NF- κ B
549 signaling. Ye et al⁴⁷ reported phosphorylated IRE1 α activating NF- κ B signaling by
550 releasing I κ B α . Released NF- κ B dimers translocated to the nucleus and binded κ B
551 sites in the promoters or enhancers of target genes⁴⁸. We found in the progression of
552 OA, ER stress was mediated by p-IRE1 α , p-I κ B α and activating p-p65 nucleus
553 translocation. With SA treatment, this process was inhibited. Our molecule docking
554 and DARTS analysis showed that SA can bind the phosphorylation site of IRE1 α and
555 block IRE1 α phosphorylation, followed by the decreasing expression of p- κ B α and
556 p-p65 nucleus translocation. Therefore, as one of the key ER stress regulators, IRE1 α
557 is the potential drug targets for OA treatment.

558 As whole joint disease, OA especially late-stage OA characterized with dramatically
559 synovium, cartilage and subchondral bone pathology^{1,49,50}. However, early-stage OA
560 was featured with cartilage pathology^{51,52}, SA may be an effect drug for modifying

561 early-stage OA. Further studies focus on the effect of SA on the other cell types such as
562 synoviocytes, immune cells etc. will contribute to further clinical use of SA.
563 Collectively, our results have demonstrated SA is directly bound on IRE1 α and blocks
564 IRE1 α phosphorylation, then inhibits I κ B α phosphorylation and p65 nucleus
565 translocation, finally inhibits chondrocytes apoptosis, promotes chondrocytes
566 proliferation and decreases inflammatory factors expression. Thus, SA is a potential
567 drug for clinical modifying OA progression by intra-articular injection.

568 **Acknowledgments**

569 We are grateful for the support of Key Laboratory of Biorheological Science and
570 Technology, College of Bioengineering, Chongqing University. The authors would
571 like to thank Dr. Tingting Peng from the Chongqing BI academy.

572 **Contributions**

573 Conception and design: Wei Huang and Junyi Liao; Analysis and interpretation of the
574 data: Zhenglin Zhu, Shengqiang Gao, Cheng Chen, Wei Xu, Pengcheng Xiao,
575 Chengcheng Du, Bowen Chen, Yan Gao; Drafting of the article: Junyi Liao, Zhenglin
576 Zhu; Critical revision of the article for important intellectual content: Junyi Liao and
577 Wei Huang; Provision of study materials: Junyi Liao, Chunli Wang and Wei Huang;
578 Statistical expertise: Zhenglin Zhu; Obtaining of funding: Junyi Liao, Zhenglin Zhu,
579 and Wei Huang; Administrative, technical, or logistic support: Junyi Liao and Wei
580 Huang; Collection and assembly of data: Zhenglin Zhu, Junyi Liao, Zhiyu Chen and
581 Chunli Wang; Final approval of the article: all authors.

582 **Role of the funding source**

583 The reported work was supported by the National Natural Science Foundation of
584 China (NSFC) (#81972069 and #82002312). This project was also supported by
585 Innovation Project from Chongqing Municipal Education Commission (#CYB21169),
586 Science and Technology Research Program of Chongqing Education Commission
587 (#KJQN202100431 and #KJZD-M202100401). Cultivating Program and Candidate
588 of Tip-Top Talent of The First Affiliated Hospital of Chongqing Medical University

589 (#2018PYJJ-11). Funding sources were not involved in the study design, in the
590 collection, analysis and interpretation of data; in writing of the report; and in the
591 decision to submit the paper for publication.

592 **Competing interest statement**

593 The authors declare no conflict of interest.

594 **References:**

595 1 Hunter, D. J., March, L. & Chew, M. Osteoarthritis in 2020 and beyond: a Lancet
596 Commission. *The Lancet* **396**, 1711-1712, doi:10.1016/s0140-6736(20)32230-3
597 (2020).

598 2 Hunter, D. J. Pharmacologic therapy for osteoarthritis--the era of disease modification.
599 *Nature reviews. Rheumatology* **7**, 13-22, doi:10.1038/nrrheum.2010.178 (2011).

600 3 Roemer, F. W., Kwoh, C. K., Hayashi, D., Felson, D. T. & Guermazi, A. The role of
601 radiography and MRI for eligibility assessment in DMOAD trials of knee OA. *Nature
602 reviews. Rheumatology* **14**, 372-380, doi:10.1038/s41584-018-0010-z (2018).

603 4 Fiebich, B. L. & Appel, K. Anti-inflammatory effects of willow bark extract. *Clinical
604 pharmacology and therapeutics* **74**, 96; author reply 96-97,
605 doi:10.1016/S0009-9236(03)00116-4 (2003).

606 5 Vlachojannis, J. E., Cameron, M. & Chrubasik, S. A systematic review on the
607 effectiveness of willow bark for musculoskeletal pain. *Phytotherapy research : PTR* **23**,
608 897-900, doi:10.1002/ptr.2747 (2009).

609 6 in *Drugs and Lactation Database (LactMed)* (2006).

610 7 Schmid, B., Kotter, I. & Heide, L. Pharmacokinetics of salicin after oral administration
611 of a standardised willow bark extract. *European journal of clinical pharmacology* **57**,

612 387-391, doi:10.1007/s002280100325 (2001).

613 8 Kong, C. S. *et al.* Salicin, an extract from white willow bark, inhibits angiogenesis by
614 blocking the ROS-ERK pathways. *Phytotherapy research : PTR* **28**, 1246-1251,
615 doi:10.1002/ptr.5126 (2014).

616 9 Guo, F., Wu, R. & Xu, J. Salicin prevents TNF-alpha-induced cellular senescence in
617 human umbilical vein endothelial cells (HUVECs). *Artif Cells Nanomed Biotechnol* **47**,
618 2618-2623, doi:10.1080/21691401.2019.1629949 (2019).

619 10 Adamiak, K., Lewandowska, K. & Sionkowska, A. The Influence of Salicin on
620 Rheological and Film-Forming Properties of Collagen. *Molecules* **26**,
621 doi:10.3390/molecules26061661 (2021).

622 11 Gosset, M., Berenbaum, F., Thirion, S. & Jacques, C. Primary culture and
623 phenotyping of murine chondrocytes. *Nature protocols* **3**, 1253-1260,
624 doi:10.1038/nprot.2008.95 (2008).

625 12 Lomenick, B., Jung, G., Wohlschlegel, J. A. & Huang, J. Target identification using
626 drug affinity responsive target stability (DARTS). *Current protocols in chemical biology*
627 **3**, 163-180, doi:10.1002/9780470559277.ch110180 (2011).

628 13 Cui, Z. *et al.* Halofuginone attenuates osteoarthritis by inhibition of TGF-beta activity
629 and H-type vessel formation in subchondral bone. *Annals of the rheumatic diseases*
630 **75**, 1714-1721, doi:10.1136/annrheumdis-2015-207923 (2016).

631 14 Wang, C. *et al.* Ursolic acid protects chondrocytes, exhibits anti-inflammatory
632 properties via regulation of the NF-kappaB/NLRP3 inflammasome pathway and

633 ameliorates osteoarthritis. *Biomedicine & pharmacotherapy = Biomedecine &*
634 *pharmacotherapie* **130**, 110568, doi:10.1016/j.biopha.2020.110568 (2020).

635 15 Wang, C. *et al.* Safflower yellow alleviates osteoarthritis and prevents inflammation by
636 inhibiting PGE2 release and regulating NF-kappaB/SIRT1/AMPK signaling pathways.

637 *Phytomedicine : international journal of phytotherapy and phytopharmacology* **78**,
638 153305, doi:10.1016/j.phymed.2020.153305 (2020).

639 16 Jin, S. *et al.* Recent advances in PLGA-based biomaterials for bone tissue
640 regeneration. *Acta biomaterialia* **127**, 56-79, doi:10.1016/j.actbio.2021.03.067 (2021).

641 17 Cheng, G. *et al.* Controlled Co-delivery of Growth Factors through Layer-by-Layer
642 Assembly of Core-Shell Nanofibers for Improving Bone Regeneration. *ACS nano* **13**,
643 6372-6382, doi:10.1021/acsnano.8b06032 (2019).

644 18 Dai, G. *et al.* LncRNA H19 Regulates BMP2-Induced Hypertrophic Differentiation of
645 Mesenchymal Stem Cells by Promoting Runx2 Phosphorylation. *Frontiers in cell and*
646 *developmental biology* **8**, doi:10.3389/fcell.2020.00580 (2020).

647 19 Liao, J. *et al.* lncRNA H19 mediates BMP9-induced osteogenic differentiation of
648 mesenchymal stem cells (MSCs) through Notch signaling. *Oncotarget* **8**, 53581-53601,
649 doi:10.18632/oncotarget.18655 (2017).

650 20 Liao, J. *et al.* Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits
651 BMP2-induced osteogenic differentiation. *PLoS one* **9**, e89025,
652 doi:10.1371/journal.pone.0089025 (2014).

653 21 Gerwin, N., Bendele, A. M., Glasson, S. & Carlson, C. S. The OARSI histopathology

654 initiative – recommendations for histological assessments of osteoarthritis in the rat.

655 *Osteoarthritis and cartilage* **18**, S24-S34, doi:10.1016/j.joca.2010.05.030 (2010).

656 22 Lin, X. *et al.* The E3 ubiquitin ligase Itch limits the progression of post-traumatic
657 osteoarthritis in mice by inhibiting macrophage polarization. *Osteoarthritis and*
658 *cartilage* **29**, 1225-1236, doi:10.1016/j.joca.2021.04.009 (2021).

659 23 Lazic, S. E., Clarke-Williams, C. J. & Munro, M. R. What exactly is 'N' in cell culture
660 and animal experiments? *PLoS biology* **16**, e2005282,
661 doi:10.1371/journal.pbio.2005282 (2018).

662 24 Global Burden of Disease Study, C. Global, regional, and national incidence,
663 prevalence, and years lived with disability for 301 acute and chronic diseases and
664 injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of
665 Disease Study 2013. *Lancet* **386**, 743-800, doi:10.1016/S0140-6736(15)60692-4
666 (2015).

667 25 Drugs for Osteoarthritis. *Jama* **325**, 581-582, doi:10.1001/jama.2020.8395 (2021).

668 26 Gao, F. & Zhang, S. Salicin inhibits AGE-induced degradation of type II collagen and
669 aggrecan in human SW1353 chondrocytes: therapeutic potential in osteoarthritis. *Artif*
670 *Cells Nanomed Biotechnol* **47**, 1043-1049, doi:10.1080/21691401.2019.1591427
671 (2019).

672 27 Kovaleva, V. & Saarma, M. Endoplasmic Reticulum Stress Regulators: New Drug
673 Targets for Parkinson's Disease. *Journal of Parkinson's disease*,
674 doi:10.3233/JPD-212673 (2021).

675 28 Mustapha, S. *et al.* Potential Roles of Endoplasmic Reticulum Stress and Cellular
676 Proteins Implicated in Diabesity. *Oxidative medicine and cellular longevity* **2021**,
677 8830880, doi:10.1155/2021/8830880 (2021).

678 29 Peng, M., Chen, F., Wu, Z. & Shen, J. Endoplasmic Reticulum Stress, a Target for
679 Drug Design and Drug Resistance in Parasitosis. *Frontiers in microbiology* **12**, 670874,
680 doi:10.3389/fmicb.2021.670874 (2021).

681 30 Hu, P., Han, Z., Couvillon, A. D., Kaufman, R. J. & Exton, J. H. Autocrine tumor
682 necrosis factor alpha links endoplasmic reticulum stress to the membrane death
683 receptor pathway through IRE1alpha-mediated NF-kappaB activation and
684 down-regulation of TRAF2 expression. *Molecular and cellular biology* **26**, 3071-3084,
685 doi:10.1128/MCB.26.8.3071-3084.2006 (2006).

686 31 Sepulveda, D. *et al.* Interactome Screening Identifies the ER Luminal Chaperone
687 Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1alpha.
688 *Molecular cell* **69**, 238-252 e237, doi:10.1016/j.molcel.2017.12.028 (2018).

689 32 Huang, R. *et al.* IRE1 signalling regulates chondrocyte apoptosis and death fate in the
690 osteoarthritis. *Journal of cellular physiology*, doi:10.1002/jcp.30537 (2021).

691 33 Hecht, J. T. *et al.* Primary Osteoarthritis Early Joint Degeneration Induced by
692 Endoplasmic Reticulum Stress Is Mitigated by Resveratrol. *The American journal of
693 pathology*, doi:10.1016/j.ajpath.2021.05.016 (2021).

694 34 Gualeni, B. *et al.* A novel transgenic mouse model of growth plate dysplasia reveals
695 that decreased chondrocyte proliferation due to chronic ER stress is a key factor in

696 reduced bone growth. *Disease models & mechanisms* **6**, 1414-1425,

697 doi:10.1242/dmm.013342 (2013).

698 35 Kung, L. H., Rajpar, M. H., Preziosi, R., Briggs, M. D. & Boot-Handford, R. P.

699 Increased classical endoplasmic reticulum stress is sufficient to reduce chondrocyte

700 proliferation rate in the growth plate and decrease bone growth. *PLoS one* **10**,

701 e0117016, doi:10.1371/journal.pone.0117016 (2015).

702 36 Kung, L. H., Rajpar, M. H., Briggs, M. D. & Boot-Handford, R. P. Hypertrophic

703 chondrocytes have a limited capacity to cope with increases in endoplasmic reticulum

704 stress without triggering the unfolded protein response. *The journal of histochemistry*

705 and cytochemistry : official journal of the Histochemistry Society

60, 734-748,

706 doi:10.1369/0022155412458436 (2012).

707 37 Rajpar, M. H. *et al.* Targeted induction of endoplasmic reticulum stress induces

708 cartilage pathology. *PLoS genetics* **5**, e1000691, doi:10.1371/journal.pgen.1000691

709 (2009).

710 38 Briggs, M. D., Bell, P. A. & Pirog, K. A. The utility of mouse models to provide

711 information regarding the pathomolecular mechanisms in human genetic skeletal

712 diseases: The emerging role of endoplasmic reticulum stress (Review). *International*

713 *journal of molecular medicine* **35**, 1483-1492, doi:10.3892/ijmm.2015.2158 (2015).

714 39 Hughes, A., Oxford, A. E., Tawara, K., Jorcyk, C. L. & Oxford, J. T. Endoplasmic

715 Reticulum Stress and Unfolded Protein Response in Cartilage Pathophysiology;

716 Contributing Factors to Apoptosis and Osteoarthritis. *International journal of molecular*

717 *sciences* **18**, doi:10.3390/ijms18030665 (2017).

718 40 Rellmann, Y., Eindhoven, E. & Dreier, R. Review: ER stress-induced cell death in
719 osteoarthritic cartilage. *Cell Signal* **78**, 109880, doi:10.1016/j.cellsig.2020.109880
720 (2021).

721 41 de Seny, D. *et al.* Proteins involved in the endoplasmic reticulum stress are modulated
722 in synovitis of osteoarthritis, chronic pyrophosphate arthropathy and rheumatoid
723 arthritis, and correlate with the histological inflammatory score. *Scientific reports* **10**,
724 14159, doi:10.1038/s41598-020-70803-7 (2020).

725 42 Kusaczuk, M., Naumowicz, M., Kretowski, R., Cukierman, B. & Cechowska-Pasko, M.
726 Molecular and Cellular Effects of Chemical Chaperone-TUDCA on ER-Stressed
727 NHAC-kn Human Articular Chondrocytes Cultured in Normoxic and Hypoxic
728 Conditions. *Molecules* **26**, doi:10.3390/molecules26040878 (2021).

729 43 Kim, T. J. *et al.* Valdecoxib improves lipid-induced skeletal muscle insulin resistance
730 via simultaneous suppression of inflammation and endoplasmic reticulum stress.
731 *Biochemical pharmacology* **188**, 114557, doi:10.1016/j.bcp.2021.114557 (2021).

732 44 Xie, C. L. *et al.* Vitexin alleviates ER-stress-activated apoptosis and the related
733 inflammation in chondrocytes and inhibits the degeneration of cartilage in rats. *Food &*
734 *function* **9**, 5740-5749, doi:10.1039/c8fo01509k (2018).

735 45 Li, K. *et al.* DEPTOR Prevents Osteoarthritis Development Via Interplay With TRC8 to
736 Reduce Endoplasmic Reticulum Stress in Chondrocytes. *Journal of bone and mineral*
737 *research : the official journal of the American Society for Bone and Mineral Research*

738 36, 400-411, doi:10.1002/jbmr.4176 (2021).

739 46 de Seabra Rodrigues Dias, I. R. *et al.* Potential therapeutic compounds from
740 traditional Chinese medicine targeting endoplasmic reticulum stress to alleviate
741 rheumatoid arthritis. *Pharmacological research* 170, 105696,
742 doi:10.1016/j.phrs.2021.105696 (2021).

743 47 Ye, L. *et al.* Endoplasmic reticulum stress is involved in ventilator-induced lung injury
744 in mice via the IRE1alpha-TRAF2-NF-kappaB pathway. *International*
745 *immunopharmacology* 78, 106069, doi:10.1016/j.intimp.2019.106069 (2020).

746 48 Ghosh, S. & Hayden, M. S. New regulators of NF-kappaB in inflammation. *Nature*
747 *reviews. Immunology* 8, 837-848, doi:10.1038/nri2423 (2008).

748 49 Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. *Lancet* 393, 1745-1759,
749 doi:10.1016/S0140-6736(19)30417-9 (2019).

750 50 Sharma, L. Osteoarthritis of the Knee. *The New England journal of medicine* 384,
751 51-59, doi:10.1056/NEJMcp1903768 (2021).

752 51 Berenbaum, F. & Walker, C. Osteoarthritis and inflammation: a serious disease with
753 overlapping phenotypic patterns. *Postgraduate medicine* 132, 377-384,
754 doi:10.1080/00325481.2020.1730669 (2020).

755 52 Breedveld, F. C. Osteoarthritis--the impact of a serious disease. *Rheumatology* 43
756 Suppl 1, i4-8, doi:10.1093/rheumatology/keh102 (2004).

757