

1 **ViReMaShiny: An Interactive Application for Analysis of Viral
2 Recombination Data**

3 Jason Yeung¹, Andrew L Routh^{2,3,4*}

4

5 1) John Sealy School of Medicine, The University of Texas Medical Branch, Galveston,
6 TX 77550, USA

7 2) Department of Biochemistry and Molecular Biology, The University of Texas Medical
8 Branch, Galveston, TX 77550, USA

9 3) Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas
10 Medical Branch, Galveston, TX 77550, USA

11 4) Institute for Human Infections and Immunity, University of Texas Medical Branch,
12 Galveston, TX, USA

13

14 Keywords: Next-Generation Sequencing, Virus Recombination, Defective RNAs, coronaviruses

15

16 *Correspondence: alrouth@utmb.edu

17 **Abstract**

18 Recombination is an essential driver of virus evolution and adaption, giving rise to new chimeric
19 viruses, structural variants, sub-genomic RNAs, and Defective-RNAs. Next-Generation
20 Sequencing of virus samples, either from experimental or clinical settings, has revealed a
21 complex distribution of recombination events that contributes to the intrahost diversity. We and
22 others have previously developed alignment tools to discover and map these diverse
23 recombination events in NGS data. However, there is no standard for data visualization to
24 contextualize events of interest and downstream analysis often requires bespoke coding. To
25 address this, we present *ViReMaShiny*, a web-based application built using the R Shiny
26 framework to allow interactive exploration and point-and-click visualization of viral recombination
27 data provided in BED format generated by computational pipelines such as *ViReMa* (Viral-
28 Recombination-Mapper).

29 **Introduction**

30 Viruses exist as dynamic populations of diverse genomes (often referred to as intra-host
31 diversity) which is maintained by the error-prone nature of viral replication (Lauring, et al., 2013).
32 In addition to single-nucleotide variations (SNVs), viral recombination also contributes to the
33 intrahost diversity through the production of structural variants (SVs), sub-genomic RNAs
34 (sgmRNAs), Defective-RNAs (D-RNAs) and chimeric viruses that seed the emergence of novel
35 virus strains (Simon-Loriere and Holmes, 2011). Viral recombination has contributed to the
36 generation of notable variants in SARS-CoV-2, such as conserved insertions and deletions in
37 the Spike region of the Alpha, Delta and Omicron variants of concern (VOCs). Consequently,
38 recombination has an important influence on viral evolution both within single hosts and on
39 ecological scales.

40 Improved high-throughput sequencing capabilities have enabled unprecedented
41 characterization of the diversity of viral recombination events within virus populations. These
42 technical advancements have led to a corresponding demand for bioinformatic software that can
43 discover and map these events. *ViReMa* (Viral-Recombination-Mapper) (Routh and Johnson,
44 2014) is a python package enabling viral read mapping from Next-Generation Sequencing
45 (NGS) data that was developed for this purpose. *ViReMa* has been used to characterize the full
46 gamut of different recombination events in multiple studies, including sub-genomic mRNA
47 production in coronaviruses (Gribble, et al., 2021), drug-resistance development in HIV samples
48 (Wang, et al., 2022), the evolution of D-RNAs during serial virus passaging of Flock House virus
49 in culture (Jaworski and Routh, 2017), demonstrated differences in D-RNA abundance between
50 intra- and extra-cellular compartments of alphaviruses (Langsjoen, et al., 2020), and compared
51 recombination events from experimental and clinical isolates of SARS-CoV-2 (Jaworski, et al.,
52 2021).

53 Due to the combination of skills required, these studies are commonly collaborations between
54 wet-lab experimentalists and bioinformaticians. The collaborative process can require multiple
55 iterations of analyses to home in on data that are both valid and biologically interesting. Data
56 exploration using easily accessible, GUI-based applications can improve turn-around times
57 between iterations and allows experimentalists with limited coding experience to actively
58 engage in analysis.

59 We present a R Shiny application, *ViReMaShiny*, that enables rapid visualization of viral
60 recombination data from *ViReMa* or other applications that output recombination events using
61 BED files. This application seeks to standardize representation of key features in viral
62 recombination events such as their frequency and position relative to important genomic
63 elements.

64 **Results**

65 The ViReMaShiny application was created using the R Shiny framework and relies on the
66 *ggplot2* and *circlize* (Gu, et al., 2014) packages for plotting. The Shiny framework provides
67 interactivity, extensibility, and flexibility with local and web-hosted options available. Initial input
68 of user files requires BED files, an output of the *ViReMa* (Sotcheff, et al., 2022) or other
69 recombination mappers and are hosted locally. Either a single BED file or multiple BED files
70 from multiple biological or experimental replicates can be uploaded. The BED files follow the
71 standardized format as depicted in **Figure 1A**. Briefly, the genome reference, strand, and
72 coordinates of the donor and acceptors sites of the recombination junction are provided in
73 addition to the number of reads that map to each unique event. When reads are mapped using
74 *ViReMa*, additional columns also provide the read coverage at each junction site, and the
75 sequence of a fixed number of nucleotides both up- and down-stream of the donor and the
76 acceptor sites. This latter information allows scrutiny of the sequence composition of each
77 recombination junction. Once uploaded, users will be able to subset data visualized by file name
78 and included reference sequences through drop-down menu selectors.

79 Interactivity is centered around two heatmaps depicting recombination events by donor (y-axis)
80 and acceptor (x-axis) sites of each unique recombination junction. If multiple BED files
81 representing multiple unique samples are uploaded, then a color-bar indicates the frequency
82 with which specific recombination junctions are seen in multiple samples. We present an
83 example of a recombination heatmap from samples of SARS-CoV-2 RNA obtained from three
84 nasopharyngeal swabs from a previous study (Jaworski, et al., 2021) (**Figure 1B, SData 1**).
85 This visualization quickly summarizes notable features of recombination events including
86 favored acceptor or donor sites, evidence of recombination hotspots and the frequency or
87 abundance of similar events within a dataset. For example, the conserved sgmRNAs of SARS-
88 CoV-2 are visible as purple spots in the lower right portion of the heatmap and abundant
89 insertions and deletions are observed in the upper right end of the heatmap, representing
90 diverse RNA recombination near the 3'UTR of SARS-CoV-2. Frequent small InDels are
91 represented by the numerous points close to the x=y axis. This approach has been extensively
92 used to visualize recombination events in a range of viruses including Nodaviruses (Routh, et
93 al., 2012), alphaviruses (Langsjoen, et al., 2020) and coronaviruses (Gribble, et al., 2021).
94 Scrubbing the scatterplots generates a filterable table, allowing users to identify events with
95 specific features. A text box above this table alternatively allows for filter-expressions in R

96 syntax to be applied to data based on each of the parameters in the BED file(s). This allows
97 users to sample specific events with desired features, such as (for example) only small InDels
98 or only highly abundant events. Events in the table can be highlighted on the scatterplot using a
99 toggle-able button or by clicking on a row in the sequence table.

100 Users can view summary statistics and plots under the “Overview” tab. A table summarizes total
101 and unique events for each sample. If certain columns are included in the input files, frequency
102 plots reveal any enrichment or depletion of specific nucleotides proximal and distal to donor and
103 acceptor sites. For example, in SARS-CoV-2, recombination sites are most frequently flanked
104 by U-rich tracks (**Figure 1D**). Manhattan plots show broad patterns in deleted and duplicated
105 segments, as has previously been used to identify conserved functional motifs in the RNA
106 genome of Flock House virus (Routh and Johnson, 2014). Finally, a *Circos* plot (Krzewinski, et
107 al., 2009) depicts directional recombination events relative to user-provided annotations (Figure
108 1C). Numerous visual options can be adjusted through sliders. Annotations can either be added
109 manually through an editable table or included as a BED file. Export of all table data and plots
110 are available in high-fidelity file formats such as TIFF and PDF.

111 Ultimately, scientific questions such as most common recombination event, nucleotide usage
112 proximal and distal to recombination sites, and samples with most unique events can be
113 answered within minutes of file upload. Vignettes included in documentation demonstrate how
114 to use the application for these purposes. Associated documentation also includes tutorials for
115 analysis of *ViReMa* output data in R. Code for the shiny application is available for local use and
116 extension at <https://github.com/routhlab/ViReMaShiny>.

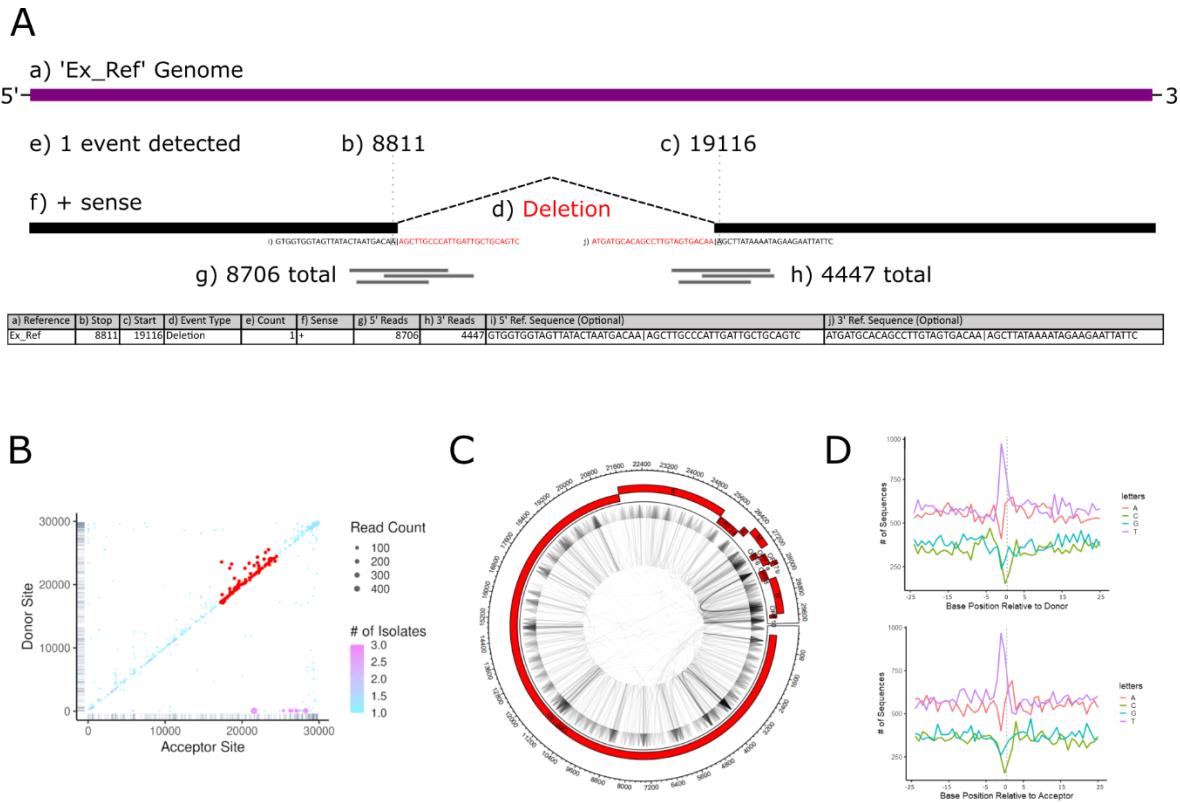
117 **Conclusions**

118 *ViReMaShiny* standardizes outputs and improves the approachability of exploratory viral
119 recombination analysis. This application is built on the outputs of the *ViReMa* python script,
120 allowing for intuitive investigation of data with no coding requirement. We plan on expanding
121 support for analysis in the R environment as well as providing options to visualize recombination
122 between multiple genes of multi-partite viruses such as influenza virus (Alnaji, et al., 2021). The
123 application is hosted at <https://routhlab.shinyapps.io/ViReMaShiny/> with associated
124 documentation at <https://jayeung12.github.io/>. Code is available at
125 <https://github.com/routhlab/ViReMaShiny>.

126 **Acknowledgements**

127 We would like to thank Dr. Fadi Alnaji (University of Illinois at Urbana-Champaign) for
128 discussions and advice. This work was funded by: NIH grant R21AI151725 to ALR; and CDC
129 contract 200-2021-11195 to ALR.

130


131 **Conflict of Interest Statement**

132 The authors declare no conflicts of interest.

133

134 **Fig 1.**

135

136

137 **Figure 1.** Example input data and plot outputs from *ViReMaShiny* using sample SARS-CoV-2
138 data from a previous study (Jaworski, et al., 2021). **A)** A table with an example recombination
139 event in *ViReMa* output BED format. Subsection a) refers to the reference sequence of the
140 event. b) and c) indicate the nucleotide base positions spanning the event. d) is the type of
141 recombination event. e) is the number of reads detected with this event. f) is the sense or
142 strandedness of the nucleic acid the event was detected on. g) and h) correspond to the number
143 of reads spanning b) and c) respectively. i) and j) are reference-derived nucleotide sequences at
144 the recombination junction, 25bp upstream and downstream of both b) and c). **B)** A scatterplot
145 depicting recombination events by donor and acceptor site indexes. Read counts correspond to
146 dot size while color encodes the number of isolates the event appears in. A subset of interest is
147 highlighted in red. **C)** An example Circos plot depicting all recombination events. The plot
148 includes annotations for the NCBI RefSeq NC_045512.2 SARS-CoV-2 genome. **D)** Nucleotide
149 bias at donor and acceptor sites for all recombination events.

150

151 **Supplementary Datafile 1:** The output BED files from a ViReMa analysis of three samples of
152 SARS-CoV-2 previously described were used to illustrate the plotting features of ViReMaShiny.
153 These files are also available at <https://routhlab.shinyapps.io/ViReMaShiny> and
154 <https://jayeung12.github.io>

155 **References**

156 Alnaji, F.G., *et al.* Influenza A Virus Defective Viral Genomes Are Inefficiently Packaged into
157 Virions Relative to Wild-Type Genomic RNAs. *mBio* 2021;12(6):e0295921.

158 Gribble, J., *et al.* The coronavirus proofreading exoribonuclease mediates extensive viral
159 recombination. *PLoS pathogens* 2021;17(1):e1009226.

160 Gu, Z., *et al.* circlize Implements and enhances circular visualization in R. *Bioinformatics*
161 2014;30(19):2811-2812.

162 Jaworski, E., *et al.* Tiled-ClickSeq for targeted sequencing of complete coronavirus genomes
163 with simultaneous capture of RNA recombination and minority variants. *Elife* 2021;10.

164 Jaworski, E. and Routh, A. Parallel ClickSeq and Nanopore Sequencing elucidates the rapid
165 evolution of Defective-Interfering RNAs in Flock House virus. *PLoS pathogens* 2017.

166 Krzywinski, M., *et al.* Circos: an information aesthetic for comparative genomics. *Genome Res*
167 2009;19(9):1639-1645.

168 Langsjoen, R.M., *et al.* Differential Alphavirus Defective RNA Diversity between Intracellular and
169 Extracellular Compartments Is Driven by Subgenomic Recombination Events. *mBio* 2020;11(4).

170 Lauring, A.S., Frydman, J. and Andino, R. The role of mutational robustness in RNA virus
171 evolution. *Nat Rev Microbiol* 2013;11(5):327-336.

172 Routh, A. and Johnson, J.E. Discovery of functional genomic motifs in viruses with ViReMa-a
173 Virus Recombination Mapper-for analysis of next-generation sequencing data. *Nucleic Acids*
174 *Res* 2014;42(2):e11.

175 Routh, A., Ordoukhalian, P. and Johnson, J.E. Nucleotide-resolution profiling of RNA
176 recombination in the encapsidated genome of a eukaryotic RNA virus by next-generation
177 sequencing. *J Mol Biol* 2012;424(5):257-269.

178 Simon-Loriere, E. and Holmes, E.C. Why do RNA viruses recombine? *Nat Rev Microbiol*
179 2011;9(8):617-626.

180 Sotcheff, S., et al. ViReMa: A Virus Recombination Mapper of Next-Generation Sequencing
181 data characterizes diverse recombinant viral nucleic acids. *bioRxiv*
182 2022:2022.2003.2012.484090.
183 Wang, S., et al. Covariation of viral recombination with single nucleotide variants during virus
184 evolution revealed by CoVaMa. *Nucleic Acids Res* 2022.
185