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Abstract 15 

Expression quantitative trait locus (eQTL) mapping has been widely used to study the genetic 16 

regulation of gene expression in Arabidopsis thaliana. As a result, a large amount of eQTL data 17 

has been generated for this model plant; however, only a few causal eQTL genes have been 18 

identified, and experimental validation is costly and laborious. A prioritization method could 19 

help speed up the identification of causal eQTL genes. This study extends the machine-learning-20 

based QTG-Finder2 method for prioritizing candidate causal genes in phenotype QTLs to be 21 

used for eQTLs by adding gene structure, protein interaction, and gene expression. Independent 22 

validation shows that the new algorithm can prioritize sixteen out of twenty-five potential eQTL 23 
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causal genes within the 20% rank percentile. Several new features are important in prioritizing 24 

causal eQTL genes, including the number of protein-protein interactions, unique domains, and 25 

introns. Overall, this study provides a foundation for developing computational methods to 26 

prioritize candidate eQTL causal genes. The prediction of all genes is available in the AraQTL 27 

workbench (https://www.bioinformatics.nl/AraQTL/) to support the identification of gene 28 

expression regulators in Arabidopsis. 29 

 30 

INTRODUCTION 31 

One of the main objectives of genetic research is to link traits to genotypic variation. However, 32 

the path from genetics to observable traits is not straightforward; instead, it goes through a 33 

network of interconnecting intermediate phenotypes, such as gene expression, protein levels, 34 

and metabolite levels (Civelek and Lusis 2013). Studying the effect of the genetic perturbation 35 

on these intermediate phenotypes could improve our understanding of how a trait is regulated. 36 

Following recent advances in omics technology, the effect of multiple genetic perturbations can 37 

now be studied in a single experiment using linkage mapping or association studies. One 38 

example is genetical genomics, where variation in transcript levels is statistically associated 39 

with genetic variation in a population (Jansen and Nap 2001) to find so-called expression 40 

quantitative trait loci (eQTLs). 41 

A mapped eQTL can be categorized as cis or trans based on its location relative to the affected 42 

gene. Cis-eQTLs are mapped close to the gene and are assumed to arise due to sequence 43 

polymorphisms in or near the gene itself, for instance, in cis-regulatory elements (e.g., the 44 

promoter). In contrast, trans-eQTLs are mapped far away from the target gene and emerge due 45 

to polymorphisms in trans-acting factors (e.g., transcription factors) called expression 46 

quantitative trait genes or eQTGs (Rockman and Kruglyak 2006; Brem et al. 2002). However, 47 
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a trans-eQTL typically spans a large genomic region with hundreds of candidate eQTGs. 48 

Experimental fine mapping to narrow down the region (e.g., in Eshed and Zamir 1995) is costly 49 

and laborious. As a result, only a few causal genes have been identified in the thousands of 50 

eQTLs that have been mapped for Arabidopsis thaliana, using different populations and 51 

experimental conditions (Keurentjes et al. 2007; West et al. 2007; Cubillos et al. 2012; Snoek 52 

et al. 2012; Lowry et al. 2013; Hartanto et al. 2020). As an in silico alternative, a prioritization 53 

method can help to limit the number of candidate eQTGs for further validation. 54 

Several network-based methods have been used to find eQTGs (e.g., in Keurentjes et al. 2007; 55 

Jimenez-Gomez et al. 2010; Hartanto et al. 2020). These methods primarily aim to find master 56 

regulator(s) at loci where trans-eQTLs for many genes are collocated, known as eQTL hotspots 57 

(Breitling et al. 2008). In general, these methods utilize a coexpression network built using 58 

genes having an eQTL on the hotspot (called targets) and genes located in the hotspot (called 59 

candidate eQTGs). Candidates are then usually prioritized based on a network centrality 60 

measure, such as degree or closeness centrality (Serin et al. 2016). Several candidate eQTGs 61 

have been identified in this way, for example, GIGANTEA (Keurentjes et al. 2007), ELF3 62 

(Jimenez-Gomez et al. 2010), ICE1, and DEWAX (Hartanto et al. 2020). This approach, 63 

unfortunately, only works for eQTL hotspots, not for regions that only have a small number of 64 

eQTLs. Another limitation is the sole reliance on coexpression data: given the complexity of 65 

gene expression regulation, the expression of the regulator is not necessarily correlated to that 66 

of its targets, particularly in eukaryotes (Marbach et al. 2012; Lelli et al. 2012). Therefore, 67 

additional data sources should be considered to capture possible interactions between the 68 

regulator and its target.  69 

Previously, a machine-learning-based method, QTG-Finder, was developed to prioritize 70 

candidate genes for phenotype QTLs in Arabidopsis (Lin et al. 2019). This method used features 71 

derived from various gene properties, such as paralog copy number, gene ontology, and the 72 
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number of SNPs, to rank the candidate genes in the QTL interval. The model could recall 64% 73 

of Arabidopsis QTGs when the top 20% ranked genes were considered. Further development 74 

of this method led to QTG-Finder2, which used orthology information and allowed for gene 75 

prioritization in species with no or few known QTGs (Lin et al. 2020). We were curious about 76 

the capability of this algorithm to prioritize eQTGs, given that some QTGs are involved in gene 77 

expression regulation, for example, ELF3 (Jimenez-Gomez et al. 2010), ERECTA (Terpstra et 78 

al. 2010), FRI (Lowry et al. 2013), MAM1 (Jansen et al. 2009), and AOP2 (Jansen et al. 2009). 79 

We propose eQTG-Finder, an extended version of QTG-Finder2 for eQTG prioritization, and 80 

apply the new algorithm to prioritize eQTGs in Arabidopsis. eQTG-Finder contains twelve new 81 

features based on protein-protein interaction, gene structure, and expression variation. These 82 

features significantly improve model performance, which is underscored by a feature 83 

importance analysis. We demonstrate the efficacy of this algorithm in prioritizing eQTGs using 84 

an independent test set. Finally, we use the new model to predict all Arabidopsis genes and 85 

make these available in our Arabidopsis eQTL analysis platform AraQTL 86 

(https://www.bioinformatics.nl/AraQTL/)(Nijveen et al. 2017) to help identify gene expression 87 

regulators. 88 

 89 

MATERIALS AND METHODS 90 

QTG-Finder2 was developed for prioritizing causal phenotype QTL genes (QTG) in 91 

Arabidopsis (Lin et al. 2020). This algorithm consists of 5,000 Random Forest classifiers (Ho 92 

1998) trained using known QTGs and Arabidopsis orthologs of QTGs from other species as 93 

positives and other genes as negatives. QTG-Finder2 prioritizes candidate genes based on 94 

features generated from polymorphism data, functional annotation, co-function networks, and 95 

paralog copy numbers. Our method extends QTG-Finder2 with new features, and we train the 96 
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resulting model using the same sets of positive and negative genes. We evaluate the 97 

performance in prioritizing candidate causal eQTL genes (eQTGs) in Arabidopsis. 98 

 99 

New features 100 

We generate and include twelve new features in addition to the ones already used by QTG-101 

Finder2. These new features are based on protein-protein interactions, gene expression, and 102 

gene/protein structure. 103 

1. Protein-protein interaction feature 104 

Genes can be associated with other genes, for instance, because the encoded proteins 105 

participate in the same pathway or are mentioned in the same publication. The number 106 

of such interactions a gene has could measure its propensity to be an eQTL causal gene. 107 

We generate a network-based feature using Arabidopsis protein-protein interaction 108 

(PPI) data from STRING-DB (Szklarczyk et al. 2019). The data were downloaded from 109 

the download page of STRING-DB version 11 (https://string-db.org/cgi/download). We 110 

only keep high-confident interactions by removing those with STRING scores below 111 

700. We count the number of interactions of each Arabidopsis gene as a feature. 112 

2. Gene expression features 113 

The consequence of genetic variation in causal genes might be detected as early as in 114 

gene expression variability. We, therefore, generate features based on gene expression 115 

variation. We use the standard deviation of expression levels across different tissues 116 

from CoNekT (http://www.evorepro.plant.tools/) (Julca et al. 2020). We also use the 117 

average and standard deviation of Arabidopsis thaliana Columbia ecotype expression 118 

data from different samples as features. These data were retrieved from the Athrna-119 

database (http://ipf.sustc.edu.cn/pub/athrna/) (Zhang et al. 2020).  120 
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3. Structural features 121 

The structure of causal genes and encoded proteins might differ from the other genes. 122 

Therefore, we generate structural features: the numbers of introns, splice variants, total 123 

protein domains, unique protein domains, and splice variants per gene. Data were 124 

retrieved from https://www.arabidopsis.org/ (accessed May 2021). The number of 125 

introns and splice variants are counted in TAIR10's BLAST datasets. The other two 126 

features are generated from all.domains.txt by counting each Arabidopsis gene's total 127 

number of domains and the number of unique domains. 128 

 129 

Hyperparameter tuning 130 

Model evaluation is based on QTG-Finder (Lin et al. 2019) and QTG-Finder2 (Lin et al. 2020). 131 

Similar to QTG-Finder2, we use known QTGs and Arabidopsis orthologs of QTGs found in 132 

other species as positives and other genes as negatives. We use hyperparameter tuning to 133 

determine the best parameter combination (the number of trees, minimal samples split, and 134 

maximum number of features) using grid search and assess the area under the curve (AUC) of 135 

the receiver characteristics operator (ROC) curve in an extended version of the 5-fold cross-136 

validation framework. In this framework, the positives are randomly re-split into a training and 137 

validation set in a 4:1 ratio iteratively. Next, each set is combined with randomly selected 138 

negatives. The ratio of positives and negatives is an optimized hyperparameter. This splitting 139 

of positives is done 50 times, and for each positive set random selection of the negatives was 140 

conducted 50 times. This extensive procedure (2,500 evaluations) makes that positive co-occurs 141 

with all negative at least once with high probability. All machine-learning model training and 142 

testing in this study is performed using Python’s scikit-learn library version 1.0.2. 143 

 144 
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Selection of candidate eQTL genes and independent validation of model performance 145 

A list of candidate eQTGs in Arabidopsis is manually selected from the literature. These genes 146 

are categorized as confirmed/strong-candidate, hypothetical, or hypothetical-ortholog. Genes 147 

that have been through experimental validation or have strong evidence as eQTG are 148 

categorized into the confirmed/strong-candidate group, for example, GIGANTEA (Keurentjes 149 

et al. 2007; Snoek et al. 2012). Some confirmed/strong-candidate eQTGs are used as positive 150 

in QTG-Finder2, and we remove these from the positive instances to be used as validation 151 

genes. Meanwhile, genes that were not experimentally validated but are predicted to play a role 152 

as eQTG through in silico analysis (e.g., network analysis) are categorized as hypothetical, for 153 

example, ICE1 and DEWAX (Hartanto et al. 2020). If a gene's ortholog is considered an eQTG 154 

in another species, it is categorized as hypothetical-ortholog; for example, NF-YC4 is found as 155 

an eQTG in potatoes (van Muijen et al. 2016). In total, this yields twenty-five candidate eQTGs 156 

in Arabidopsis: six confirmed/strong-candidate, four hypothetical, and fifteen hypothetical-157 

ortholog genes (Supplementary Table 1). We ensure that these candidates are not used for 158 

hyperparameter tuning or cross-validation. 159 

Independent validation is performed using the best combination of parameters (Supplementary 160 

Table 1). We train 5,000 Random Forest classifiers using all positives but different sets of 161 

negatives, with a positive: negative ratio of 1:200 to approximate the ratio of causal and non-162 

causal genes in real eQTLs. The models are then applied to each candidate eQTG and other 163 

genes located 1 Mbp around it. These genes are ranked based on the average probability of 164 

being causal genes over 5,000 models. 165 

 166 

Feature importance analysis 167 
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Feature importance is determined using a leave-one-out analysis. Iteratively, each feature is 168 

removed from the dataset, and a model is trained using the reduced dataset. The AUC difference 169 

in the full model (with all features) and the reduced model is then calculated and used to indicate 170 

the feature importance. We use the previous cross-validation framework and the best 171 

parameters to measure the model performance in this analysis. 172 

 173 

Data analyses and code availability 174 

Pairwise Pearson correlation coefficients between features are calculated using the Pandas 175 

(version 1.3.5) DataFrame.corr method in Python. Pearson Wilcoxon Rank Sum Test tests 176 

differences in the median between positive and negative genes for the twelve new features. The 177 

test is conducted in R using the base ‘wilcox.test’ function. Gene ontology enrichment analysis 178 

for the top and bottom 5% predicted causal genes is performed using TopGO in R (Alexa et al. 179 

2006) using the algorithm's default ‘weight01’ parameter, which is the mixture of ‘elim’ and 180 

‘weight’ methods. The Python version used for the analyses is 3.8.12, and the R version is 4.0.2. 181 

The source code and data are available at https://git.wur.nl/harta003/eqtg-finder. 182 

 183 

RESULTS 184 

The QTG-Finder2 algorithm could rank phenotype QTL causal genes higher than other genes 185 

in a cross-validation setting (AUC = 0.81) and recall 80% independent curated causal genes 186 

when the top 20% of genes in the QTL are considered (Lin et al. 2020). In this study, we extend 187 

QTG-Finder2 with a set of new features and evaluate its performance in prioritizing expression 188 

QTGs. 189 

 190 
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New features improve causal gene prediction performance 191 

To improve model performance and better tailor it fit for eQTG prioritization, we added twelve 192 

new features based on gene expression, structure, and protein-protein interactions in the QTG-193 

Finder2 algorithm. Most new features only show a low to moderate correlation with the existing 194 

ones (Supplementary Figure 1), indicating that we add new information to the model. Figure 1  195 

shows feature distributions for the causal genes as the positive class (55 known QTGs and 145 196 

Arabidopsis ortholog of QTGs from other species) and the other genes in the genome as the 197 

negative class (n=26,970). For most features, the causal genes' median value is significantly 198 

different from that of the other genes in the genome (see Supplementary Table 3). The 199 

expression of causal genes is more variable than that of other genes. Moreover, causal genes 200 

tend to have more and varied protein domains. Causal genes also have slightly more introns 201 

than other genes. These differences between the causal genes and the other genes in the genome 202 

provide a first indication of potential discriminating features for the machine learning model. 203 

We assess the performance of the model with and without new features using a cross-validation 204 

framework. 205 

 206 
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 207 

Figure 1. Distribution of twelve new features for known causal genes as the positive class (blue: 208 

n=200; 55 known QTGs and 145 orthologs of QTGs from other species) and the remaining 209 

genes in the genome as the negative class (red: n=26,970). Significance of differences in 210 

medians was assessed using the Wilcoxon Rank Sum Test (*: p <= 0.05; ****: p <= 0.0001). 211 

Red dots indicate means. SD = standard deviation. Exp. = gene expression. PPIs = protein-212 

protein interactions.  213 

 214 

To assess the contribution of new features to the model performance, we compare the area under 215 

the receiver-operating characteristic curve (AUC) between the original QTG-Finder2 with the 216 

extended model that we labeled eQTG-Finder, and for the extended model with the class labels 217 

permutated, as a control (Figure 2 left). The AUC was measured in an extended cross-validation 218 

setting over 2,500 different combinations of positive and negative gene sets. The results show 219 

that eQTG-Finder (AUC = 0.859 ± 0.008) performs better  than QTG-Finder2 (AUC = 0.801 ± 220 
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0.01) and the control model (AUC = 0.502 ± 0.014). Adding new features thus allows the model 221 

to rank causal genes higher than the other genes. The next section analyzed model performance 222 

in prioritizing eQTG using selected candidate eQTGs. 223 

To determine how the new features contribute to causal gene prediction, we calculate feature 224 

importance using a leave-one-out approach. Each feature is iteratively removed from the 225 

dataset, and the reduced model’s performance is compared to that of the model containing all 226 

features. The drop in AUC indicates a feature's importance. A positive AUC drop means 227 

removing that feature decreases the model's predictive capability. The result shows that four of 228 

the most important features in the model are the new ones: the number of unique domains, the 229 

PPI count, the intron count, and the domain count. However, the large standard deviation for 230 

the domain count AUC drop indicates that the contribution of this feature is not consistent over 231 

different samples of positive and negative sets.  232 

A B 
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Figure 2. (A) Receiver operating characteristic (ROC) curves of the original QTG-233 

Finder2 model (blue) and extended eQTG-Finder model (green), and eQTG-Finder 234 

trained with randomized class labels (red) as a control. Transparent areas indicate 235 

standard deviations over 2,500 repetitions. (B) Feature importance is measured using 236 

leave-one-out analysis. A positive AUC drop indicates that the removal of the feature 237 

reduces the model's predictive capability. Feature names in bold and with dark blue 238 

bars indicate new features. Error bars indicate standard deviations over 2,500 239 

repetitions. 240 

 241 

eQTG-Finder ranks most strong eQTG candidates better than QTG-Finder2 242 

To evaluate eQTG prioritization performance, we again train the original QTG-Finder2 and the 243 

extended eQTG-Finder model and use them to rank selected potential eQTGs (Supplementary 244 

Table 1). Models are trained using all positives (known QTGs and Arabidopsis ortholog QTGs 245 

from other species). We repeated the training 5,000 times with different negative samples to 246 

select each negative gene at least once in training with high probability. These models rank 247 

each of the twenty-five potential eQTGs with their surrounding genes within a 2 Mbp window 248 

as a hypothetical eQTL region. These potential eQTGs are selected manually from the literature 249 

and grouped based on the evidence of being causal eQTL genes (see Methods for detail). Gene 250 

ranking is based on the average probability of a gene being causal, as predicted by the 5,000 251 

models. We use the rank percentile to indicate the percentage of genes on the eQTL with higher 252 

ranks than the gene of interest (i.e., a rank percentile of 0.1 indicates that 10% of genes in the 253 

eQTL region rank higher than the gene of interest). We predefine cutoffs of 5%, 10%, and 20%, 254 

in each of which we compare recall between QTG-Finder2 and eQTG-Finder. These recalls for 255 

different cutoffs can be used by researchers to decide the proportion of top prioritized genes for 256 

further experimental validation. 257 
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The QTG-Finder2 model recalls 16%, 28%, and 52% of eQTG candidates if the top 5%, 10%, 258 

and 20% ranked genes are considered (Figure 3). With added features, eQTG-Finder ranks 259 

eQTGs slightly better with percentages of 36%, 52%, and 64% respectively. The eQTGs vary 260 

in their evidence of being causal genes (see Methods). Four out of six strong eQTG candidates 261 

(AOP2, ERECTA, GIGANTEA, and MAM1) rank within the 5% rank percentile by eQTG-262 

Finder compared to only one (ERECTA) by QTG-Finder2. The other two strong candidates, 263 

FRI and ELF3, were ranked at the 10.2% and 61.2% percentile by eQTG-Finder. The ranks of 264 

sixteen genes are improved by eQTG-Finder, eight are worse, and one stays the same 265 

(Supplementary Table 4). The rank of four out of six strong eQTG candidates improves, with 266 

GIGANTEA one of the most drastic improvements, moving from 53,7.7% to 4.2%. On the other 267 

hand, the rank of ERECTA drops (0.4% to 2.8%) but remained falls in the 5% rank percentile. 268 

Both models rank another strong eQTG candidate ELF3 poorly (at 44% rank percentile by 269 

QTG-Finder2 and 61.2% by eQTG-Finder). Despite the decent overall performance in eQTG 270 

prioritization, we notice that eQTG-Finder performance in prioritizing phenotype QTGs is still 271 

inconsistent. Using the initial independent validation set, only seven out of eleven QTGs are 272 

ranked within the 20% rank percentile by eQTG-Finder, compared to nine by QTG-Finder2 273 

(Supplementary Figure 2). 274 

 275 
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 276 

Figure 3. Rank percentile comparison of sixteen candidate eQTGs using the model with new 277 

features (eQTG-Finder) and the original model (QTG-Finder2). 278 

 279 

To get an overview of eQTG-Finder predictions, we inspect the distribution of the average 280 

predicted probability of being causal for all Arabidopsis genes (Figure 4). This skewed towards 281 

a low value, with a median value of 0.007 (note that the x-axis of Figure 4 is on a log10 scale). 282 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.06.487194doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487194
http://creativecommons.org/licenses/by-nc-nd/4.0/


Twenty-one of the twenty-five genes in the validation set have a predicted probability higher 283 

than the median. ELF3 (probability=0.0045) is the only strong eQTG candidate with a predicted 284 

probability lower than the median. A Gene Ontology (GO) enrichment analysis shows that the 285 

top 5% genes in the distribution are significantly enriched (FDR p-value < 0.05) for 67 GO 286 

terms (Supplementary Figure 5),  most of which are related to response to abiotic and biotic 287 

stresses, such as "defense response to bacterium", "defense response to fungus", and "response 288 

to wounding". The term “regulation of transcription” is also enriched, suggesting that 289 

transcription factors are likely to be causal, consistent with the feature importance analysis 290 

result where  is_TF is among the most important features. Meanwhile, the bottom 5% are not 291 

enriched for any term. 292 

 293 

Figure 4. The density plot of probabilities of being causal predicted by eQTG-Finder for all 294 

Arabidopsis genes. Text labels point to the probability of the gene in the plot. The x-axis is on 295 

a log10 scale.  296 

 297 
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eQTG-Finder is available in AraQTL to support new hypotheses on the gene expression 298 

regulation 299 

To make eQTG-Finder results easily accessible for researchers, we include predicted 300 

probabilities of causality (herewith referred to as eQTG-Finder score) for all Arabidopsis genes 301 

in AraQTL, our Arabidopsis eQTL data workbench (Nijveen et al. 2017). Prioritizing genes 302 

using QTG-Finder2 is not straightforward as it requires users to prepare a list of candidate genes 303 

and command-line usage skills. Integrating the eQTG-Finder score in AraQTL facilitates users 304 

to interactively identify gene expression regulators. For example, we here discuss a case on 305 

predicting a new potential regulator for GLK2 using the eQTG-Finder score and other 306 

interaction evidence in AraQTL. GLK2 is a GARP nuclear transcription factor involved in light-307 

controlled signaling (Waters et al. 2009). Liu et al. (2021) recently found that HY5 is the 308 

regulator of GLK2 based on the fact that HY5 is a well-known regulatory switch for light 309 

signaling in literature. The same conclusion can also be derived using the Serin et al. 310 

(manuscript in preparation) eQTL experiment and prior knowledge data in AraQTL. Another 311 

approach to finding potential regulators of GLK2 can be made in AraQTL using the eQTG-312 

Finder score. In a Kas x Tsu eQTL experiment on leaf tissue (Lowry et al. 2013), GLK2 has an 313 

eQTL on the beginning of chromosome 1, indicating the location of the potential regulator(s) 314 

(Figure 5, top). As many as 257 candidate regulatory genes are present in the eQTL (Figure 5, 315 

bottom). We can filter out weak candidates by constructing a network of GLK2 connected to its 316 

potential regulators on the eQTL based on prior knowledge, such as protein-protein interaction 317 

and gene annotation (Hartanto et al., manuscript in preparation). Here, we threshold the eQTG-318 

Finder score to remove weak candidates. Moreover, eQTG-Finder can prioritize the remaining 319 

fourteen genes by selecting the “Bipartite by eQTG-Finder score” network layout and ordering 320 

genes by their score. The result suggests some promising GLK2 regulator candidates ranked at 321 

the top, for example, a transcription factor LHY in second place. Until now, LHY has not been 322 
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reported to regulate GLK2. However, this gene is a promising GLK2 regulator candidate as the 323 

network shows that it has a transcription factor binding site(s) on the GLK2 promoter (O'Malley 324 

et al. 2016). Moreover, LHY is involved in light signaling (Joo et al. 2017; Kim et al. 2003). 325 

This example suggests that integrating the eQTG-Finder score in AraQTL can help infer new 326 

regulatory interactions. 327 

 328 
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 329 

FIGURE 5. Prioritization of GLK2 regulator using the eQTG-Finder 330 

score in AraQTL. (top) eQTL profile of GLK2 from the Lowry et al. 331 

(2013) experiment. The eQTL region on chromosome 1 (shaded in pink) 332 
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pinpoints the location of potential GLK2 regulator(s). (bottom) Prior-333 

knowledge network connecting GLK2 (blue node) with candidate 334 

regulators (yellow nodes) based on prior knowledge data. Here, the 335 

eQTG-Finder score is used to order candidates based on their probability 336 

of being causal. 337 

 338 

DISCUSSION 339 

The concept of genetical genomics was first coined two decades ago (Jansen and Nap 2001), 340 

and numerous Arabidopsis eQTL data sets have been published since then (Nijveen et al. 2017). 341 

The aim of genetical genomics is to pinpoint genomic regions associated with gene expression 342 

variation (eQTL) and ultimately unravel genes involved in expression regulation. However, 343 

identifying causal genes (eQTGs) is difficult because of the often large genomic regions they 344 

span, regularly harboring dozens or even hundreds of candidates. The regions can be narrowed 345 

down by experimental fine-mapping (Eshed and Zamir 1995), and the remaining candidate 346 

genes can then be validated using functional genomics methods (e.g., using CRISPR-Cas9-347 

mediated deletions as in Evans and Andersen 2020). However, performing these experiments 348 

for thousands of eQTLs is very costly. Using genomics and annotation data, a computational 349 

prioritization method can help identify candidate eQTGs. This study extends an existing 350 

machine-learning algorithm, QTG-Finder2, to address this issue and evaluates its performance 351 

for prioritizing eQTG. eQTG-Finder outperforms its predecessor in a cross-validation setting 352 

and independent validation test. We make eQTG-Finder scores available in AraQTL to help 353 

researchers interactively identify key regulators. 354 

The key improvement of eQTG-Finder lies in the inclusion of twelve new features based on 355 

gene expression, structure, and interactions. Given the complexity of the resulting model, it is 356 
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not straightforward to assess how these features improve eQTG-Finder in gene prioritization 357 

(Petch et al. 2022). We calculated the contribution of each feature in the model using a leave-358 

one-out feature importance analysis (see Materials and Methods). This showed that the number 359 

of unique protein domains, the number of protein-protein interactions (PPI), and the number of 360 

introns are in the top five most contributing features in the model. We showed that known causal 361 

genes tend to have more domains, protein-protein interaction partners, and introns than other 362 

genes (Figure 1). These new features may provide insight into what distinguishes causal and 363 

non-causal genes. For instance, since protein domains determine protein functions (Vogel et al. 364 

2004; Enright and Ouzounis 2001),  the presence of multiple domains in a causal gene could 365 

indicate involvement in a wide range of biological functions. The diverse functions of causal 366 

genes could also be reflected in their larger number of protein-protein interaction partners than 367 

non-causal as genes perform their function in concert with other genes (Ito et al. 2001). The 368 

number of introns reflects the number of exons in a gene. Several studies demonstrated that 369 

exons play a role in the evolution of domain architectures through exon-shuffling, leading to 370 

new combinations of domains with new functions.  371 

Variation in phenotype can be traced back to variation in gene expression (Skelly et al. 2009; 372 

Albert and Kruglyak 2015). For this reason, we included features based on the standard 373 

deviation (SD) of gene expression across different Arabidopsis accessions and conditions. Even 374 

though the medians between causal and other genes are significantly different (Figure 1), 375 

features based on SD of expression have low importance in the model. A study showed that 376 

correlations between features decrease the importance to zero (Gregorutti et al. 2016). Given 377 

that three SD features are highly correlated (Supplementary Figure 1), their importance in the 378 

model might be underestimated. Nevertheless, we do not have evidence that these features 379 

negatively affect the prediction performance; hence, we kept them in the model.  380 
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eQTG-Finder uses known QTGs (i.e., causal genes for a phenotype QTL) as positive instances 381 

for model training because of the limited number of known eQTGs. We argue that QTGs are 382 

relevant for prioritizing eQTG since variation at the molecular level (e.g., in gene expression, 383 

metabolite, or protein level) can be propagated and cause variation at higher phenotypic levels 384 

(Fu et al. 2009; Civelek and Lusis 2013). For example, genetic variations in AOP2 and MAM1 385 

cause cis-eQTLs for gene expression and metabolite QTLs for aliphatic glucosinolate 386 

biosynthesis, which confer insect resistance in Arabidopsis (Wentzell et al. 2007; Jansen et al. 387 

2009). Both genes were prioritized in the top 5% rank percentile by eQTG-Finder. This result 388 

suggests that eQTG-Finder can identify QTLs for other molecular phenotypes, including 389 

metabolite and protein.  390 

A lack of model interpretability may hamper a user’s comprehensive evaluation and assessment 391 

of the prioritization results. Regardless of the good performance, it is difficult to precisely 392 

understand how eQTG-Finder classifies certain genes as causal and others as non-causal, a 393 

typical issue for a complex model like Random Forest (Petch et al. 2022). Instead, in AraQTL, 394 

we provide additional sources of evidence to support the eQTG-Finder prioritization results 395 

(Hartanto et al., unpublished). For example, eQTG-Finder prioritizes transcription factor LHY 396 

as the regulator of GLK2 (Figure 5). The network visualization in AraQTL showed that LHY is 397 

connected to GLK2 by transcription factor binding site evidence, indicating that LHY may bind 398 

to the GLK2 promoter and modulate its expression. Incorporating eQTG-Finder in the AraQTL 399 

web interface facilitates researchers to identify key regulators for genes of interest without the 400 

need for computational skills. 401 

In the independent validation, some eQTG candidates were ranked poorly by eQTL-Finder 402 

(Figure 3). Low ranked assumed eQTG genes from the hypothetical and hypothetical-orthologs 403 

groups might not be actual eQTGs; however, the strong eQTG candidate ELF3 was also ranked 404 

poorly by both eQTG-Finder (61.2%) and QTG-Finder (44%). ELF3 encodes a nuclear protein 405 
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and was demonstrated to regulate gene expression leading to shade-avoidance response 406 

(Jimenez-Gomez et al. 2010). The complexity of the eQTG-Finder algorithm makes it difficult 407 

to dissect the prediction for ELF3. We investigated two of the most important features and 408 

noticed that this gene only has one identified protein domain and one paralog copy number, 409 

which is lower than the median values of causal genes (four and seventeen, respectively). 410 

Likely, some features associated with eQTG are still missing in our model or underrepresented 411 

in our set of positive instances. Since the regulator-target relationship is specific, we expect that 412 

features representing gene-gene/protein-protein relationships (for example, STRING scores 413 

(Szklarczyk et al. 2019), transcription factor binding sites (Tian et al. 2020), and gene ontology 414 

semantic similarity (Yu 2020)) are relevant for prioritizing eQTG. Including these would shift 415 

the prioritization of generic eQTGs based on gene properties to the prioritization of eQTGs for 416 

a specific target using features based on gene-pair relationships. This is similar to the 417 

approaches of Wong et al. (2004) and Pandey et al. (2010), who predicted genetic interaction 418 

using gene pair relationships in yeast. The number of positive examples (i.e., confirmed eQTG-419 

target pairs) is currently too small to properly train such a model for Arabidopsis. However, as 420 

data regarding genetic regulation is steadily increasing, we are optimistic that this strategy will 421 

be possible in the future. 422 

 423 

Data availability 424 

The code and data for the analysis and visualization is available at the Wageningen University 425 

GitLab repository (https://git.wur.nl/harta003/eqtg-finder). eQTG-Finder prioritization is 426 

available at AraQTL (https://www.bioinformatics.nl/AraQTL/; Nijveen et al. 2017) 427 
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SUPPLEMENTARY FIGURES 436 

 437 

Supplementary Figure 1. Correlation matrix of features used in the machine learning model. 438 

New features are indicated in bold. 439 
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 440 

Supplementary Figure 2. Rank percentile comparison of eleven original validation gene sets 441 

using the model with new features and the original model (QTG-Finder2). 442 
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SUPPLEMENTARY TABLES 

Supplementary Table 2. The list of candidate eQTGs used for independent validation 

Gene ID Gene name evidence Species origin Label in species 

origin 

Gene class Associated trait Trait category  Reference 

(PMID) 

AT5G61590 DEWAX hypothetical Arabidopsis thaliana DEWAX transcription factor seed germination development 32963085 

AT1G22770 GIGANTEA confirmed/ strong evidence Arabidopsis thaliana GIGANTEA nuclear protein seed germination development 32963085 

AT3G26744 ICE1 hypothetical Arabidopsis thaliana ICE1 transcription factor flowering development 23335938/ 

17237218 

AT5G63470 NF-YC4 hypothetical-ortholog Solanum tuberosum NF-YC4 transcription factor drought responce abiotic stress 27353051 

AT3G61890 HB-12 hypothetical-ortholog Solanum tuberosum HB-12 transcription factor drought responce abiotic stress 27353051 

AT2G28680 - hypothetical-ortholog Solanum tuberosum PGCRURSE5 RmlC-like cupins superfamily 

protein 

tuber starch content development 33051578 

AT5G02830 - hypothetical-ortholog Cucumis melo cmPPR1/ 

Melo3C003069 

Tetratricopeptide repeat 

(TPR)-like superfamily protein 

flesh color intensity development 29385635 

AT3G13460 - hypothetical-ortholog Zea mays ECT2 YTH domain-containing 

protein 

kernel size development 30548709 

AT1G50460 HKL1 hypothetical-ortholog Zea mays HEX9 hexokinase-like glycolysis development 29275164 

AT1G63650 EGL3 hypothetical-ortholog Zea mays R1/COLORED1 transcription factor flavonoid 

biosynthesis 

development 32184350/ 

29275164 

AT5G41315 GL3 hypothetical-ortholog Zea mays/ Hordeum 

vulgare  

R1/COLORED1 transcription factor flavonoid 

biosynthesis 

development 21115826/ 

32184350/ 

29275164 
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AT4G00480 MYC1 hypothetical-ortholog Zea mays R1/COLORED1 transcription factor flavonoid 

biosynthesis 

development 32184350/ 

29275164 

AT2G47460 MYB12 hypothetical-ortholog Solanum 

lycopersicum/ 

Populus trichocarpa 

MYB12 transcription factor flavonoid 

biosynthesis 

development 33199703/ 

6888306 

AT3G57480 SAP13 hypothetical-ortholog Solanum 

lycopersicum 

PtSAP13 stress-associated protein flavonoid 

biosynthesis 

development 33199703 

AT1G16060 WRI3 hypothetical-ortholog Solanum 

lycopersicum 

WRI3 transcription factor lipid metabolism development 33199703 

AT1G22920 CSN5A hypothetical Arabidopsis thaliana CSN5A transcription coactivator low-light response abiotic stress 23335938 

AT1G66370 MYB113 hypothetical-ortholog Ipomoea batatas IbMYB1-2 transcription factor flavonoid 

biosynthesis 

development 32528702 

AT3G19150 KRP6 hypothetical-ortholog Gossypium hirsutum KRP6 kip-related protein fibre-cell length development 32017125 

AT2G24790 COL3 hypothetical-ortholog Zea mays COL11 transcription factor photosynthesis development 32184350 

AT5G23460 - hypothetical Arabidopsis thaliana - - flowering development 17237218 

AT2G25930 ELF3 confirmed/ strong evidence Arabidopsis thaliana ELF3 nuclear protein shade avoidance abiotic stress 20838594 

AT2G26330 ERECTA confirmed/ strong evidence Arabidopsis thaliana ERECTA kinase     20833726 

AT4G00650 FRI confirmed/ strong evidence Arabidopsis thaliana FRI -   development 24045022 

AT5G23010 MAM1 confirmed/ strong evidence Arabidopsis thaliana MAM1 methylthioalkylmalate 

synthase 

insect resistance biotic stress 19196544 

AT4G03050 AOP2 confirmed/ strong evidence Arabidopsis thaliana AOP2 2-oxoglutarate-dependent 

dioxygenase 

insect resistance biotic stress 19196544 
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Supplementary Table 3. Wilcoxon Rank 

Sum Test statistics and p values for the 

difference in median of new features 

between causal genes and the other genes 

in the genome. 

Feature 

W 

statistics p-value 

std exp tiss 3312857 2.51 x 108  

avg exp con 2624347 0.51 

std exp con 3207362 3.86 x 106 

avg exp trt 2531055 0.13 

std exp trt 3354636 2.64 x 109 

avg exp acc 2445143 0.02 

std exp acc 3287936 8.19 x 108 

intron count 2937908 0.03 

splice variants 2805881 0.17 

ppi count 3142925 3.75 x 105 

domain count 3705449 3 x 1020 

unique domain 3944166 3.12 x 1030 

 

 

Supplementary Table 4. Candidate eQTL genes and their rank percentile based on the original 

QTG-Finder2 and eQTG-Finder. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.04.06.487194doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.06.487194
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

QTG_Finder2 eQTG_Finder QTG_Finder2 eQTG_Finder

AT2G28680 - eQTG hypothetical 

ortholog

190 62 243 78.189 25.514 52.675

AT3G19150 KRP6 eQTG hypothetical 

ortholog

264 121 288 91.667 42.014 49.653

AT1G22770 GIGANTEA eQTG confirmed/ 

strong evidence

153 12 285 53.684 4.211 49.474

AT5G23010 MAM1 eQTG confirmed/ 

strong evidence

113 12 259 43.629 4.633 38.996

AT3G13460 - eQTG hypothetical 

ortholog

133 25 297 44.781 8.418 36.364

AT5G61590 DEWAX eQTG hypothetical 95 42 287 33.101 14.634 18.467

AT5G02830 - eQTG hypothetical 

ortholog

149 108 323 46.130 33.437 12.693

AT3G61890 HB-12 eQTG hypothetical 

ortholog

49 9 320 15.313 2.813 12.500

AT4G03050 AOP2 eQTG confirmed/ 

strong evidence

26 3 213 12.207 1.408 10.798

AT1G63650 EGL3 eQTG hypothetical 

ortholog

36 11 268 13.433 4.104 9.328

AT4G00480 MYC1 eQTG hypothetical 

ortholog

28 12 203 13.793 5.911 7.882

AT4G00650 FRI eQTG confirmed/ 

strong evidence

33 22 215 15.349 10.233 5.116

AT5G41315 GL3 eQTG hypothetical 

ortholog

20 7 292 6.849 2.397 4.452

AT1G16060 WRI3 eQTG hypothetical 

ortholog

25 18 313 7.987 5.751 2.236

AT2G47460 MYB12 eQTG hypothetical 

ortholog

5 1 217 2.304 0.461 1.843

AT1G66370 MYB113 eQTG hypothetical 

ortholog

5 1 234 2.137 0.427 1.709

AT5G23460 - eQTG hypothetical 100 100 248 40.323 40.323 0.000

AT5G63470 NF-YC4 eQTG hypothetical 

ortholog

19 21 311 6.109 6.752 -0.643

AT2G26330 ERECTA eQTG confirmed/ 

strong evidence

1 7 247 0.405 2.834 -2.429

AT3G26744 ICE1 eQTG hypothetical 90 98 273 32.967 35.897 -2.930

AT1G22920 CSN5A eQTG hypothetical 259 274 289 89.619 94.810 -5.190

AT2G24790 COL3 eQTG hypothetical 

ortholog

33 49 245 13.469 20.000 -6.531

AT2G25930 ELF3 eQTG confirmed/ 

strong evidence

110 153 250 44.000 61.200 -17.200

AT1G50460 HKL1 eQTG hypothetical 

ortholog

9 100 265 3.396 37.736 -34.340

AT3G57480 SAP13 eQTG hypothetical 

ortholog

104 264 311 33.441 84.887 -51.447

AT4G15920 SWET17 QTG n/a 118 68 257 45.914 26.459 19.455

AT5G25980 TGG2 QTG n/a 36 1 221 16.290 0.452 15.837

AT1G69270 RPK1 QTG n/a 109 89 257 42.412 34.630 7.782

AT2G25450 GSL-OH QTG n/a 18 1 262 6.870 0.382 6.489

AT2G44990 CCD7 QTG n/a 11 6 321 3.427 1.869 1.558

AT1G27320 HK3 QTG n/a 1 7 273 0.366 2.564 -2.198

AT2G45650 AGL6 QTG n/a 10 18 300 3.333 6.000 -2.667

AT5G26000 TGG1 QTG n/a 18 24 222 8.108 10.811 -2.703

AT5G35750 HK2 QTG n/a 1 7 142 0.704 4.930 -4.225

AT4G38970 FBA2 QTG n/a 44 67 285 15.439 23.509 -8.070

AT3G19580 ZF2 QTG n/a 6 78 277 2.166 28.159 -25.993

Type Evidence Rank Rank 

improvement

Rank percentileTotal gene 

in QTL

NameID
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Supplementary Table 5. Gene ontology terms enriched in the top 5% genes predicted as causal. 

GO ID Term Annotated Significant Expected p-value FDR 

GO:0030154 cell differentiation 675 118 37.74 7.50 x 1030  4.51 x 1026 

GO:0006468 protein phosphorylation 1037 141 57.98 3.00 x 1022 9.02 x 1019 

GO:0051762 sesquiterpene biosynthetic 

process 

25 19 1.4 1.80 x 1019 3.61 x 1016 

GO:0006355 regulation of transcription, 

DNA-templat... 

2053 279 114.78 2.60 x 1019 3.91 x 1016 

GO:0007165 signal transduction 1429 167 79.89 7.80 x 1019 9.38 x 1016 

GO:0048544 recognition of pollen 43 23 2.4 4.20 x 1018 4.21 x 1015 

GO:0045893 positive regulation of 

transcription, DN... 

509 96 28.46 1.40 x 1016 1.20 x 1013 

GO:0042742 defense response to 

bacterium 

430 69 24.04 1.70 x 1014 1.28 x 1011 

GO:0009686 gibberellin biosynthetic 

process 

29 14 1.62 3.00 x 1011 2.01 x 108 

GO:0070588 calcium ion transmembrane 

transport 

45 16 2.52 2.70 x 1010 1.62 x 107 

GO:0050832 defense response to fungus 257 41 14.37 3.20 x 1010 1.63 x 107 

GO:0009753 response to jasmonic acid 189 37 10.57 3.70 x 1010 1.63 x 107 

GO:0009611 response to wounding 215 37 12.02 3.70 x 1010 1.63 x 107 

GO:0016114 terpenoid biosynthetic 

process 

146 49 8.16 3.80 x 1010 1.63 x 107 

GO:0061408 positive regulation of 

transcription fro... 

24 12 1.34 1.30 x 109 5.21 x 107 

GO:0009414 response to water 

deprivation 

381 52 21.3 1.50 x 109 5.64 x 107 

GO:0045087 innate immune response 348 55 19.46 7.00 x 109 2.48 x 106 

GO:0009617 response to bacterium 508 87 28.4 2.90 x 108 9.69 x 106 

GO:0006952 defense response 1046 166 58.48 4.80 x 108 1.52 x 105 

GO:2000652 regulation of secondary cell 

wall biogen... 

28 13 1.57 5.60 x 108 1.68 x 105 

GO:0045490 pectin catabolic process 96 21 5.37 5.90 x 108 1.69 x 105 
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GO:0002229 defense response to 

oomycetes 

76 18 4.25 6.60 x 108 1.78 x 105 

GO:0010200 response to chitin 141 26 7.88 6.80 x 108 1.78 x 105 

GO:0046777 protein autophosphorylation 191 31 10.68 8.40 x 108 2.11 x 105 

GO:0045487 gibberellin catabolic process 7 6 0.39 2.00 x 107 4.81 x 105 

GO:0042545 cell wall modification 168 33 9.39 2.40 x 107 5.35 x 105 

GO:0045944 positive regulation of 

transcription by ... 

220 42 12.3 2.40 x 107 5.35 x 105 

GO:0009735 response to cytokinin 104 20 5.81 2.60 x 107 5.59 x 105 

GO:0080027 response to herbivore 15 8 0.84 4.20 x 107 8.71 x 105 

GO:0019264 glycine biosynthetic process 

from serine 

5 5 0.28 5.40 x 107 0.0001 

GO:1904482 cellular response to 

tetrahydrofolate 

5 5 0.28 5.40 x 107 0.0001 

GO:0006565 L-serine catabolic process 5 5 0.28 5.40 x 107 0.0001 

GO:0045892 negative regulation of 

transcription, DN... 

296 35 16.55 1.00 x 106 0.0002 

GO:0048481 plant ovule development 52 15 2.91 2.00 x 106 0.0004 

GO:0009625 response to insect 30 10 1.68 3.10 x 106 0.0005 

GO:0046655 folic acid metabolic process 6 5 0.34 3.10 x 106 0.0005 

GO:0009416 response to light stimulus 741 90 41.43 7.80 x 106 0.001 

GO:0009809 lignin biosynthetic process 49 13 2.74 8.10 x 106 0.001 

GO:0007166 cell surface receptor 

signaling pathway 

49 13 2.74 9.30 x 106 0.001 

GO:0010114 response to red light 60 13 3.35 1.50 x 105 0.002 

GO:0009620 response to fungus 327 57 18.28 1.80 x 105 0.003 

GO:0005983 starch catabolic process 17 7 0.95 2.00 x 105 0.003 

GO:0010093 specification of floral organ 

identity 

13 7 0.73 2.10 x 105 0.003 

GO:0010951 negative regulation of 

endopeptidase act... 

12 6 0.67 2.10 x 105 0.003 

GO:0009944 polarity specification of 

adaxial/abaxia... 

23 8 1.29 2.10 x 105 0.003 
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GO:0009828 plant-type cell wall 

loosening 

37 10 2.07 2.50 x 105 0.003 

GO:0009693 ethylene biosynthetic 

process 

30 9 1.68 2.50 x 105 0.003 

GO:0006979 response to oxidative stress 453 57 25.33 4.30 x 105 0.005 

GO:0055114 oxidation-reduction process 645 63 36.06 4.40 x 105 0.005 

GO:0030574 collagen catabolic process 5 4 0.28 4.60 x 105 0.006 

GO:0000266 mitochondrial fission 14 6 0.78 6.10 x 105 0.007 

GO:0010087 phloem or xylem 

histogenesis 

101 19 5.65 9.80 x 105 0.011 

GO:0080086 stamen filament 

development 

10 5 0.56 0.0001 0.012 

GO:0070370 cellular heat acclimation 10 5 0.56 0.0001 0.012 

GO:0009957 epidermal cell fate 

specification 

6 4 0.34 0.0001 0.014 

GO:0010106 cellular response to iron ion 

starvation 

6 4 0.34 0.0001 0.014 

GO:0009651 response to salt stress 461 47 25.77 0.0002 0.016 

GO:0097054 L-glutamate biosynthetic 

process 

3 3 0.17 0.0002 0.017 

GO:0016099 monoterpenoid biosynthetic 

process 

3 3 0.17 0.0002 0.017 

GO:0009823 cytokinin catabolic process 3 3 0.17 0.0002 0.017 

GO:1900386 positive regulation of 

flavonol biosynth... 

3 3 0.17 0.0002 0.017 

GO:0010311 lateral root formation 55 11 3.07 0.0002 0.019 

GO:0031408 oxylipin biosynthetic 

process 

17 6 0.95 0.0002 0.021 

GO:0051301 cell division 258 26 14.42 0.0003 0.025 

GO:0006826 iron ion transport 63 12 3.52 0.0003 0.03 

GO:0009737 response to abscisic acid 541 55 30.25 0.0004 0.032 

GO:0055072 iron ion homeostasis 93 16 5.2 0.0005 0.047 
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