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Abstract

Expression quantitative trait locus (eQTL) mapping has been widely used to study the genetic
regulation of gene expression in Arabidopsis thaliana. As a result, a large amount of eQTL data
has been generated for this model plant; however, only a few causal eQTL genes have been
identified, and experimental validation is costly and laborious. A prioritization method could
help speed up the identification of causal eQTL genes. This study extends the machine-learning-
based QTG-Finder2 method for prioritizing candidate causal genes in phenotype QTLs to be
used for eQTLs by adding gene structure, protein interaction, and gene expression. Independent

validation shows that the new algorithm can prioritize sixteen out of twenty-five potential eQTL
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causal genes within the 20% rank percentile. Several new features are important in prioritizing
causal eQTL genes, including the number of protein-protein interactions, unique domains, and
introns. Overall, this study provides a foundation for developing computational methods to
prioritize candidate eQTL causal genes. The prediction of all genes is available in the AraQTL

workbench (https://www.bioinformatics.nl/AraQTL/) to support the identification of gene

expression regulators in Arabidopsis.

INTRODUCTION

One of the main objectives of genetic research is to link traits to genotypic variation. However,
the path from genetics to observable traits is not straightforward; instead, it goes through a
network of interconnecting intermediate phenotypes, such as gene expression, protein levels,
and metabolite levels (Civelek and Lusis 2013). Studying the effect of the genetic perturbation
on these intermediate phenotypes could improve our understanding of how a trait is regulated.
Following recent advances in omics technology, the effect of multiple genetic perturbations can
now be studied in a single experiment using linkage mapping or association studies. One
example is genetical genomics, where variation in transcript levels is statistically associated
with genetic variation in a population (Jansen and Nap 2001) to find so-called expression

quantitative trait loci (eQTLS).

A mapped eQTL can be categorized as cis or trans based on its location relative to the affected
gene. Cis-eQTLs are mapped close to the gene and are assumed to arise due to sequence
polymorphisms in or near the gene itself, for instance, in cis-regulatory elements (e.g., the
promoter). In contrast, trans-eQTLs are mapped far away from the target gene and emerge due
to polymorphisms in trans-acting factors (e.g., transcription factors) called expression

quantitative trait genes or eQTGs (Rockman and Kruglyak 2006; Brem et al. 2002). However,
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a trans-eQTL typically spans a large genomic region with hundreds of candidate eQTGs.
Experimental fine mapping to narrow down the region (e.g., in Eshed and Zamir 1995) is costly
and laborious. As a result, only a few causal genes have been identified in the thousands of
eQTLs that have been mapped for Arabidopsis thaliana, using different populations and
experimental conditions (Keurentjes et al. 2007; West et al. 2007; Cubillos et al. 2012; Snoek
et al. 2012; Lowry et al. 2013; Hartanto et al. 2020). As an in silico alternative, a prioritization

method can help to limit the number of candidate eQTGs for further validation.

Several network-based methods have been used to find eQTGs (e.g., in Keurentjes et al. 2007;
Jimenez-Gomez et al. 2010; Hartanto et al. 2020). These methods primarily aim to find master
regulator(s) at loci where trans-eQTLs for many genes are collocated, known as eQTL hotspots
(Breitling et al. 2008). In general, these methods utilize a coexpression network built using
genes having an eQTL on the hotspot (called targets) and genes located in the hotspot (called
candidate eQTGs). Candidates are then usually prioritized based on a network centrality
measure, such as degree or closeness centrality (Serin et al. 2016). Several candidate eQTGs
have been identified in this way, for example, GIGANTEA (Keurentjes et al. 2007), ELF3
(Jimenez-Gomez et al. 2010), ICE1, and DEWAX (Hartanto et al. 2020). This approach,
unfortunately, only works for eQTL hotspots, not for regions that only have a small number of
eQTLs. Another limitation is the sole reliance on coexpression data: given the complexity of
gene expression regulation, the expression of the regulator is not necessarily correlated to that
of its targets, particularly in eukaryotes (Marbach et al. 2012; Lelli et al. 2012). Therefore,
additional data sources should be considered to capture possible interactions between the

regulator and its target.

Previously, a machine-learning-based method, QTG-Finder, was developed to prioritize
candidate genes for phenotype QTLs in Arabidopsis (Lin et al. 2019). This method used features

derived from various gene properties, such as paralog copy number, gene ontology, and the
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number of SNPs, to rank the candidate genes in the QTL interval. The model could recall 64%
of Arabidopsis QTGs when the top 20% ranked genes were considered. Further development
of this method led to QTG-Finder2, which used orthology information and allowed for gene
prioritization in species with no or few known QTGs (Lin et al. 2020). We were curious about
the capability of this algorithm to prioritize eQTGs, given that some QTGs are involved in gene
expression regulation, for example, ELF3 (Jimenez-Gomez et al. 2010), ERECTA (Terpstra et

al. 2010), FRI (Lowry et al. 2013), MAM1 (Jansen et al. 2009), and AOP2 (Jansen et al. 2009).

We propose eQTG-Finder, an extended version of QTG-Finder2 for eQTG prioritization, and
apply the new algorithm to prioritize eQTGs in Arabidopsis. eQTG-Finder contains twelve new
features based on protein-protein interaction, gene structure, and expression variation. These
features significantly improve model performance, which is underscored by a feature
importance analysis. We demonstrate the efficacy of this algorithm in prioritizing eQTGs using
an independent test set. Finally, we use the new model to predict all Arabidopsis genes and
make these available in our Arabidopsis eQTL analysis platform AraQTL

(https://www.bioinformatics.nl/AraQTL/)(Nijveen et al. 2017) to help identify gene expression

regulators.

MATERIALS AND METHODS

QTG-Finder2 was developed for prioritizing causal phenotype QTL genes (QTG) in
Arabidopsis (Lin et al. 2020). This algorithm consists of 5,000 Random Forest classifiers (Ho
1998) trained using known QTGs and Arabidopsis orthologs of QTGs from other species as
positives and other genes as negatives. QTG-Finder2 prioritizes candidate genes based on
features generated from polymorphism data, functional annotation, co-function networks, and

paralog copy numbers. Our method extends QTG-Finder2 with new features, and we train the
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97  resulting model using the same sets of positive and negative genes. We evaluate the

98  performance in prioritizing candidate causal eQTL genes (eQTGs) in Arabidopsis.

99

100 New features

101 We generate and include twelve new features in addition to the ones already used by QTG-
102  Finder2. These new features are based on protein-protein interactions, gene expression, and

103  gene/protein structure.

104 1. Protein-protein interaction feature

105 Genes can be associated with other genes, for instance, because the encoded proteins
106 participate in the same pathway or are mentioned in the same publication. The number
107 of such interactions a gene has could measure its propensity to be an eQTL causal gene.
108 We generate a network-based feature using Arabidopsis protein-protein interaction
109 (PPI) data from STRING-DB (Szklarczyk et al. 2019). The data were downloaded from
110 the download page of STRING-DB version 11 (https://string-db.org/cgi/download). We
111 only keep high-confident interactions by removing those with STRING scores below
112 700. We count the number of interactions of each Arabidopsis gene as a feature.

113 2. Gene expression features

114 The consequence of genetic variation in causal genes might be detected as early as in
115 gene expression variability. We, therefore, generate features based on gene expression
116 variation. We use the standard deviation of expression levels across different tissues
117 from CoNekT (http://www.evorepro.plant.tools/) (Julca et al. 2020). We also use the
118 average and standard deviation of Arabidopsis thaliana Columbia ecotype expression
119 data from different samples as features. These data were retrieved from the Athrna-

120 database (http://ipf.sustc.edu.cn/pub/athrna/) (Zhang et al. 2020).
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121 3. Structural features

122 The structure of causal genes and encoded proteins might differ from the other genes.
123 Therefore, we generate structural features: the numbers of introns, splice variants, total
124 protein domains, unique protein domains, and splice variants per gene. Data were
125 retrieved from https://www.arabidopsis.org/ (accessed May 2021). The number of
126 introns and splice variants are counted in TAIR10's BLAST datasets. The other two
127 features are generated from all.domains.txt by counting each Arabidopsis gene's total
128 number of domains and the number of unique domains.

129

130  Hyperparameter tuning

131 Model evaluation is based on QTG-Finder (Lin et al. 2019) and QTG-Finder2 (Lin et al. 2020).
132 Similar to QTG-Finder2, we use known QTGs and Arabidopsis orthologs of QTGs found in
133 other species as positives and other genes as negatives. We use hyperparameter tuning to
134  determine the best parameter combination (the number of trees, minimal samples split, and
135 maximum number of features) using grid search and assess the area under the curve (AUC) of
136  the receiver characteristics operator (ROC) curve in an extended version of the 5-fold cross-
137  validation framework. In this framework, the positives are randomly re-split into a training and
138 validation set in a 4:1 ratio iteratively. Next, each set is combined with randomly selected
139 negatives. The ratio of positives and negatives is an optimized hyperparameter. This splitting
140  of positives is done 50 times, and for each positive set random selection of the negatives was
141 conducted 50 times. This extensive procedure (2,500 evaluations) makes that positive co-occurs
142 with all negative at least once with high probability. All machine-learning model training and

143 testing in this study is performed using Python’s scikit-learn library version 1.0.2.

144
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145  Selection of candidate eQTL genes and independent validation of model performance

146 A list of candidate eQTGs in Arabidopsis is manually selected from the literature. These genes
147  are categorized as confirmed/strong-candidate, hypothetical, or hypothetical-ortholog. Genes
148  that have been through experimental validation or have strong evidence as eQTG are
149  categorized into the confirmed/strong-candidate group, for example, GIGANTEA (Keurentjes
150 et al. 2007; Snoek et al. 2012). Some confirmed/strong-candidate eQTGs are used as positive
151 in QTG-Finder2, and we remove these from the positive instances to be used as validation
152 genes. Meanwhile, genes that were not experimentally validated but are predicted to play a role
153 as eQTG through in silico analysis (e.g., network analysis) are categorized as hypothetical, for
154  example, ICE1 and DEWAX (Hartanto et al. 2020). If a gene's ortholog is considered an eQTG
155  in another species, it is categorized as hypothetical-ortholog; for example, NF-YC4 is found as
156  an eQTG in potatoes (van Muijen et al. 2016). In total, this yields twenty-five candidate eQTGs
157 in Arabidopsis: six confirmed/strong-candidate, four hypothetical, and fifteen hypothetical-
158  ortholog genes (Supplementary Table 1). We ensure that these candidates are not used for

159 hyperparameter tuning or cross-validation.

160  Independent validation is performed using the best combination of parameters (Supplementary
161  Table 1). We train 5,000 Random Forest classifiers using all positives but different sets of
162  negatives, with a positive: negative ratio of 1:200 to approximate the ratio of causal and non-
163  causal genes in real eQTLs. The models are then applied to each candidate eQTG and other
164  genes located 1 Mbp around it. These genes are ranked based on the average probability of

165  being causal genes over 5,000 models.

166

167  Feature importance analysis
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168  Feature importance is determined using a leave-one-out analysis. Iteratively, each feature is
169  removed from the dataset, and a model is trained using the reduced dataset. The AUC difference
170 inthe full model (with all features) and the reduced model is then calculated and used to indicate
171 the feature importance. We use the previous cross-validation framework and the best

172 parameters to measure the model performance in this analysis.

173

174  Data analyses and code availability

175  Pairwise Pearson correlation coefficients between features are calculated using the Pandas
176  (version 1.3.5) DataFrame.corr method in Python. Pearson Wilcoxon Rank Sum Test tests
177 differences in the median between positive and negative genes for the twelve new features. The
178  testis conducted in R using the base ‘wilcox.test” function. Gene ontology enrichment analysis
179  for the top and bottom 5% predicted causal genes is performed using TopGO in R (Alexa et al.
180  2006) using the algorithm's default ‘weight01’ parameter, which is the mixture of ‘elim’ and
181 ‘weight’ methods. The Python version used for the analyses is 3.8.12, and the R version is 4.0.2.

182  The source code and data are available at https://git.wur.nl/harta003/eqtg-finder.

183

184 RESULTS

185  The QTG-Finder2 algorithm could rank phenotype QTL causal genes higher than other genes
186 in a cross-validation setting (AUC = 0.81) and recall 80% independent curated causal genes
187  when the top 20% of genes in the QTL are considered (Lin et al. 2020). In this study, we extend
188  QTG-Finder2 with a set of new features and evaluate its performance in prioritizing expression

189  QTGs.

190
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191 New features improve causal gene prediction performance

192 Toimprove model performance and better tailor it fit for eQTG prioritization, we added twelve
193 new features based on gene expression, structure, and protein-protein interactions in the QTG-
194  Finder2 algorithm. Most new features only show a low to moderate correlation with the existing
195  ones (Supplementary Figure 1), indicating that we add new information to the model. Figure 1
196  shows feature distributions for the causal genes as the positive class (55 known QTGs and 145
197  Arabidopsis ortholog of QTGs from other species) and the other genes in the genome as the
198  negative class (n=26,970). For most features, the causal genes' median value is significantly
199  different from that of the other genes in the genome (see Supplementary Table 3). The
200  expression of causal genes is more variable than that of other genes. Moreover, causal genes
201 tend to have more and varied protein domains. Causal genes also have slightly more introns
202 than other genes. These differences between the causal genes and the other genes in the genome
203  provide a first indication of potential discriminating features for the machine learning model.
204  We assess the performance of the model with and without new features using a cross-validation

205  framework.

206
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207

208  Figure 1. Distribution of twelve new features for known causal genes as the positive class (blue:
209  n=200; 55 known QTGs and 145 orthologs of QTGs from other species) and the remaining
210 genes in the genome as the negative class (red: n=26,970). Significance of differences in
211 medians was assessed using the Wilcoxon Rank Sum Test (*: p <= 0.05; ****: p <= 0.0001).
212 Red dots indicate means. SD = standard deviation. Exp. = gene expression. PPIs = protein-

213 protein interactions.
214

215  Toassess the contribution of new features to the model performance, we compare the area under
216  the receiver-operating characteristic curve (AUC) between the original QTG-Finder2 with the
217 extended model that we labeled eQTG-Finder, and for the extended model with the class labels
218  permutated, as a control (Figure 2 left). The AUC was measured in an extended cross-validation
219  setting over 2,500 different combinations of positive and negative gene sets. The results show

220 that eQTG-Finder (AUC = 0.859 £ 0.008) performs better than QTG-Finder2 (AUC =0.801 +
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221 0.01) and the control model (AUC =0.502 £ 0.014). Adding new features thus allows the model
222 torank causal genes higher than the other genes. The next section analyzed model performance

223 in prioritizing eQTG using selected candidate eQTGs.

224  To determine how the new features contribute to causal gene prediction, we calculate feature
225  importance using a leave-one-out approach. Each feature is iteratively removed from the
226  dataset, and the reduced model’s performance is compared to that of the model containing all
227  features. The drop in AUC indicates a feature's importance. A positive AUC drop means
228  removing that feature decreases the model's predictive capability. The result shows that four of
229  the most important features in the model are the new ones: the number of unique domains, the
230  PPI count, the intron count, and the domain count. However, the large standard deviation for
231 the domain count AUC drop indicates that the contribution of this feature is not consistent over

232 different samples of positive and negative sets.
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233 Figure 2. (A) Receiver operating characteristic (ROC) curves of the original QTG-
234 Finder2 model (blue) and extended eQTG-Finder model (green), and eQTG-Finder
235 trained with randomized class labels (red) as a control. Transparent areas indicate
236 standard deviations over 2,500 repetitions. (B) Feature importance is measured using
237 leave-one-out analysis. A positive AUC drop indicates that the removal of the feature
238 reduces the model's predictive capability. Feature names in bold and with dark blue
239 bars indicate new features. Error bars indicate standard deviations over 2,500
240 repetitions.

241

242 eQTG-Finder ranks most strong eQTG candidates better than QTG-Finder2

243  Toevaluate eQTG prioritization performance, we again train the original QTG-Finder2 and the
244  extended eQTG-Finder model and use them to rank selected potential eQTGs (Supplementary
245  Table 1). Models are trained using all positives (known QTGs and Arabidopsis ortholog QTGs
246  from other species). We repeated the training 5,000 times with different negative samples to
247  select each negative gene at least once in training with high probability. These models rank
248  each of the twenty-five potential eQTGs with their surrounding genes within a 2 Mbp window
249  asahypothetical eQTL region. These potential eQTGs are selected manually from the literature
250 and grouped based on the evidence of being causal eQTL genes (see Methods for detail). Gene
251 ranking is based on the average probability of a gene being causal, as predicted by the 5,000
252 models. We use the rank percentile to indicate the percentage of genes on the eQTL with higher
253  ranks than the gene of interest (i.e., a rank percentile of 0.1 indicates that 10% of genes in the
254  eQTL region rank higher than the gene of interest). We predefine cutoffs of 5%, 10%, and 20%,
255 ineach of which we compare recall between QTG-Finder2 and eQTG-Finder. These recalls for
256  different cutoffs can be used by researchers to decide the proportion of top prioritized genes for

257  further experimental validation.
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258  The QTG-Finder2 model recalls 16%, 28%, and 52% of eQTG candidates if the top 5%, 10%,
259 and 20% ranked genes are considered (Figure 3). With added features, eQTG-Finder ranks
260  eQTGs slightly better with percentages of 36%, 52%, and 64% respectively. The eQTGs vary
261 in their evidence of being causal genes (see Methods). Four out of six strong eQTG candidates
262 (AOP2, ERECTA, GIGANTEA, and MAM1) rank within the 5% rank percentile by eQTG-
263  Finder compared to only one (ERECTA) by QTG-Finder2. The other two strong candidates,
264  FRI and ELF3, were ranked at the 10.2% and 61.2% percentile by eQTG-Finder. The ranks of
265  sixteen genes are improved by eQTG-Finder, eight are worse, and one stays the same
266  (Supplementary Table 4). The rank of four out of six strong eQTG candidates improves, with
267  GIGANTEA one of the most drastic improvements, moving from 53,7.7% to 4.2%. On the other
268  hand, the rank of ERECTA drops (0.4% to 2.8%) but remained falls in the 5% rank percentile.
269  Both models rank another strong eQTG candidate ELF3 poorly (at 44% rank percentile by
270  QTG-Finder2 and 61.2% by eQTG-Finder). Despite the decent overall performance in eQTG
271 prioritization, we notice that eQTG-Finder performance in prioritizing phenotype QTGs is still
272 inconsistent. Using the initial independent validation set, only seven out of eleven QTGs are
273 ranked within the 20% rank percentile by eQTG-Finder, compared to nine by QTG-Finder2

274  (Supplementary Figure 2).

275
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277 Figure 3. Rank percentile comparison of sixteen candidate eQTGs using the model with new
278  features (eQTG-Finder) and the original model (QTG-Finder2).
279
280 To get an overview of eQTG-Finder predictions, we inspect the distribution of the average
281 predicted probability of being causal for all Arabidopsis genes (Figure 4). This skewed towards
282  alow value, with a median value of 0.007 (note that the x-axis of Figure 4 is on a logio scale).
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Twenty-one of the twenty-five genes in the validation set have a predicted probability higher
than the median. ELF3 (probability=0.0045) is the only strong eQTG candidate with a predicted
probability lower than the median. A Gene Ontology (GO) enrichment analysis shows that the
top 5% genes in the distribution are significantly enriched (FDR p-value < 0.05) for 67 GO
terms (Supplementary Figure 5), most of which are related to response to abiotic and biotic
stresses, such as "defense response to bacterium™, "defense response to fungus™, and "response
to wounding”. The term “regulation of transcription” is also enriched, suggesting that
transcription factors are likely to be causal, consistent with the feature importance analysis
result where is_TF is among the most important features. Meanwhile, the bottom 5% are not

enriched for any term.

Evidence confirmed/strong evidence 2 hypothetical hypothetical-ortholog
061 N
/median=0.007 .
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c Y
@
D ’f Y
)
0.2 o RO LAY \
\q_e Q\ N o y
P o © $5
W 1» A s
@ PO o \
N
0.0 ~— T e/
10 107 10" 107 10 107" 10°
Predicted probabilities

Figure 4. The density plot of probabilities of being causal predicted by eQTG-Finder for all
Arabidopsis genes. Text labels point to the probability of the gene in the plot. The x-axis is on

a logao scale.
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298  eQTG-Finder is available in AraQTL to support new hypotheses on the gene expression

299  regulation

300 To make eQTG-Finder results easily accessible for researchers, we include predicted
301  probabilities of causality (herewith referred to as eQTG-Finder score) for all Arabidopsis genes
302 in AraQTL, our Arabidopsis eQTL data workbench (Nijveen et al. 2017). Prioritizing genes
303  using QTG-Finder2 is not straightforward as it requires users to prepare a list of candidate genes
304  and command-line usage skills. Integrating the eQTG-Finder score in AraQTL facilitates users
305  to interactively identify gene expression regulators. For example, we here discuss a case on
306  predicting a new potential regulator for GLK2 using the eQTG-Finder score and other
307 interaction evidence in AraQTL. GLK2 isa GARP nuclear transcription factor involved in light-
308  controlled signaling (Waters et al. 2009). Liu et al. (2021) recently found that HY5 is the
309  regulator of GLK2 based on the fact that HY5 is a well-known regulatory switch for light
310 signaling in literature. The same conclusion can also be derived using the Serin et al.
311 (manuscript in preparation) eQTL experiment and prior knowledge data in AraQTL. Another
312 approach to finding potential regulators of GLK2 can be made in AraQTL using the eQTG-
313 Finder score. In a Kas x Tsu eQTL experiment on leaf tissue (Lowry et al. 2013), GLK2 has an
314  eQTL on the beginning of chromosome 1, indicating the location of the potential regulator(s)
315 (Figure 5, top). As many as 257 candidate regulatory genes are present in the eQTL (Figure 5,
316 bottom). We can filter out weak candidates by constructing a network of GLK2 connected to its
317  potential regulators on the eQTL based on prior knowledge, such as protein-protein interaction
318  and gene annotation (Hartanto et al., manuscript in preparation). Here, we threshold the eQTG-
319  Finder score to remove weak candidates. Moreover, eQTG-Finder can prioritize the remaining
320  fourteen genes by selecting the “Bipartite by eQTG-Finder score” network layout and ordering
321 genes by their score. The result suggests some promising GLK2 regulator candidates ranked at

322 the top, for example, a transcription factor LHY in second place. Until now, LHY has not been
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323  reported to regulate GLK2. However, this gene is a promising GLK2 regulator candidate as the
324  network shows that it has a transcription factor binding site(s) on the GLK2 promoter (O'Malley
325 et al. 2016). Moreover, LHY is involved in light signaling (Joo et al. 2017; Kim et al. 2003).
326  This example suggests that integrating the eQTG-Finder score in AraQTL can help infer new

327  regulatory interactions.

328
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330 FIGURE 5. Prioritization of GLK2 regulator using the eQTG-Finder
331 score in AraQTL. (top) eQTL profile of GLK2 from the Lowry et al.

332 (2013) experiment. The eQTL region on chromosome 1 (shaded in pink)
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333 pinpoints the location of potential GLK2 regulator(s). (bottom) Prior-
334 knowledge network connecting GLK2 (blue node) with candidate
335 regulators (yellow nodes) based on prior knowledge data. Here, the
336 eQTG-Finder score is used to order candidates based on their probability
337 of being causal.

338

339  DISCUSSION

340  The concept of genetical genomics was first coined two decades ago (Jansen and Nap 2001),
341 and numerous Arabidopsis eQTL data sets have been published since then (Nijveen et al. 2017).
342  The aim of genetical genomics is to pinpoint genomic regions associated with gene expression
343  variation (eQTL) and ultimately unravel genes involved in expression regulation. However,
344  identifying causal genes (eQTGSs) is difficult because of the often large genomic regions they
345  span, regularly harboring dozens or even hundreds of candidates. The regions can be narrowed
346  down by experimental fine-mapping (Eshed and Zamir 1995), and the remaining candidate
347  genes can then be validated using functional genomics methods (e.g., using CRISPR-Cas9-
348  mediated deletions as in Evans and Andersen 2020). However, performing these experiments
349  for thousands of eQTLs is very costly. Using genomics and annotation data, a computational
350  prioritization method can help identify candidate eQTGs. This study extends an existing
351 machine-learning algorithm, QTG-Finder2, to address this issue and evaluates its performance
352 for prioritizing eQTG. eQTG-Finder outperforms its predecessor in a cross-validation setting
353 and independent validation test. We make eQTG-Finder scores available in AraQTL to help

354  researchers interactively identify key regulators.

355  The key improvement of eQTG-Finder lies in the inclusion of twelve new features based on

356  gene expression, structure, and interactions. Given the complexity of the resulting model, it is
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357  not straightforward to assess how these features improve eQTG-Finder in gene prioritization
358  (Petch et al. 2022). We calculated the contribution of each feature in the model using a leave-
359  one-out feature importance analysis (see Materials and Methods). This showed that the number
360  of unique protein domains, the number of protein-protein interactions (PPI), and the number of
361 introns are in the top five most contributing features in the model. We showed that known causal
362  genes tend to have more domains, protein-protein interaction partners, and introns than other
363  genes (Figure 1). These new features may provide insight into what distinguishes causal and
364  non-causal genes. For instance, since protein domains determine protein functions (Vogel et al.
365  2004; Enright and Ouzounis 2001), the presence of multiple domains in a causal gene could
366 indicate involvement in a wide range of biological functions. The diverse functions of causal
367  genes could also be reflected in their larger number of protein-protein interaction partners than
368  non-causal as genes perform their function in concert with other genes (Ito et al. 2001). The
369  number of introns reflects the number of exons in a gene. Several studies demonstrated that
370  exons play a role in the evolution of domain architectures through exon-shuffling, leading to

371 new combinations of domains with new functions.

372 Variation in phenotype can be traced back to variation in gene expression (Skelly et al. 2009;
373 Albert and Kruglyak 2015). For this reason, we included features based on the standard
374  deviation (SD) of gene expression across different Arabidopsis accessions and conditions. Even
375  though the medians between causal and other genes are significantly different (Figure 1),
376  features based on SD of expression have low importance in the model. A study showed that
377  correlations between features decrease the importance to zero (Gregorutti et al. 2016). Given
378  that three SD features are highly correlated (Supplementary Figure 1), their importance in the
379  model might be underestimated. Nevertheless, we do not have evidence that these features

380  negatively affect the prediction performance; hence, we kept them in the model.
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381 eQTG-Finder uses known QTGs (i.e., causal genes for a phenotype QTL) as positive instances
382  for model training because of the limited number of known eQTGs. We argue that QTGs are
383  relevant for prioritizing eQTG since variation at the molecular level (e.g., in gene expression,
384  metabolite, or protein level) can be propagated and cause variation at higher phenotypic levels
385  (Fuetal. 2009; Civelek and Lusis 2013). For example, genetic variations in AOP2 and MAM1
386 cause cis-eQTLs for gene expression and metabolite QTLs for aliphatic glucosinolate
387  biosynthesis, which confer insect resistance in Arabidopsis (Wentzell et al. 2007; Jansen et al.
388  2009). Both genes were prioritized in the top 5% rank percentile by eQTG-Finder. This result
389  suggests that eQTG-Finder can identify QTLs for other molecular phenotypes, including

390  metabolite and protein.

391 Alack of model interpretability may hamper a user’s comprehensive evaluation and assessment
392 of the prioritization results. Regardless of the good performance, it is difficult to precisely
393  understand how eQTG-Finder classifies certain genes as causal and others as non-causal, a
394  typical issue for a complex model like Random Forest (Petch et al. 2022). Instead, in AraQTL,
395  we provide additional sources of evidence to support the eQTG-Finder prioritization results
396  (Hartanto et al., unpublished). For example, eQTG-Finder prioritizes transcription factor LHY
397  asthe regulator of GLK2 (Figure 5). The network visualization in AraQTL showed that LHY is
398  connected to GLK2 by transcription factor binding site evidence, indicating that LHY may bind
399  to the GLK2 promoter and modulate its expression. Incorporating eQTG-Finder in the AraQTL
400  web interface facilitates researchers to identify key regulators for genes of interest without the

401 need for computational skills.

402 In the independent validation, some eQTG candidates were ranked poorly by eQTL-Finder
403  (Figure 3). Low ranked assumed eQTG genes from the hypothetical and hypothetical-orthologs
404  groups might not be actual eQTGs; however, the strong eQTG candidate ELF3 was also ranked

405  poorly by both eQTG-Finder (61.2%) and QTG-Finder (44%). ELF3 encodes a nuclear protein
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406 and was demonstrated to regulate gene expression leading to shade-avoidance response
407  (Jimenez-Gomez et al. 2010). The complexity of the eQTG-Finder algorithm makes it difficult
408  to dissect the prediction for ELF3. We investigated two of the most important features and
409  noticed that this gene only has one identified protein domain and one paralog copy number,

410  which is lower than the median values of causal genes (four and seventeen, respectively).

411 Likely, some features associated with eQTG are still missing in our model or underrepresented
412 inour set of positive instances. Since the regulator-target relationship is specific, we expect that
413  features representing gene-gene/protein-protein relationships (for example, STRING scores
414  (Szklarczyk et al. 2019), transcription factor binding sites (Tian et al. 2020), and gene ontology
415  semantic similarity (Yu 2020)) are relevant for prioritizing eQTG. Including these would shift
416  the prioritization of generic eQTGs based on gene properties to the prioritization of eQTGs for
417  a specific target using features based on gene-pair relationships. This is similar to the
418  approaches of Wong et al. (2004) and Pandey et al. (2010), who predicted genetic interaction
419  using gene pair relationships in yeast. The number of positive examples (i.e., confirmed eQTG-
420  target pairs) is currently too small to properly train such a model for Arabidopsis. However, as
421  data regarding genetic regulation is steadily increasing, we are optimistic that this strategy will

422 be possible in the future.

423

424  Data availability

425  The code and data for the analysis and visualization is available at the Wageningen University

426  GitLab repository (https://git.wur.nl/harta003/eqtg-finder). eQTG-Finder prioritization is

427  available at AraQTL (https://www.bioinformatics.nl/AraQTL/; Nijveen et al. 2017)
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438  Supplementary Figure 1. Correlation matrix of features used in the machine learning model.

439  New features are indicated in bold.
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441 Supplementary Figure 2. Rank percentile comparison of eleven original validation gene sets

442 using the model with new features and the original model (QTG-Finder2).
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SUPPLEMENTARY TABLES

Supplementary Table 2. The list of candidate eQTGs used for independent validation

Gene ID Gene name evidence Species origin Label in species Gene class Associated trait Trait category  Reference
origin (PMID)
AT5G61590 DEWAX hypothetical Arabidopsis thaliana DEWAX transcription factor seed germination development 32963085
AT1G22770 GIGANTEA  confirmed/ strong evidence  Arabidopsis thaliana GIGANTEA nuclear protein seed germination development 32963085
AT3G26744 ICE1 hypothetical Arabidopsis thaliana ICE1 transcription factor flowering development 23335938/
17237218
AT5G63470 NF-YC4 hypothetical-ortholog Solanum tuberosum NF-YC4 transcription factor drought responce abiotic stress 27353051
AT3G61890 HB-12 hypothetical-ortholog Solanum tuberosum HB-12 transcription factor drought responce abiotic stress 27353051
AT2G28680 - hypothetical-ortholog Solanum tuberosum PGCRURSE5 RmIC-like cupins superfamily tuber starch content development 33051578
protein
AT5G02830 - hypothetical-ortholog Cucumis melo cmPPR1/ Tetratricopeptide repeat flesh color intensity development 29385635
Melo3C003069 (TPR)-like superfamily protein
AT3G13460 - hypothetical-ortholog Zea mays ECT2 YTH domain-containing kernel size development 30548709
protein
AT1G50460 HKL1 hypothetical-ortholog Zea mays HEX9 hexokinase-like glycolysis development 29275164
AT1G63650 EGL3 hypothetical-ortholog Zea mays R1/COLORED1 transcription factor flavonoid development 32184350/
biosynthesis 29275164
AT5G41315 GL3 hypothetical-ortholog Zea mays/ Hordeum R1/COLORED1 transcription factor flavonoid development 21115826/
vulgare biosynthesis 32184350/

29275164
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ATAG00480 MYC1 hypothetical-ortholog Zea mays R1/COLORED1 transcription factor flavonoid development 32184350/
biosynthesis 29275164

AT2G47460 MYB12 hypothetical-ortholog Solanum MYB12 transcription factor flavonoid development 33199703/
lycopersicum/ biosynthesis 6888306
Populus trichocarpa

AT3G57480 SAP13 hypothetical-ortholog Solanum PtSAP13 stress-associated protein flavonoid development 33199703
lycopersicum biosynthesis

AT1G16060 WRI3 hypothetical-ortholog Solanum WRI3 transcription factor lipid metabolism development 33199703
lycopersicum

AT1G22920 CSN5A hypothetical Arabidopsis thaliana CSN5A transcription coactivator low-light response abiotic stress 23335938

AT1G66370 MYB113 hypothetical-ortholog Ipomoea batatas IbMYB1-2 transcription factor flavonoid development 32528702

biosynthesis

AT3G19150 KRP6 hypothetical-ortholog Gossypium hirsutum KRP6 kip-related protein fibre-cell length development 32017125

AT2G24790 COoL3 hypothetical-ortholog Zea mays COoL11 transcription factor photosynthesis development 32184350

AT5G23460 - hypothetical Arabidopsis thaliana - - flowering development 17237218

AT2G25930 ELF3 confirmed/ strong evidence  Arabidopsis thaliana ELF3 nuclear protein shade avoidance abiotic stress 20838594

AT2G26330 ERECTA confirmed/ strong evidence  Arabidopsis thaliana ERECTA kinase 20833726

ATAG00650 FRI confirmed/ strong evidence  Arabidopsis thaliana FRI - development 24045022

AT5G23010 MAM1 confirmed/ strong evidence  Arabidopsis thaliana MAM1 methylthioalkylmalate insect resistance biotic stress 19196544

synthase
AT4G03050 AOP2 confirmed/ strong evidence  Arabidopsis thaliana AOP2 2-oxoglutarate-dependent insect resistance biotic stress 19196544

dioxygenase
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Supplementary Table 3. Wilcoxon Rank
Sum Test statistics and p values for the
difference in median of new features
between causal genes and the other genes

in the genome.

W

Feature statistics p-value

std exp tiss 3312857 2.51x 108
avg exp con 2624347 0.51
std exp con 3207362  3.86 x 10°
avg exp trt 2531055 0.13
std exp trt 3354636  2.64 x 10°
avg exp acc 2445143 0.02
std exp acc 3287936  8.19 x 108
intron count 2937908 0.03
splice variants 2805881 0.17
ppi count 3142925  3.75x 10°

domain count 3705449 3x10%

unique domain 3944166  3.12 x 10%°

Supplementary Table 4. Candidate eQTL genes and their rank percentile based on the original

QTG-Finder2 and eQTG-Finder.
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ID Name Type Evidence Rank Total gene Rank percentile Rank

QTG Finder2 eQTG _Finder " @Th QTG _Finder2 eQTG Finder 'MProvement

AT2G28680 - eQTG hypothetical 190 62 243 89 25514
ortholog

AT3G19150 KRP6 eQTG hypothetical 264 121 288-. 42.014 49.653
ortholog

AT1G22770 GIGANTEA eQTG confirmed/ 153 12 285 .3.684' 4211 49474
strong evidence

AT5G23010 MAM1 eQTG confirmed/ 113 12 259- 43.629| 4633 38.996
strong evidence

AT3G13460 - eQTG hypothetical 133 25 297- 44.781I 8418 36.364
ortholog

AT5G61590 DEWAX  eQTG hypothetical 95 42 287- 33.101. 14.634 18.467

AT5G02830 - eQTG hypothetical 149 108 323 - 46.130 . 33437 12.693
ortholog

AT3G61890 HB-12 eQTG hypothetical 49 9 320' 15.313| 2.813 12.500
ortholog

ATA4G03050 AOP2 eQTG confirmed/ 26 3 213' 12.207 1.408 10.798
strong evidence

AT1G63650 EGL3 eQTG hypothetical 36 1 268' 13.433 4104 9.328
ortholog

ATA4G00480 MYC1 eQTG hypothetical 28 12 203' 13.793 5.911 7.882
ortholog

ATA4G00650 FRI eQTG confirmed/ 33 22 215' 15.349' 10.233 5.116
strong evidence

AT5(41315 GL3 eQTG hypothetical 20 7 292 6.849 2.397 4.452
ortholog

AT1G16060 WRI3 eQTG hypothetical 25 18 313' 7.987 5.751 2.236
ortholog

AT2GA7460 MYB12 eQTG hypothetical 5 1 217 2.304 0.461 1.843
ortholog

AT1G66370 MYB113  eQTG hypothetical 5 1 234 2.137 0.427 1.709
ortholog

AT5G23460 - eQTG hypothetical 100 100 248- 40.323- 40.323 0.000

AT5G63470 NF-YC4  eQTG hypothetical 19 21 311| 6.109I 6.752 0643
ortholog

AT2G26330 ERECTA  eQTG confirmed/ 1 7 247 0.405| 2.834 -2.429
strong evidence

AT3G26744 ICE1 eQTG hypothetical 90 98 273- 32.967- 35.897 -2.930

AT1G22920 CSN5A eQTG hypothetical 259 274 289 - _ -5.190

AT2G24790 COL3 eQTG hypothetical 33 49 245' 13.469. 20.000 -6.531
ortholog

AT2G25930 ELF3 eQTG confirmed/ 110 153 250- 44,000 -1.200 -17.200
strong evidence

AT1G50460 HKL1 eQTG hypothetical 9 100 265| 3.396. 37.736 -34.340
ortholog

AT3G57480 SAP13 eQTG hypothetical 104 264 311. 33.441 -7
ortholog

AT4G15020 SWET17 QTG nia 118 68 257 - 45.914 26.459

AT5G25980 TGG2 QTG nla 36 1 221. 16.290 0.452 15.837

AT1G69270 RPK1 QTG nla 109 89 257- 42.412- 34.630 7.782

AT2G25450 GSL-OH QTG nla 18 1 262' 6.870 0.382 6.489

AT2G44990 CCD7 QTG nla 11 6 321| 3.427\ 1.869 1.558

AT1G27320 HK3 QTG nla 1 7 273 0.366| 2.564 -2.198

AT2G45650 AGL6 QTG nla 10 18 300| 3.333| 6.000 -2.667

AT5G26000 TGGL QTG nla 18 24 222' 8.108. 10.811 -2.703

AT5G35750 HK2 QTG nla 1 7 142| o.7o4| 4.930 -4.225

ATA4G38970 FBA2 QTG nla 4 67 285. 15.439. 23,509 -8.070

AT3G19580 ZF2 QTG n/a 6 78 277| 2.166. 28.159 -25.993
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Supplementary Table 5. Gene ontology terms enriched in the top 5% genes predicted as causal.

GO ID Term Annotated  Significant Expected p-value FDR

GO0:0030154  cell differentiation 675 118 37.74 7.50 x 10%° 451 x 10%

G0:0006468  protein phosphorylation 1037 141 57.98 3.00x10%2  9.02x10%

G0:0051762  sesquiterpene biosynthetic 25 19 1.4 1.80x 10  3.61x 10
process

G0:0006355  regulation of transcription, 2053 279 114.78 2.60x 10  3.91x10%
DNA-templat...

G0:0007165  signal transduction 1429 167 79.89 7.80x 10*  9.38 x 10%

G0:0048544  recognition of pollen 43 23 2.4 420x 10 421x10%

G0:0045893  positive regulation of 509 96 28.46 1.40x10%  1.20x 108

transcription, DN...

G0:0042742  defense response to 430 69 24.04 1.70x 10%  1.28 x 10%*
bacterium

G0:0009686  gibberellin biosynthetic 29 14 1.62 3.00 x 10% 2.01x 108
process

GO0:0070588  calcium ion transmembrane 45 16 2.52 2.70 x 10%° 1.62 x 107
transport

G0:0050832  defense response to fungus 257 41 14.37 3.20 x 10% 1.63 x 107

G0:0009753  response to jasmonic acid 189 37 10.57 3.70 x 10%° 1.63 x 107

GO0:0009611  response to wounding 215 37 12.02 3.70 x 10%° 1.63 x 107

G0:0016114  terpenoid biosynthetic 146 49 8.16 3.80 x 10%° 1.63 x 107
process

G0:0061408  positive regulation of 24 12 1.34 1.30 x 10° 5.21 x 107

transcription fro...

G0:0009414  response to water 381 52 21.3 1.50 x 10° 5.64 x 107
deprivation

G0:0045087  innate immune response 348 55 19.46 7.00 x 10° 2.48 x 10°

G0:0009617  response to bacterium 508 87 28.4 2.90 x 108 9.69 x 10°

G0:0006952  defense response 1046 166 58.48 4.80 x 108 1.52 x 10°

G0:2000652  regulation of secondary cell 28 13 1.57 5.60 x 10° 1.68 x 10°
wall biogen...

G0:0045490  pectin catabolic process 96 21 5.37 5.90 x 108 1.69 x 10°
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G0:0002229  defense response to 76 18 4.25 6.60 x 10° 1.78 x 10°
oomycetes

G0:0010200  response to chitin 141 26 7.88 6.80 x 10° 1.78 x 10°

G0:0046777  protein autophosphorylation 191 31 10.68 8.40 x 10° 2.11x10°

G0:0045487  gibberellin catabolic process 7 6 0.39 2.00 x 107 4.81x10°

G0:0042545  cell wall modification 168 33 9.39 2.40 x 107 5.35x 10°

G0:0045944  positive regulation of 220 42 12.3 2.40 x 107 5.35x 10°
transcription by ...

GO0:0009735  response to cytokinin 104 20 5.81 2.60 x 107 5.59 x 10°

G0:0080027  response to herbivore 15 8 0.84 4.20 x 107 8.71x10°

G0:0019264  glycine biosynthetic process 5 5 0.28 5.40 x 107 0.0001
from serine

G0:1904482  cellular response to 5 5 0.28 5.40 x 107 0.0001
tetrahydrofolate

G0:0006565  L-serine catabolic process 5 5 0.28 5.40 x 107 0.0001

G0:0045892  negative regulation of 296 35 16.55 1.00 x 108 0.0002
transcription, DN...

G0:0048481  plant ovule development 52 15 291 2.00 x 10° 0.0004

G0:0009625  response to insect 30 10 1.68 3.10x 10° 0.0005

G0:0046655  folic acid metabolic process 6 5 0.34 3.10 x 10° 0.0005

G0:0009416  response to light stimulus 741 90 41.43 7.80 x 10° 0.001

G0:0009809 lignin biosynthetic process 49 13 2.74 8.10 x 10° 0.001

G0:0007166  cell surface receptor 49 13 2.74 9.30 x 10° 0.001
signaling pathway

G0:0010114  response to red light 60 13 3.35 1.50 x 10° 0.002

GO0:0009620  response to fungus 327 57 18.28 1.80 x 10° 0.003

G0:0005983  starch catabolic process 17 7 0.95 2.00 x 10° 0.003

G0:0010093  specification of floral organ 13 7 0.73 2.10x 10° 0.003
identity

G0:0010951  negative regulation of 12 6 0.67 2.10x 10° 0.003
endopeptidase act...

GO0:0009944  polarity specification of 23 8 1.29 2.10x 10° 0.003

adaxial/abaxia...
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G0:0009828  plant-type cell wall 37 10 2.07 2.50 x 10° 0.003
loosening

G0:0009693  ethylene biosynthetic 30 9 1.68 2.50 x 10° 0.003
process

GO:0006979  response to oxidative stress 453 57 25.33 4.30 x 10° 0.005

GO0:0055114  oxidation-reduction process 645 63 36.06 4.40 x 10° 0.005

G0:0030574  collagen catabolic process 5 4 0.28 4.60 x 10° 0.006

G0:0000266  mitochondrial fission 14 6 0.78 6.10 x 10° 0.007

G0:0010087  phloem or xylem 101 19 5.65 9.80 x 10° 0.011
histogenesis

G0:0080086  stamen filament 10 5 0.56 0.0001 0.012
development

G0:0070370  cellular heat acclimation 10 5 0.56 0.0001 0.012

G0:0009957  epidermal cell fate 6 4 0.34 0.0001 0.014
specification

G0:0010106  cellular response to iron ion 6 4 0.34 0.0001 0.014
starvation

G0:0009651  response to salt stress 461 47 25.77 0.0002 0.016

GO0:0097054  L-glutamate biosynthetic 3 3 0.17 0.0002 0.017
process

G0:0016099  monoterpenoid biosynthetic 3 3 0.17 0.0002 0.017
process

G0:0009823  cytokinin catabolic process 3 3 0.17 0.0002 0.017

(G0:1900386  positive regulation of 3 3 0.17 0.0002 0.017
flavonol biosynth...

G0:0010311 lateral root formation 55 11 3.07 0.0002 0.019

G0:0031408  oxylipin biosynthetic 17 6 0.95 0.0002 0.021
process

G0:0051301  cell division 258 26 14.42 0.0003 0.025

G0:0006826 iron ion transport 63 12 3.52 0.0003 0.03

GO0:0009737  response to abscisic acid 541 55 30.25 0.0004 0.032

G0:0055072 iron ion homeostasis 93 16 5.2 0.0005 0.047
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