

1 **Impact of temperature and time on DNA-free Cas9-ribonucleoprotein mediated gene
2 editing in wheat protoplasts and immature embryos**

3
4 Snigdha Poddar, Jaclyn Tanaka, Katherine L.D. Running, Gayan K. Kariyawasam, Justin D.
5 Faris, Timothy L. Friesen, Myeong-Je Cho, Jamie H. D. Cate, Brian Staskawicz*
6
7

8 **Affiliations**

9
10 **Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA**
11 Snigdha Poddar, Jaclyn Tanaka, Jamie H. D. Cate, Brian Staskawicz & Myeong-Je Cho
12

13 **Department of Molecular and Cell Biology, University of California, Berkeley, CA,
14 94720, USA**
15 Snigdha Poddar & Jamie H. D. Cate
16

17 **Department of Plant Sciences, North Dakota State University, Fargo, ND, 58105, USA**
18 Katherine Running
19

20 **Department of Plant Pathology, North Dakota State University, Fargo, ND, 58105, USA**
21 Gayan K. Kariyawasam
22

23 **USDA-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer
24 Agricultural Research Center, Fargo, ND 58102, USA**
25 Justin D. Faris & Timothy L. Friesen
26

27 **Department of Chemistry, University of California, Berkeley, CA, 94720, USA**
28 Jamie H. D. Cate
29

30 **Department of Plant and Microbial Biology, University of California, Berkeley, CA,
31 94720, USA**
32 Brian Staskawicz
33

34 ***Correspondence**

35 Email: stask@berkeley.edu

37 **Email addresses**

38 Snigdha Poddar: snigdhapoddar@berkeley.edu
39 Jaclyn Tanaka: jackie.tanaka@berkeley.edu
40 Katherine Running: katherine.running@ndsu.edu
41 Gayan Kariyawasam: gayan.kariyawasam@ndsu.edu
42 Justin Faris: justin.faris@usda.gov
43 Timothy Friesen: timothy.friesen@usda.gov
44 Myeong-Je Cho: mjcho1223@berkeley.edu
45 Jamie H. D. Cate: j-h-doudna-cate@berkeley.edu

46

47 **Summary**

48

49 The advancement of precision engineering for crop trait improvement is important in the face of
50 rapid population growth, climate change, and disease. To this end, targeted double-stranded
51 break technology using RNA-guided Cas9 has been adopted widely for genome editing in plants.
52 *Agrobacterium* or particle bombardment-based delivery of plasmids encoding Cas9 and guide
53 RNA (gRNA) is common, but requires optimization of expression and often results in random
54 integration of plasmid DNA into the plant genome. Recent advances have described gene editing
55 by the delivery of Cas9 and gRNA as pre-assembled ribonucleoproteins (RNPs) into various
56 plant tissues, but with moderate efficiency in resulting regenerated plants. In this report we
57 describe significant improvements to Cas9-RNP mediated gene editing in wheat. We
58 demonstrate that Cas9-RNP assays in protoplasts are a fast and effective tool for rational
59 selection of optimal gRNAs for gene editing in regenerable immature embryos (IEs), and that
60 high temperature treatment enhances gene editing rates in both tissue types. We also show that
61 Cas9-mediated editing persists for at least 14 days in gold particle bombarded wheat IEs. The
62 regenerated edited wheat plants in this work are recovered at high rates in the absence of
63 exogenous DNA and selection. With this method, we produce knockouts of a set of three
64 homoeologous genes and two pathogenic effector susceptibility genes that result in insensitivity
65 to corresponding necrotrophic effectors produced by *Parastagonospora nodorum*. The
66 establishment of highly efficient, DNA-free gene editing technology holds promise for
67 accelerated trait diversity production in an expansive array of crops.

68

69 **Keywords**

70

71 wheat, gene editing, Cas9, ribonucleoproteins, DNA-free, temperature treatment, protoplasts,
72 immature embryos, necrotrophic effector sensitivity

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90 Introduction

91
92 Amidst a rapidly growing population and threats posed by climate change and disease, there
93 exists a need for the advancement of crop biotechnology to increase the speed and precision of
94 crop varietal development. Cas9 has emerged as a plant gene editing tool of choice for its
95 accuracy and programmability to engineer allelic diversity for beneficial traits to support global
96 food security. Guided by RNA, Cas9 efficiently makes sequence-specific double-stranded breaks
97 in genomic DNA (Jinek et al. 2012). The host's double-stranded break repair mechanisms are
98 then elicited. Non-homologous end joining (NHEJ), the predominant and often error prone
99 pathway in plants, can lead to insertions or deletions (indels) at the Cas9 cut site upon repair
100 (Puchta 2005). Exploitation of this system allows for targeted knockout of endogenous genes.

101
102 Cas9 and guide RNA (gRNA) encoding plasmid DNA systems have been developed and
103 delivered to plant and major crop species including *Arabidopsis* (Li et al. 2013), potato (Wang et
104 al. 2015; Butler et al. 2015), tomato (Brooks et al. 2014; Lor et al. 2014), soybean (Jacobs et al.
105 2015), maize (Svitashov et al. 2015; Char et al. 2017), barley (Lawrenson et al. 2015; Garcia-
106 Gimenez et al. 2020), rice (Feng et al. 2013), and wheat (Wang et al. 2014) by *Agrobacterium*
107 *tumefaciens* or particle bombardment. These methods rely on random integration of Cas9-gRNA
108 cassettes into the genome, and optimization of expression for each plant system. As a result, the
109 gene editing process is encumbered by variables such as promoter and terminator choice when
110 cloning constructs and copy number and integration location of transgenes upon transformation.
111 Additionally, gene editing by these methods raise transgenic regulatory concerns. Regulation
112 aside, transgenes can often be segregated away through breeding, but the process is laborious,
113 time consuming, and particularly difficult for plants with complex genomes. Moreover, crops
114 with lengthy generation times or those that are vegetatively propagated, such as cassava and
115 banana, cannot be bred to segregate transgenes. There have been reports in which plant gene
116 editing has been achieved by transient expression of Cas9 and gRNA (Zhang et al. 2016;
117 Hamada et al. 2018), however full experimental control over the fate of transgene integration and
118 tracking has not been achieved. For these reasons, there is a clear need for advances in DNA-free
119 genome editing technology.

120
121 The direct delivery of preassembled Cas9-gRNA ribonucleoproteins (RNPs) is one such
122 technology and has been demonstrated in various plant protoplast systems to induce targeted
123 mutations (Woo et al. 2015; Malnoy et al. 2016; Poddar et al. 2020; Brandt et al. 2020; Sant'Ana
124 et al. 2020). Some have produced edited plants arising from the transfected single cells. However
125 regeneration of wheat and other crop plant protoplasts is not feasible with current methods.
126 Cas9-RNP based editing of maize (Svitashov et al. 2016), rice (Banakar et al. 2019), and wheat
127 (Liang et al. 2017) regenerable embryos by biolistics has also been reported. Gold particles
128 coated with Cas9-RNPs are bombarded with high pressure into immature embryos (IEs) that are
129 ultimately regenerated into plants through tissue culture. Co-delivery of DNA vectors with
130 selective markers or helper genes along with Cas9-RNPs have been utilized to improve editing
131 efficiency (Svitashov et al. 2016; Banakar et al. 2019). In the absence of selection, however,
132 editing rates have generally been low.

133
134 The use of Cas9-RNPs to generate edited plants provides unique benefits. Because the gene
135 editing reagents are delivered as pre-assembled complexes, researchers do not need to optimize

136 DNA vectors, the host plant tissue does not bear the burden of transcribing or translating Cas9 or
137 gRNA, and breeding for segregation is unnecessary due to the absence of transgenes.

138 Additionally, the Cas9-RNPs, which exist in a finite amount in the target tissue, are ultimately
139 degraded by endogenous proteases and nucleases. However, there remains room to improve the
140 editing pipeline and increase efficiency.

141
142 Low rates of Cas9 mediated editing in plant tissue may indicate that the endonuclease is not
143 reaching its full potential due to suboptimal environmental conditions. For example, studies
144 across organisms including *Arabidopsis*, citrus (LeBlanc et al. 2018), and wheat (Milner et al.
145 2020) have shown that Cas9 generates more targeted indels at elevated temperatures.

146
147 Here, we present advances in Cas9-RNP based gene editing in the global food crop, wheat
148 (*Triticum aestivum*). To determine if temperature can be harnessed to enhance Cas9-RNP
149 mediated editing, we explore the effects of heat treatment on transfected wheat protoplasts and
150 IEs. We examine the relationship of editing efficiency between non-regenerable protoplasts and
151 regenerable IEs and monitor the rate of editing over time. We demonstrate that treatment at
152 elevated temperatures increases gene editing efficiency in both tissue systems and find that the
153 RNP transfection technique of gold particle bombardment results in sustained editing of tissue at
154 least 14 days after bombardment. We also find that editing rates in protoplasts correlate linearly
155 with editing rates in IEs. Therefore, rapid *in vivo* protoplast assays can be instituted as a standard
156 gene editing pipeline step to select the most effective gRNAs for IE gene editing and
157 regeneration. Lastly, we regenerate wheat plants edited via Cas9-RNP biolistic transfection. As a
158 proof of method, we simultaneously target three wheat homoeologous orthologs of a rice gene,
159 *Pi21*(Os04g0401000), and successfully generate lines with knockouts in all copies. We also
160 target wheat genes *Tsn1* and *Snn5*, producing lines that are insensitive to the *Parastagonospora*
161 *nodorum* pathogenic effectors SnToxA and SnTox5 and establish DNA and selection-free Cas9-
162 RNP mediated editing as an efficient and feasible technique for generating targeted gene
163 knockouts in wheat.

164

165 **Results**

166

167 **Cas9-RNP transfection and the effect of temperature in wheat protoplast gene editing**

168

169 We first quantified cell viability after heat treatment of non-transfected protoplasts to determine
170 the feasibility of testing higher temperatures for wheat protoplast gene editing. Protoplasts were
171 isolated from partially etiolated wheat seedlings and incubated at 25°C, 30°C, or 37°C for 16
172 hours followed by 25°C for 8 hours. During the 24-hour period, the protoplasts were monitored
173 for viability every 8 hours using Evans blue staining and microscopy. Viability of protoplasts
174 treated at 37°C decreased markedly compared to those treated at 25°C and 30°C (Figure S1) and
175 suffered from media evaporation. It was therefore concluded that the protoplast gene editing
176 pipeline was not amenable to a 37°C heat treatment.

177

178 Five single guide RNAs (sgRNAs), *Pi21gD*, *Tsn1g2*, *Tsn1g3*, *Snn5g1*, and *Snn5g2* were selected
179 and commercially synthesized for this study. To assess the efficacy of the sgRNAs *in vivo*, and to
180 determine the effect of temperature on wheat protoplast gene editing, Cas9-RNPs were
181 assembled and transfected into wheat mesophyll protoplasts. Purified Cas9 with a C-terminal

182 double nuclear-localization tag was complexed with sgRNA. The resulting sgRNA-Cas9 RNPs
183 were transfected into wheat protoplasts using polyethylene glycol (PEG). Transfected protoplasts
184 were treated at 25°C or 30°C and harvested for genotypic analysis after 24 hours. Editing rates at
185 the target loci were determined by amplicon next-generation sequencing (NGS). With incubation
186 at 25°C and 30°C, average editing rates ranged from 2.5-50% and 5.8-62% respectively. Despite
187 this variability between different sgRNA-Cas9 RNPs, editing efficiency was consistently higher
188 in protoplasts treated at 30°C compared to 25°C for any given sgRNA (Figure 1), suggesting that
189 a higher temperature treatment is advantageous to RNP-mediated gene editing in wheat
190 protoplasts.

191

192 **Biostatic Cas9-RNP delivery and the effect of temperature in wheat immature embryo gene 193 editing**

194

195 To determine if a high temperature treatment similarly improves Cas9-RNP based editing in
196 wheat IEs as it does in protoplasts, RNPs were transfected into IEs by particle bombardment.
197 The experimental pipeline is summarized in Figure 2a. Single guide RNA and Cas9 were
198 complexed *in vitro*, adsorbed onto 0.6 µm gold particles, and biolistically delivered with a
199 helium-pressured particle gun. For each sgRNA and temperature being tested, 30 IEs were
200 bombarded and incubated at 26°C, 30°C, or 37°C for 16 hours. They were then maintained at
201 26°C on callus-induction media before inducing regeneration at around 63 days post-
202 bombardment (dpb). Plasmid DNA was not co-delivered with any of the Cas9-RNPs, and callus
203 induction and regeneration were performed under selection-free conditions. From each set of 30
204 RNP-transfected embryos, ten were randomly harvested and pooled for genomic analysis at 14
205 dpb and again at 48 dpb. The remaining ten embryos were kept for regeneration into M₀ plants.
206 All independent shoots were isolated and treated as individual M₀ plants. Plants were
207 transplanted from tissue culture media to soil approximately 100 dpb. Each resulting M₀ plant
208 was independently genotyped, and the percent tissue edited rate was calculated as the percentage
209 of mutant alleles among total alleles in the M₀ plant pool. The percentage of plants edited was
210 also calculated as a percentage of the number of plants with any edit among the number of total
211 M₀ plants regenerated. All genomic analysis was done by amplicon NGS.

212

213 Elevated temperature treatment of both 30°C and 37°C led to higher percentages of edited tissue
214 compared to 26°C for all five sgRNA-Cas9 RNPs across all timepoints (Figure 2b). Tissue
215 editing rates were higher at 48 dpb than at 14 dpb and editing rates in the M₀ regenerant tissue
216 pool were comparable to those at 48 dpb. From the ten embryos per treatment allowed to
217 regenerate, 10-40 M₀ plants were produced. Plants with wild type, heterozygous, biallelic, and
218 homozygous mutations at the target loci were obtained. Editing efficiency in the M₀ regenerants
219 is summarized in Table 1 and genotypes of each individual edited M₀ regenerant are described in
220 Table S3.

221

222 **Cas9-RNP mediated editing is sustained over time**

223

224 Notably, gene editing rates were more than doubled, regardless of temperature treatment, in
225 tissue assayed at 48 dpb compared to 14 dpb (Figure 2b). To further investigate the difference in
226 editing rates over time, the number of unique mutant alleles was determined at the 14 and 48 dpb
227 timepoints. With minimal exception, there were more unique mutant alleles at 48 dpb compared

228 to 14 dpb (Figure 3a, Figure S2).

229
230 An additional 50 IEs were bombarded with Snn5g1-Cas9 RNP to determine the length of time
231 that Cas9 remains present in biolistically transfected tissue. Western blot analysis was performed
232 with 10-embryo tissue samples taken 0, 2, 7, and 14 dpb. Given the finite amount of Cas9 protein
233 delivered by RNP bombardment and rapid cell division and growth in each IE over time, we
234 normalized the experiment by volume extracted from total tissue originating from ten IEs at any
235 given timepoint, rather than total protein extracted. Cas9 was detected in tissue from all four
236 timepoints with decreasing band intensity over time (Figure 3b). Cas9 was not detected in
237 embryos that were not subjected to bombardment of Cas9-RNPs. Due to the large mass of tissue
238 from exponential growth of callus from IEs, it was not feasible to extract protein from and
239 perform Western blot analysis on ten-embryo 48 dpb samples. Taken together, these results
240 suggest that Cas9 mediated editing activity is sustained over the course of at least 14 days after
241 biotic delivery of Cas9-RNPs into immature wheat embryos. When using this method, the
242 degradation of Cas9 protein in the target tissue is not as rapid as previously hypothesized (Kim et
243 al. 2014), and evaluation of editing efficiency should occur 14 to 48 dpb for increased accuracy.

244
245 **Relative editing rates in protoplasts correlate linearly with editing rates in M₀ regenerants**
246 **from bombarded immature embryos**

247
248 The different sgRNA-Cas9 RNPs used in this study conferred different levels of efficacy in both
249 PEG transfected protoplasts and biolistically transfected embryos. To determine whether the
250 editing rates in the two tissue systems correlated with one another, each sgRNA-Cas9 RNP's
251 average editing efficiency in 30°C treated protoplasts was plotted against its editing efficiency in
252 48 dpb 30°C treated bombarded IEs as well as the M₀ 30°C treated regenerant tissue pool. A
253 linear regression model was applied to the data, revealing a positive linear correlation with
254 $R^2=0.744$ and $R^2=0.994$, respectively (Figure 4). Though a survey of a greater number of
255 sgRNAs would strengthen this association, the present data suggest that editing efficiency in
256 protoplasts can be predictive of editing efficiency in IEs. Given the positive correlation between
257 RNP-mediated editing rates in protoplasts and in biolistically transfected IEs, it can be beneficial
258 to first rapidly score the efficiency of various gRNA candidates in protoplasts to optimize for the
259 highest rate of edited regenerant tissue.

260
261 **Cas9-RNP mediated knockout of *Parastagonospora nodorum* necrotrophic effector**
262 **sensitivity genes**

263
264 The wheat genes *Tsn1* and *Snn5* recognize necrotrophic effectors produced by *Parastagonospora*
265 *nodorum*, and each exist as single copy genes on the B genome of allohexaploid wheat. In this
266 study, 20 M₀ *Tsn1* edited plants were produced from 30 transfected embryos maintained for
267 regeneration. Of those, 14 had heterozygous mutations and 6 had biallelic or homozygous
268 mutations. Fully expanded secondary leaves of a subset of M₀ *Tsn1* edited plants, M₀ *Tsn1* WT
269 plants, and Fielder grown from seed were infiltrated with SnToxA expressed in *Pichia pastoris*.
270 After 72 hours, M₀ heterozygotes, M₀ WT, and Fielder plants had necrotic lesions extending from
271 the site of infiltration. Meanwhile, M₀ plants with biallelic or homozygous mutations exhibited
272 no necrosis (Figure 5).

274 Similarly, a total of 24 M₀ *Snn5* edited plants were produced from 30 transfected embryos
275 maintained for regeneration. Of those, 14 had heterozygous mutations and ten had biallelic or
276 homozygous mutations. Fully expanded secondary leaves of a subset of M₀ *Snn5* edited plants,
277 M₀ *Snn5* WT plants, and Fielder grown from seed were infiltrated with SnTox5 containing
278 culture filtrates. After 72 hours, M₀ heterozygotes with in-frame deletions, M₀ WT, and Fielder
279 plants exhibited necrotic lesions. Results for M₀ heterozygotes, however, displayed a mixture of
280 phenotypes ranging from sensitive to insensitive. Two heterozygous plants with an in-frame
281 deletion on one allele appeared insensitive to SnTox5. Notably, all plants with biallelic or
282 homozygous mutations leading to premature termination were insensitive to SnTox5 (Figure 6).
283

284 These results demonstrate that loss-of-function mutations can be introduced to both copies of a
285 gene within the M₀ generation, leading to insensitivity to agronomically relevant necrotrophic
286 fungal effectors. M₀ heterozygotes and biallelic plants can be self-fertilized to establish lines with
287 homozygous deleterious mutations in the susceptibility genes. The biolistic method with 30°C or
288 37°C heat treatment is highly efficient, and edited plants can be identified from a small number
289 of regenerants without the use of selection in tissue culture.
290

291 Discussion

292

293 CRISPR-based RNPs have been used for editing in various plant species and tissue types (Zhang
294 et al. 2021). In this work, we improve upon DNA-free Cas9-RNP technology for genome editing
295 in wheat. We establish heat treatment as a parameter to increase the rate of editing *in vivo*, show
296 that particle bombardment-based editing is sustained over more than 14 days, and demonstrate
297 that results from protoplast assays can be utilized as a proxy for predicting editing rates in
298 regenerable tissue and as a tool to rank gRNA efficacy. By delivering gene editing reagents as
299 protein-RNA complexes, several complications associated with *Agrobacterium tumefaciens* and
300 biolistic DNA vector delivery are avoided.
301

302 Cas9 from *Streptococcus pyogenes*, a bacterium that grows optimally at 37°C (Zhou & Li 2015),
303 has been shown to exhibit increased cleavage activity at 37° compared to 22°C *in vitro* (LeBlanc
304 et al. 2018). Plant protoplast and IE transfections and regeneration are typically performed at
305 ambient temperatures (25°C and 26°C respectively). Although modulation of temperature has
306 not been previously performed in protoplast gene editing experiments, an increase in temperature
307 for DNA-based plant gene editing studies have resulted in higher targeted mutation frequencies
308 (LeBlanc et al. 2018; Malzahn et al. 2019). The application of temperature treatment to increase
309 Cas9-RNP mediated editing efficiency in any plant tissue system has not previously been
310 demonstrated. Here, we found that 16 hours of exposure of Cas9-RNP transfected protoplasts to
311 30°C markedly increased indel formation at the Cas9 cut site (Figure 1). Similarly, 16 hours of
312 exposure of Cas9-RNP bombarded IEs to 30°C or 37°C resulted in increased targeted indel
313 formation. In IEs assayed at 48 dpb we achieved editing rates of 10.4-34.9% with 30°C
314 treatment, 6.63-24.39% with 37°C treatment, and just 3.36-14.25% with standard 26°C
315 incubation (Figure 2b). Interestingly, the benefit of increased temperature treatment was
316 consistent between the two target tissues and across the five different target sites tested. In our
317 work, there were no discernable defects in regenerability for IEs treated at a higher temperature
318 compared to the standard 26°C. We detected no positive or negative correlation between
319 temperature treatment and the number of M₀ plants recovered.

320 Two reports have described the biolistic delivery of Cas9-RNPs into wheat and maize embryo
321 cells in the absence of DNA and selection (Liang et al. 2017; Svitashov et al. 2016). Both
322 achieved moderate targeted mutagenesis frequencies in the regenerated plants. We noted that the
323 studies each assayed for editing efficiency in the IEs 2 dpb and universally achieved <1%
324 targeted editing. In contrast, the editing efficiencies in regenerated plant tissue were substantially
325 higher, ranging from 1.3-4.7% (Liang et al. 2017) and 2.4-9.7% (Svitashov et al. 2016). To
326 investigate this discrepancy between timepoints, we monitored editing efficiency at 14 dpb, 48
327 dpb, and in the M₀ regenerants in our study. Irrespective of temperature treatment or gRNA
328 sequence, editing frequencies at 48 dpb were considerably higher than at 14 dpb (Figure 2b).
329 Percentage of tissue edited in the M₀ plant pool was comparable to that at 48 dpb. The observed
330 difference in editing efficiency between earlier timepoints and regenerated M₀ plants was
331 consistent with previous reports (Liang et al. 2017; Svitashov et al. 2016).
332

333 In mammalian cells, Cas9 was shown to be undetectable 48-72 hours after Cas9-RNP
334 transfection by nucleofection (Kim et al. 2014). For this reason, it has been thought that
335 enzymatic degradation of Cas9-RNPs *in vivo* is rapid and that editing must occur within the first
336 few days of transfection. In the present study, if Cas9-RNPs were fully degraded from the tissue
337 prior to the 14 dpb timepoint, all gene editing would have had to occur before 14 dpb.
338 Consequently, approximately the same number of unique alleles would have been expected to be
339 detected at both 14 dpb and 48 dpb if proliferation of edited and unedited cells occurs at the same
340 rate. On the contrary, consistently higher rates of mutagenesis as well as a greater number of
341 unique alleles at the later timepoints were observed at 48 dpb (Figure 2b, Figure 3a, Figure S2),
342 suggesting that Cas9 may somehow be stabilized for at least 14 days and gradually released
343 within the wheat IEs after biolistic delivery for sustained editing over time. As further evidence
344 in support of this hypothesis, Cas9 protein was detected in 10-embryo tissue samples taken 2, 7,
345 and 14 dpb (Figure 3b). Taken together, these results indicate that Cas9 is maintained in tissue at
346 least 14 dpb and facilitates sustained and gradual editing of tissue over time when delivered as
347 Cas9-RNP via gold particle bombardment. Further biochemical exploration is necessary to
348 understand the mechanism of this Cas9 stabilization and persistent editing.
349

350

351 Numerous plant protoplast systems have been used for targeted mutagenesis using Cas9-RNPs
352 (Woo et al. 2015; Malnoy et al. 2016; Shan et al. 2019; Poddar et al. 2020; Brandt et al. 2020;
353 Sant'Ana et al. 2020; Yu et al. 2021). Although the method is useful for producing Cas9-RNP
354 edited plants for protoplasts that are amenable to regeneration, most crop plants cannot easily be
355 regenerated in this manner. Though wheat protoplasts are recalcitrant to regeneration through
356 existing methodology, protoplasts in the current study prove to be a beneficial screening system.
357 Cas9-RNP mediated editing rates in protoplasts correlated linearly with editing rates in IEs.
358 Because biolistic Cas9-RNP transfection of IEs requires significant time, energy, resources, and
359 commitment, a means for rational selection of gRNA sequences for optimal editing efficiency is
360 preferred. It is noteworthy that there were major differences in mutation rates for the 5 gRNAs
361 used in this study. Unfortunately, existing predictive software to select gRNAs often do not
362 translate upon experimentation. Therefore, when attempting to select the best gRNA to produce
363 the highest rate of stable editing in regenerable IEs, transient protoplast assays can serve as a
364 rapid pipeline to rank gRNAs and forecast editing rates in Cas9-RNP bombarded regenerable
365 tissue.

366

367 The calculation of editing efficiency in M₀ regenerants has the potential to be confusing. To be
368 explicit in our analysis, we present editing rates of regenerants in two ways. The percentage of
369 total edited alleles in the M₀ regenerant pool is indicated as “% Tissue edited”, while “% Plants
370 edited” is the percentage of total edited plants among all the M₀ plants (Figure 2b, Figure 4,
371 Table 1). The former is meant to compare overall editing efficiency more fairly across tissue
372 types and timepoints, taking biallelism, homozygosity, and heterozygosity of regenerated plants
373 into consideration. The latter value is more relevant for evaluating the method’s ability to
374 produce individual plants with gene edits.

375

376 The gene *Pi21* was first characterized in rice (*Oryza sativa*) as a negative regulator of resistance
377 for blast disease (Fukuoka et al. 2009). We identified putative orthologs in wheat that consisted
378 of three homoeologous genes. The functionality of wheat *Pi21* has not been formally assessed
379 but may potentially play a role in disease susceptibility. Wheat *Pi21* was selected as a target to
380 demonstrate the DNA-free Cas9-RNP gene editing method in a gene present in all three diploid
381 subgenomes (AABBDD). *Pi21gD* was designed to simultaneously target all six alleles. Despite
382 the genetic complexity, we were able to regenerate plants with biallelic or homozygous
383 mutations across all three subgenomes for a full variety of genotypes including two with biallelic
384 or homozygous triple mutant edits within the M₀ generation (Table S3).

385

386 The wheat genes *Tsn1* and *Snn5* recognize the *Parastagonospora nodorum* pathogenic effectors
387 SnToxA and SnTox5, respectively (Faris et al. 2010; Kariyawasam et al. 2021). *Tsn1* is a gene
388 with resistance gene-like features including protein kinase, nucleotide binding, and leucine-rich
389 repeats, and the ToxA necrotrophic effector is produced by at least three economically important
390 fungal pathogens of wheat (Friesen & Faris 2021). *Snn5* belongs to a different class and contains
391 protein kinase and major sperm protein domains (details regarding the cloning and
392 characterization of *Snn5* will be published in the future; K.L.D. Running and J.D. Faris, personal
393 communication), but like *Tsn1*, it functions as a target for a necrotrophic effector leading to
394 disease susceptibility (Kariyawasam et al. 2021). Therefore, *Tsn1* and *Snn5* are practical targets
395 for disruption via DNA-free gene editing. Using DNA-free biolistic delivery of Cas9-RNPs, we
396 successfully generated plants with heterozygous, biallelic, and homozygous mutations within the
397 M₀ generation from a mere ten IEs per treatment. Biallelic and homozygous mutants of *Tsn1* and
398 *Snn5* were demonstrated to be insensitive to SnToxA and SnTox5, respectively. Due to the high
399 rate of editing, particularly using *Snn5g1* and *Snn5g2* with 30°C and 37°C heat treatment,
400 screening of M₀ plants for edits was fully feasible. Contrary to previous reports, a selection
401 scheme can reasonably be foregone with Cas9-RNP mediated editing so long as gRNAs are pre-
402 tested in protoplasts and deemed to be highly effective.

403

404 In summary, heat treatment enhancement of Cas9-RNP mediated wheat editing combined with a
405 protoplast-based approach to select optimal gRNAs, and findings that editing is sustained for
406 more than 2 weeks advances this DNA and selection-free gene editing approach in crops. Given
407 the persistence of Cas9 in bombarded tissue, additional work with increased length or punctuated
408 exposure to heat, beyond 16 hours, throughout callus induction may further augment the benefit
409 of heat treatment. The success of this method in targeting single loci warrants exploration of
410 furthering the technique to multiplexing. In addition to knocking out genes, editing via Cas9-
411 RNPs can conceivably be applied to generating allelic series by targeting non-coding genomic

412 regions such as promoters (Rodríguez-Leal et al. 2017). The presented advancement to this
413 technology can be applied to numerous crops that are amenable to particle bombardment and
414 encourages the establishment of tissue culture and regeneration protocols in crop species that are
415 vegetatively propagated.

416

417 **Materials and Methods**

418

419 **Plant material**

420

421 The allohexaploid wheat (*Triticum aestivum* L., $2n = 6x = 42$, AABBDD genomes) cultivar
422 Fielder was used for this study.

423

424 **Cas9-gRNA RNP assembly**

425

426 Cas9 protein with a C-terminal double nuclear-localization tag (QB3 Macrolab, University of
427 California, Berkeley) and sgRNAs with modifications of 2'-O-Methyl at 3 first and last bases,
428 and 3' phosphorothioate bonds between first 3 and last 2 bases (Synthego, Menlo Park, CA)
429 were complexed *in vitro* to form Cas9-gRNA RNPs.

430

431 For each protoplast transfection, a 25 μ l reaction was assembled. Thoroughly mixed were 10 μ g
432 sgRNA, 2.5 μ l 10X NEBuffer 3.1 (New England Biolabs, Ipswich, MA), and nuclease-free
433 water. Then, in a drop-wise manner, 10 μ g Cas9 was added slowly with constant mixing,
434 followed by 20 min incubation at 37°C.

435

436 For each IE biolistic transfection, a 40 μ l reaction was assembled. Thoroughly mixed were 6.4 μ g
437 sgRNA, 4 μ l 10X NEBuffer 3.1, and nuclease-free water. Then, in a drop-wise manner, 12.8 μ g
438 Cas9 was added slowly with constant mixing, followed by 20 min incubation at 37°C.

439

440 The resultant RNP mixtures were stored on ice until transfection.

441

442 **Protoplast isolation and transfection**

443

444 Partially etiolated seedlings were used as donor tissue for protoplast isolation. Seeds were
445 surface sterilized in 20% (v/v) bleach and rinsed in sterile water. Seedlings were grown under
446 sterile conditions on wet filter paper in the dark for 12-14 days at 25°C with exposure to ambient
447 light for 6 hours every 5 days. Wheat protoplasts were isolated from the donor tissue using a
448 previously described method (Shan et al. 2014). For each transfection 25 μ l of Cas9-gRNA RNP
449 mixture, as defined above, were added to 5×10^5 protoplasts. PEG-meditated transfection was
450 performed as described in the literature (Shan et al. 2014). Protoplasts were harvested 24 hours
451 post-transfection for analysis.

452

453 **Gold particle preparation for bombardment**

454

455 Cas9-RNPs were precipitated onto 0.6 μ m gold particles (#1652262, Bio-Rad, Hercules, CA)
456 using the cationic lipid polymer TransIT-2020 (Mirus, Madison, WI) as previously described
457 (Svitashov et al. 2016), with modifications. Briefly, for each 30-IE transfection, 40 μ l Cas9-RNP

458 mixture, as described above, was mixed gently with 20 μ l sterile gold particles (10 μ g μ l $^{-1}$ water
459 suspension) and 1 μ l TransIT-2020 and incubated on ice for 20 min. The Cas9-RNP coated gold
460 particles were pelleted in a mini microcentrifuge at 2,000g for 30 s. The supernatant was
461 removed, and the gold particles were resuspended in 20 μ l of sterile water by brief sonication.
462 The coated gold particles were immediately applied to 2 macrocarriers (10 μ l each) by spotting
463 numerous small drops and allowed to air dry in a laminar flow hood. For a single transfection,
464 each 30-IE set was bombarded twice using the 2 prepared macrocarriers.
465

466 **Immature embryo bombardment and regeneration**

467

468 Plants were grown at 24°C, 16-hour days and 15°C, 8-hour nights under light intensity of 130
469 μ mol m $^{-2}$ s $^{-1}$. Immature seeds containing IEs, sized 1.7-2.2 mm were harvested from wheat spikes
470 10-13 days after flowering, surface sterilized in 20% (v/v) bleach with one drop of Tween 20 and
471 triple rinsed with sterile water, followed by extraction of the IEs. The IEs were placed on DBC3
472 media (Cho et al. 1998), scutellum side up and incubated overnight at 26°C prior to biolistic
473 transfection. Four hours prior to bombardment, IEs were placed on 55 mm filter paper in the
474 center of DBC3 osmoticum media containing 0.2 M mannitol and 0.2 M sorbitol (Cho et al.
475 2000). Using two prepared microcarriers holding Cas9-RNP coated gold microparticles, IEs
476 were shot twice using the PDS-100/He gene gun (Bio-Rad, Hercules, CA) with rupture pressure
477 of 1100 psi. The bombarded IEs were transferred from the filter paper directly to the media
478 below and incubated at 26°C, 30°C, or 37°C for 16 hours. IEs were transferred to standard DBC3
479 media in dim light (10 μ mol m $^{-2}$ s $^{-1}$) at 26°C for 9 weeks with subculturing as needed. Callus
480 tissue originating from each IE was transferred to DBC6 media for regeneration (Cho et al.
481 2015). Resultant plantlets were transferred to rooting media and incubated in high light (90 μ mol
482 m $^{-2}$ s $^{-1}$) at 26°C and grown to 4-6 inches before being transplanted to soil.
483

484 **Amplicon next generation sequencing analysis**

485

486 To determine mutation rates by amplicon sequencing, PCR was performed with target-specific
487 primers (Table S1), amplifying approximately 225 bp around the cut site using Phusion High
488 Fidelity (New England Biolabs, Ipswich, MA) polymerase. Primers contained a 5'-stub
489 compatible with Illumina NGS library preparation. PCR products were ligated to Illumina
490 TruSeq adaptors and purified. Libraries were prepared using a NEBNext kit (Illumina, San
491 Diego, CA) according to the manufacturer's guidelines. Samples were deep sequenced on an
492 Illumina iSeq at 200 bp paired-end reads to a depth of approximately 10,000 reads per sample.
493 Cortado (<https://github.com/staciawymann/cortado>) was used to analyze editing outcomes.
494 Briefly, reads were adapter trimmed then merged using overlap to single reads. These joined
495 reads were then aligned to the target reference sequence. Editing rates are calculated by counting
496 any reads with an insertion or deletion overlapping the cut site or occurring within a 3 bp
497 window on either side of the cut site. SNPs occurring within the window around the cut site are
498 not counted. Total edited reads are then divided by the total number of aligned reads to derive
499 percent edited.
500

501

502 **Western blot**

503 Total plant tissue originating from 10 IEs at different timepoints were frozen in LN2, ground to a
504 fine powder by mortar and pestle, and resuspended in 200 μ l 2x Laemmli Sample Buffer (Bio-
505 Rad, Hercules, CA) with 2-mercaptoethanol. Samples were boiled for 5 min, and the total
506 soluble protein extracts (25 μ l or 40 μ l per well) were separated on 4-20% Mini-PROTEAN
507 TGX precast polyacrylamide gels (Bio-Rad, Hercules, CA) and subsequently transferred to a
508 0.45 μ m nitrocellulose membrane (GVS, Sanford, ME). For detection of Cas9 protein, anti-
509 CRISPR/Cas9 C-terminal mouse monoclonal antibody (SAB4200751; Sigma-Aldrich, St. Louis,
510 MO) and ProSignal Dura ECL Reagent (Genesee Scientific, San Diego, CA) were used.
511 PageRuler Plus Prestained Protein Ladder (10–250 kDa, Thermo Fisher, Waltham, MA) was
512 used as a molecular weight marker, and Cas9 protein with a C-terminal double nuclear-
513 localization tag (QB3 Macrolab, University of California, Berkeley) was used as a positive
514 control.

515

516 **Production of SnToxA**

517

518 *SnToxA* was expressed in the *Pichia pastoris* yeast strain X33 (Liu et al. 2009) and cultured in
519 yeast peptone dextrose broth (10 g yeast extract, 20 g peptone, 100 ml 20% dextrose in 900 ml
520 distilled water) for 48 hours at 30 °C. Culture filtrate was harvested and filtered through a 0.45
521 μ m HVLP filter membrane (Merk Millipore Ltd., Cork, Ireland) and dialyzed overnight against
522 water using 3.5 kDa molecular weight cut off Snake Skin dialysis tubing (Thermo Scientific, IL,
523 USA). Dialyzed filtrate was loaded onto a HiPrep SP XL 16/10 cation exchange column (GE
524 Healthcare Piscataway, NJ). Unbound protein was washed off the column using a 20 mM sodium
525 acetate (pH 5.0) buffer prior to a gradient elution of SnToxA using a buffer consisting of 300
526 mM sodium chloride and 20 mM sodium acetate (pH 5.0). Fractions that contained SnToxA
527 were collected and frozen prior to lyophilizing to increase the concentration of SnToxA.
528 Lyophilized samples were dissolved in a buffer consisting of 5 mM MOPS sodium salt (Alfa
529 Aesar, MA, USA) and water, prior to infiltration into the plants.

530

531 **Production of SnTox5**

532

533 *P. nodorum* strain Sn79+Tox5-3, generated by transforming *SnTox5* in to the avirulent *P.*
534 *nodorum* strain Sn79-1087 (Kariyawasam et al. 2021), was used to prepare the culture filtrates
535 containing SnTox5 as previously described (Friesen & Faris 2012) with minor modifications. In
536 brief, Sn79+Tox5-3 was grown on V8-potato dextrose agar medium till spores were released
537 from pycnidia. The plates were flooded with 10 ml of sterile distilled water, and 500 μ l of spore
538 suspension was used to inoculate 60 ml of liquid Fries medium (5 g ammonium tartrate, 1 g
539 ammonium nitrate, 0.5 g magnesium sulfate, 1.3 g potassium phosphate [dibasic], 3.41 g
540 potassium phosphate [monobasic], 30 g sucrose, 1 g yeast extract in 1000 ml of distilled water).
541 Cultures were grown on an orbital shaker at 100 rpm for a week prior to two weeks of stationary
542 growth under dark conditions at room temperature. Culture filtrates were filtered through a layer
543 of Miracloth (EMD Millipore Corp, MA, USA) and were concentrated 5-fold using Amicon
544 Ultracel – 3K centrifugal filters (Merk Millipore Ltd., Cork, Ireland). Culture filtrates were
545 diluted in a 1:1 ratio with sterile water prior to infiltration into the plants.

546

547

548

549

550

551 Necrotrophic effector infiltrations

552

553 Infiltrations with SnToxA and SnTox5 containing culture filtrates were conducted as previously
554 described (Friesen & Faris 2012). Three infiltrations were performed per plant, and sensitivity
555 was evaluated on a binary scale at 3 days post infiltration.

556

557

558 Author Contributions

559

560 SP conceived and designed the experiments, analyzed the data, prepared the tables and figures,
561 and wrote the manuscript with input from all co-authors. SP and JT performed the experiments.
562 KLDR, GKK, JDF, TLF, and M-JC provided critical reagents, information, and discussion.
563 JHDC and BS supervised the work. All authors critically reviewed and edited the manuscript.

564

565 Acknowledgements

566

567 We thank Innovative Genomics Institute (IGI) scientists, Netravathi Krishnappa and Stacia
568 Wyman, for NGS library preparation and sequencing work and for assistance with analysis of
569 sequencing data. We also thank Danielle J. Holmes from USDA-ARS for providing partially
570 purified SnToxA. This work was supported by the IGI Founder's Fund of the University of
571 California at Berkeley.

572

573

574 Conflict of Interest

575

576 This research was conducted in the absence of any commercial or financial relationships that
577 could be construed as a potential conflict of interest.

578

579 Tables

580

581 Table 1

582 Summary of editing outcomes in *Pi21*, *Tsn1*, and *Snn5* targeted M₀ plants. Data for *Pi21* is
583 broken down by subgenome. *Tsn1* and *Snn5* are only present on subgenome B. "% Tissue
584 Edited" indicates the percentage of edited alleles among the total alleles analyzed from the M₀
585 pools. "% Plants Edited" indicates the percentage of plants with any level of editing among the
586 total plants analyzed from the M₀ pools.

587

588 Figures

589

590 Figure 1

591 Targeted editing efficiency of gRNA-Cas9 ribonucleoproteins with different temperature
592 treatments in wheat protoplasts. Five gRNAs, Pi21gD, Tsn1g2, Tsn1g3, Snn5g1, and Snn5g2
593 were tested and transfected independently into protoplasts. N=3. Error bars indicate SEM.

594

595 Figure 2

595 Cas9-RNP particle bombardment and temperature treatment of wheat immature embryos (IEs).
596 (a) A schematic of the particle bombardment and editing efficiency assay pipeline. (b) Targeted
597 editing efficiency of gRNA-Cas9 ribonucleoproteins with different temperature treatments in IEs
598 across time points. Five gRNAs, Pi21gD, Tsn1g2, Tsn1g3, Snn5g1, and Snn5g2 were
599 bombarded independently into IEs. Tissue pools at 14 dpb and 48 dpb consisted of 10 randomly
600 chosen initially bombarded IEs. Editing efficiency for M₀ plants is based on aggregate data from
601 all independently genotyped M₀ plants that emerged from 10 randomly chosen initially
602 bombarded IEs. Percent tissue edited is defined as the percentage of tissue with insertions or
603 deletions within 2 bp of the target cleavage site out of the total tissue pool.

604

605 **Figure 3**

606 Cas9-RNP mediated editing in gold particle bombarded immature embryos IEs is sustained over
607 time. (a) Quantification of the number of unique mutant alleles detected via deep sequencing. (b)
608 Western blot detection of Cas9 in 10-IE bombarded samples taken 0, 2, 7, and 14 dpb with anti-
609 Cas9 antibody. The top and bottom blot represent 2 independent sets of 10 IEs. + = 9 ng (top)
610 and 3 ng (bottom) Cas9; - = IEs that were not bombarded with Cas9-RNP; loading volume of 25
611 μ l (top) and 40 μ l (bottom) total soluble protein extract per IE sample.

612

613 **Figure 4**

614 Correlation plot between targeted editing efficiency of gRNA-Cas9 RNPs in protoplasts and
615 immature embryos (IEs) at (a) 48 dpb and in (b) M₀ plants treated at 30°C.

616

617 **Figure 5**

618 SnToxA assay in *Tsn1* targeted M₀ regenerants. (a) Fielder control grown from seed. (b-m)
619 independent M₀ regenerants with (b, c) homozygous wildtype; (d-h) heterozygous (d) -2; (e) -5;
620 (f) -31; (g) -1; (h) +1; and (i-m) biallelic or homozygous mutant (i) -2, -5; (j) -2, -2, (k) -1, -1; (l)
621 -2, -2; (m) -1, -1 genotypes. Mutation notation is as follows: a positive number, +, indicates the
622 number of bases inserted, a negative number, -, indicates the number of bases deleted.

623

624 **Figure 6**

625 SnTox5 assay in *Snn5* targeted M₀ regenerants. (a) Fielder control grown from seed. (b-m)
626 independent M₀ regenerants with (b) homozygous wildtype; (c-d) heterozygous in-frame mutant:
627 (c) -3; (d) -6; (e-h) heterozygous mutant: (e) -5; (f) +20; (g) +2-1; (h) -4; (i-m) biallelic or
628 homozygous mutant: (i) -11, -4; (j) -8, -2; (k) -10, -10; (l) +1, -2; (m) -5, -1 genotypes. Mutation
629 notation is as follows: a positive number, +, indicates the number of bases inserted, a negative
630 number, -, indicates the number of bases deleted.

631

632 **Supporting Information**

633

634 **Table S1**

635 gRNA target sequences.

636

637 **Table S2**

638 Primers used to amplify the target region for amplicon next generation sequencing. Nucleotides
639 shown in capital letters are the 5'-stub compatible with Illumina NGS library preparation.

640

641 **Table S3**

642 Genotypes of all edited M₀ plants obtained. + indicates the number of base pairs inserted, -
643 indicates the number of base pairs deleted.

644

645 **Figure S1**

646 Protoplast viability curve. N=3. Error bars indicate SEM.

647

648

649

650 **Figure S2**

651 Example of the difference in the number of unique mutant alleles between 14 dpb and 48 dpb.
652 Provided are the detected alleles in immature embryos bombarded with Tsn1g2-Cas9 RNPs and
653 treated at 37°C. The vertical bold dashed line represents the Cas9 cleavage site. Mutant alleles
654 are marked with *. Wild type alleles are marked as WT. Dashes indicate base pair deletions, red
655 boxes indicate base pair insertions, and bold letters indicate base pair substitutions.

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678 **References**

679 Banakar, R. et al., 2019. High-frequency random DNA insertions upon co-delivery of CRISPR-
680 Cas9 ribonucleoprotein and selectable marker plasmid in rice. *Scientific Reports*, 9.

681 Brandt, K.M. et al., 2020. A streamlined protocol for wheat (*Triticum aestivum*) protoplast
682 isolation and transformation with CRISPR-Cas ribonucleoprotein complexes. *Frontiers in*
683 *Plant Science*, 11, p.769.

684 Brooks, C. et al., 2014. Efficient gene editing in tomato in the first generation using the clustered
685 regularly interspaced short palindromic repeats/CRISPR-associated9 system. *Plant*
686 *Physiology*, 166(3), pp.1292–1297.

687 Butler, N.M. et al., 2015. Generation and inheritance of targeted mutations in potato (*Solanum*
688 *tuberosum* L.) using the CRISPR/Cas system. *PloS one*, 10(12), p.e0144591.

689 Char, S.N. et al., 2017. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency
690 targeted mutagenesis in maize. *Plant Biotechnology Journal*, 15(2), pp.257–268.

691 Cho, M.-J. et al., 2015. Improvement of Agrobacterium-mediated transformation frequency in
692 multiple modern elite commercial maize (*Zea mays* L.) inbreds by media modifications.
693 *Plant Cell, Tissue and Organ Culture (PCTOC)*, 121(3), pp.519–529.

694 Cho, M.-J., Ha, C.D. & Lemaux, P.G., 2000. Production of transgenic tall fescue and red fescue
695 plants by particle bombardment of mature seed-derived highly regenerative tissues. *Plant*
696 *Cell Reports*, 19(11), pp.1084–1089.

697 Cho, M.-J., Jiang, W. & Lemaux, P.G., 1998. Transformation of recalcitrant barley cultivars
698 through improvement of regenerability and decreased albinism. *Plant Science*, 138(2),
699 pp.229–244.

700 Faris, J.D. et al., 2010. A unique wheat disease resistance-like gene governs effector-triggered
701 susceptibility to necrotrophic pathogens. *Proceedings of the National Academy of Sciences*
702 *of the United States of America*, 107(30), pp.13544–13549.

703 Feng, Z. et al., 2013. Efficient genome editing in plants using a CRISPR/Cas system. *Cell*
704 *research*, 23(10), pp.1229–1232.

705 Friesen, T.L. & Faris, J.D., 2021. Characterization of Effector-Target Interactions in
706 Necrotrophic Pathosystems Reveals Trends and Variation in Host Manipulation. *Annual*
707 *review of phytopathology*, 59, pp.77–98.

708 Friesen, T.L. & Faris, J.D., 2012. Characterization of plant-fungal interactions involving
709 necrotrophic effector-producing plant pathogens. *Methods in molecular biology* (Clifton,
710 N.J.), 835, pp.191–207.

711 Fukuoka, S. et al., 2009. Loss of function of a proline-containing protein confers durable disease
712 resistance in rice. *Science (New York, N.Y.)*, 325(5943), pp.998–1001.

713 Garcia-Gimenez, G. et al., 2020. Targeted mutation of barley (1,3;1,4)- β -glucan synthases
714 reveals complex relationships between the storage and cell wall polysaccharide content. *The*
715 *Plant journal: for cell and molecular biology*, 104(4), pp.1009–1022.

716 Hamada, H. et al., 2018. Biolistic-delivery-based transient CRISPR/Cas9 expression enables in
717 planta genome editing in wheat. *Scientific Reports*, 8(1), pp.14422–7.

718 Jacobs, T.B. et al., 2015. Targeted genome modifications in soybean with CRISPR/Cas9. *BMC*
719 *Biotechnology*, 15(1), pp.16–10.

720 Jinek, M. et al., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive
721 bacterial immunity. *Science (New York, N.Y.)*, 337(6096), pp.816–821.

722 Kariyawasam, G.K., Richards, J.K., Wyatt, N.A., Running, K.L.D., Xu, S.S., Liu, Z., Borowicz,
723 P., Faris, J.D. & Friesen, T.L., 2021. The Parastagonospora nodorum necrotrophic effector
724 SnTox5 targets the wheat gene Snn5 and facilitates entry into the leaf mesophyll. *The New*
725 *phytologist*.

726 Kim, S. et al., 2014. Highly efficient RNA-guided genome editing in human cells via delivery of
727 purified Cas9 ribonucleoproteins. *Genome research*, 24(6), pp.1012–1019.

728 Lawrenson, T. et al., 2015. Induction of targeted, heritable mutations in barley and *Brassica*
729 *oleracea* using RNA-guided Cas9 nuclease. *Genome biology*, 16(1), pp.258–13.

730 LeBlanc, C., Zhang, F., Mendez, J., Lozano, Y., Chatpar, K., Irish, V.F. & Jacob, Y., 2018.
731 Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress.
732 *The Plant journal: for cell and molecular biology*, 93(2), pp.377–386.

733 Li, J.-F. et al., 2013. Multiplex and homologous recombination-mediated genome editing in
734 *Arabidopsis* and *Nicotiana benthamiana* using guide RNA and Cas9. *Nature Biotechnology*,
735 31(8), pp.688–691.

736 Liang, Z. et al., 2017. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9
737 ribonucleoprotein complexes. *Nature Communications*, 8, p.14261.

738 Liu, Z. et al., 2009. SnTox3 acts in effector triggered susceptibility to induce disease on wheat
739 carrying the Snn3 gene. *PLoS pathogens*, 5(9), p.e1000581.

740 Lor, V.S. et al., 2014. Targeted mutagenesis of the tomato PROCERA gene using transcription
741 activator-like effector nucleases. *Plant Physiology*, 166(3), pp.1288–1291.

742 Malnoy, M. et al., 2016. DNA-Free genetically edited grapevine and apple protoplast using
743 CRISPR/Cas9 ribonucleoproteins. *Frontiers in Plant Science*, 7(e188), p.1473.

744 Malzahn, A.A. et al., 2019. Application of CRISPR-Cas12a temperature sensitivity for improved
745 genome editing in rice, maize, and Arabidopsis. *BMC biology*, 17(1), pp.9–14.

746 Milner, M.J. et al., 2020. Turning Up the Temperature on CRISPR: Increased Temperature Can
747 Improve the Editing Efficiency of Wheat Using CRISPR/Cas9. *Frontiers in Plant Science*,
748 11.

749 Poddar, S. et al., 2020. Efficient isolation of protoplasts from rice calli with pause points and its
750 application in transient gene expression and genome editing assays. *Plant Methods*, 16(1),
751 pp.151–11.

752 Puchta, H., 2005. The repair of double-strand breaks in plants: mechanisms and consequences
753 for genome evolution. *Journal of experimental botany*, 56(409), pp.1–14.

754 Rodríguez-Leal, D. et al., 2017. Engineering quantitative trait variation for crop improvement by
755 genome editing. *Cell*, 171(2), pp.470–480.e8.

756 Sant'Ana, R.R.A. et al., 2020. PEG-Delivered CRISPR-Cas9 ribonucleoproteins system for gene-
757 editing screening of maize protoplasts. *Genes*, 11(9), p.1029.

758 Shan, Q. et al., 2014. Genome editing in rice and wheat using the CRISPR/Cas system. *Nature
759 Protocols*, 9(10), pp.2395–2410.

760 Shan, X. et al., 2019. Efficient isolation of protoplasts from freesia callus and its application in
761 transient expression assays. *Plant Cell, Tissue and Organ Culture (PCTOC)*, 138(3),
762 pp.529–541.

763 Svitashov, S. et al., 2016. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein
764 complexes. *Nature Communications*, 7.

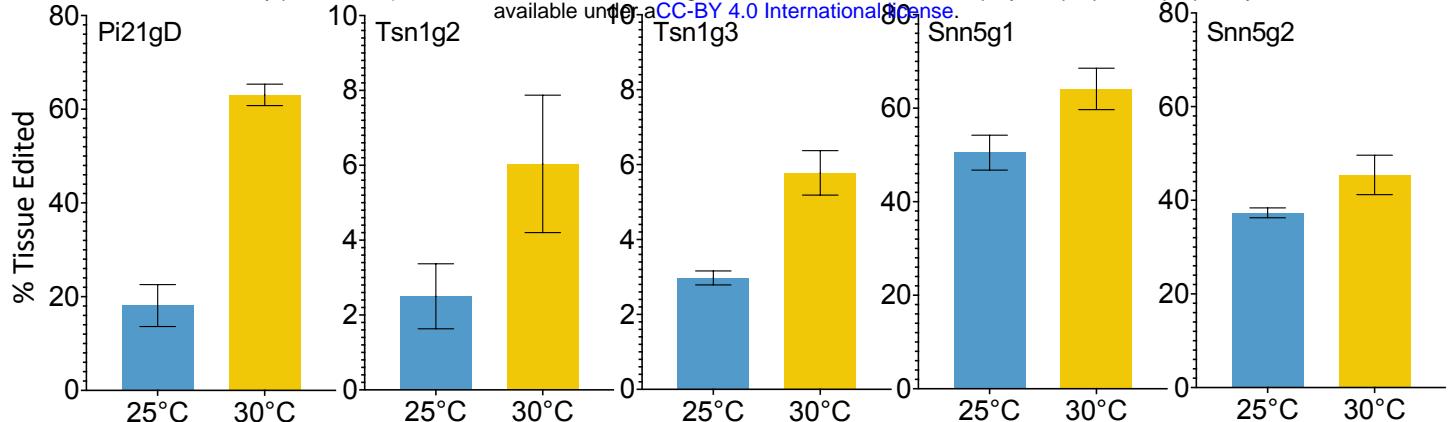
765 Svitashov, S. et al., 2015. Targeted mutagenesis, precise gene editing, and site-specific gene
766 insertion in maize using Cas9 and guide RNA. *Plant Physiology*, 169(2), pp.931–945.

767 Wang, S. et al., 2015. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system.
768 *Plant Cell Reports*, 34(9), pp.1473–1476.

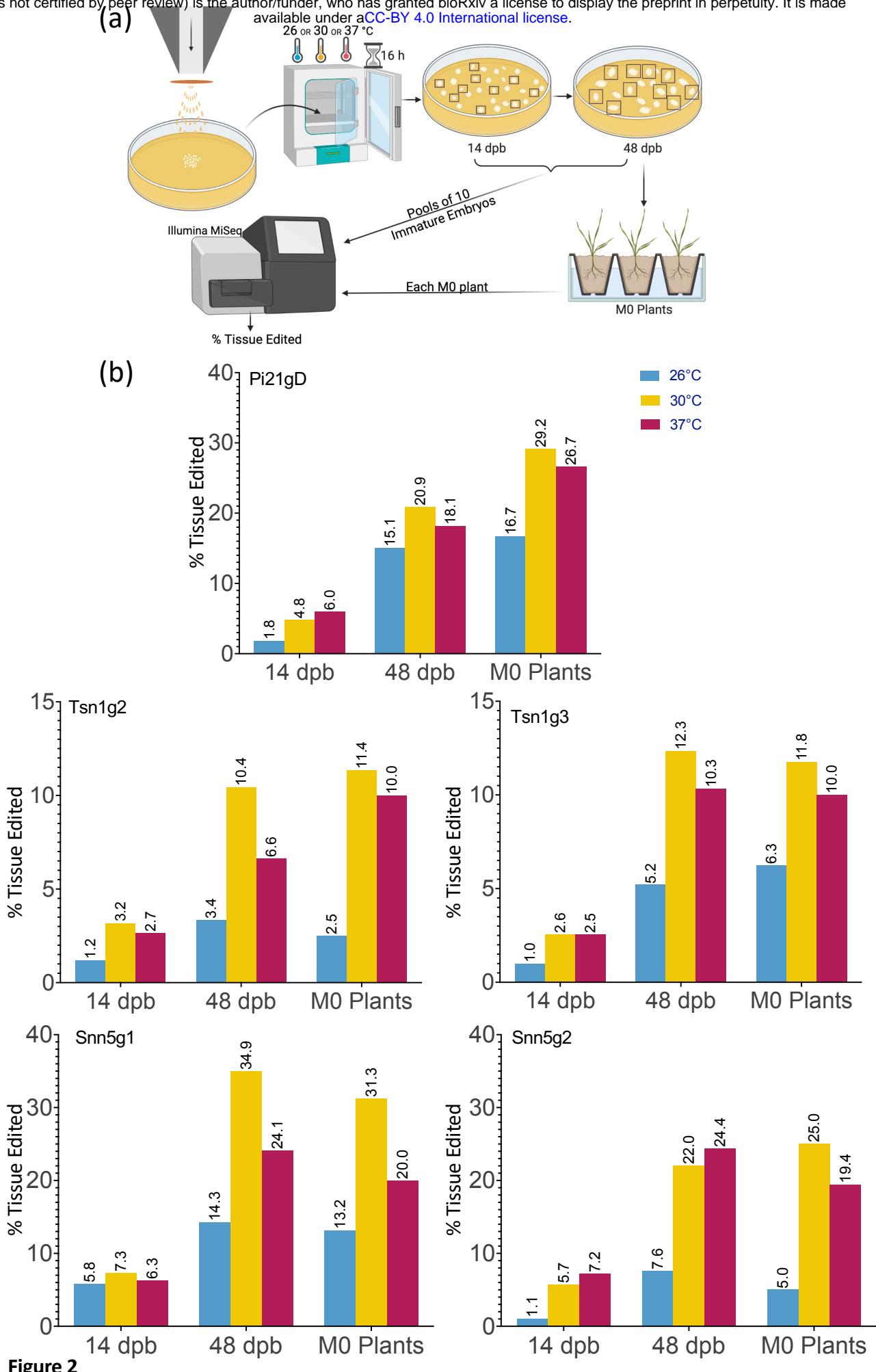
769 Wang, Y. et al., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat
770 confers heritable resistance to powdery mildew. *Nature Biotechnology*, 32(9), pp.947–951.

771 Woo, J.W. et al., 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9
772 ribonucleoproteins. *Nature Biotechnology*, 33(11), pp.1162–1164.

773 Yu, J. et al., 2021. Simultaneous targeting of duplicated genes in Petunia protoplasts for flower
774 color modification via CRISPR-Cas9 ribonucleoproteins. *Plant Cell Reports*, 40(6),
775 pp.1037–1045.


776 Zhang, Y et al., 2016. Efficient and transgene-free genome editing in wheat through transient
777 expression of CRISPR/Cas9 DNA or RNA. *Nature Communications*, 7(1), pp.12617–8.

778 Zhang, Y et al., 2021. CRISPR ribonucleoprotein-mediated genetic engineering in plants. *Plant*
779 *communications*, 2(2), p.100168.


780 Zhou, X. & Li, Y. eds., 2015. Oral Mucosal Microbes. In *Atlas of Oral Microbiology*. Academic
781 Press, pp. 95–107.

Temperature Treatment	Immature embryos regenerated	Genome A			Genome B			Genome D			% Tissue Edited	% Plants Edited
		Total MO Plants	Edited Plants	Heterozygous	Biallelic or Homozygous	Heterozygous	Biallelic or Homozygous	Heterozygous	Biallelic or Homozygous			
Pi21gD	26°C	10	4	1	0	1	1	0	1	0	16.7	25
	30°C	10	4	2	0	1	0	1	1	1	29.2	50
	37°C	10	5	2	0	1	1	1	1	1	26.7	40
Temperature Treatment		Immature embryos regenerated		Total MO Plants	Edited Plants		Heterozygous		Biallelic or Homozygous	% Tissue Edited	% Plants Edited	
Tsn1g2	26°C	10		20	1		1		0	2.5	5.0	
	30°C	10		22	3		1		2	11.4	13.6	
	37°C	10		40	7		6		1	10.0	17.5	
Tsn1g3	26°C	10		32	4		4		0	6.3	12.5	
	30°C	10		17	2		0		2	11.8	11.8	
	37°C	10		20	3		2		1	10.0	15.0	
Snn5g1	26°C	10		19	5		5		0	13.2	26.3	
	30°C	10		16	6		2		4	31.3	37.5	
	37°C	10		10	3		2		1	20.0	30.0	
Snn5g2	26°C	10		10	1		1		0	5.0	10.0	
	30°C	10		14	4		1		3	25.0	28.6	
	37°C	10		18	5		3		2	19.4	27.8	

Table 1

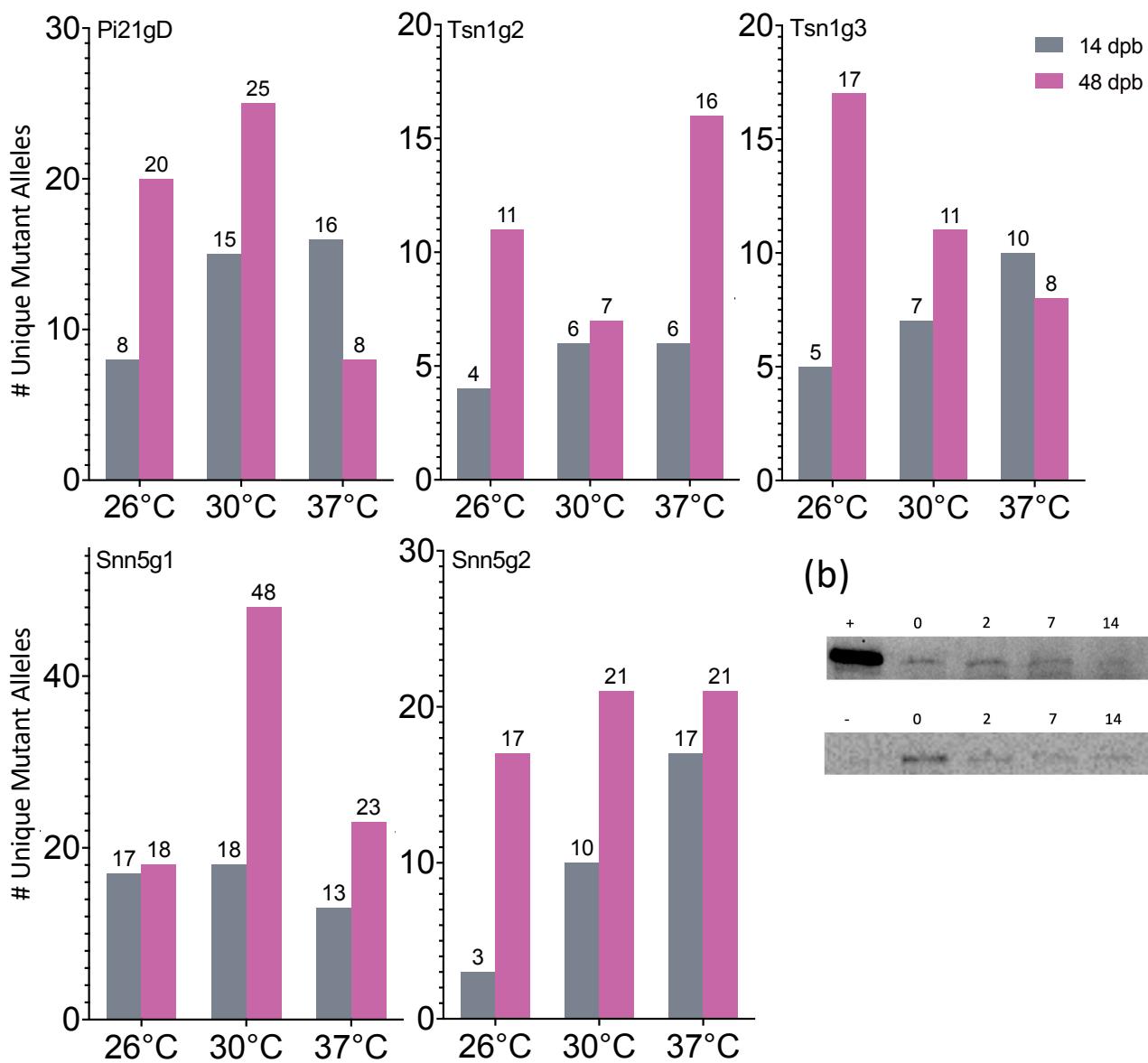
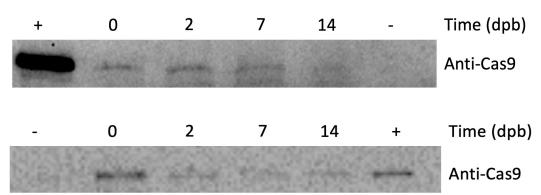
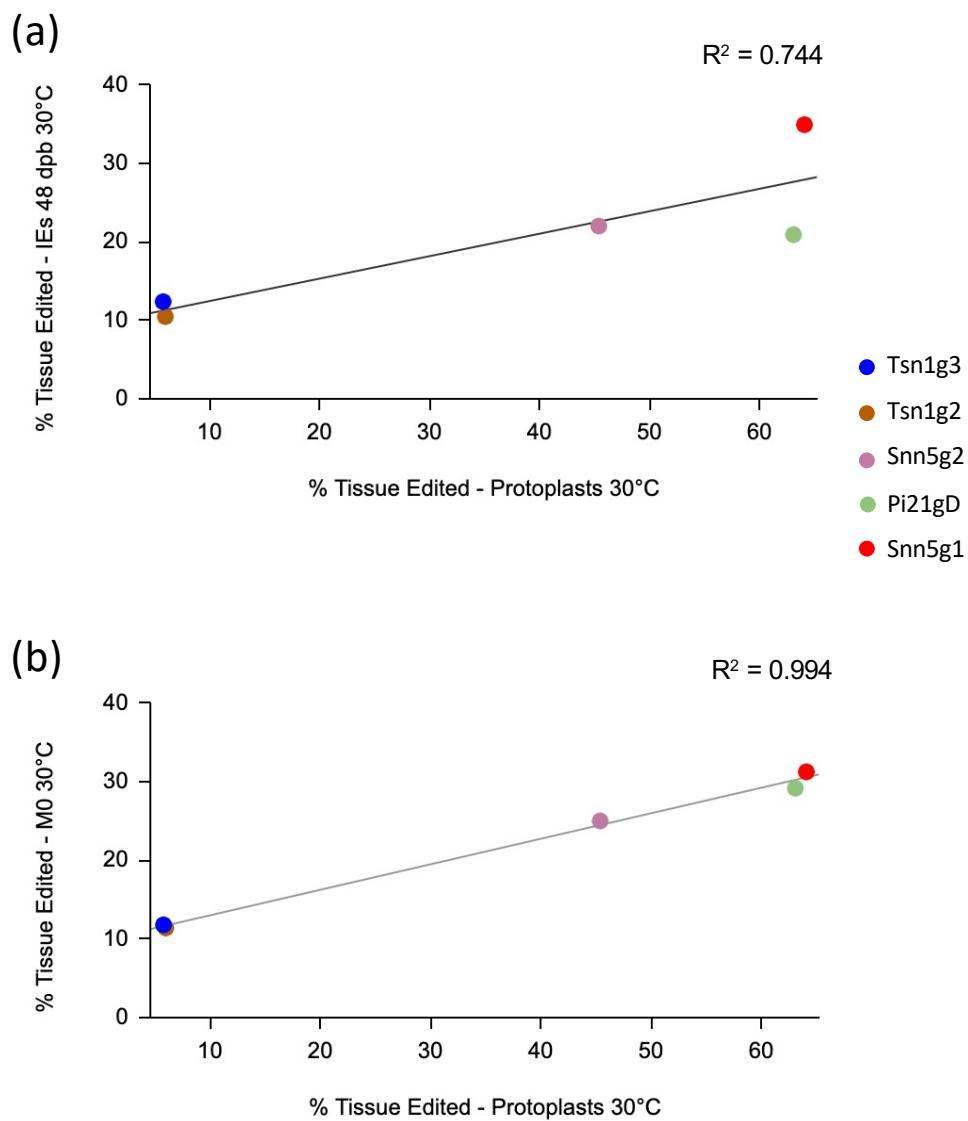
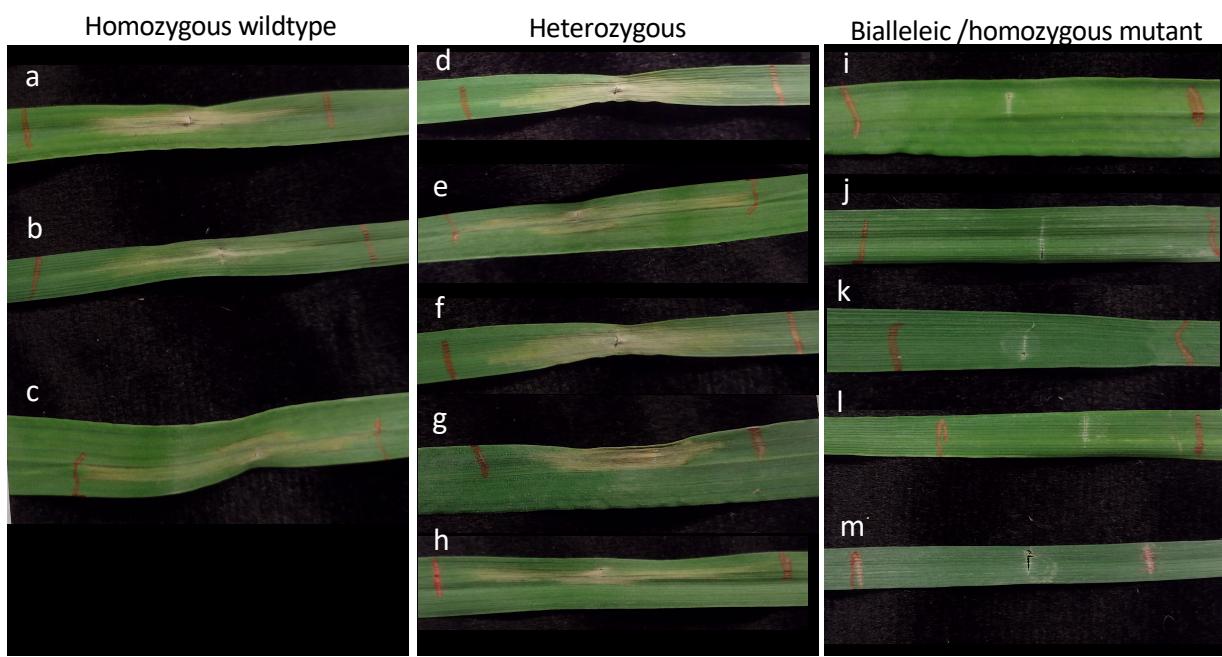


Figure 1

Figure 2

(a)

(b)

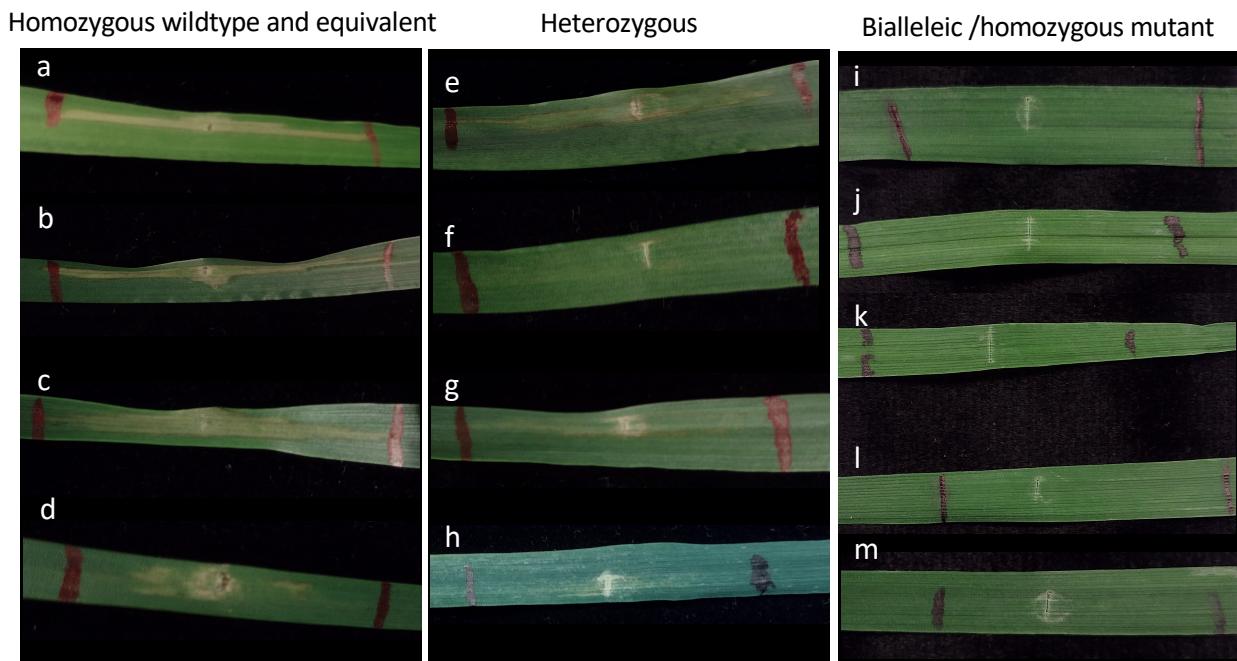

Figure 3

Figure 4

Figure 5

Figure 6