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Functional magnetic resonance imaging (fMRI) has revolu-
tionized cognitive neuroscience, but methodological barriers
limit the generalizability of findings from the lab to the real
world. Here, we present Neuroscout, an end-to-end platform
for analysis of naturalistic fMRI data designed to facilitate the
adoption of robust and generalizable research practices. Neu-
roscout leverages state-of-the-art machine learning models to
automatically annotate stimuli from dozens of naturalistic fMRI
studies, allowing researchers to easily test neuroscientific hy-
potheses across multiple ecologically-valid datasets. In addi-
tion, Neuroscout builds on a robust ecosystem of open tools
and standards to provide an easy-to-use analysis builder and
a fully automated execution engine that reduce the burden of
reproducible research. Through a series of meta-analytic case
studies, we validate the automatic feature extraction approach
and demonstrate its potential to support more robust fMRI re-
search. Owing to its ease of use and a high degree of automa-
tion, Neuroscout makes it possible to overcome modeling chal-
lenges commonly arising in naturalistic analysis and to easily
scale analyses within and across datasets, democratizing gen-
eralizable fMRI research.

Keywords: naturalistic fMRI, generalizability, re-
producibility, neuroinformatics, open-source

Functional magnetic resonance imaging (fMRI) is a
popular tool for investigating how the brain supports
real-world cognition and behavior. Vast amounts of
resources have been invested in fMRI research, and

thousands of fMRI studies mapping cognitive func-
tions to brain anatomy are published every year. Yet,
increasingly urgent methodological concerns threaten
the reliability of fMRI results and their generalizabil-
ity from laboratory conditions to the real world.

A key weakness of current fMRI research con-
cerns its generalizability—that is, whether conclu-
sions drawn from individual studies apply beyond
the participant sample and experimental conditions
of the original study (Bossier et al., 2020; Szucs &
Toannidis, 2017; Turner, Paul, Miller, & Barbey, 2018;
Yarkoni, 2020). A major concern is the type of stimuli
used in the majority of fMRI research. Many studies
attempt to isolate cognitive constructs using highly
controlled and limited sets of reductive stimuli, such
as still images depicting specific classes of objects in
isolation, or pure tones. However, such stimuli radi-
cally differ in complexity and cognitive demand from
real-world contexts, calling into question whether re-
sulting inferences generalize outside the laboratory
to more ecological settings (Nastase, Goldstein, &
Hasson, 2020). In addition, predominant statistical
analysis approaches generally fail to model stimulus-
related variability. As a result, many studies— and
especially those relying on small stimulus sets— likely
overestimate the strength of their statistical evidence
and their generalizability to new but equivalent stim-
uli (Westfall, Nichols, & Yarkoni, 2016). Finally, since
fMRI studies are frequently underpowered due to the
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cost of data collection, results can fail to replicate on
new participant samples (Button et al., 2013; Cremers,
Wager, & Yarkoni, 2017).

Naturalistic paradigms using life-like stimuli have
been advocated as a way to increase the generaliz-
ability of fMRI studies (DuPre, Hanke, & Poline,
2020; Hamilton & Huth, 2020; Nastase et al., 2020;
Sonkusare, Breakspear, & Guo, 2019). Stimuli such as
movies and narratives feature rich, multidimensional
variation, presenting an opportunity to test hypothe-
ses from highly controlled experiments in more ecolog-
ical settings. Yet, despite the proliferation of openly
available naturalistic datasets, challenges in modeling
these data limit their impact. Ecological variables are
difficult to characterize and co-occur with potential
confounds in complex and unexpected ways (Nastase
et al., 2020). This is exacerbated by the laborious
task of annotating events at fine temporal resolution,
which limits the number of variables that can realisti-
cally be defined and modelled. As a result, isolating
relationships between specific features of the stimuli
and brain activity in naturalistic data is especially
challenging, which deters researchers from conduct-
ing naturalistic experiments and limiting re-use of
existing public datasets.

A related and more fundamental concern limiting
the impact of fMRI research is the low reproducibility
of analysis workflows. Incomplete reporting practices
in combination with flexible and variable analysis
methods (Carp, 2012) are a major culprit. For in-
stance, a recent large-scale effort to test identical hy-
potheses in the same dataset by 70 teams found a high
degree of variability in the results, with different teams
often reaching different conclusions (Botvinik-Nezer
et al., 2020). Even re-executing the original analysis
from an existing publication is rarely possible, due to
insufficient provenance and a reliance on exclusively
verbal descriptions of statistical models and analytical
workflows (Ghosh et al., 2017; MacKenzie-Graham,
Van Horn, Woods, Crawford, & Toga, 2008). The
recent proliferation of community-led tools and stan-
dards—most notably the Brain Imaging Data Struc-
ture (Gorgolewski et al., 2016) standard—has galva-
nized efforts to foster reproducible practices across
the data analysis lifecycle. Unfortunately, for many

scientists the adoption of these tools remains out of
reach due to substantial technical challenges.

In response to these challenges, we developed Neu-
roscout: a unified platform for generalizable and repro-
ducible analysis of naturalistic fMRI data. Neuroscout
improves current research practice in three key ways.
First, Neuroscout provides an easy-to-use interface for
reproducible analysis of BIDS datasets, seamlessly in-
tegrating a diverse ecosystem of community-developed
resources into a unified workflow. Second, Neuroscout
encourages re-analysis of public naturalistic datasets
by providing access to hundreds of predictors ex-
tracted through an expandable set of state-of-the-art
feature extraction algorithms spanning multiple stim-
ulus modalities. Finally, by using standardized model
specifications and automated workflows, Neuroscout
enables researchers to easily operationalize hypothe-
ses in a uniform way across multiple (and diverse)
datasets, facilitating more generalizable multi-dataset
workflows such as meta-analysis.

In the following, we provide a broad overview of
the Neuroscout platform, and validate it by replicat-
ing well-established cognitive neuroscience findings
using a diverse set of public naturalistic datasets. In
addition, we present two case studies—face sensitiv-
ity of the fusiform face area and selectivity to word
frequency in visual word form area—to show how
Neuroscout can be used to conduct original research
on public naturalistic data. Through these examples,
we demonstrate how Neuroscout’s flexible interface
and wide range of predictors make it possible to dy-
namically refine models and draw robust inference on
naturalistic data, while simultaneously democratizing
gold standard practices for reproducible research.

Results

Overview of the Neuroscout platform

At its core, Neuroscout is a platform for repro-
ducible fMRI research, encompassing the complete
lifecycle of fMRI analysis from model specification
and estimation to the dissemination of results. We
focus particular attention on encouraging the re-use
of public datasets that use intrinsically high dimen-


https://doi.org/10.1101/2022.04.05.487222
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.487222; this version posted April 8, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

sional and generalizable naturalistic stimuli such as
movies and audio narratives. The platform is com-
posed of three primary components: a data ingestion
and feature extraction server, interactive analysis cre-
ation tools, and an automated model fitting work-
flow. All elements of the platform are seamlessly
integrated and can be accessed interactively online
(https://neuroscout.org).

Preprocessed and harmonized naturalistic fMRI datasets

The Neuroscout server indexes a curated set of pub-
licly available naturalistic fMRI datasets, and hosts
automatically extracted annotations of visual, au-
ditory, and linguistic events from the experimental
stimuli. Datasets are harmonized, preprocessed, and

ingested into a database using robust BIDS-compliant
pipelines, facilitating future expansion.

Automated annotation of stimuli

Annotations of stimuli are automatically extracted
using pliers (McNamara, De La Vega, & Yarkoni,
2017), a comprehensive feature extraction framework
supporting state-of-the-art algorithms and deep learn-
ing models (Figure 1). Currently available features
include hundreds of predictors coding for both low-
level (e.g., brightness, loudness) and high-level (e.g.,
object recognition indicators) properties of audiovi-
sual stimuli, as well as natural language properties
from force aligned speech transcripts (e.g., lexical
frequency annotations). The set of available pre-
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Figure 1: Example of automated feature extraction on stimuli from the “Merlin” dataset. Visual features
were extracted from video stimuli at a frequency of 1Hz. “Faces”: we applied a well-validated cascaded
convolutional network trained to detect the presence of faces (K. Zhang et al., 2016). “Building”: We used
Clarifai’s General Image Recognition model to compute the probability of the presence of buildings in each
frame. “Spoken word frequency” codes for the lexical frequency of words in the transcript, as determined by
the SubtlexUS database (Brysbaert & New, 2009). Language features are extracted using speech transcripts
with precise word-by-word timing determined through forced alignment.
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dictors can be easily expanded through community-
driven implementation of new pliers extractors, as
well as publicly shared deep learning models indexed
by pliers’ general-purpose extractors. All extracted
predictors are made publicly available through a
well-documented application programming interface
(https://neuroscout.org/api). An interactive web
tool that makes it possible to further refine extracted
features through expert human curation is currently
under development.

Analysis creation and execution tools

Neuroscout’s interactive analysis cre-
ation tools—available as a web application
(https://neuroscout.org/builder) and python

library (pyNS)—enable easy creation of fully re-
producible fMRI analyses (Figure 2a). To build an
analysis, users choose a dataset and task to analyze,
select among pre-extracted predictors and nuisance
confounds to include in the model, and specify statis-
tical contrasts. Raw predictor values can be modified
by applying common variable transformations such
as scaling, orthogonalization, and hemodynamic
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convolution. Internally all elements of the multi-level
statistical model are formally represented using the
BIDS Statistical Models specification (Markiewicz,
Bottenhorn, et al., 2021), ensuring transparency
and reproducibility. At this point, users can inspect
design matrices through interactive visualizations and
quality-control reports, iteratively refining models
if necessary. Finalized analyses are locked from
further modification, assigned a unique identifier, and
packaged into a self-contained bundle.

Analyses can be executed in a single command
line using Neuroscout’s automated model execution
workflow (Figure 2b). Neuroscout uses container tech-
nology (i.e. Docker and Singularity) to minimize soft-
ware dependencies, facilitate installation, and ensure
portability across a wide range of environments (in-
cluding high performance computers (HPC) and the
cloud). At run time, preprocessed imaging data are
automatically fetched using Datalad (Halchenko et
al., 2021), and the analysis is executed using FitLins
(Markiewicz, De La Vega, et al., 2021), a standardized
pipeline for estimating BIDS Stats Models. Once com-
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Figure 2: Overview schematic of analysis creation and model execution. a) Interactive analysis creation is
made possible through an easy-to-use web application, resulting in a fully specified reproducible analysis
bundle. b) Automated model execution is achieved with little-to-no configuration through a containerized
model fitting workflow. Results are automatically made available in NeuroVault, a public repository for

statistical maps.
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Figure 3: Meta-analytic statistical maps for GLM models targeting a variety of effects with strong priors
from fMRI research. Individual GLM models were fit for each effect of interest, and dataset level estimates
were combined using image-based meta-analysis. Images were thresholded at Z=3.29 (p<0.001) voxel-wise.
Abbreviations: V1 = primary visual cortex; FEF = frontal eye fields; AG = angular gyrus; PCUN =
precuneus; Al = primary auditory cortex; PMC = premotor cortex; IFG = inferior frontal gyrus; STS =
superior temporal sulcus; STG = superior temporal gyrus; PPA = parahippocampal place area; VWFA

= visual word-form area; IPL = inferior parietal lobule; IPS = inferior parietal sulcus; LOTC

occipito-temporal cortex.

pleted, thresholded statistical maps and provenance
metadata are submitted to NeuroVault (Gorgolewski
et al., 2015), a public repository for statistical maps,
guaranteeing compliance to FAIR (findable, accessi-
ble, interoperable, and reusable) scientific principles
(Wilkinson et al., 2016). Finally, Neuroscout facili-
tates sharing and appropriately crediting the dataset
and tools used in the analysis by automatically gen-
erating a bibliography that can be used in original
research reports.

Scalable workflows for generalizable inference

Neuroscout makes it trivial to specify and ana-
lyze fMRI data in a way that meets gold standard
reproducibility principles. This is per se a crucial
contribution to fMRI research, which often fails ba-

= lateral

sic reproducibility standards. However, Neuroscout’s
transformative potential is fully realized through the
scalability of its workflows. Automated feature ex-
traction and standardized model specification make
it easy to operationalize and test equivalent hypothe-
ses across many datasets, spanning larger participant
samples and a more diverse range of stimuli.

The following analyses demonstrate the potential
of multi-dataset approaches and their importance for
generalizable inference by investigating a set of well-
established fMRI findings across all of Neuroscout’s
datasets. We focused these analyses on three fea-
ture modalities (visual, auditory, and language), rang-
ing from low-level features of the signal (loudness,
brightness, presence of speech, and shot change), to
high-level characteristics with well established focal
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Figure 4: Comparison of a sample of four single study results with meta-analysis (N=20) for three features:
“building” and “text” extracted through Clarifai visual scene detection models, and sound “loudness” (root
mean squared of the auditory signal). Images were thresholded at Z=3.29 (p<0.001) voxel-wise. Regions
with a priori association with each predictor are highlighted: PPA, parahippocampal place area; VWFA,
visual word form area; STS, superior temporal sulcus. Datasets: Budapest, Learning Temporal Structure
(LTS), 500daysofsummer task from Naturalistic Neuroimaging Database, and Sherlock.

correlates (visual presence of buildings, faces, tools,
landscape and text). For each feature and stimulus,
we fit a whole-brain univariate GLM with the target
feature as the sole predictor, in addition to standard
nuisance covariates (see Methods for details). Finally,
we combined estimates across twenty studies using
random-effects image-based meta-analysis (IBMA),
resulting in a consensus statistical map for each fea-

ture.

Even using a simple one-predictor approach, we
observed robust meta-analytic activation patterns
largely consistent with expectations from the existing
literature (Figure 3), a strong sign of the reliability
of automatically extracted predictors. We observed
activation in the primary visual cortex for brightness
(Peters, Jans, van de Ven, De Weerd, & Goebel, 2010),
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parahippocampal place area (PPA) activation in re-
sponse to buildings and landscapes (Hausler, Eickhoff,
& Hanke, 2022; Park & Chun, 2009), visual word
form area (VWFA) activation in response to text
(L. Chen et al., 2019), and lateral occipito-temporal
cortex (LOTC) and parietal activation in regions as-
sociated with action perception and action knowledge
(Schone, Maimon-Mor, Baker, & Makin, 2021; Va-
lyear, Cavina-Pratesi, Stiglick, & Culham, 2007) in
response to the presence of tools on screen. For au-
ditory features, we observed primary auditory cortex
activation in response to loudness (Langers, van Dijk,
Schoenmaker, & Backes, 2007), and superior tempo-
ral sulcus and gyrus activity in response to speech
(Sekiyama, Kanno, Miura, & Sugita, 2003). We also
observed plausible results for visual shot changes, a
feature with fewer direct analogs from the literature,
which yielded activations in the frontal eye fields, the
precuneus, and parietal regions areas traditionally im-
plicated in attentional orienting and reference frame
shifts (Corbetta et al., 1998; Fox, Corbetta, Snyder,
Vincent, & Raichle, 2006; Kravitz, Saleem, Baker,
& Mishkin, 2011; Rocca et al., 2020). The only no-
table exception was a failure to detect fusiform face
area (FFA) activity in response to faces (Figure 5),
an interesting result that we dissect in the following
section.

Crucially, although study-level results largely ex-
hibited plausible activation patterns, a wide range
of idiosyncratic variation was evident across datasets
(Figure 4). For instance, for “building” we observed
PPA activity in almost every study. However, we
observed a divergent pattern of activity in the an-
terior temporal lobe (ATL), with some studies indi-
cating a deactivation, others activation, and others
no relationship. This dissonance was resolved in the
meta-analysis, which indicated no relationship with
“building” and the ATL, but confirmed a strong asso-
ciation with the PPA. Similar study-specific variation
can be observed with other features. These results
highlight the limits of inferences made from single
datasets, which could lead to drawing overly general
conclusions. In contrast, multi-dataset meta-analytic
approaches are intrinsically more robust to stimulus-
specific variation, licensing broader generalization.

Flexible covariate addition for robust natural-
istic analysis

A notable exception to the successful replications
presented in the previous section is the absence of
fusiform face area (FFA) activation for faces in nat-
uralistic stimuli (Figure 5a). Given long-standing
prior evidence implicating the FFA in face processing
(Kanwisher, McDermott, & Chun, 1997), it is highly
unlikely that these results are indicative of flaws in
the extant literature. A more plausible explanation
is that our “naive” single predictor models failed to
account for complex scene dynamics present in natural-
istic stimuli. Unlike controlled experimental designs,
naturalistic stimuli are characterized by systematic
co-occurrences between cognitively relevant events.
For example, in narrative-driven movies (the most
commonly used audio-visual naturalistic stimuli) the
presentation of faces often co-occurs with speech—a
strong driver of brain activity. Failing to account for
this shared variance can confound model estimates
and mask true effects attributable to predictors of
interest.

Neuroscout addresses these challenges by pairing
access to a wide range of pre-extracted features with
a flexible and scalable model specification framework.
Researchers can use Neuroscout’s model builder to
iteratively build models that control and assess the
impact of a wide range of potential confounds with-
out the need for additional data collection or manual
feature annotation. Analysis reports provide visual-
izations of the correlation structure of design matrices,
which can inform covariate selection and facilitate in-
terpretation. These affordances for iterative covariate
control allow us to readily account for the potential
confounding effect of speech, a predictor that co-varies
with faces in some datasets but not others (Pearson’s
R range: -0.55, 0.57; mean: 0.18). After controlling
for speech, we observed an association between face
presentation and right FFA activity across 17 datasets
(Figure 5b; peak z=5.70). Yet, the strength of this
relationship remained weaker than one might expect
from traditional face localizer tasks.

In movies, face perception involves repeated and
protracted presentation of a relatively narrow set of in-
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Figure 5: Meta-analysis of face perception with iterative addition of covariates. Left; Only including binary
predictors coding for the presence of faces on screen did not reveal activity in the right fusiform face area
(rFFA). Middle; Controlling for speech removed spurious activations and revealed rFFA association with
face presentation. Right; Controlling for temporal adaptation to face identity in addition to speech further
strengthened the association between rFFA and face presentation. N=17 datasets; images were thresholded

at Z=3.29 (p<0.001) voxel-wise.

dividual faces. Given evidence of rapid adaptation of
category-selective fMRI response to individual stimuli
(Grill-Spector et al., 1999), FFA activation in nat-
uralistic stimuli may be attenuated by a failure to
distinguish transient processes (e.g., initial encoding)
from indiscriminate face exposure. To test the hypoth-
esis that adaptation to specific faces suppresses FFA
activity, we further refined our models by controlling
for the cumulative time of exposure to face identities
(in addition to controlling for speech). Using embed-
dings from FaceNet, a face recognition convolutional
neural network, we clustered individual face presen-
tations into groups representing distinct characters
in each movie. We then computed the cumulative
presentation of each face identity and included this
regressor as a covariate.

After controlling for face adaptation, we observed
stronger effects in the right FFA (Figure 5c; peak
z=7.35), highlighting its sensitivity to dynamic char-
acteristics of face presentation which cannot always
be captured by traditional designs. Notably, unlike in

traditional localizer tasks, we still observe significant
activation outside of the FFA, areas whose relation
to face perception can be further explored in future
analyses using Neuroscout’s rich feature set.

Large samples meet diverse stimuli: a linguis-
tic case study

Our final example illustrates the importance of
workflow scalability in the domain of language pro-
cessing, where the use of naturalistic input has been
explicitly identified as not only beneficial but nec-
essary for real-world generalizability (Hamilton &
Huth, 2020). Owing to their ability to provide more
robust insights into real-life language processing, stud-
ies using naturalistic input (e.g., long written texts or
narratives) are becoming increasingly common in lan-
guage neuroscience (Andric & Small, 2015; Brennan,
2016; Nastase et al., 2021). Yet, even when natu-
ralistic stimuli are used, individual studies are rarely
representative of the many contexts in which language
production and comprehension take place in daily life
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(e.g., dialogues, narratives, written exchanges, etc),
which raises concerns on the generalizability of their
findings. Additionally, modeling covariates is partic-
ularly challenging for linguistic stimuli, due to their
complex hierarchical structure. As a consequence,
single studies are often at risk of lacking the power
required to disentangle the independent contributions
of multiple variables.

A concrete example of this scenario comes from one
of the authors’ (TY) previous work (Yarkoni, Speer,
& Zacks, 2008). In a naturalistic rapid serial visual
presentation (RSVP) reading experiment, Yarkoni
and colleagues (2008) reported an interesting inci-
dental result: activity in the visual word form area
(VWFA)—an area primarily associated with visual fea-
ture detection and orthography-phonology mapping
(Dietz, Jones, Gareau, Zeffiro, & Eden, 2005)—was
significantly modulated by lexical frequency. Interest-
ingly, these effects were robust to phonological and
orthographic covariates, suggesting that the involve-
ment of VWFA in language comprehension may not
be specific to reading. Yet, as the experiment only
involved visual presentation of linguistic stimuli, this
hypothesis could not be corroborated empirically. In
addition, the authors observed that frequency effects
disappeared when controlling for lexical concreteness.
As the two variables were highly correlated, the au-
thors speculated that the study may have lacked the
power to disentangle their contributions and declared
the results inconclusive.

Neuroscout makes it possible to re-evaluate linguis-
tic hypotheses in ecological stimuli using a wide range
of linguistic annotations spanning both phonologi-
cal/orthographic word properties (e.g., duration and
phonological distinctiveness), semantic descriptors
(e.g., valence, concreteness, sensorimotor attributes),
and higher-level information-theoretic properties of
language sequences (e.g., entropy in next-word predic-
tion and word-by-word surprisal). We reimplemented
analytic models from Yarkoni et al. (2008) across all
Neuroscout datasets, including regressors for word
frequency, concreteness, speech, and control ortho-
graphic measures (number of syllables, number of
phones, and duration), alongside a standard set of
nuisance parameters. As before, we used IBMA to

compute meta-analytic estimates for each variable.
The resulting maps displayed significant VWFA ef-
fects for both frequency and concreteness (Figure 6),
corroborating the hypothesis of its involvement in lex-
ical processing independent of presentation modality,
and arguably in the context of language-to-imagery

mapping.
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Figure 6: Meta-analytic statistical maps for concrete-
ness and frequency controlling for speech, text length,
number of syllables and phonemes, and phone-level
Levenshtein distance. N=33 tasks; images were thresh-
olded at Z=3.29 (p<0.001) voxel-wise. Visual word
form area, VWFA.

Note that had we only had access to results from the
original study, our conclusions might have been sub-
stantially different. Using a relatively liberal thresh-
old of p<0.01, only 12 out of 33 tasks showed sig-
nificant ROI-level association between VWFA and
frequency, and only 5 tasks showed an association
between VWFA and concreteness. In addition, in
only one task was VWFA significantly associated with
both frequency and concreteness. These ROI-level
results highlight the power of scalability in the context
of naturalistic fMRI analysis. By drawing on larger
participant samples and more diverse stimuli, meta-
analysis overcomes power and stimulus variability
limitations that can cause instability in dataset-level
results.
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Discussion

Neuroscout seeks to promote the widespread adop-
tion of reproducible and generalizable {MRI research
practices, allowing users to easily test a wide range
of hypotheses in dozens of open naturalistic datasets
using automatically extracted neural predictors. The
platform is designed with a strong focus on repro-
ducibility, providing a unified framework for fMRI
analysis that reduces the burden of reproducible fMRI
analysis and facilitates transparent dissemination of
models and statistical results. Owing to its high de-
gree of automation, Neuroscout also facilitates the
use of meta-analytic workflows, enabling researchers
to test the robustness and generalizability of their
models across multiple datasets.

We have demonstrated how Neuroscout can incen-
tivize more ecologically generalizable fMRI research
by addressing common modeling challenges that have
traditionally deterred naturalistic research. In partic-
ular, as we show in our meta-analyses, automatically
extracted predictors can be used to test a wide range
of hypotheses on naturalistic datasets without the
need for costly manual annotation. Due to the uncon-
strained nature of the stimuli, naturalistic research
often requires controlling for multiple sources of con-
founding variance in order to isolate effects of inter-
est—as illustrated in our case study on face processing
in the FFA. With this in mind, Neuroscout features a
flexible model builder and hundreds of available natu-
ralistic variables, facilitating iterative refinement and
testing of models. Although we primarily focused on
replicating established effects for validation, a range
of predictors operationalizing less explored cognitive
variables are already available in the platform, and,
as machine learning algorithms continue to advance,
we expect possibilities for interesting additions to
Neuroscout’s feature set to keep growing at a fast
pace. As a result, we have designed Neuroscout and
its underlying feature extraction framework pliers to
facilitate future community-driven expansion to new
algorithms and deep learning models, ensuring the
longevity of the platform.

We have also shown how Neuroscout’s scalability
facilitates the use of meta-analytic workflows, which

enable more robust and generalizable inference. As
we have pointed out in some of our examples, small
participant samples and stimulus-specific effects can
at times lead to misleading dataset-level results. Au-
tomatically extracted predictors are particularly pow-
erful when paired with Neuroscout’s flexible model
specification and execution workflow, as their com-
bination makes it easy to operationalize hypotheses
in identical ways across multiple diverse dataset and
gather more generalizable consensus estimates. While
large-N studies are becoming increasingly common
in cognitive neuroscience, the importance of relying
on large and diverse stimulus sets has been thus far
underestimated (Westfall et al., 2016), placing Neu-
roscout in a unique position in the current research
landscape. Importantly, although we have primarily
focused on demonstrating the advantages of large-scale
workflows in the context of meta-analysis, scalability
can also be leveraged for other secondary workflows
(e.g., machine learning pipelines, multi-verse analyses,
or mega-analyses) and along dimensions other than
datasets (e.g., model parameters such as transforma-
tions and covariates).

A fundamental goal of Neuroscout is to provide
researchers with tools that automatically ensure the
adoption of gold-standard research practices through-
out the analysis lifecycle. We have paid close attention
to ensuring transparency and reproducibility of sta-
tistical modeling by adopting a community-developed
specification of statistical models (BIDS Stats Mod-
els), and developing accessible tools to specify, visual-
ize and execute analyses. Neuroscout’s model builder
can be readily accessed online, and the execution en-
gine is designed to be portable, ensuring seamless
deployment across computational environments. This
is a key contribution to cognitive neuroscience, which
too often falls short of meeting these basic criteria of
sound scientific research.

Future directions for the platform include improving
current functionality (e.g., by expanding the predic-
tors and datasets repertoires) as well as expanding to
include new use cases. Although we have primarily
focused on naturalistic datasets—as they intrinsically
feature a high degree of reusability and ecological
validity—Neuroscout workflows are in principle ap-
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plicable to any BIDS-compliant dataset. Indexing
non-naturalistic fMRI datasets will be an important
next step, an effort that will be supported by the
proliferation of data sharing portals and availabil-
ity of harmonized preprocessed derivatives. Other
potential expansions include facilitating analysis exe-
cution (e.g., through integration with cloud services)
and increasing the automatization of dataset and fea-
ture ingestion. In line with Neuroscout’s open source
philosophy, these developments strive to maximize
community involvement throughout all stages of the
platform’s life cycle, ensuring long-term maintainabil-
ity and sustained adherence to the evolving needs,
technologies, and standards of the field.

Materials and Methods
Code availability

All code from our processing pipeline and core Neu-
roscout infrastructure is available online (https://
www.github. com/neuroscout/neuroscout), includ-
ing the Python client library pyNS (https://www
.github.com/neuroscout/pyNs). The Neuroscout-
CLI analysis engine is available as a Docker and
Singularity container, and the source code is also
made available (https://github.com/neuroscout/
neuroscout-cli/). Finally, an online supplement
following the analyses showcased in this paper is
available as interactive Jupyter Book (https://
neuroscout.github.io/neuroscout-paper/). All
are available under a permissive BSD license.

Datasets

The analyses presented in this paper are based on
13 naturalistic fMRI datasets sourced from various
open data repositories (see Table 1). We focused
on BIDS-compliant datasets which included the ex-
act stimuli presented with precise timing informa-
tion. Datasets were queried and parsed using pybids
(https://github.com/bids-standard/pybids) and
ingested into a SQL database for further subsequent
analysis. Several datasets spanned various original
studies or distinct simuli (e.g. Narratives, NNDb),
resulting in 35 unique “tasks” or ”studies” available

for analysis. The full list of datasets and their avail-
able predictors are available on Neuroscout (https://
neuroscout.org/datasets).

fMRI Preprocessing

Neuroscout datasets are uniformly preprocessed us-
ing FMRIPREP (version 1.2.2) (Esteban et al., 2020,
2019, 2022), a robust NiPype-based MRI preprocess-
ing pipeline. The resulting preprocessed data are pub-
licly available for download (https://github.com/
neuroscout-datasets). The following methods de-
scription was semi-automatically generated by FM-
RIPREP.

Each T1-weighted (T1w) volume is corrected for
intensity non-uniformity using N4BiasFieldCorrec-
tion v2.1.0 (Tustison et al., 2010) and skull-stripped
using antsBrainExtraction.sh v2.1.0 (using the OA-
SIS template). Spatial normalization to the ICBM
152 Nonlinear Asymmetrical template version 2009¢
(Fonov, Evans, McKinstry, Almli, & Collins, 2009)
is performed through nonlinear registration with the
antsRegistration tool of ANTs v2.1.0 (Avants, Epstein,
Grossman, & Gee, 2008), using brain-extracted ver-
sions of both T1lw volume and template. Brain tissue
segmentation of cerebrospinal fluid (CSF), white mat-
ter (WM), and gray matter (GM) were performed on
the brain-extracted T1w using fast (Y. Zhang, Brady,
& Smith, 2001) (FSL v5.0.9).

Functional data are motion-corrected using mcflirt
(FSL v5.0.9, Jenkinson, Bannister, Brady, and Smith
2002). The images are subsequently co-registered to
the T1w volume using boundary-based registration
(Greve & Fischl, 2009) with 9 degrees of freedom, using
flirt (FSL). Motion correcting transformations, BOLD-
to-T1w transformation, and T1w-to-template warp
were concatenated and applied in a single step using
antsApplyTransforms (ANTs v2.1.0) using Lanczos
interpolation.

Anatomically based physiological noise regressors
were created using CompCor (Behzadi, Restom, Liau,
& Liu, 2007). A mask to exclude signals with cortical
origin is obtained by eroding the brain mask, ensuring
it only contains subcortical structures. Six principal
components are calculated within the intersection of
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Name Subj | DOI/URI Scan Modality | Description
time
Study Forrest 13 doi:10.18112/ 120 AV Slightly abridged German
(Hanke et al., 2014) openneuro.ds000113 version of the movie: “For-
.v1.3.0 rest Gump”
Life 19 datasets.datalad.org/ | 62.8 AV Four segments of the Life na-
(Nastase, Halchenko, ?dir=/labs/haxby/life ture documentary
Connolly, Gobbini, &
Haxby, 2018)
Raiders 11 datasets.datalad.org/ | 113.3 AV Full movie: “Raiders of the
(Haxby et al., 2011) ?dir=/labs/haxby/ Lost Ark”
raiders
Learning Temporal | 30 doi:10.18112/ 20.1 AV Three clips from the movie
Structure (LTS) openneuro.ds001545 “Grand Budapest Hotel”, pre-
(Aly, Chen, Turk- vi.1.1 sented six times each. Some
Browne, & Hasson, clips were scrambled.
2018)
Sherlock 16 doi:10.18112/ 23.7 AV The first half of the first
(J. Chen et al., 2017) openneuro.ds001132 episode from “Sherlock” TV
.v1.0.0 series.
SherlockMerlin 18 Temporarily unavailable | 25.1 AV Full episode from “Merlin”
(Zadbood, Chen, TV series. Only used Mer-
Leong, Norman, & lin task to avoid analyzing
Hasson, 2017) the Sherlock task twice.
Schematic Narrative | 31 doi:10.18112/ 50.4 AV/AN 16 three-minute clips, includ-
(Baldassano, Hasson, openneuro.ds001510 ing audiovisual clips and nar-
& Norman, 2018) .v2.0.2 ration.
ParanoiaStory 22 doi:10.18112/ 21.8 AN Audio narrative designed to
(Finn, Corlett, Chen, openneuro.ds001338 elicit individual variation in
Bandettini, & Consta- .v1.0.0 suspicion/paranoia.
ble, 2018)
Budapest 25 doi:10.18112/ 50.9 AV The majority of the movie
(Visconti di  Oleg- openneuro.ds003017 “Grand Budapest Hotel”, pre-
gio Castello, .v1.0.3 sented in intact order
Chauhan, Jiahui,
& Gobbini, 2020)
Naturalistic Neu- | 86 doi:10.18112/ 112.03 | AV Movie watching of 10 full-
roimaging Database openneuro.ds002837 length movies
(NNDbD) .v2.0.0
(Aliko, Huang, Ghe-
orghiu, Meliss, &
Skipper, 2020)
Narratives 328 doi:10.18112/ 32.5 AN Passive listening of 16 audio
(Nastase et al., 2021) openneuro.ds002345 narratives (two tasks were
.vi.1.4 not analyzed due to prepro-
cessing error)

Table 1: Neuroscout datasets included in the validation analyses. Subj is the number of unique subjects.
Scan Time is the mean scan time per subject (in minutes). AV = Audio-Visual; AN = Audio Narrative
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the subcortical mask and the union of CSF and WM
masks calculated in T1w space, after their projection
to the native space of each functional run. Many inter-
nal operations of FMRIPREP use Nilearn (Abraham
et al., 2014), principally within the BOLD-processing
workflow.

Automatically extracted features
Overview

Neuroscout leverages state-of-the-art machine learn-
ing algorithms to automatically extract hundreds of
novel neural predictors from the original experimen-
tal stimuli. Automated feature extraction relies on
pliers, a python library for multimodal feature ex-
traction which provides a standardized interface to a
diverse set of machine learning algorithms and APIs
(McNamara et al., 2017). For all analyses reported
in this paper the same set of feature extractors are
applied across all datasets (see Table 2), except where
not possible due to modality mismatch (e.g. visual
features in audio narratives), or features intrinsically
absent from the stimuli (e.g. faces in the Life nature
documentary). A description of all features included
in this paper is provided below. A complete list of
available predictors and features is actualized online
at: https://neuroscout.org/predictors.

Visual features

Brightness We computed brightness (average lumi-
nosity) for frame samples of videos by computing the
average luminosity for pixels across the entire image.
We took the maximum value at each pixel from the
RGB channels, computed the mean, and divided by
255.0 (the maximum value in RGB space), resulting
in a scalar ranging from 0 to 1. This extractor is
available through pliers as BrightnessFExtractor.

Clarifai Object Detection Clarifai is a computer
vision company that specializes in using deep learning
networks to annotate images through their API as a
service. We used Clarifai’s “General” model, a pre-
trained deep convolutional neural network (CNN) for
multi-class classification of over 11,000 categories of
visual concepts, including objects and themes.

To reduce the space of possible concepts, we pre-
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selected 4 concepts that could plausibly capture psy-
chologically relevant categories (see Table 2). Feature
extraction was performed using pliers’ ClarifaiAPI-
ImageExtractor, which wraps Clarifai’s Python API
client. We submitted the sampled visual frames from
video stimuli to the Clarifai API, and received values
representing the model’s predicted probability of each
concept for that frame.

Face detection, alignment, and recognition
Face detection, alignment, and recognition were per-
formed using the FaceNet package (https://github
.com/davidsandberg/facenet), which is an open
TensorFlow implementation of state-of-the-art face
recognition CNNs. As this feature was not natively
available in pliers, we computed it offline and uploaded
it to Neuroscout using the feature upload portal.

First, face detection, alignment, and cropping are
performed through Multi-task Cascaded Convolu-
tional Networks (MTCNN; K. Zhang et al. 2016).
This framework uses unified cascaded CNNs to detect,
landmark, and crop the position of a face in an image.
We input sampled frames from video stimuli, and the
network identified, separated, and cropped individual
faces for further processing. At this step, we were
able to identify if a given frame in a video contained
one or more faces (“any_ faces”).

Next, cropped faces were input to the FaceNet net-
work for facial recognition. FaceNet is a face recog-
nition deep CNN based on the Inception ResNet
v1 architecture that achieved state-of-the-art per-
formance when released (Schroff, Kalenichenko, &
Philbin, 2015). The particular recognition model
we used was pre-trained on the VGGFace2 dataset
(Cao, Shen, Xie, Parkhi, & Zisserman, 2018), which
is composed of over three million faces “in the wild”,
encompassing a wide range of poses, emotions, light-
ing, and occlusion conditions. FaceNet creates a 512-
dimensional embedding vector from cropped faces that
represents extracted face features; thus more similar
faces are closer in the euclidean embedding space.

For each dataset separately, we clustered all de-
tected faces’ embedding vectors to group together
faces corresponding to distinct characters in the audio-
visual videos. We used the Chinese Whispers cluster-
ing algorithm, as this algorithm subjectively grouped
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log__mean_ time_ cum

Extractor Feature Description
Brightness brightness Average luminosity across all pixels in each video frame.
Clarifai building, landscape, | Indicators of the probability that an object belonging to
text, tool each of these categories is present in the video frame.
FaceNet any_ faces, For each video frame, any faces indicates the prob-

ability that the image displays at least one face.
log_mean_time_cum indicates the cumulative time (in
seconds) a given face has been on screen up since the
beginning of the movie. If multiple faces are present,
their cumulative time on screen is averaged.

Google Video Intelligence | shot_ change

Binary indicator coding for shot changes.

text_ length

FAVE/Rev speech Binary indicator coding for the presence of speech in the
audio signal, inferred from word onsets/offsets information
from force-aligned speech transcripts.

RMS rms Root mean square (RMS) energy of the audio signal.
Lexical norms LoglOWF,  concrete- | Logarithm of SubtlexUS lexical frequency, concreteness
ness, phonlev, numsylls, | rating, phonological Levenshtein distance, number of syl-
numphones, duration, | lables, number of phones, average auditory duration and

number of characters for each word in the speech tran-
script. These metrics are extracted from lexical databases
available through pliers.

Table 2: Extractor name, feature name, and description for all Neuroscout features used in the validation

analyses.

faces into coherent clusters better than other com-
monly used algorithms (e.g. k-means clustering). De-
pending on the dataset, this resulted in 50-200 clusters
that subjectively corresponded to readily identifiable
characters across the video stimulus. For each dataset,
we removed the worst-performing cluster (as for all
datasets there was always one with a highly noisy
profile) and grouped demonstrably different faces into
one cluster. Using the generated face clusters for each
dataset, we computed the cumulative time each char-
acter had been seen across the stimulus (i.e. entire
movie) and log transformed the variable in order to
represent the adaptation to specific faces over time.
As more than one face could be shown simultaneously,
we took the mean for all faces on screen in a given
frame.

Google Video Intelligence We used the Google
Video Intelligence API to identify shot changes in

video stimuli. Using the GoogleVideoAPIShotDetec-
tionFExtractor extractor in pliers, we queried the API
with complete video clips (typically one video per run).
The algorithm separates distinct video segments, by
detecting abstract shot changes in the video (i.e., the
frames before and after that frame are visually dif-
ferent). The time at which there was a transition
between two segments was given a value of 1, while
all other time points received a value of 0.

Auditory features

RMS We used librosa (McFee et al., 2015), a
python package for music and audio analysis, to com-
pute root-mean-squared (RMS) as a measure of the
instantaneous audio power over time, or “loudness”.

Speech Forced Alignment For most datasets,
transcripts of the speech with low-resolution or no
timing information were available either from the orig-
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inal researcher or via closed captions in the case of
commercially produced media. We force aligned the
transcripts to extract word-level speech timing, using
the Forced Alignment and Vowel Extraction toolkit
(FAVE; Rosenfelder et al. 2014). FAVE employs Gaus-
sian mixture model based monophone Hidden Markov
Models (HMMs) from the Penn Phonetics Lab Forced
Aligner for English (p2fa; Yuan and Liberman 2008),
which is based on the Hidden Markov Toolkit (Young,
1993). The transcripts are mapped to phone sequences
with pre-trained HMM acoustic models. Frames of the
audio recording are then mapped onto the acoustic
models, to determine the most likely sequence. The
alignment is constrained by the partial timing infor-
mation available in closed captions, and the sequence
present in the original transcripts. Iterative alignment
continues until models converge. Linguistic features
are available for all datasets except studyforrest, as
the movie was presented in German. Transcription
and annotation of stimuli in languages other than
English are pending.

Rev.com For datasets that had no available tran-
script (Learning TemporalStructure, SchematicNarra-
tive), we used a professional speech-to-text service
(Rev.com) to obtain precise transcripts with word-
level timing information. Rev.com provides human-
created transcripts which are then force-aligned us-
ing proprietary methods to produce a high-quality,
aligned transcript, similar to that generated by the
FAVE algorithm.

Speech indicator In both cases, we binarized the
resulting aligned transcripts based on word onset /off-
set information to produce a fine-grained speech pres-
ence feature (“speech”). These aligned transcripts
served as the input to all subsequent speech-based
analyses.

Language features

Word frequency Neuroscout includes a variety
of frequency norms extracted from different lexical
databases. For all the analyses reported here, we used
frequency norms from SUBTLEX-US (Brysbaert &
New, 2009), a 51-million words corpus of American
English subtitles. The variable used in the analyses
(LoglOWF, see Brysbaert and New 2009) is the base 10
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logarithm of the number of occurrences of the word in
the corpus. In all analyses, this variable was demeaned
and rescaled before HRF convolution. This feature
was extracted using the subtlezusfrequency dictionary
and the PredefinedDictionaryEzxtractor available in
pliers.

Concreteness Concreteness norms were extracted
from the (Brysbaert, Warriner, & Kuperman, 2014)
concreteness database, which contains norms for over
40,000 English words, obtained from participants’ rat-
ings on a 5-point scale. In all analyses, this variable
was demeaned and rescaled before HRF convolution.
This feature was extracted using the concreteness dic-
tionary and the PredefinedDictionaryFExtractor avail-
able in pliers.

Massive auditory lexical decision norms The
Massive Auditory Lexical Decision (MALD) database
(Tucker et al., 2019) is a large-scale auditory and
production dataset that includes a variety of lexical,
orthographic, and phonological descriptors for over
35,000 English words and pseudowords. MALD norms
are available in Neuroscout for all words in stimulus
transcripts. The analyses reported in this paper make
use of the following variables:

e Duration: duration of spoken word in milliseconds;
NumPhones: number of phones, i.e. of distinct
speech sounds;

NumSylls: number of syllables;

PhonLev: mean phone-level Levenshtein distance
of the spoken word from all items in the reference
pronunciation dictionary, i.e. the CMU pronounc-
ing dictionary with a few additions. This variable
quantifies average phonetic similarity with the rest
of the lexicon so as to account for neighborhood
density and lexical competition effects (Yarkoni et
al., 2008).

In all analyses, these variables were demeaned and
rescaled before HRF convolution. MALD metrics was
extracted using the massiveauditorylexicaldecision dic-
tionary and the PredefinedDictionaryExtractor avail-
able in pliers.

Text length This variable corresponds to the
number of characters in a word’s transcription. A
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TextLengthExtractor is available in pliers.

GLM models

Neuroscout uses FitLins, a newly developed work-
flow for executing multi-level fMRI general linear
model (GLM) analyses defined by the BIDS StatsMod-
els specification. FitLins uses pybids to generate run-
level design matrices, and NiPype to encapsulate a
multi-level GLM workflow. Model estimation at the
first level was performed using A FNI—in part due to
its memory efficiency—and subject and group level
summary statistics were fit using the nilearn.glm mod-
ule.

For all models, we included a standard set of con-
founds from fmriprep, in addition to the listed features
of interest. This set includes 6 rigid-body motion-
correction parameters, 6 noise components calculated
using CompCor, a cosine drift model, and non-steady
state volume detection, if present for that run. Using
pybids, we convolved the regressors with an imple-
mentation of the SPM dispersion derivative haemody-
namic response model, and computed first-level design
matrices downsampled to the TR. We fit the design
matrices to the unsmoothed registered images using
a standard AR(1) + noise model.

Smoothing was applied to the resulting parameter
estimate images using a 4mm FWHM isotropic kernel.
For the datasets that had more than one run per
subject, we then fit a subject-level fixed-effects model
with the smoothed run-level parameter estimates as
inputs, resulting in subject-level parameter estimates
for each regressor. Finally, we fit a group-level fixed-
effects model using the previous level’s parameter
estimates and performed a one-sample t-test contrast
for each regressor in the model.

Meta-analysis

NiMARE (version 0.0.11rcl1; available at: https://
github.com/neurostuff/NiMARE) was used to per-
form meta-analyses across the neuroscout datasets.
Typical study harmonization steps (smoothing, de-
sign matrix scaling, spatial normalization) were for-
gone because all group level beta and variance maps
were generated using the same GLM pipeline. All

group level beta and variance maps were resampled to
a 2x2x2mm ICBM 152 Nonlinear Symmetrical gray
matter template (downloaded using nilearn, version
0.8.0) with linear interpolation. Resampled values
were clipped to the minimum and maximum statisti-
cal values observed in the original maps. We used the
DerSimonian & Laird random effects meta-regression
algorithm (DerSimonian & Laird, 1986; Kosmidis,
Guolo, & Varin, 2017).
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