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Abstract

The production of the alpha-amylase (AMY) enzyme in Bacillus subtilis at a high rate leads to the
accumulation of unfolded AMY, which causes secretion stress. The over-expression of the PrsA
chaperone aids the enzyme folding and reduces stress. To identify affected pathways and potential
mechanisms involved in the reduced growth, we analyzed the transcriptomic differences during fed-
batch fermentation between a PrsA over-expressing strain and a control in a time-series RNA-seq
experiment. We observe transcription in 542 previously un-annotated regions, of which 234 had
significant changes in expression levels between the samples. Moreover, 1,791 protein-coding
sequences, 80 non-coding genes, and 20 riboswitches overlapping UTR regions of coding genes had
significant changes in expression. Via gene-set over-representation analysis of the differentially
expressed genes, we identified putatively regulated biological processes; overall the analysis suggests
that the PrsA over-expression affects ATP biosynthesis activity, amino acid metabolism, and cell
wall stability. The investigation of the protein interaction network points to a potential impact on cell
motility signaling. We discuss the impact of these highlighted mechanisms for reducing secretion
stress or detrimental aspects of PrsA over-expression during AMY production.

1 Introduction

Bacillus subtilis is a powerhouse for enzyme production in biotech industries (Schallmey et al., 2004;
van Dijl and Hecker, 2013; Hohmann et al., 2016a). Amylases are a specific class of enzymes that B.
subtilis can produce commercially (Schallmey et al., 2004). The amylase enzyme, in particular the
alpha-amylase (AMY), is a digestive enzyme (EC 3.2.1.1) that degrades starch molecules. Therefore,
AMY is often an active component in laundry detergent for removing sticky stains from cloths. For a
successful AMY production and subsequent recovery, a host organism needs to both express and
secrete AMY proteins in a biologically active form at a high rate (Spinnler, 2021). However, a major
issue for commercial production is that the protein folding system of the cell is overwhelmed by the
high rate of synthesis, unless the strains used for production are genetically modified (Kontinen and
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Sarvas, 1993).The accumulation of unfolded AMY proteins causes stress that requires a bacterial cell
to physiologically adapt to survive (Storz and Hengge, 2010). The Sec secretion pathway secrets
AMY co-translationally (Ling Lin Fu et al., 2007). Therefore, unfolded AMY is extracellular, such
that the corresponding stress signal triggers the heat shock response (Westers et al., 2004, 2006; Storz
and Hengge, 2010; Lim and Gross, 2014; Yan and Wu, 2019). The simplified mechanism of this
stress response has two components as follows (Westers et al., 2004, 2006; Storz and Hengge, 2010;
Lim and Gross, 2014; Yan and Wu, 2019): First, the membrane-bound CssS receptor transduces the
stress signal by phosphorylating CssR. Second, the phosphorylated CssR activates transcription of
the two proteases HrtA and HrtB, which degrade unfolded proteins and alleviate the stress condition.
Further, stress responses are intertwined with additional regulation in the core energy metabolism
(Storz and Hengge, 2010), and such stress responses upregulate flagellar cell motility in order for a
cell to physically escape the stress causing location (Helmann et al., 1988; Marquez et al., 1990; Yan
and Wu, 2019). For instance, the level of cell motility is boosted by a low level of phosphorylated
DegU (Kobayashi, 2007; Verhamme et al., 2007; Gupta and Rao, 2014), which is part of the core
stress regulating DegU-DegS two-component system (Storz and Hengge, 2010; Laub, 2014).
Nevertheless, these stress alleviating mechanisms can be opposed to the objective of achieving a high
AMY yield: (i) The proteolytic degradation of AMY reduces yields and (ii) a low phosphorylation
level of DegU down-regulates AMY expression (Gupta and Rao, 2014).

A state-of-the-art approach, which prevents the yield detrimental impact of the secretion stress
response, is the over-expression of PrsA (Vitikainen et al., 2001; Quesada-Ganuza et al., 2019).
Although the over-expression of PrsA reduces secretion stress by aiding AMY folding, it also has
detrimental impacts such as hampered cell growth and even cell lysis (Vitikainen et al., 2001;
Quesada-Ganuza et al., 2019). These detrimental phenotypes might be caused by protein-protein
interactions of specific PrsA protein domains with still unknown partner proteins (Quesada-Ganuza
et al., 2019). Another unknown aspect of PrsA over-expression is its impact on the bacterial
transcriptome, particularly during industrial fed-batch fermentation. The adaptation to glucose
metabolism from maltose metabolism has a global impact on half of all transcriptional regulators
even though both carbons are preferred by B. subtilis (Buescher et al., 2012). Thus, we would assume
a substantially larger global impact on the transcriptome for the extreme secretion stress during PrsA
over-expression (Quesada-Ganuza et al., 2019). We consider our assumption to be further supported
by the large number of over a hundred proteins that require regulation to adapt bacterial motility (see
above concerning stress) (Rajagopala et al., 2007). Furthermore, a pure protein-coding gene focus
ignores the essential role regulatory small RNA (sRNA), RNA chaperones, and non-coding RNA
(ncRNA) have in facilitating physiological changes impacting the entire cell during stress responses
(Storz and Hengge, 2010). General stress regulatory mechanisms have been investigated in public
datasets (Arrieta-Ortiz et al., 2015); however, metabolic and stress pathways undergo complex
temporal adaptations (Hahne et al., 2010; Otto et al., 2010). Thus, both temporally resolved and
condition-specific gene expression levels are needed to study stress pathways. Specifically for
secretion stress during B. subtilis AMY fed-batch fermentation, no such dataset exists to our
knowledge.

Here, we conducted fed-batch fermentation of two commercial B. subtilis strains. Both strains
produce an AMY and are isogenic, except that one of them over-expresses PrsA. We studied the
transcriptome during fermentation at 6 timepoints with RNA-seq and analyzed the expression levels
of both known coding and non-coding annotations, but also of potential novel transcribed, yet un-
annotated regions. We complemented the differential expression analysis with a network analysis of
known protein-protein interactions (PPI). This study found significant changes in gene expression
levels between the studied strains for genes in the ATP biosynthesis and cell motility biological
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86  processes. Further, the network analysis hints at mechanisms relating to competence transformation
87  and cell motility that might be candidates for further tuning of AMY secretion yields.
88

g9 2 Materials and Methods

90 2.1 Strains and fed-batch fermentation

91  The overall experimental setup is as previously described in (Geissler et al., 2022). In summary: B.
92 subtilis strain 168 AspollAC AamyE Aapr AnprE AsrfAC was maintained at 4 °C on LBGG medium.
93  The AMY JEI (sequence label jelzyn in (Geissler et al., 2022)) was inserted by Splicing by
94  Overlapping Extension (SOE) linear recombinant transformation, together with the commercial sigA4
95  promoter sequence P4199 and chloramphenicol marker, in the pel locus. The PrsA over-expressing
96  strain (referred to as ‘“+prsA’ strain) had the insert by SOE of P4199, prs4, and spectinomycin marker
97  inthe amyE locus. A control strain did not have the prsA insert. After inoculation on SSB4 agar at 37
98  °C, transfer on M-9 medium, sucrose 2M fed-batch fermentations were conducted in proprietary SL
99  tanks at 38 °C. Fermentations were run in triplicates for 5 days. The selected replicate size allows
100  detecting significant logFC in expression of at least £0.5 magnitude, as determined in benchmarks
101 (Schurch et al., 2016). Samples were taken at 6 timepoints: 21 h, 26 h, 45 h, 71 h, 94 h, and 118 h
102 after fermentation started. The samples were measured in cell density (OD650), and AMY activities
103 were measured with an in-house assay. The assay (after 1/6000 dilution) states the enzyme amount
104  that breaks down 5.26 g starch per hour. This activity measure is proportional to the enzyme yield.

105 2.2 RNA-seq dataset

106  All samples were immediately mixed with 5 ml 100% ethanol and stored on dry ice. The RNA

107  extraction and purification method is the identical phenol-chloroform protocol of (Geissler et al.,

108  2022). RNA libraries and sequencing were conducted by BGI Hong Kong with DNBseq in single-
109  ends of 50 bp length. RNA libraries were prepared with 3’ adapter sequence

110  AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA and the 5’ adapter

111 AAGTCGGATCGTAGCCATGTCGTTCTGTGAGCCAAGGAGTTG. The 36 samples (triplicates,
112 2 strains, 6 timepoints) were sequenced in 3 batches with technical replicates for QC (Supplementary
113 Table S1). The computational analyses were conducted in an adapted workflow of (Geissler et al.,
114 2022) (doi: 10.5281/zenodo.4534403), which provides a pipeline in a Snakemake framework nested
115  in computational reproducible Anaconda environments (Koster and Rahmann, 2012). In concordance
116  with the read quality assessment of FastQC (version 0.11.8) (Simon Andrew), any adapter

117  contaminations were removed with Trimmomatic (version 0.39) for up to 2 seed mismatches at a

118  minimal 10 bp sequence overlap and 30 bp palindromic overlap (Bolger et al., 2014). In a sliding

119  window of 4 bp, reads were clipped for average PHRED score quality below 20. From the 3’ of

120  reads, positions with quality below 3 were removed. Finally, a minimal length of 40 bp was required
121  for filtered and cleaned reads. Reads were mapped against the respective +prsA and control genome
122 sequence with Segemehl (version 0.3.4, default settings) (Hoffmann et al., 2009). The mapping and
123 QC filtering statistics are in Supplementary Table S2. Expression levels of coding and non-coding
124  annotations (see below) in the respective strains were quantified for uniquely mapping reads with
125  featureCounts (Subread version 1.6.4, >50% overlaps). Annotation coordinates in the respective

126  strains were determined by liftOver (version 377) from the reference assembly (NC_000964.3) based
127  on a pairwise alignment with LASTZ (version 1.0.4) (Harris, 2007; Liao et al., 2014; Haeussler et al.,
128 2019).

129 2.3 Novel potentially transcribed regions


https://doi.org/10.1101/2022.04.05.487122
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.487122; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

130  Reference annotations of coding, non-coding RNA (ncRNA), transcripts, untranslated regions

131  (UTRs), and RNA structures were used from the BSGatlas (version 1.1). The BSGatlas uses separate
132 annotation entries to specify which regions of an mRNA transcript are the coding, untranslated, or
133 potential cis-regulatory RNA structure parts. Such a distinguishment to the UTR element is

134  advantages since cis-regulatory RNA structures can overlap coding regions. Additional 141 putative
135  ncRNA annotations from a tiling-array study were used (which are not part of the BSGatlas) (Nicolas
136  etal., 2012; Geissler et al., 2021). Relative to these reference annotations and all transcript and

137  untranslated regions (UTRs) annotated in the BSGatlas, we checked our RNA-seq data for

138  transcription signals in 1,645 un-annotated regions. The additional tiling-array annotations and un-
139  annotated regions were determined with the R library plyranges (version 1.6.0) and GenomicRanges
140  (version 1.38.0) combined with an overlap helper script from BSGatlas’ analysis code (doi:

141  10.5281/zen0do0.4305872) in R (version 3.6.3) (R Development Core Team, 2008; Lawrence et al.,
142 2013; Lee et al., 2018). Un-annotated regions shorter than 100 bp (the minimum length for >99% of
143 the transcripts in the BSGatlas) were excluded from any further expression analysis. The expression
144 counts for all coding/non-coding sequences and cis-regulatory RNA structures were normalized with
145  DESeq2’s size-factor estimation (version 1.26.0) (Love et al., 2014). With respect to the downstream
146  analysis of expression signals, we excluded the UTR annotations for improved interpretability,

147  although we still retained all structured RNA cis-regulatory annotations. With the possible overlap
148  between cis-regulatory RNAs and coding sequences, reads mapping within such overlaps can be

149  counted twice during the quantification of expression. For a total of 542 un-annotated regions, we
150  observe expression signals of normalized read counts relative to gap length of at least 4 / 50 bp

151  (corresponds to 4 times average coverage) (Supplementary Fig S1). We chose not to narrow down
152  the transcribed regions, because we found that a read coverage-based approach (as suggested in the
153  workflow used in the RNA-seq dataset, last section) resulted in fragmented results (see example in
154  Fig S9). These regions were assumed to be novel potentially transcribed regions (NPTRs) (see

155  Supplementary Table S3); all other un-annotated regions were excluded from the subsequent

156  expression analysis.

157 2.4 Differential expression analysis

158  The expression levels of the coding/non-coding sequences, NPTRs, and cis-regulatory RNA

159  structures were assessed for biological reproducibility in expression counts with scatter plots

160  (Supplementary Fig S2). The scatter plots did not indicate visually striking patterns of batch effects
161  according to the sequencing plan (Supplementary Table S1). The principal component analysis

162 (PCA) inspection of the top 100 most variant expressed annotations (without further diff. expression
163 analysis) confirmed the relevance of the experimental design in the latent structure of the expression
164  data with the principal components corresponding to the strains and time aspect (Supplementary Fig
165  S3). Differential expression for pairwise comparisons between the strains at each of the 6 time points
166  and within each strain along the time axis (Fig 1 C) were assessed with DESeq2’s Wald test. Similar
167  to the analysis presented in (Geissler et al., 2022), the pairwise tests were weighted in a stage-wise
168  procedure to guarantee an overall relative to the number of annotations: Each annotation was

169  screened for dynamic expression with a log-ratio test against a static expression model before

170  confirming which of the pairwise tests had changes in expression. The screening and pairwise tests
171  included a linear factor in the regression models to account for potential batch effects. The stage-wise
172 weighting was conducted with stageR (version 1.8.0) (Van den Berge et al., 2017) and differential
173 expression was called for adjusted p-values < 0.01. Overall, 2,127 annotations were detected as

174  differentially expressed (Table 1, Supplementary Table S4). Based on the z-scaled log expected mean
175  expression levels (Supplementary Table S5), expression profiles were grouped in 10 k-means clusters
176 (R implementation). The profiles per strain were clustered separately (one gene = two rows in the
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177  data matrix). The number of clusters was determined by the “elbow method” over the total within-
178  cluster error curve (Supplementary Fig S4) (Thorndike, 1953).

179 2.5 Regulated biological processes

180  We investigated the set of differentially expressed genes and their up- and downregulation for over-
181  representation in biological processes as annotated in Gene Ontology (GO) terms, which are readily
182  available for 78.3% of coding genes (Caspi et al., 2014; Geissler et al., 2021). For each pairwise

183  differential expression test (Fig 1 C), we inspected the set of upregulated genes (those with a positive
184  logFC) and downregulated genes separately. The over-representation analysis was performed with
185  topGO (version 2.37.0) (Adrian Alexa and Jorg Rahnenfiihrer). Over-representation for the

186  respective up- and downregulated genes was determined with a fisher test for the significance level of
187  0.01 relative to the background of all expressed genes, which were determined by DESeq2’s

188  independent filtering procedure. This procedure discards the on average lowly expressed genes in

189  order to maximize the number of differentially expressed genes (indicated by NA for p-values in

190  Supplementary Table S4) (Love et al., 2014). The minimal term size was set to 10, and the

191  dependencies due to GO’s hierarchy were de-correlated with topGO’s “elim” algorithm. After

192 filtering for a minimal observed/expected ratio of magnitude 2 (between the 80 and 85 percentile),
193  p-values were adjusted for multiple testing with false discovery rate (FDR). The over-represented

194  processes and the associated differentially expressed genes are listed in Supplementary Tables S6 and
195  S7 and Figure S6.

196 2.6 PPI network analysis

197  The PPI network analysis was conducted in Cytoscape (version 3.8.2) (Shannon, 2003) for the

198  differentially expressed protein-coding genes (both with and without significant logFC between

199  strains). High-confidence protein associations (confidence score > 0.8) were retrieved from the

200  STRING vl11 database using stringApp (version 1.6.0) for the B. subtilis strain 168 (Doncheva et al.,
201  2019; Szklarczyk et al., 2019). The resulting network was clustered with the MCL algorithm

202  (inflation value of 2.5, confidence scores as edge weights) implemented in clusterMaker2 app

203  (version 1.3.1) (Enright, 2002; Morris et al., 2011). The visualization of significant between strain
204  logFCs on the network nodes was added with Omics Visualizer (version 1.3.0) (Legeay et al., 2020).

205 2.7 Global amino acid composition

206  In order to interpret the regulated biological processes (see above), we inspected the global amino
207  acid compositions of all B. subtilis protein-coding genes. The nucleotide sequences of all coding

208  sequences from the BSGatlas were extracted with BSgenome (version 1.54.0) (Pages, 2021). The
209  corresponding amino acid sequences were determined according to the bacterial genetic code with
210  Biostrings (version 2.54.0) (Pages et al., 2019). Here, we used only the 99.3% of the coding genes
211  that were complete relative to their corresponding amino acid sequences; that is, they used all codons
212 encoded in their nucleotide sequences, correctly started with methionine, and ended with a stop

213 codon. The composition in average proportion was determined for these complete sequences (Table
214 3).

215 3 Results

216 3.1 Novel potentially transcribed regions
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217  3.1.1 Transcriptome analysis from RNA-seq data

218  To elucidate potential mechanisms of B. subtilis secretion stress during the production of the AMY
219  enzyme JE1 (commercial name Natalase™) with a particular focus on PrsA over-expression, we
220  conducted fed-batch fermentation in triplicates for two isogenic strain conditions: One control strain
221  and one strain with PrsA over-expression (from here on referred to as +prsA). As expected from the
222 reduced growth upon PrsA over-expression (Vitikainen et al., 2001; Quesada-Ganuza et al., 2019),
223 the +prsA strain has a lower cell density (Fig 1 A) and higher AMY yield (Fig 1 B). To capture the
224 transcriptome dynamics during fermentation, we took out samples for RNA-seq analysis at6

225  timepoints: 21 h, 26 h, 45 h, 71 h, 94 h, and 118 h after fermentation started. These timepoints

226  correspond to two samples for the first day of fermentation and one sample per remaining day.

227

228  3.1.2 Transcriptional activity for the reference annotations

229  In order to comprehensively investigate both the coding and non-coding RNA elements, we

230  quantified the RNA-seq expression according to a recently developed transcript atlas for B. subtilis
231  (Geissler et al., 2021). We included 141 additional annotations from a tiling-array study that was not
232 included in the atlas due to unclear mechanism of transcription (annotations were ambiguous to

233 whether they are independent full RNA transcript or only part thereof (Nicolas et al., 2012; Geissler
234 etal, 2021). In the following, we refer to these annotations, together with the less well-characterized
235  RNA elements from the atlas, as putative ncRNA. These reference annotations combine gold

236  standard curated information, computational RNA structure biology, and transcriptomic analysis of
237  over 100 experimental conditions (Nicolas et al., 2012; Geissler et al., 2021). Additionally, these
238  experimental conditions suggest that still 5% of remaining un-annotated regions have evidence of
239  expression activity (Geissler et al., 2021). Fed-batch fermentations were not part of the above-

240  mentioned experimental conditions, such that there might be a larger potential to discover fed-batch
241  related regions from our RNA-seq data. Consequently, we investigated our RNA-seq data for

242  expression in such un-annotated regions.

243

244 3.1.3 Novel potentially transcribed regions

245  There are a total of 1,645 un-annotated contiguous stretches of the genome or gaps (stranded,

246  meaning there can be antisense located annotations) between reference annotations of length > 100bp
247  (minimal length for 99.5% of transcripts in the atlas). We detect novel potentially transcribed regions
248  (NPTRs) by inspecting the average RNA-seq read coverages over the entire un-annotated gap region
249  (read counts, DESeq2 size-factor normalized, relative to the lengths). Relative to the 50 bp

250  sequencing lengths (see methods “RNA-seq dataset™), 70% of atlas annotations were on average

251  expressed by four reads and 30% by one read. In contrast, only 20% (542) of un-annotated regions
252 were on average covered by four reads. This high coverage for these 542 NPTRs (Supplementary Fig
253  S1) indicates that the NPTRs may have functional importance and that it would be relevant to include
254  these in subsequent expression analysis (see Supplementary Table S3).

255 3.2 PrsA over-expression changes gene expression regulation of global transcriptome

256  3.2.1 Differential expression

257  We assessed the impact of PrsA over-expression on the bacterial transcriptome by analyzing the

258  expression levels of coding and non-coding sequences (see “Transcriptional activity for reference
259  annotations” above), including the 141 additional annotations and the 542 NPTRs with DESeq?2. For
260  each region, we performed16 pairwise differential expression tests: 6 tests between the two strains on
261  each timepoint and 2x5 tests from one timepoint to the next in both strains (Fig 1 C). Since each
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262  pairwise test corresponds to a separate hypothesis test, we used stage-wise testing to adjust for the
263  overall false discovery rate (FDR) per annotation (Love et al., 2014; Van den Berge et al., 2017).
264  Compared to controlling the FDR per hypothesis, the overall FDR increases statistical power and
265  guarantees the FDR relative to the gene/annotation number, independent from the number of

266  hypotheses (Van den Berge et al., 2017). As part of the differential expression analysis, DESeq2’s
267  independent filtering detected about half of all coding sequences and 355 of 542 NPTRs as expressed
268 (Loveetal., 2014). At an overall FDR p-adj. <0.01, we detected differential expression for 1,793
269  coding sequences (67% of expressed genes), 234 NPTRs (66%), 68 putative ncRNAs (64%), 20

270  riboswitches (54%), 9 tRNAs (41%), and 3 sRNAs (33%) (Table 1, Supplementary Table S4). The
271  differentially expressed coding genes include the AMY enzyme and the over-expressed PrsA.

272 Between 50 and 78% of these biotypes had strain-specific expression patterns (significant difference
273  for at least one of the 6 between strain tests). PrsA had strain-specific expression (as to be expected
274 by not being inserted into the control strain’s genome). Notably, no strain-specific expression was
275  detected for AMY.

276

277  3.2.2 The regions with the highest expression changes

278  The strain-specific expression patterns of PrsA and the respective logFC between the two strains on
279  all 6 timepoints were the most extreme observed in this study with logFC values up to a factor of 20
280  at each timepoint. Other extreme logFC values were observed for genes from operons encoding a
281  variety of biological functions (Table 2). The NAD biosynthesis genes of the nadABC operon

282  (Rodionov et al., 2008) also have extreme logFC, but they undergo both extreme up- and

283  downregulation in the control strain with nad4 and nadB being downregulated from timepoint 21h to
284  26h (both logFCs < -6, adj. p < 0.004) and subsequently upregulated from 26h to 45h (both logFCs
285  ~+7, adj. p <3e-10). Due to the secretion stress the production strains attempt to sporulate despite
286  being unable to do so (Geissler et al., 2022). Consistently, the two sporulation genes saf4 and cox4
287  were among the most extremely regulated (logFC > 6, adj. p < 2.3e-5). Other extreme logFC (< -5,
288 adj.p < 7.31E-09) were observed for the spore killing factors skf4 and skfB (Gonzalez-Pastor, 2011),
289  the sporulation controlling factor spolIGA (Ramos-Silva et al., 2019), the bacitracin resistance genes
290  bceA and bceB (Ohki et al., 2003), the for NADH during fermentation essential lactate

291  dehydrogenase /dh (Cruz Ramos et al., 2000; Larsson et al., 2005), and an NPTR antisense to the
292 gene of unknown function y#ta (Asai et al., 2007).

293

294  3.2.3 Biological processes and differentially expressed genes are mutually associated

295  The investigation of the overall expression profiles from a k-means clustering on the average

296  expected expression at each timepoint (Supplementary Table S5) shows marked differences in the
297  expression dynamics between the strains (Fig 2 C). Also, all profiles indicate a substantial shift in
298  dynamics between timepoints 45-71 h, during which the cell population increased the most (Fig 1 A):
299  For instance, profiles 4 and 5 drop in expression levels at that timepoint but recover and even exceed
300 the starting expression level whereas profiles 7 and 8 have drastically downregulated expression at
301 that timepoint and do not recover (Fig 2 B). Genes and other biotypes with strain-specific expression
302  patterns had predominately different expression profiles between the strains, whereas those without
303  strain-specific expression had the same (Supplementary Fig S5). Therefore, B. subtilis regulates gene
304  expression both timepoint- and strain-specifically.

305

306  We assessed which biological processes (annotated in Gene Ontology, GO, terms (Ashburner et al.,
307  2000)) are over-represented among the differentially expressed genes in each time and strain pairwise
308  comparison (Fig 1 C). We compared the numbers of respective up- or downregulated genes relative
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309  to the number of expressed genes (see Methods). A total of 24 processes had significant over-

310  representation (Fisher’s exact test, FDR p-adj. < 0.01). We inspected the list of differentially

311  expressed genes per process (Supplementary Table S7) in combination with meta-information

312 available in the BSGatlas, particularly KEGG pathway annotations (Kanehisa and Goto, 2000;

313 Geissler et al., 2021). Notably, the detected over-represented processes annotate genes with

314  differentially expressed logFC predominately above the background logFC distribution of genes

315  without detected differential expression (Figure S8). Further, some of the top 10 most extremely up-
316  and downregulated genes (Table 2) were annotated by the detected processes (Table S7), namely cell
317  wall macromolecule catabolic process (saf4 and skfA), response to stress (nadC and nadE), and ATP
318  biosynthetic process (/dh). We further inspected the detected biological processes (Fig 3) for their
319  relevance with respect to fed-batch fermentation, as described in the sections below.

320

321  3.2.4 Nucleotide biosynthesis

322 Itis well established that an ample supply of nucleotides is needed for efficient AMY protein

323 expression (Hosoda et al., 1959), and thus also the nucleotide precursors, such as UMP and IMP, are
324  of regulatory interest (Peifer et al., 2012; Hohmann et al., 2016b). Consistently, the over-

325  representation investigation indicates an upregulation of UMP (GO:0006222) and IMP

326  (GO:0006189) biosynthesis in the +prsA strain from timepoint 26h to 45h and 95h to 118h

327  respectively. The monosaccharide catabolic genes (GO:0046365), especially the genes involved in
328  the ribose synthesis via pentose phosphate pathway (Supplementary Table S7), are upregulated in the
329  control strain from timepoint 45h to 71h. The pteridine-containing compound metabolic process

330  (GO:0042558) was over-represented by genes upregulated from the first to the second timepoint in
331  both strains. These specific genes are also part of the folate biosynthesis pathway, which is essential
332 for both purine and pyrimidine synthesis (Kilstrup et al., 2005), and therefore quintessential for AMY
333 production (Hohmann et al., 2016a; Hosseini et al., 2018).

334 3.3 PrsA over-expression affects genes involved in energy metabolism

335  3.3.1 ATP biosynthesis

336 The ATP biosynthetic process (GO:0006754) was significantly downregulated in +prsA compared to
337  the control strain on the first timepoint of the fermentation. Further, the data suggests that the energy
338  derivation by oxidation of organic compounds (GO:0015980) was further downregulated in +prsA
339  from the first to the second timepoint within the first day of fermentation. The differentially

340  expressed genes associated with both processes comprise a long list (>50, see Supplementary Table
341  S7) of core energy metabolic enzymes from the citrate cycle, oxidative phosphorylation, and

342 glycolysis. Nevertheless, the list also overlaps with the starch and sucrose metabolism pathway,

343  particularly with the glycogen biosynthesis (glgA4, glgB, gigC, glgD, and glgP) (Kiel et al., 1994).
344  Consistent with these observations, the carbohydrate transport (GO:0008643) was also

345  downregulated in +prsA on the first timepoint. In contrast, the cellular ketone metabolic process

346  (GO:0042180) was upregulated in the control strain from the first to the second timepoint. Ketones
347  are essential for the biosynthesis of menaquinone (Lu et al., 2008). Menaquinone is B. subtilis’

348  respiration coenzyme, similar in function to ubiquinone in human mitochondria (Lemma et al.,

349 1990). Nevertheless, the ATP biosynthetic process (GO:0006754) was not detected significantly
350  over-represented by the regulated genes at the other fermentation timepoints.
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352 3.3.2 Altering carbohydrate transport during fermentation

353  The over-representation analysis also suggests that both strains have an upregulated carbohydrate
354  transport (GO:0008643, GO:0034219) from 45h to 71h. The transport might also be upregulated in
355  the +prsA strain from the first to the second timepoint.

356 3.4 PrsA over-expression affects genes involved in cell wall destabilizing processes

357  Low PrsA protein abundances and increased concentrations of teichoic acid can reduce cell growth
358  and cell wall disruption (Driessen et al., 1998; Hyyryldinen et al., 2000). For instance, the inhibition
359  of the dlt operon—which is key to teichoic acid synthesis—increases AMY yields (Hyyryldinen et al.,
360  2000; Yan and Wu, 2017). However, our data suggest that not only d/¢B expression is upregulaged in
361  +prsA on timepoint 45h (logFC=0.86, adj. p<2.11e-5), but also the entire teichoic acid biosynthetic
362  process (GO:0019350). Additional processes relating to cell wall molecules and polysaccharide

363  biosynthetic (GO:0033692, GO:0000271) were observed as downregulated in +prsA. Nevertheless,
364  not only does our data suggest that the biosynthesis is downregulated, the corresponding catabolic
365  processes (GO:0016998, GO:0000272) might be upregulated.

366 4 Upregulation of amino acid metabolism during PrsA over-expression

367 4.1.1 Regulated amino acid metabolism

368  Genes of the arginine biosynthetic process (GO:0006526) are over-represented among the genes

369  upregulated in the +prsA strain on the first timepoint and for the amino acid transport (GO:0006865)
370  at timepoint 94h after fermentation started. The histidine biosynthetic process (GO:0000105) was
371  detected as downregulated from timepoint 26h to the timepoint 45h in both strains. The data suggest
372 also that the tRNA aminoacylation for protein translation (GO:0006418) is downregulated in +prsA
373  on the first timepoint, and that the cellular biogenic amine biosynthetic process (GO:0042401) is
374  upregulated in the control strain from the first to the second timepoint.

375

376  4.1.2 Expected changes in amino acid metabolism

377  Given the observed potential regulation in amino acid metabolism above, we investigated to which
378  extend these might be the result of the peptide sequence of the secreted AMY. The inspection of

379  codon composition of all coding genes suggests that the AMY and the over-expressed PrsA contain
380  substantially more tryptophan, asparagine, aspartic acid, and lysine (more than 2 standard deviations
381  from the average proportion, Table 3). Tryptophan was the strongest over-represented amino acid in
382  AMY (+3.1 standard deviations). But in comparison, the subset of differentially expressed coding
383  genes did not change the overall composition (within 1 standard deviations). Given the high energetic
384  cost of tryptophan biosynthesis (Akashi and Gojobori, 2002), the evolutionary adapted amino acid
385  metabolism will be affected (Smith and Chapman, 2010).

386

387 4.2 Protein-protein interactions of stress response and competence transformation

388  4.2.1 Stress response turning point

389  The over-representation investigation reveals that both strains upregulate parts of their stress

390  response concerning the reactive oxygen species (ROS) response (GO:0006950 and the two children
391  terms GO:0042542, GO:0000303) from timepoint 26h to 45h. Simultaneously, the strains

392  downregulate the establishment of competence for transformation (GO:0030420). The protein ClpC
393 is the key switch between heat shock (including secretion stress) and competence regulation (Turgay
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394  etal., 1997). During stress, a three protein complex of ClpC, MecA, and ComK is formed (Turgay et
395  al., 1997). The bound central competence regulator ComK can no longer act as a transcription

396  regulator, which prevents the establishment of competence (Turgay et al., 1997). According to our
397  results, c/pC undergoes significant differential expression during fermentation in both strains, but
398  neither comK nor mecA had significant expression changes though both were expressed

399  (Supplementary Table S4). Given that the molecular mechanism of the ClpC switch (i) is post-
400 translational, (ii) does not directly impact the transcription levels of the involved genes, and (iii)
401  involves a third factor, the analysis by pairwise comparison of expression levels cannot detect that
402  specific interaction. Therefore, we complemented the expression analysis with a protein-protein
403  interaction (PPI) network analysis.

404

405  4.2.2 PPI network analysis

406  We retrieved PPIs from the STRING database for the B. subtilis strain 168. STRING provides a list
407  of functional associations from multiple evidence channels, such as curated knowledge from known
408  metabolic pathways and protein complexes, physical PPIs from lab experiments (e.g., pull-down
409  assays), predicted interactions from text mining of the biomedical literature, or associations based on
410  co-expression analysis (Szklarczyk et al., 2019). The resulting network of 4,774 high-confidence
411  associations (confidence score >0.8) among 1,770 of the 1,791 differentially expressed protein-

412 coding sequences was clustered into 201 protein clusters using MCL (Enright, 2002; Morris et al.,
413 2011; Doncheva et al., 2019). In combination with the significant logFCs between the +prsA and
414  control strains (Legeay et al., 2020), we manually inspected 4 clusters with interesting patterns

415  regarding this study’s outset (Fig 4). These are described in the following sections below.

416

417  4.2.3 Two-component system

418  The first PPI cluster consists of the CssRS two-component system, including the involved proteases
419  (see Introduction, Fig 4 A). However, the cluster contains an additional association between the

420  stress signal transducer CssS and YkolJ of unknown function. The ykoJ expression during secretion of
421  avaccine compound (beta-toxoid) positively depends on CssS (Nijland et al., 2007). In contrast, the
422  expression during AMY might have a negative dependency with cssS being significantly lower

423 expressed in +prsA on timepoint 21h after fermentation start (logFC = -0.9, adjusted p = 8.5e-10) and
424 ykoJ significantly higher (logFC = 1.7, adj. p = 1.2e-7). To our knowledge, the association YkoJ-

425  CssS has not been characterized in the context of AMY production.

426

427  4.2.4 Competence switch

428  The second cluster (Fig 4 B) contains the above-described heat shock/competence protein switch

429  ClpC (Turgay et al., 1997). The cluster also contains ClpC’ repressor CtsR (Derré et al., 1999) and
430  the universal sigma factor SigA. Further, SigA and ClpC share associations with the three heat shock
431  proteins DnaK, RrpE, and GroEL. Although mecA4 was not detected as differentially expressed, the
432  paralog mecB was, and it is part of this second cluster (Persuh et al., 2002). B. subtilis” other two Clp-
433 proteins ClpP and CIpE are also part of this cluster. ClpE had a significantly higher expression on
434  timepoint 118h in +prsA (logFC = 2.6, adj. p = 0.0005), which is relevant because ClpE destabilizes
435  the functionality of the repressor CtsR (Miethke et al., 2006).

436

437  4.2.5 Prophage genes

438 A third cluster (Fig 4 C) contains a set of tightly associated 24 PBSX prophage and prophage-like
439  genes that were all significantly higher expressed in +prsA compared to control at various timepoints
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440  during the entire duration of the fermentation. PBSX, a defective B. subtilis prophage (Wood et al.,
441  1990a), is known to be potentially heat-induced (Wood et al., 1990b), and they have a potential
442  association with the level of lytic stress resistance (Buxton, 1980).

443

444  4.2.6 Potential cell motility regulation

445  Finally, the fourth cluster has an interesting pattern of associations involving many chemotaxis genes
446  (Fig 4 D). This cluster is structured into two separate interconnected components: On the one side
447  there are 29 chemotaxis proteins and on the other 125 protein-coding genes with various catalytic
448  functions (116 of 125 [92.8%] genes are annotated in the general catalytic activity term

449  GO:0003824), however, both parts are connected by a backbone of associated genes. This backbone
450  includes the central flagella motion frequency regulator CheA, the flagellar hook-filament FlgK, the
451  general stress sigma factor SigB, the heat-shock protein sigma factor Sigl, and the two partially

452  characterized signal transducers YesN and YwspD (Fabret et al., 1999; Petersohn et al., 2001; Zuber
453  etal, 2001; Asai et al., 2007; Mukherjee and Kearns, 2014). Interacting with sigB are 5 stress

454  regulatory proteins induced by SigB (according to STRING annotations). Both YesN and YwsqD are
455  described as histidine kinases, although the corresponding response regulator remains unknown

456  (Fabret et al., 1999; Caspi et al., 2014; Zhu and Stiilke, 2018; Geissler et al., 2021). Even if the

457  regulators are unknown, the backbone has an interesting pattern of antagonistic logFC: (i) YesN is
458  significantly lower expressed in +prsA on timepoint 21h (logFC=-1.7, adj. p=1.4e-6) and 26h

459  (logFC=-1.84, adj. p=8.5¢-5), (i1)) YwpD is higher expressed in +prsA on 21h (logFC=0.6, ad;.

460  p=0.0037), and (iii) CheA lower again on 21 h (logFC=-0.7, adj. p=0.0025). The bottom-line is that
461  the PPI analysis elucidates the tight associations between heat shock, competence transformation, cell
462  motility, general stress response, and translation.

463 5 Discussion

464  In this study, we investigated how PrsA over-expression in B. subtilis impacts the transcriptome

465  during fed-batch alpha-amylase (AMY) fermentation. We carried out a temporally resolved RNA-seq
466  study to analyze expression levels and regulation of biological processes with respect to secretion
467  stress. We inspected a comprehensive set of coding and non-coding reference annotations as well as
468 542 novel potentially transcribed regions (NPTRs). The fermentation process strongly affect gene
469  expression and we observe a large number of differentially expressed genes both between the strange
470  and overtime: At total of 1,793 coding genes (67% of expressed genes), 234 NPTRs (66%), 68

471  putative ncRNAs (64%), 20 riboswitches (54%), 9 tRNAs (41%), and 3 sRNAs (33%) were

472  differentially expressed. The PrsA over-expressing strain, which is consistent with prior descriptions
473  had increased yield and reduced growth (Quesada-Ganuza et al., 2019), was observed to have

474  significant strain-specific differential expression for more than half of the transcribed genes.

475  Subsequent in-depth analysis of regulated biological processes (Fig 3) and the PPI network of

476  differentially expressed coding genes (Fig 4) shed light on the complex intertwined processes of

477  stress pathways, the core energy metabolism, and cell motility (Helmann et al., 1988; Marquez et al.,
478  1990; Storz and Hengge, 2010; Yan and Wu, 2019).

479

480 5.1 Amino acid and energy metabolism

481  The observation of the potentially downregulated ATP biosynthesis in the +prsA strain surprised us:
482 (i) The AMY hypersecretion is stressful and energy-intensive for the cells (Song et al., 2015). (ii) It
483  has been hypothesized that ATP might be required for PrsA chaperone activity (Yan and Wu, 2017).
484  (iii) The reduction of ATP levels can also increase the general stress response of B. subtilis
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485  (Haldenwang, 1995; Petersohn et al., 2001; Yan and Wu, 2019). The potential downregulation of
486  ATP biosynthesis in the +prsA strain seems counterintuitive because the strain has both lower stress
487  and higher yield than the control (Quesada-Ganuza et al., 2019). However, the reduced ATP

488  biosynthesis might be due to the impact of the hypersecreted AMY and over-expressed PrsA on the
489  amino acid metabolism. Contrary to the evolutionary energetic adaption of the amino acid

490  composition for secreted proteins (Smith and Chapman, 2010), the four amino acids tryptophan,
491  asparagine, aspartic acid, and lysine are over-represented in the AMY and PrsA proteins (Table 3).
492  Although, the specific metabolism processes for these four amino acids were not detected as

493  significantly regulated during fermentation (Fig 3), more general amino acid processes (e.g.,

494  transport) or biosynthetic processes for other amino acids (arginine and histidine) were significantly
495  over-represented by regulated genes. On the one hand, the upregulation of arginine synthesis and
496 related transport mechanisms improves osmotic stress resistance (Du et al., 2011; Zaprasis et al.,
497  2015), which in turn is beneficial to AMY production in B. subtilis (Zhao et al., 2018). On the other
498  hand, the over-represented amino acids might explain the reduced ATP biosynthesis. (i) Tryptophan
499  is the amino acid with the highest biosynthetic cost in B. subtilis, with a 42.9% higher cost than the
500  second most costly amino acid (phenylalanine) (Akashi and Gojobori, 2002).(i1) The biosynthesis, in
501  particular for costly amino acids, diverges intermediate metabolites from ATP biosynthesis (Akashi
502  and Gojobori, 2002). In the case of tryptophan, the intermediate metabolites are already diverged
503  from glycolysis, which also impacts the downstream citrate cycle (Kanehisa and Goto, 2000; Akashi
504  and Gojobori, 2002). However, a more definite inspection to confirm the regulation of the amino
505 acids and ATP metabolism would require investigation of concentrations of the individual

506  metabolites with for instance metabolomics.

507

508 5.2 Cell wall destabilizing processes

509  The over-expression of PrsA is known to lead to reduced cell growth and cell lysis (Quesada-Ganuza
510 etal., 2019). It was suggested that protein-protein interactions of specific PrsA protein domains are
511  causal for these phenotypes (Quesada-Ganuza et al., 2019). Our data suggest that, on a transcription
512 regulatory level, the PrsA-over-expressing stain has both increased polysaccharide catabolism and
513  reduced polysaccharide biosynthesis. We hypothesize that this strongly contributes to cell wall

514  breakdown, which leads to the detrimental phenotypes. Therefore, investigating the associated

515  differentially expressed genes could potentially be the outset to trace back the causality chain of why
516  their regulation changes, and as path forward to finding candidates that stabilize cells walls and

517  increase yields. Further, the PPI network analysis highlighted 24 tightly-associated PBSX prophage
518 and prophage-like genes (Fig 6 C) that might be decisive in unraveling the PrsA over-expression
519  lysis phenomena (Buxton, 1980; Quesada-Ganuza et al., 2019), particularly due to the heat-induced
520  (and thus secretion stress related) expression of the PBSX genes (Wood et al., 1990b).

521

522 5.3 Stress and cell motility

523  The PPI network analysis resulted in four clusters of proteins that we found to be relevant to this

524 study’s outset (Fig 4). These were the genes of the CssRS two-component secretion stress response in
525  one cluster (Fig 4 A), while the known ClpC regulatory switch and its associations with secretion

526  stress, competence transformation, and associations with the universal sigma factor SigA belong to
527  another cluster (Fig 3 B) (Turgay et al., 1997). Further, the analysis provided a large cluster (Fig 4 D)
528  of cell motility-related genes, which is consistent with the large number of proteins involved in

529  regulating bacterial motility (Rajagopala et al., 2007). The closer inspection of the latter cluster
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530  suggests that the proteins YesN and YwsqD might have a signaling role in balancing between cell
531  motility and 125 genes that are annotated to have various metabolic catalytic functions, e.g. the

532 phosphogluconate dehydrogenase. To our knowledge, the potential relationship between cell motility
533 and AMY fermentation has not been elucidated so far, although a potential hypothesis could be that
534  the signaling facilitates the regulation of flagellar cell motility to escape from the stress region

535  (Helmann et al., 1988; Marquez et al., 1990; Yan and Wu, 2019). Nevertheless, a follow-up study is
536  needed to verify cell motility regulation during AMY production.

537

538 5.4 Conclusion

539  In conclusion, our transcriptome study highlights the expression dynamics of secretion stress during
540  fed-batch AMY fermentation. The comparison of expression levels in a PrsA over-expressing strain
541  to a control strain showed differential expression for nearly half of the transcribed genes. A wide
542  variety of up- and downregulated biological processes related to energy and amino acid metabolism.
543  Also, the data shows potential associations of the cell lysis phenomenon of PrsA over-expression
544  with the stress response and cell motility. Overall, these results identify genes and biological

545  processes, which are affected during fermentation and by the overexpression of PrsA and provides a
546  starting point for future genetic modification of B. subtilis for improved yield.

547

548 6 Data Availability

549  The genomic sequences and RNA-seq data were deposited in the GEO database (GSE189556). The
550  expression coverages are presented as a browser for interactive investigation at

551  (https://rth.dk/resources/prsa/). The annotations of the BSGatlas are accessible at

552 https://rth.dk/resources/bsgatlas/. The additional putative ncRNA annotations are part of the

553  supplementary information of (Nicolas et al., 2012). The RNA-seq data was processed with a

554  reproducible pipeline located at doi 10.5281/zenodo0.4534403.

555

556 17 Acknowledgments

557  This work was supported by the Innovation Fund Denmark [5163-00010B] and the Novo Nordisk
558  Foundation [NNF14CCO0001]. The authors thank Annaleigh Ohrt Fehler for pivoting the samples for
559  sequencing and Thomas B Kallehauge for support in conducting the fermentations and sampling.
560

561 8 Author Contributions

562  ASG conducted the entire computational analysis and wrote the manuscript. LDP extracted the RNA.
563  NTD contributed to the analysis and methodology design of the PPI network. CA contributed to the
564  discussion of the expression analysis. EGT contributed to the swriting in the early-stage. AB

565  prepared the bacterial strains. LJJ contributed to discussion of the gene clustering, enrichment

566  analysis, and PPI network analysis. SES, CH, JV, JG supervised the work. JG and ASG made the
567  study design. JG was the main project coordinator. All authors read and approved the manuscript.
568

569 9 Contribution to the Field Statement

570  Our manuscript provides an in-depth RNA-seq study into the expression dynamics of secretion stress
571  during fed-batch amylase fermentation. The analysis of differentially expression shows regulation for
572 nearly half of the Bacillus subtilis transcriptome. We found many up- and downregulated biological
573  processes ranging from the energy and amino acid metabolism to cell wall synthesis. A
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574  complementary protein association network analysis sheds light on the potential associations between
575  the stress response and cell motility in the context of PrsA over-expression. Overall, these results

576  form the basis and outset for future study in the field of yield optimization.
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830  Figure 1. AMY fed-batch fermentations. Fed-batch fermentation was conducted in triplicates for a
831  control strain (blue) and +prsA (red). RNA-seq samples were prepared at 6 timepoints: 21 h, 26 h, 45
832  h,71h,94 h, and 118 h after fermentation start. Cell density and enzyme yield were measured for 5
833  timepoints: 23.2h, 45h, 70.2h, 97.8h, 119h.(A) The average cell density per strain over fermentation
834  time was measured in optical density (OD) at 650 nm. The error bars indicate the standard deviation.
835  (B) With a progressing fermentation, the yield increases. The shown yield is measured in enzyme
836  activity (see methods “strains and fed-batch fermentation”). (C) For the differential expression, we
837  investigated the significance of differential expression between the samples at 6 pairwise

838  comparisons (orange arrows) and changes in expression over time in either strain for each pair (black
839  arrows).
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842  Figure 2. Expression profiles. (A) Heatmap of the expression profile over time (columns) for all
843  differentially expressed coding and non-coding annotations investigated separately per strain. The
844  resulting profiles were clustered (rows) and re-arranged by a complete linkage tree. (B) Profiles of
845  expression per cluster for each annotation (black lines). An overall average expression according to a
846  loess regression is added in blue. (C) The number of annotations per profile in either strain. The

847  expression dynamics for each annotation can be in two separate profiles in the strains.
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851  Figure 3. Regulated biological processes. Biological processes that are over-represented by the
852  genes differentially expressed in each of the pairwise comparisons (black lines) between the

853  fermentation timepoint in the +prsA (red) and control strain (blue). For simplicity, the regulated
854  processes are grouped in subplots according to the same biological functions discussed in the result
855  sections, which touch upon (A) nucleotide biosynthesis, (B) energy metabolism, (C) cell wall

856  processes, (D) amino acid metabolism, and (E) stress response. Supplementary Fig S7 shows the
857  regulated processes without further functional subdivision. Colored arrows indicate a pairwise

858  comparison that was over-represented in a process (see description to the right). The arrows point to
859  the conditions in which expression levels were higher. Upregulation in the +prsA strain or

860  upregulation with time progression of the fermentation is highlighted in orange, whereas

861  downregulation is shown in purple. In each subplot, time-strain conditions not adjacent to an arrow
862  are greyed out.
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863
864  Figure 4. Relevant clusters of differentially expressed genes. Nodes represent protein coding

865  genes and edges correspond to high-confidence protein interactions retrieved from STRING. The
866  differential expression between strains is shown as rings around the nodes, where each ring contains
867  the logFC values for each time point comparison in a blue-white-red color gradient (see figure

868  legend). A high positive logFC is colored red and indicates a significantly larger expression in the
869  +prsA strain compared to the control. Non-significant differential expression is shown as 0 logFC
870  (white). The logFC color gradient was truncated at £2. (A) The genes in this cluster include the

871  central heat shock stress two-component system of CssRS and the proteases HtrAB (blue nodes). The
872  cluster also contains the gene ykoJ of unknown function (red node) connected to the stress transducer
873  CssS (large blue node). (B) This cluster contains the competence/heat shock switch protein ClpC

874  (leftmost red node) and the universal sigma factor SigA (rightmost red node); SigA and ClpC share
875  interactions with the tree heat shock proteins dnaK, grpE, and groEL (blue nodes). The cluster also
876  contains CIpE (purple node) that had substantially higher expression in +prsA at timepoint 118 h

877  (logFC ~2.6). (C) The analysis found a cluster of 24 prophage or prophage-like genes that were

878  closely interacting and had significantly higher expression in +prsA throughout the fermentation. (D)
879  The largest cluster contains a “bottleneck™ of high-confidence interactions at two genes of unknown
880  function (yesN and ywgD) between 125 genes of various catalytic function (summarized as one

881  node) and 29 chemotaxis genes (blue nodes) and the central chemotaxis signal protein CheA, the

882  flagellar hook-filament flgK, the general stress repose sigma factor SigB, and the RNA polymerase
883  sigma factor Sigl.
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13 Tables

Table 1. Differentially expressed annotations. For the differential expression analysis, multiple
coding and non-coding annotations were considered (first column). The number of genes with
minimal expression levels as determined by DESeq2’s independent filtering, which were inspected
for potential differential expression, is in the second column. The number of detected differentially
expressed annotations in any of the pairwise comparisons (Fig 1 C) is in the third column. The last
column lists the number of annotations detected to have a significant difference in expression
between the strains. The percentages provided in parenthesis are relative to the columns to the left.

(Note: Only 355 of the 542 NPTRs passed the independent filtering)

Annotations # Annotations Differentially Strain-specific
considered for expressed expression
analysis

CDS 2,674 | 1,791 (67.0%) 1,026 (57.3%)

NPTRs 355 | 234 (65.9%) 123 (52.6%)

putative ncRNA 107 | 68 (63.6%) 38 (55.9%)

Riboswitch 37 | 20 (54.1%) 10 (50.0%)

tRNA 22 | 9 (40.9%) 7 (77.8%)

SRNA 9| 3(33.3%) 2 (66.7%)

synthetic PrsA 1 1(100.0%) 1 (100.0%)

synthetic AMY 1| 1(100.0%) 0 (0.0%)

asRNA 1 0(0.0%) 0

SRP 1| 0(0.0%) 0

Table 2. Most extreme observed logFCs. The table lists the top 10 most extreme up- and down-
regulated genomic elements according to their logFC of differential expression (fourth column). prsA
is excluded since it was upregulated with an approximate logFC of 20 between strains at all time
points. For each genomic element, the locations (last column) are relative to the reference genome
(see methods). The pairwise tests (third column) refer to the conducted differential expression
analysis (Figure 1C), and the corresponding adjusted P-values are listed in the fifth column.

name type test logfC adj.P location

nadB coding between strains, 26h 7.4 1.07E-10 2847871<-2849466
nadB coding control, 26->45h 7.2 2.65E-10 2847871<-2849466
nadC coding control, 26->45h 7.0 2.89E-09 2847048<-2847917
nadC coding between strains, 26h 6.9 5.26E-09 2847048<-2847917
nadA coding control, 26->45h 6.8 7.82E-11 2845955<-2847061
nadA coding between strains, 26h 6.8 1.33E-10 2845955<-2847061
safA coding control, 26->45h 6.4 4.05E-09 2844675<-2845838
safA coding between strains, 26h 6.2 8.98E-09 2844675<-2845838
COXA coding between strains, 26h 6.2 1.82E-05 2843931<-2844527
COxA coding control, 26->45h 6.1 2.28E-05 2843931<-2844527
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spollGA coding control, 26->45h -5.2 8.47E-67 1603779->1604708
skfB coding control, 26->45h -5.4 2.86E-60 214175->215407
skfA coding +prsA, 26->45h -5.4 7.31E-09 213941->214108
skfA coding control, 26->45h -5.7 4.39E-24 213941->214108
bceA coding control, 26->45h -6.2 5.76E-107 3111327<-3112088
nadA coding control, 21->26h -6.2 0.002258927 2845955<-2847061
bceB coding control, 26->45h -6.5 1.62E-127 3109397<-3111337
nadB coding control, 21->26h -6.5 0.003566971 2847871<-2849466
ldh coding +prsA, 21->26h -6.6 2.42E-13 329774->330739
gap-1449 NPTR  control, 26->45h -6.9 1.85E-48 3108525<-3109352

901

902  Table 3. Amino acid composition. The average amino acid compositions (rows) are shown for all
903  coding genes (second column) and those that were detected as differentially expressed (third

904  column). The standard deviations are shown behind the “+” signs. The compositions of amino acids
905  for the AMY enzyme (fourth) and the over-expressed PrsA (fifth) column are shown. The difference
906 in standard deviations relative to the average for all genes are indicated in parenthesis. The bold font
907  highlights amino acids with difference of more than 2 standard deviations.

Amino Acid All coding Diff. AMY PrsA
genes expressed
tryptophan 1.03% +0.99 | 1.06% +0.96 | 4.12% (+3.1s.d.) | 0.35% (-0.7 s.d.)
asparagine 4.07% +2.05 | 3.87% +1.75 | 8.82% (+2.3s.d.) | 2.82% (-0.6 s.d.)
histidine 2.30% +1.51 | 2.27% +1.33 | 4.31% (+1.3s.d.) | 1.06% (-0.8 s.d.)
tyrosine 3.57% +1.95 | 3.39% +1.56 | 5.49% (+1.0s.d.) | 3.17% (-0.2 s.d.)
glycine 6.67% +2.74 | 6.95% +2.41 | 8.82% (+0.8s.d.) | 6.34% (-0.1s.d.)
aspartic acid 5.11% +2.29 | 5.06% +2.10 | 6.86% (+0.8 s.d.) | 11.27% (+2.7
s.d.)
threonine 5.32% +1.87 | 5.44% +1.75 | 5.88% (+0.3s.d.) | 4.23% (-0.6 s.d.)
arginine 4.19% +2.14 | 4.07% +1.91 | 4.31% (+0.1s.d.) | 0.70% (-1.6 s.d.)
proline 3.48% +1.71 | 3.55% +1.49 | 3.53% (+0.0s.d.) | 0.35% (-1.8 s.d.)
glutamine 3.87% +2.04 | 3.85% +1.82 | 3.73% (-0.1s.d.) | 6.34% (+1.2 s.d.)
alanine 7.36% +2.84 | 7.82% +2.65 | 7.06% (-0.1s.d.) | 7.39% (+0.0 s.d.)
phenylalanine 4.63% +2.40 | 4.53% +2.20 | 4.31%(-0.1s.d.) | 1.76% (-1.2 s.d.)
valine 6.75% +2.37 | 6.92% +2.11 | 6.27% (-0.2s.d.) | 6.69% (-0.0 s.d.)
methionine 2.46% +1.43 | 2.52% +1.31 | 2.16% (-0.2s.d.) | 1.76% (-0.5 s.d.)
serine 6.22% +2.26 | 6.28% +2.16 | 4.51% (-0.8 s.d.) | 4.93% (-0.6 s.d.)
cysteine 0.91% +1.13 | 0.84% +0.91 | 0.00% (-0.8 s.d.) | 0.35% (-0.5s.d.)
lysine 7.50% +3.14 | 7.13% +2.78 | 4.90% (-0.8 s.d.) | 17.96% (+3.3
s.d.)
glutamic acid 7.37% +3.29 | 7.20% +3.13 | 4.31% (-0.9s.d.) | 9.15% (+0.5 s.d.)
leucine 9.70% +3.06 | 9.72% +2.86 | 6.67% (-1.0s.d.) | 8.45% (-0.4 s.d.)
isoleucine 7.50% +2.65 | 7.53% +2.48 | 3.92% (-1.4s.d.) | 4.93% (-1.0s.d.)
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