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Abstract

Objective: Large-scale microscopy-based experiments often result in images with rich but sparse in-
formation content. An experienced microscopist can visually identify regions of interest (ROIs), but this
becomes a cumbersome task with large datasets. Here we present SimSearch, a framework for quick and
easy user-guided training of a deep neural model aimed at fast detection of ROIs in large-scale microscopy
experiments.

Methods: The user manually selects a small number of patches representing different classes of ROIs.
This is followed by feature extraction using a pre-trained deep-learning model, and interactive patch se-
lection pruning, resulting in a smaller set of clean (user approved) and larger set of noisy (unapproved)
training patches of ROIs and background. The pre-trained deep-learning model is thereafter first trained
on the large set of noisy patches, followed by refined training using the clean patches.

Results: The framework is evaluated on fluorescence microscopy images from a large-scale drug screen-
ing experiment, brightfield images of immunohistochemistry-stained patient tissue samples, and malaria-
infected human blood smears, as well as transmission electron microscopy images of cell sections. Compared
to state-of-the-art and manual/visual assessment, the results show similar performance with maximal flex-
ibility and minimal a priori information and user interaction.

Conclusions: SimSearch quickly adapts to different data sets, which demonstrates the potential to speed
up many microscopy-based experiments based on a small amount of user interaction.

Significance: SimSearch can help biologists quickly extract informative regions and perform analyses on
large datasets helping increase the throughput in a microscopy experiment.

1 Introduction

Microscopy imaging is an essential tool for investigat-
ing complex biological processes. With the increase
in high throughput imaging techniques, the amount
of data being generated is increasing at an unprece-
dented rate. The high resolution images created in
biology often contain rich but sparse information, i.e.,
only a small section of the data contains information
useful for deeper analysis. Expert annotators are usu-
ally required for sifting through the data and gener-
ating insights about those informative regions. As
a result, manual annotation is difficult to scale with
the amount of data being generated. Hence, there is
a need for an efficient and flexible user-guided detec-
tion of informative regions in the data.

1.1 Related Work

Current state-of-the-art tools (1; 2; 3; 4; 5) in biomed-
ical image analysis rely on manual feature selection
and training machine learning classifiers with pre-
defined extracted features. In CellProfiler (3), the
user is asked to create a ‘pipeline’ consisting of a
sequence of individual modules typically performing
image processing, object segmentation and feature
measurements. For each module, methods need to
be chosen and parameters interactively tuned. The
extracted measurements can then be imported into
CellProfiler Analyst (4) to classify different objects
based on a few user-defined examples and machine
learning classifiers such as SVM and RandomForest.

Ilastik (5) provides a graphical user interface (GUI)
for semantic image segmentation where the user de-
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fines training regions using mouse-clicks and brush
strokes. Pixel classification is based on a set of user
selected pre-defined local neighborhood features, such
as color, intensity, and texture, on which the classifier
makes its predictions.

In both these tools, the user is expected to select
the image features required to classify the ROIs which
means that the results are limited by the ability of
selected features to separate the ROIs of different
classes. Any shift in imaging conditions, intensity
or texture will easily cause the features to fail and,
hence, reduce the performance of these tools (5). Fur-
thermore, even though both tools provide estimators
of feature importance to prune irrelevant features,
method choices and feature selection still require ex-
pertise in image analysis and biology.

Deep learning techniques have proven to be very ef-
fective and useful for biological image analysis (6; 7).
In many situations, these techniques provide a dis-
tinct advantage over task-specific feature engineer-
ing which is time-consuming and often inadequate for
dealing with contextual variations, and instead learn
hierarchical feature representations of the image con-
tent from labeled samples (8). Although the learned
features are task and data specific, the first few lay-
ers of the representations are often generic (edges,
blobs, shapes) and can serve as features to represent
different ROI classes as shown in this paper.

However, deep learning requires a large amount of
labeled data to perform well, which in case of biolog-
ical data is very resource demanding to produce due
to its requirement of domain-expertise that increases
the logistic and financial burden. Recently, the emer-
gence of self-supervised learning techniques (9), (10)
has shown great promise in reducing the requirement
of massive amounts of labeled data. In self-supervised
learning, the model learns the feature representation
of the input data using a pre-designed task without
using the annotations. The model can then be fine-
tuned to be used in a variety of down-stream tasks
with a small amount of labeled data.

1.2 Contribution

In this paper, we introduce a human-in-the-loop ROI
detection framework, SimSearch, which combines es-
tablished deep learning techniques with modified self-
supervised learning to make efficient use of limited
user interaction. The main contributions of this pa-
per are as follows:

• An intuitive and interactive GUI framework for
ROI detection requiring the user input only on a
small number of images in a microscopy dataset.

• The user annotates the images to create a small
set of clean ROIs consisting of positive and neg-
ative ROIs.

• Using user-input efficiently to create a larger set
of noisy ROIs from the rest of the dataset and
learning the feature representation of the dataset
using self-supervised learning.

• Fine-tuning the self-supervised model on the
clean data with supervised contrastive loss uti-
lizing the user-selected negative ROIs in a novel
way.

It first uses prototype ROIs marked by the user
in a few displayed images to extract features from
a standard pre-trained deep learning model. Based
on the extracted features, similar patches are sug-
gested on the displayed images and the user chooses
a similarity threshold using a slider for true positive
patches and curates the positive set by interactively
removing the falsely suggested patches. These inter-
actively removed patches are the negative patches.
The chosen threshold is used to extract a larger set
of noisy patches from the images not displayed to
the user. These are used to retrain the initial deep
learning model in a self-supervised manner to learn
the general behaviour of the imaging modality and
ROIs. Finally the model is fine-tuned on the curated
clean positive and negative patches, resulting in a
deep learning model which specifically caters to the
task at hand.

The paper is organized as follows. The components
of the framework and model training are described
in Section 2. Section 3 describes the datasets and
evaluation criteria used to demonstrate and evaluate
the framework. Section 4 presents the results and
discussion of SimSearch on on experiments and an
ablation studies, and 5 concludes our findings.

2 Methods

2.1 Overview and Notations

The framework pipeline consists of data preprocess-
ing, combined manual and automated iterative patch
selection, deep learning model training, and final
patch confidence thresholding. All the steps are de-
scribed in detail in the following sections and illus-
trated in Figure 1. Since the input may come from
different modalities with different bit-depth and num-
ber of channels, all available images are pre-processed
and the user is asked to select relevant channels to
include in the ROI detection. In fact, irrelevant im-
age channels may introduce unwanted bias in ROI

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2022. ; https://doi.org/10.1101/2022.04.05.487117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.487117
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Overview of the SimSearch framework. The human-in-the-loop system requires minimal input at
each interactive step in the pipeline. Iterative Patch Selection (IPS) is done on a subset of images and the
parameters are used to generate noisy data. Thereafter, a deep learning model is trained, and the output is
shown to the user in Confidence Threshold Selection. Finally, the model and results are saved.

selection, and focusing on relevant channels reduces
computation time and latency. Next, the user ini-
tiates the iterative patch selection process on a dis-
played subset of the images. The user selects ROIs
by drawing rectangular patches in the images. These
patches are denoted as the prototype patches of the
instantiated class. The corresponding feature vectors
extracted by a simple pre-trained model are called
prototype vectors. New patches in the displayed im-
ages are suggested to the user based on their sim-
ilarity (see Section 2.3.1) to the prototype patches.
The user chooses a similarity threshold using a slider,
manually curates the suggestions and then approves
clean patches consisting of the positive and negative
(the manually curated) ROIs for each class, i.e., be-
longing to the class, and not belonging to the class
respectively. Based on the similarity threshold, noisy
patches, i.e., unapproved and uncurated ROIs are
generated from the rest (undisplayed) of the images.

A task-specific deep learning model is trained next
using the clean and noisy data. The user is then pre-
sented with the patch classification result from the
trained model, and asked to choose a suitable con-
fidence threshold for the final ROI definition. Fi-
nally, the complete dataset is (again) processed by
the model, and the ROIs are displayed and/or saved.

2.2 Preprocessing and Channel Selec-
tion

Images captured by a digital camera connected to
a microscope usually have a bit-depth of 12-16

bits/pixel. This wide dynamic range is sometimes
useful for precise feature extraction, but the infor-
mation contained within a smaller dynamic range is
often sufficient for detection of ROIs. In addition,
fluorescence microscopy images often consist of mul-
tiple channels that contain information about differ-
ent structures. Channels also may be correlated, and
in many cases only a subset of the channels are rel-
evant for ROI selection. Hence, to reduce compu-
tational costs and speed up the ROI selection, the
dynamic range is re-scaled and channel correlation is
measured.

All images of a channel are re-scaled to the same
dynamic range. We assume that the instrument set-
tings are kept constant throughout the experiment
and apply the same gentle normalization to all images
in the set. For each channel, we extract the (5, 95)
intensity percentile of all images. We then find the
(0.5, 99.5) of these intensity percentiles and re-scale
intensities in this dynamic range to [0-1]. This min-
imizes the influence of image artifacts. The mean of
the correlation between image channels is calculated
and shown to the user for manual channel selection
in the GUI. The user can then make a statistically
informed decision by clicking on the channels that
are relevant for the experiment. The manual chan-
nel selection can be skipped if information from all
channels should be used for the ROI detection.
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Figure 2: Flowchart of iterative patch selection and the description of Similarity Extraction (SE) (in orange
box). The user instantiates classes representing ROIs by selecting patches and creates data following the
Class Data Extraction block. The SE is called for feature extraction and detection of similar patches in
multiple places in the flowchart. After all the classes are defined, the user marks the background class in the
Background Extraction block. Noisy training patches are generated using the class prototypes and similarity
threshold.

2.3 Iterative Patch Selection (IPS)

After preprocessing and channel selection, the user
is presented with a graphical user interface (GUI)
shown in Figure 1 displaying n images randomly cho-
sen or selected from the dataset. The user then
selects a small number of prototype patches and
interacts with the GUI to generate clean training
patches representing ROIs and background following
the flowchart in Figure 2. The number of images, n,
can be chosen by the user and should preferably be
kept small (less manual work) while still contain rep-
resentative objects and the variation in the dataset.

To start the definition of ROIs, the user first instan-
tiates a ROI class and then marks prototype patches
representing this ROI class. Based on ‘Similarity Ex-
traction’, as described below in Section 2.3.1, patches
similar to the prototypes are highlighted in the dis-
played images. The user then adjusts a similarity
threshold to include or exclude more patches based

on their similarity to the prototype patch. The user
can select more prototype patches and adjust the
threshold to annotate the images until a represen-
tative number of patches (typically 80-90% of the ob-
jects of the instantiated class in the displayed images)
are marked. If incorrect patches are included after
thresholding, the user may manually mark them to
exclude these patches, which are kept as negatives.

Once patches from all the instantiated ROI classes
are annotated, the user is presented with patches that
are assumed to belong to the background. The user is
asked to mark the patches that do not belong to the
background. Once this process is completed, all clean
patches, i.e., positive and negative patches approved
by the user, are gathered and the similarity threshold
is saved for each ROI class. Thereafter, based on the
prototype patches and the similarity threshold, noisy
training patches are extracted from the rest of the
dataset.
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2.3.1 Similarity Extraction (SE)

With the selection of the first prototype patch for a
ROI class, the patch shape and stride (0.1 × the
patch width) for the experiment are fixed and sim-
ilar patches are shown to the user following Similar-
ity Extraction as described in Figure 2. The proto-
type and its rotations (90°,180° and 270°) are passed
through a pre-trained CNN feature extractor (shown
in Figure 3) to get the feature representation of the
patch, referred to as prototype vectors of that class.
In this paper, a deep learning model pretrained on
ImageNet(11) dataset is used. This may not be opti-
mal, but sufficient, as the goal of the IPS is to find a
few general features roughly representing the ROIs.
The primary interest here is to swiftly label many
patches.
Similarly, the feature representations of the images

are extracted by dividing the image into patches us-
ing a sliding window with the set patch shape (from
the first manually drawn ROI) and stride. The co-
sine similarity between the prototypes and the fea-
ture representation of all image patches is calculated,
providing a heat-map of similarities over the images.
The locations of local maxima above the set similarity
threshold from the heat map are calculated and pro-
jected back to the image and shown as similar patches
to the user. The user can then adjust the threshold
to see patches with higher or lower similarity.
However, as the threshold is decreased, all patches

displayed might not belong to the instantiated class.
This “false-positive” number can be reduced by in-
creasing the threshold but at the cost of getting fewer
clean positive patches to train the model with. Re-
ducing the threshold would result in more examples
but also more false-positive examples. To eliminate
this issue, a negative flagging step is introduced in the
class data selection process. After having selected
a similarity threshold, the user is asked to flag the
patches that do not belong to the class. This results
in more clean positive examples to be available for
training and also clean negative examples to make
the classifier more robust towards difficult examples.
All the prototype vectors and final similarity

threshold are saved once the user is done with neg-
ative flagging. These are used to extract the back-
ground patches, and generate noisy samples for the
rest of the data, as described in Section 2.3.2 and
Section 2.3.3 respectively.

2.3.2 Background Extraction

After labeling all the relevant classes, the user is pre-
sented with some previously unlabeled patches that
potentially belong to the background and is asked

to flag the patches that do not belong to the back-
ground. The semi-automated background extraction
step is introduced to eliminate the need for manual
background patch selection. The patches presented
to the user are the unlabeled patches with highest
and lowest similarity to the average of all prototypes
for all classes. The patches with the lowest similar-
ity represent the easy examples of the background
and the highest similarity represent difficult exam-
ples. An approach similar to the SE is used (see Al-
gorithm 1).

Algorithm 1: Find 2n probable background
patches in the image

Result: Getting probable background patches
Total user selections: n;
All patch regions marked by user: Rn;
All prototypes: pcn, c ∈ C;
Feature map extracted: If ;
Initialize S ;
for pi in pcn do

s = cosine similarity(pi, If );
S append s;

end
S = sum(S);
set S = 0 on the locations of Rn;
Find n local maxima M = {x, y | S(x, y) };
Find n local minima m = {x, y | S(x, y) };
Display 2n patches;

2.3.3 Generation of Noisy Training Data

Based on the prototypes and similarity thresholds
(ROIs and background), noisy data can be generated
automatically from the images in the dataset not dis-
played to the user. The images are passed through
the feature extractor and the local maxima are ex-
tracted from the cosine similarity between the fea-
ture map and prototypes, and thresholded based on
the user-selected similarity threshold for the class as
described in 2.3.1. The background patches are then
similarly generated using the algorithm 1.The gener-
ated data is noisy due the lack of user verification,
but it provides valuable information for tuning the
feature extractor to the characteristics of the images
and task at hand.

2.4 Deep Learning Model Training

The model training is done in two steps, first the
noisy patches are used to train the network in self-
supervised way to learn the general representation of
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Figure 3: Description of the model architecture and
training strategy. Training is divided into two parts.
The model is first trained with noisy patches gener-
ated in 2.3.3 (top). Afterwards, the model is trained
with both clean negative patches and clean positive
patches and finally, a fully connected layer is added
and trained in the end to make predictions (bottom).

the data and, second, the model is refined towards
the class representation using the patches verified by
the user. Finally, a fully connected layer is added and
a classifier is trained.

2.4.1 Training on Noisy Patches

The feature representations of the patches in the
datasets are learned on the noisy patches using Sim-
CLR, the self-supervised contrastive learning frame-
work introduced in (12). Since only the most relevant
noisy patches are extracted by the method described
in 2.3.3, the feature representation learned by con-
trastive learning enhances supervised training on the
limited amount of labeled data. In SimCLR, a projec-
tion head (a multi-layer perceptron (MLP) with one
hidden layer) is attached to the pre-trained feature
extractor model and the whole architecture is then
trained with the NT-Xent (normalized temperature-
scaled cross entropy) loss using two differently aug-
mented views of the same noisy patch in each mini-
batch.
The NT-Xent loss for the correlated views of the

same example is defined as follows,

Lself = −
∑
i∈I

log
exp(sim(zi, zj(i))/τself )∑

a∈A(i)

exp(sim(zi, za)/τself )
, (1)

Here, i is a sample in a multi-viewed minibatch of
size 2N where each sample appears twice, augmented

differently, i.e., I ≡ 1...2N . Index i is referred to
as anchor, and j(i) is called its positive and other
2(N−1) indices in A(i) ≡ I \ {i} are called negatives.
Further, sim(u,v) = uTv/||u||||v|| denotes the cosine
similarity between u and v and τself denotes the tem-
perature parameter for the self-supervised training.

The initial layers of the feature extractor are frozen
to enable only the task specific high-level features to
be learned during the noisy refinement. An alterna-
tive noisy training scheme has been proposed in (13)
which tried to achieve learning with noisy samples
by simultaneously training with noisy labels and cor-
rected labels. This scheme was tested but did not lead
to improvements since the feature representation of
negative and positive patches could not be separated
meaningfully.

2.4.2 Further Refinement on Clean Patches

As previously shown in (14), the training procedure
above can be generalized to be used in supervised
learning conditions where labels of the samples are
available. The loss function is then modified to in-
corporate the class labels for the patches in order for
the model to learn the representation that maximizes
the similarity between patches of a class (positives)
and minimize the similarity to patches of a different
class (negatives).

The supervised contrastive loss can be defined as
follows,

Lsup =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(sim(zi, zp)/τsup)∑

a∈A(i)

exp(sim(zi, za)/τsup)

(2)

where A(i) ≡ {a | a ∈ I \ i} and P (i) ≡ {p ∈ A(i) :
yp = yi}.

The negative patches marked by the user provide
challenging examples where the original similarity
measure (from the unrefined model) failed in the
patch selection process. We can utilize these nega-
tives and add them directly into the denominator of
the log term in Eq. 2. The denominator can then be
written as,

D =
∑

a∈A(i)

exp(sim(zi, za)/τsup) + exp (sim(zi, zn)/τsup)

(3)
where A(i) ≡ {{a, n} | a ∈ I \ i, n ∈ N(i)} and N(i)
is a set of all negative examples marked by the user
during the patch selection of class yi. The final loss
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then becomes

Lsup
neg =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(sim(zi, zp)/τsup)

D

(4)

Lsup
neg helps the model learn feature representation

of the dataset that maximizes the similarity between
the positive samples of the same class, but minimizes
the similarity of positive samples of a class with the
negative samples of that class, and the samples of
other classes.

Finally, the projection head is removed and a fully-
connected layer is added, see Figure 3. The refined
feature extractor part of the model is then frozen and
only the fully connected layer is trained with cross-
entropy loss to get the patch class prediction as out-
put.

Since the data from the user selection tends to
be imbalanced, a weighted oversampling was used
in both the noisy and clean patch training steps to
prevent overfitting and skewing the results towards
the over-represented class. By default, the frame-
work trains the model with both the noisy and clean
patches but noisy training and negative training can
be switched off depending on the precision and com-
putation requirements by the user.

2.5 Confidence Threshold Selection

The inference is done in a patch-wise manner where
the image is divided into patches using a sliding win-
dow and a softmax value of the prediction for each
class is obtained for the patches. The confidence
threshold is then defined as the softmax threshold
above which the local maxima in the softmax image
are chosen. Results on the dataset images are dis-
played in the GUI and the user has the option of
changing the confidence of each class separately and
choosing a threshold that produces the desired result.
This gives the user an option to prioritize either pre-
cision or recall in accordance with the research ques-
tion. A higher threshold will result in predictions
with higher precision but lower recall and a lower
threshold will result in predictions with higher recall
and lower precision. After threshold selection, the lo-
cation and class of each detected patch is saved for all
the images in the dataset along with the confidence.

3 Experimental Setup,
Datasets, and Evaluation
Criteria

We use two image datasets, one fluorescence mi-
croscopy and one immunohistochemistry to quantita-
tively evaluate the performance of SimSearch. Two
other datasets, one transmission electron microscopy
(TEM) and one blood smear brightfield microscopy
dataset are used for ablation studies to evaluate the
influence of different design choices and parameter
settings in the framework.

3.1 Cell Classification for GFP
Translocation Analysis

The first evaluation dataset consists of fluorescence
microscopy images from the open dataset originally
provided by Ilya Ravkin and made publicly available
via the Broad Bioimage Benchmark Collection (15).
The images are from a drug screening experiment,
where human U2OS cells are grown in a 96-well plate
with varying dose of two drugs. As the drug dose
increases, a protein tagged with the green fluorescent
protein GFP is translocated from the cytoplasm to
the nucleus, and thus the amount of GFP expressed
in the nuclei increases and GFP expressed in the cy-
toplasms decreases. The goal of the analysis is to
quantify this translocation of GFP, or more specifi-
cally, to measure the fraction of cells in an image that
have nuclear or cytoplasmic GFP expression. Not all
cells express GFP, meaning that we also need a third
class, referred to as the “no GFP” class. This gives
three classes of interest for the experiment, i.e, “GFP
in Nucleus”, “GFP in Cytoplasm”, and “No GFP”.

The experimental setup using SimSearch consists
of a workflow where the user is asked to define the
three classes of cells as described above, and the out-
put is the number of patches per image represent-
ing the three classes. Five prototype patches of size
48 × 48 pixels from each of the “GFP in Nucleus”,
“GFP in Cytoplasm”, and “No GFP” were selected
from six images and the threshold was adjusted indi-
vidually until five negative patches were marked for
each class. The confidence threshold was set to 0.65
for each class after manual inspection of the results.

Here we compare the results achieved with Sim-
Search to those achieved with CellProfiler (3) and
CellProfilerAnalyst(4). We tuned a CellProfiler
pipeline on the translocation dataset, and extracted
a large number of intensity and morphology features.
We thereafter trained a RandomForest classifier in
CellProfilerAnalyst to detect the three cell classes de-
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scribed above. In order to make the comparison be-
tween SimSearch and CellProfiler Analyst as fair as
possible, we used the same set of training cells as were
used in the first step of the SimSearch workflow.
To evaluate the SimSearch performance, we com-

pared the classification results to those obtained us-
ing CellProfiler/CellProfilerAnalyst in relation to the
known drug dose per well. The ratio of cells from
each class with respect to the total number of cells
detected in each image in CellProfiler and the ra-
tio of patches of each class with respect to all the
patches detected in SimSearch was calculated and
plotted against the drug dose.

3.2 Segmentation of Brightfield Im-
ages of Tissue

The second evaluation dataset consists of publicly
available tissue samples obtained from the Human
Protein Atlas (16), where protein expression in dif-
ferent human tissue types is derived from antibody-
based immunohistochemistry. Antibodies are labeled
with DAB (3,3’-Diaminobenzidine) and the resulting
brown stain indicates where an antibody has bound
to its corresponding antigen. The sections are fur-
thermore counterstained with hematoxylin to enable
visualization of other tissue components, such as cell
nuclei. Ethical approval was not required for usage of
this human data as confirmed by the license attached
with the open access data.
In our experimental setup, we wanted to investigate

SimSearch’s ability to identify different sub-cellular
protein localizations, and therefor chose two proteins
with known localizations: ERBB2, which is mem-
branous and BRCA1 which is located mostly in nu-
clei. To limit the influence of variation in general tis-
sue morphology, we included (when available) paired
ERBB2 and BRCA1 samples from the same patient.
Note that all tissue samples also consist of various
amounts of tissue without DAB stain. In total 33
images were extracted and used in the study.
Five prototype patches of 48×48 pixels each repre-

senting nuclear stain, membranous stain, and tissue
without DAB stain were selected from six training
images. The similarity threshold was decreased in-
dividually until a representative number of patches
were displayed in the images, and approximately ten
negative patches were marked for each class. Once
trained, the classifier was applied to the full dataset.
The confidence threshold was set to be 0.6 for each
class. This was motivated by the need to get a more
exact outline of the different regions in the tissue,
and a more stable quantification of the different tis-
sue fractions.

For this dataset, the output from SimSearch was
modified to provide a semantic segmentation of the
tissue sample. This was done by resizing the patch-
wise prediction outputs to the original image size,
and assigning the class with maximum probability
above the confidence threshold at each pixel as final
prediction.

3.3 Ablation Studies

Ablation studies were performed to assess the vari-
ability in performance of the framework under dif-
ferent training conditions. Datasets of transmission
electron microscopy images and blood smear bright-
field microscopy images were used for this purpose.

Cilia Detection. The first ablation dataset
consists of negative stain transmission electron mi-
croscopy (TEM) images of cell sections for cilia mor-
phology analysis. Mouth swabs of respiratory epithe-
lial cells of which some have protruding cilia were
redissolved, fixated, and embedded in plastic before
sectioned into slices of (≈ 50 - 70 nm) in thickness, us-
ing a microtome. The slices of the specimen were then
floated onto carbon coated copper mesh grids and
post-stained to increase contrast. The images were
acquired with a low-voltage (25keV) MiniTEM (Vi-
ronova AB, Stockholm, Sweden) as 16-bit TIFF im-
ages of size 2048×2048 pixels and a pixel size of 1nm.
The cilia positions were annotated using bounding
boxes and the centers were treated as the ground
truth. The dataset consisted of 39 images with a to-
tal of 393 cilia, of which 31 images with 296 cilia were
used for training and eight images with 97 cilia were
kept separately for testing. From the training set,
six random images were displayed and used for user
interaction, and the rest were used for noisy data ex-
traction. The performance was evaluated on the test
set. The patch size was chosen to be 72 × 72 pix-
els to include also slightly bigger (stretched during
sectioning) cilia as well.

Trophozoites and RBC Detection. The other
dataset used for ablation studies consists of image
set BBBC041v1 made publicly available via Broad
Bioimage Benchmark Collection (15). The dataset
consists of 1384 brightfield microscopy images of
blood smears stained with Giemsa reagent divided
into three different sets, containing two classes of un-
infected cells (RBCs and leukocytes) and four classes
of infected cells (gametocytes, rings, trophozoites,
and schizonts). For the purpose of this study, a sub-
set of the images containing only RBCs and tropho-
zoites was used as the other classes were very rare.
This meant that 258 images containing 607 tropho-
zoites and 19784 RBCs were used in the experiments.
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Of these, 206 images with 502 trophozoites and 15262
RBCs were used for training and 52 images with 105
trophozoites and 4522 RBCs were kept separate for
testing. Ten random images from the training set
were chosen to be displayed for user interaction, and
the rest of the images in the training set were used
for noisy data extraction. The performance was eval-
uated on the test set. To utilize the iterative patch
selection better in this evaluation study, the random
image set chosen for display were required to have
at least 20 trophozoites present in the images. The
patch size was chosen to be 64× 64 pixels.

In both ablation studies, a detected patch is
counted as a true positive (TP) if the distance be-
tween the center of the ground truth patch and de-
tected patch is less than three times the stride of the
sliding window patch extraction. The rest of the de-
tected patches are counted as false positives (FPs)
and the undetected ground truth patches are counted
as false negatives (FNs).

The performance of the framework was measured
on the area under the precision-recall curve (AUC)
by varying the number of prototypes and negative
patches. The number of prototype patches P was var-
ied as P = {5, 10} and the number of negative patches
N was varied as N = {0, 5}. This was achieved by
selecting P ground truth patches randomly and then
adjusting the similarity threshold until only N nega-
tive patches remained in the displayed images. The
effect of different training strategies, especially the
self-supervised training on noisy patches and nega-
tive supervised contrastive training which were in-
troduced in a novel way in the framework was also
compared. Pos training refers to training only with
the clean positive patches obtained during the itera-
tive patch selection, Pos+Neg training refers to the
training with both clean positive and clean negative
patches, and Selflearn refers to the self-supervised
training of the noisy patches as described in Section
2.3.3.

For statistical significance, the experiments in each
combination of P and N were repeated 20 times by
selecting new images and new prototypes for iterative
patch selection randomly. Since the user-approved
data is minimal (5-15 patches per class), a validation
set of patches to assess model performance cannot
be meaningfully extracted without affecting the per-
formance. Currently, the training is stopped after a
fixed number of iterations (empirically chosen) which
results in some variance in the results. Hence, to
test the repeatability of a particular training strat-
egy, each training strategy was repeated five times
(with the same training data and hyper-parameter
settings) for each iteration and the standard devia-

tion in AUC is recorded.

In the first experiment, the effect of the number of
P and N on the AUC was computed. In the second
experiment, the effect of training strategies on the
AUC was compared. Lastly, the repeatability of the
training strategies was shown by computing the mean
standard deviation in AUC for a particular training
strategy.

All the strategies were compared against the fully
supervised baseline using Pos training on the whole
training set to qualitatively assess the performance
of SimSearch with the fully supervised approach that
requires significantly larger sets of labelled data. The
background patches were extracted from images by
removing the labelled class patches. For supervised
baseline training in cilia experiments, 311 patches
were extracted, and for trophozoites and RBCs exper-
iments, 913 patches were extracted. The supervised
experiments were also repeated 20 times and mean
and standard deviation of the AUC was recorded.

3.4 Implementation Details

Iterative Patch Selection: In all experiments, patch
selection was done based on the features extracted
from the pre-trained ResNet-18 (17) network trained
on ImageNet (11). Since the deeper layers are task
specific, only the first 3 blocks of ResNet were used.
A convolutional filter of size (H/16×W/16), whereH
and W are the height and width of the patch respec-
tively, initialized with a gaussian was added to get a
center focused single feature vector output for every
patch. The inference was done on NVIDIA Titan X
GPU with 12 GB and took approx. 0.5 sec/image
for initial patch feature extraction (which happens
when the first patch is selected) and SE is almost
instantaneous (milliseconds) afterwards. The gener-
ation of noisy training patches also takes approx. 0.5
sec/image.

Noisy Training: For self-supervised training, a pro-
jection head consisting of 2 fully-connected layers was
added. The model architecture is shown in Figure 3.
The initial convolution layer and the first 2 blocks of
ResNet were frozen and the network was then trained
for 100 epochs with the Adam optimizer (18) and a
learning rate of 10−3 with a step decay of 0.05 af-
ter each 50 epochs. The model was trained with a
batch size of 128 and augmentations were performed
with random horizontal and vertical flips, rotation,
solarize, coarse-dropout, and brightness and contrast
changes. τself was chosen to be 0.5.

Supervised Refinement: For supervised contrastive
training, the model is then trained with a batch size
of 32 for 50 epochs with Adam optimizer and a learn-
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Figure 4: Comparison between CellProfiler pipeline and SimSearch results. The fraction of each cell class
of the total number of cells detected is shown with respect to the drug dose.

ing rate of 10−3 with a step decay of 0.1 after each 25
epochs. τsup was chosen to be 0.07. The same aug-
mentation strategy as in the self-supervised training
step except solarize and coarse-dropout was used.

4 Results and Discussion

4.1 Cell Classification for GFP
Translocation Analysis

As shown in Figure 4, the output of SimSearch cor-
responds well with the drug dose in the wells. The
fraction of ROIs with GFP expression in the nuclei
increases sharply as the drug dose reaches 15.6 nM.
Similarly, the fraction of ROIs with GFP expression
in the cytoplasms decreases at the same drug dose.
The fraction of ROIs of cells with no GFP (which
is independent of drug dose) remains similar. At
each dose, the SimSearch results follow the CellPro-
filer results very well. However the magnitude differs
slightly. This is likely due to the fixed bounding box
size in SimSearch, i.e., if cells of the same class are
close together, they will be detected and counted as
one. As a result, the ratio of cells with GFP in cyto-
plasm is higher and No GFP is lower for smaller drug
doses in SimSearch.
As can be seen in Figure 5, the detected ROI cen-

ters are usually not located perfectly at the center of
the cells. The objects are not symmetrical, and the
clean ROIs detected in the iterative patch selection
process are compared to the prototype patches and
their rotations. The similarity local maximum then
falls to the center of the patch and not the center of
the object. These patches are then used in training
the model, and hence the local maxima found in the

GFP in Cytoplasm GFP in Nuclei No GFP

Figure 5: Display of the SimSearch results on the
GFP translocation images. The centers of the de-
tected ROIs of the different classes are marked.

final detections are usually at a small distance from
the corresponding cell centers.

4.2 Segmentation of Brightfield Im-
ages of Tissue

The area fraction of tissue classified by SimSearch
as showing membraneous and nuclear DAB-staining
patterns, as well as no DAB stain is presented in Fig-
ure 6. The area fraction classified as having membra-
nous DAB is generally higher in samples stained for
ERBB2, while the area fraction with nuclear stain is
higher in samples stained for BRCA1, as expected.
Examples of the full semantic segmentation results
are shown in Figure 7. SimSearch is fairly consistent
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Figure 6: Fraction of tissue classified as containing membraneous, nuclear, or no DAB-staining patterns,
correlating with targeted proteins ERBB2 and BRCA1. Images marked with an asterisks were used during
training.

in identifying membraneous and nuclear stain local-
ization, as illustrated by the examples A,B, E, and F
in the top half of Figure 7. The bottom half of the
figure shows some difficult examples. C shows an ex-
ample where the ERBB2 staining (which should be
membraneous) is so strong it appears to also stain nu-
clei. Similarly, G shows a sample stained for BRCA1,
which should be nuclear, but SimSearch finds both
nuclear and membraneous patterns. Careful inspec-
tion reveals that the DAB staining has spread to the
surrounding tissue, resulting in a false membranous
pattern.

4.3 Ablation Studies

Figures 8 and 9 show the results of the ablation stud-
ies on the Cilia and Blood Smear datasets respec-
tively. The violin plots show the probability density
of the data at different values. The “body”, hence,
shows where the values are concentrated for different
experiments and the long tail with the neck shows
the outliers. The normal box plot is shown inside the
violin.
The left plots of Figures 8 and 9 show mean

AUC (of 5 repetitions) for 20 different experiments
of each combination of number of prototypes(P ) and
negatives(N). This plot shows how the AUC varies
with the different numbers of prototypes and nega-
tives and training strategies. It also shows how differ-
ent training strategies adapt with different selections
of prototypes and negatives in a category.
The right plots of Figures 8 and 9 show the stan-

dard deviation of AUC (of 5 repetitions) for the dif-
ferent P and N combinations and training strate-
gies. This plot shows how stable a particular train-

ERBB2 Staining

D.1

A.1

C.1

B.1

A.2

D.2

C.2

SimSearch Results

B.2

BRCA1 Staining

E.1

G.1

H.1

F.1

SimSearch Results

E.2

G.2

H.2

F.2

Figure 7: Examples of DAB staining patterns and
the resulting patch classification and semantic seg-
mentation by SimSearch. A-D ERBB2 stained tis-
sue cores. E-H BRCA1 stained tissue cores. Regions
classified as having membraneous patterns are over-
laid with red, while nuclear DAB patterns are over-
laid with green, and regions without DAB stain are
overlaid in blue. B, D, F, and H show a zoomed-in
region of A, C, E, and G respectively. Note that C.2
and G.2 show mixed classification results.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2022. ; https://doi.org/10.1101/2022.04.05.487117doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.05.487117
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8: Area under precision-recall curve (AUC)
comparison of different training strategies and num-
ber of training examples on the Cilia dataset. On the
left, we show the mean AUC (of 5 iterations) of each
training strategy for 20 experiments, and on the right,
the standard deviations of the iterations for each ex-
periment. The mean AUC and standard deviation of
20 repetitions of fully supervised baseline is shown as
horizontal lines in the plots.

ing strategy is, given a clean and noisy dataset and
helps in accessing the repeatability of an experiment.
Higher repeatability corresponds to lower variance for
a training scheme.

As can be seen from Figures 8 and 9 (left), there
is not a significant difference in the median AUC for
different combinations of P and N , which shows that
even with a smaller number of samples a reasonable
performance can be achieved. However, the necks be-
come shorter with an increase in P (except for train-
ing with only positives). This indicates that perfor-
mance is less dependent on selecting a good prototype
if more examples of both positives and negatives are
included. A similar effect can be seen with the intro-
duction of self-learning within the same P,N category
(smaller body and shorter necks) which indicates that
self-learning helps make the AUC more robust with
respect to the choices of random patches in iterative
patch selection process.

As can be seen in Figures 8 and 9 (right), self-
learning makes the framework more robust in general
(as indicated by smaller standard deviation between
repetitions of the same experiment), thus increasing
repeatability and making the results more reliable.

In comparison with the fully supervised approach,
as can be seen from Figure 8, for cilia most combina-
tions of P and N outperform the baseline, however,
the standard deviation seems to be higher than the
baseline. Similarly, for the RBC and trophozoite ex-
periments, even with relatively low numbers of P and
N the performance can reach the mean of the super-

Figure 9: Area under precision-recall curve (AUC)
comparison of different training strategies and num-
ber of training examples on the blood smear dataset.
On left (top and bottom), mean AUC (of 5 itera-
tions) of the each training strategy for 20 experiments
(for RBCs and Trophozoites respectively). On right,
the standard deviations of the iterations for each ex-
periment (for RBCs and Trophozoites respectively).
Mean AUC and standard deviation of 20 repetitions
of fully supervised baseline is shown as horizontal
lines in the plots.
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vised baseline and even surpass it in some cases. It is
also worth noting that the standard deviation is usu-
ally lower than that of the supervised baseline which
shows the robustness of the method. This clearly
shows the advantages of using SimSearch over man-
ually labelling a large dataset.

In the case of abundant and “easy” classes like Cilia
and RBCs (as the objects in these classes have defini-
tive shape with small variations in size and color),
training with negative patches (Pos+Neg) helps re-
duce the inter-measurement variability (lower stan-
dard deviation between repeated measurements). It
also makes the model more independent of the choice
of prototypes and reduces variance in mean AUC be-
tween different experiments. Pos + Neg training
helps the model learn more relevant features for a
class which help to distinguish it from other classes.

However, for a rare and “difficult” class like
Trophozoites (objects with large variation in shape,
size and color), training with just (Pos+Neg) does
not seem to improve performance. This can be at-
tributed to fewer clean positive patches being avail-
able for the model to learn the relevant features for
the class. However, self-learning with noisy patches
in this case increases the performance significantly.
This shows the effectiveness of self-learning in learn-
ing the general features for all the classes. This is
shown in reduction of both inter-experiment (Fig-
ure 9(bottom left)) and inter-measurement (Fig-
ure 9(bottom right)) standard deviation. Although,
Pos + Selflearn has higher median than Pos +
Neg+Selflearn for trophozoites, overall Pos+Neg+
Selflearn seems to be the better choice for both the
“easy” and “hard” classes in a dataset.

The numerical results of comparison between dif-
ferent experiment and training strategy is available
in Supplementary Table I, II, and III for Cilia, RBCs
and Trophozoites respectively.

5 Conclusions

We have presented a human-in-the-loop framework
for fast and flexible ROI detection in biological im-
age datasets. The proposed framework uses a pre-
trained model to extract features removing the need
for feature engineering and domain-expertise from
the user. The framework is fast when using a GPU
which makes it suitable for real-time applications.
The framework employs self-supervised learning and
negative training to make the most efficient use of
user input during the training process. The GUI
also provides the user with a confidence threshold to
control the output of the experiments in accordance

with what is most relevant/important for the research
question/application at hand. We demonstrated the
framework on different research scenarios and four
biological datasets, and presented good performance
and robustness under different prerequisites and re-
quirements. The framework successfully reciprocated
the results from CellProfiler in drug response analy-
sis without manual and time-consuming feature selec-
tion and extraction. The framework also performed
well detecting and segmenting areas exposed to differ-
ent immunohistochemical stains. Using ablation ex-
periments, we showed that the training strategy and
methods implemented in the framework are robust
against different variations in user inputs. We hence
conclude that we have shown that the framework has
great potential to increase research throughput in a
broad variety of biological microscopy experiments.
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