

1 **Title Page**

2 i. Title: **Intraspecific diversity based on low temperature induced arrhythmia in**
3 **embryonic heart of medaka (*Oryzias latipes*)**

4 iii. Authors: Wataru Yoshimura¹, Shoji Oda¹, Takafumi Katsumura², Hiroshi Mitani¹,
5 Tomomi Watanabe-Asaka^{1,3*}

6 iv. Institutional Affiliations: ¹Graduate School of Frontier Sciences, The University of
7 Tokyo, Kashiwa, Japan, ²Department of Anatomy, Kitasato University School of
8 Medicine, Kanagawa, Japan, ³Faculty of Medicine, Tohoku Medical and
9 Pharmaceutical University, Miyagi, Japan

10 *Corresponding author information:

11 Tomomi Watanabe-Asaka, Faculty of Medicine, Tohoku Medical and Pharmaceutical
12 University, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan, Tel: +81-22-290-8716, Fax:
13 +81-22-290-8748, email: twatana@tohoku-mpu.ac.jp

14

15

1 Abstract

2 Background: Cold tolerance during embryonic development, especially blood
3 circulation is important for growth in poikilothermic animals. Medaka (*Oryzias latipes*),
4 has cold tolerance and is distributed in the highest latitudes occupied by the genus
5 *Oryzias*. Regarding cold tolerance in embryogenesis, Hd-rR strain belonging to the
6 southern Japanese (S.JPN) group showed arrhythmia when the embryo was exposed to
7 15 °C in the heartbeat initiation period (st. 24), whereas the embryo of Odate medaka,
8 which belongs to the northern Japanese (N.JPN) group, showed stable heartbeats.
9 Results: In this study, to verify the sensitivity to low temperature in the medaka wild
10 populations, heartbeat intervals of st. 24 embryos derived from three N.JPN, eight
11 S.JPN, and two western Korean/Chinese (W.KOR) populations were investigated at an
12 arbitrary temperature range of 12–15 °C. There was no significant difference in the
13 mean values of the heart rates and the coefficient of variation (CV) of interbeat intervals
14 in the N.JPN, S.JPN, and W.KOR groups. A temperature dependency of the CV within
15 12–15 °C was observed only in five S.JPN specimens, whereas three S.JPN, the N.JPN
16 and the W.KOR specimens showed no alteration in CV with temperature. Temperature
17 dependency of the heart rate was also varied in the S.JPN specimens.
18 Conclusions: These results suggest that the temperature dependency of the CV under
19 12–15 °C during the heartbeat initiation period is a variation within the S.JPN after the
20 divergence from the N.JPN.

1 **Keywords: medaka populations, heartbeat, cardiac function, cold adaptation**

2 **Background**

3 Medaka (*Oryzias latipes*), or Japanese rice fish, is a small freshwater fish distributed
4 in the highest latitudes (Japan, Korea, and China) occupied by the *Oryzias* genera,
5 which inhabit wide areas of East Asia from the tropical to the temperate zone, and
6 tolerate cold climate (Iwamatsu, 1989; Iwamatsu, 2006). The wild population of
7 medaka consists of four genetically and geographically divergent groups: the northern
8 Japanese (N.JPN), the southern Japanese (S.JPN), the eastern Korean (E.KOR), and the
9 western Korean/Chinese (W.KOR) groups (Sakaizumi, 1986; Sakaizumi, 1983;
10 Takehana, 2003; Katsumura, 2009; Spivakov, 2014). A common ancestor of the medaka
11 is estimated to have diverged from a sister lineage *O. luzonensis*, followed by a
12 divergence between the continental (E.KOR and W.KOR) and Japanese populations
13 5.4–6.0 million years (Myr) ago (Takehana, 2003; Kasahara, 2007). The two Japanese
14 populations (N.JPN and S.JPN) diverged 4–5 Myr ago (Watanabe, 2006; Kasahara,
15 2007; Katsumura, 2017). These medaka groups have over 80 wild populations with
16 large genetic diversity and have been used for analyses of the functional differences of
17 genetic polymorphisms (Matsumoto, 2009; Katsumura, 2014; Igarashi, 2017).

18 The heart constantly circulates blood to the body by rhythmic beats. The heartbeat is
19 generated by the sinoatrial node in the right atrium of the heart (Wilders, 1993;
20 Guevara, 1995). External temperature is one of the important factors that affect the
21 heartbeat rhythms (Murayama, 2017). Adult medaka overwinter at 4 °C of minimum
22 water temperature and lay eggs in early spring at 10 °C of minimum water temperature
23 (Shirai, 1937). During embryogenesis at low temperatures, several phenotypes have

1 been reported to suffer developmental arrest at the blastula stage, bradyarrhythmia at
2 heartbeat initiation stage, and regurgitation or clogging of the blood flow at later stages
3 (Shirai, 1937; Iwamatsu, 2006; Watanabe-Asaka, 2014). In medaka embryos, the stage
4 of heartbeat initiation period (st. 24, Iwamatsu 2006) is highly sensitive to low
5 temperature. In a previous study (Watanabe-Asaka, 2014), Hd-rR strain embryos from
6 the S.JPN group showed arrhythmias at st. 24 and blood regurgitation at the heart
7 development stage (st. 36) at 15 °C, whereas Odate medaka embryos from the N.JPN
8 group showed rhythmical heartbeat under similar conditions with normal blood flow in
9 the later stage. It was suggested from a phylogenetic analysis (Takehana, 2003) that the
10 N.JPN group acquired stable heartbeat during embryogenesis at low temperature and
11 expanded in the north because the acquisition of broad temperature adaptability enabled
12 expansion into new environments.

13 In this study, we further examined the heartbeat stability of st. 24 embryos and
14 temperature dependency in the range of 12–15 °C using the wild medaka lab stocks of
15 three, eight, and two populations derived from the N.JPN, S.JPN, and W.KOR groups,
16 respectively. The coefficient of variation (CV) of interbeat intervals with temperature
17 was categorized in two groups: a “negative-correlation group” of five S.JPN
18 populations and a “less-correlation group,” which includes all the N.JPN and W.KOR
19 groups and three S.JPN populations. These results suggest that the sensitivities to low
20 temperature of medaka embryos at the heartbeat initiation stage differ within
21 populations of the S.JPN, while the N.JPN and W.KOR groups show fewer differences.

1 **Materials and Methods**

2 *Ethics*

3 All experiments were performed in accordance with Japanese laws and the guidelines
4 for the care of experimental animals according to the University of Tokyo Animal
5 Experiment Enforcement Rules. The protocol was approved by the Committee on the
6 Ethics of Animal Experiments of the University of Tokyo (Permit Number: C-14-02).
7 All efforts were made to minimize suffering.

8 *Fish maintenance and husbandry*

9 Fish of the inbred HNI strain derived from the N.JPN group were obtained from the
10 National BioResource Project (NBRP) medaka. Fish from the other inbred Hd-rR strain
11 derived from the S.JPN group were obtained from our breeding colony. We also used
12 13 wild lab stocks derived from local populations: Odate, Kaga, and Maizuru medaka
13 from the N.JPN group; Ichinoseki, Urizura, Okaya, Iida, Tanabe, Arita, Kazusa, and
14 Gushikami medaka from the S.JPN group; and Maegok and Shanghai medaka from the
15 W.KOR group. Wild lab stocks from local populations used in this study were provided
16 by the Graduate School of Frontier Sciences, the University of Tokyo, which were
17 originally collected from geographically and latitudinally different habitats and have
18 been maintained for more than 30 years and many generations as closed colonies at an
19 outdoor breeding facility (Shima, 1985a; Shima, 1985b). The parent fish used in this
20 study were maintained as three independent pairs of 1 male and 1 female fish under
21 standard laboratory conditions at 27.5 ± 1.5 °C with a 14:10 h light:dark photoperiod
22 and were fed twice a day with live brine shrimp in the morning and commercial powder
23 food (Otohime B1 and Tetrafin) in the evening.

1 *Low-temperature treatment and measurement of the heartbeat interval*

2 Fertilized eggs were collected and incubated in plastic Petri dishes (diameter 60 mm)

3 with tap water containing 0.0001% methylene blue for two days at 27 ± 0.2 °C. The

4 designation of medaka developmental stages was in accordance with that of Iwamatsu

5 (Iwamatsu, 1994). Embryos at st. 20, the four-somite stage, were transferred to an

6 incubator at 15 ± 0.2 °C until st. 24, the stage at which heartbeat starts but without

7 blood circulation. Embryos at st. 24 were used for the experiment.

8 Heartbeat measurement at st. 24 was performed once per embryo after incubation for

9 5 minutes at the random temperature in the range of 10–18 °C for Hd-rR strain and

10 Kaga population and 12–15 °C for other medaka using a microscope (Multizoom

11 AZ100; Nikon, Tokyo, Japan). Embryos were transferred to new incubation tap water

12 containing 0.0001% methylene blue and data collection was performed without

13 anesthetics because embryos at st.24 were in the chorion and enable observation under

14 microscope. Heartbeat intervals were measured based on the time point of each

15 heartbeat initiation. The onset of contraction of the heart was determined as the

16 initiation time point of each heartbeat. The time intervals between adjacent heartbeats

17 were measured for longer than one minute and more than ten heartbeats. The data

18 collection was performed in one embryo for one temperature. The water temperature

19 was measured with a handmade thermometer having a sensor (S-8100B; Seiko Epson

20 Co., Nagano, Japan) calibrated against a standard thermometer. The water temperature

21 was kept within 1 °C during the data collection for each embryo.

1 *Staging within the heartbeat initiation stage*

2 Embryos of st. 24 were grouped into two stages based on the development of five
3 tissues: heart, blood island, Kupffer's vesicles, the otolith, and the blood cells in the
4 blood vessels (Iwamatsu, 1994). The heart with a tubular shape or with atrium and
5 ventricle, the presence or absence of a blood island, the presence or absence of
6 Kupffer's vesicles, the absence or presence of an otolith, and the absence or presence of
7 blood cells in the blood vessels were categorized as "early" and "late," respectively.

8 *Analyses based on averaged heart rate and CV*

9 Extracted heartbeat intervals of each embryo were analyzed using two indices: heart
10 rate and CV of interbeat interval, which was calculated as the standard deviation of the
11 extracted heartbeat intervals divided by the averaged interbeat intervals. The mean
12 value of heart rate and the CV of all the measured embryos in a strain were defined as
13 heart rate and CV of the strain, respectively.

14 *Analyses based on temperature dependency*

15 Heart rates and CVs were compared for each embryo in each strain according to the
16 measurement temperature. Averaged heart rate and the heart rate variability of each
17 medaka embryo within 12–15 °C were represented as a scatter plot of the average heart
18 rate and CV by temperature, respectively. The heart rate and CV increment of
19 individual embryos per 1 °C was obtained from an approximate straight line. Based on
20 the slope of the approximate straight line from the scatter plot of measurement
21 temperature and heart rate or CV, the temperature dependency of heart rate (dT_{HR}
22 (beats/min/°C)) and of CV (dT_{CV} (/°C)) in each strain were evaluated for indicators of
23 temperature dependence at low temperature.

1 *Statistical analyses*

2 Statistical analyses were performed using Welch's *t*-test and Tukey's test. In this
3 study, Welch's *t*-test was used unless stated. A *P* value < 0.05 was considered to show
4 significance. Data are presented as the mean \pm standard deviation of the indicated
5 samples per experiment.

6

7 **Results**

8 *Temperature range of heartbeat analyses at low temperature*

9 First, the heart rate and the CV of heartbeat intervals were examined for temperatures
10 from 10 to 18 °C in embryos of the Kaga population derived from the N.JPN group and
11 embryos of the Hd-rR strain derived from the S.JPN group. Regular heartbeat was
12 observed in both medaka above 16 °C (Supplemental Figure 1A). All embryos in both
13 strains showed similar constancy above 16 °C (Supplemental Figure 1B). The heartbeat
14 stopped in most embryos of both medaka below 12 °C, suggesting that the cardiac
15 pacemakers did not function in these embryos below 12 °C. Furthermore, we expected
16 to find a threshold for the heart rate and its rhythm around 15 °C in the Hd-rR strain, so
17 that cold tolerance of embryonic heart functions was different between the N.JPN and
18 S.JPN groups. Therefore, each time interval between adjacent heartbeats was measured
19 at 12–15 °C in the following experiments in this study.

1 *Comparison of embryonic heart rates at low temperatures among 13 local populations*
2 *from the N.JPN, S.JPN, and W.KOR groups*

3 The temperature and interbeat interval for each embryo were plotted (Figure 1) and
4 average heart rates were calculated in 13 local populations of medaka (Figure 2). The
5 heart rates of embryos of Kaga and Maizuru medaka in the N.JPN group were 8.8 ± 3.0
6 and 9.0 ± 3.1 beats/min ($P > 0.05$), respectively, and were higher than those of Odate
7 embryos, which were 7.1 ± 2.6 beats/min ($P < 0.05$, Figures 1A – C and 2A). The
8 interbeat interval and the average of heart rates of the S.JPN medaka were plotted in
9 Figures 1D – K and 2B. The heart rate of Kazusa embryos was the highest in the S.JPN
10 medaka at 12.3 ± 7.8 beats/min ($P < 0.05$). The heart rate of Arita and Urizura embryos
11 was 9.2 ± 4.9 and 7.7 ± 4.4 beats/min ($P > 0.05$), which was higher than that of the
12 embryos of the other S.JPN medaka ($P < 0.05$). The heart rate of Okaya embryos was
13 5.5 ± 1.8 beats/min ($P < 0.05$), and was as high as that of Ichinoseki, Iida, and Tanabe
14 embryos, which were 6.4 ± 2.1 , 6.4 ± 2.0 , and 6.8 ± 2.3 beats/min, respectively ($P >$
15 0.05). There was no significant difference among the heart rates of Ichinoseki, Iida, and
16 Tanabe embryos ($P > 0.05$), but were higher than that of Gushikami embryos, which
17 was 4.5 ± 1.1 beats/min ($P < 0.05$).

18 The heart rate of embryos of Maegok medaka (the W.KOR group) was 10.3 ± 2.3
19 beats/min and was higher than that of Shanghai medaka embryos, which was 6.6 ± 1.5
20 beats/min ($P < 0.0001$, Figures 1L, M and 2C). These results demonstrate that heart
21 rates varied among embryos from the same groups. Average heart rate of the three
22 N.JPN, the eight S.JPN, and the two W.KOR medaka embryo groups were 8.3 ± 1.0 ,
23 7.3 ± 2.4 , and 8.4 ± 2.6 beats/min, respectively, and there was no significant difference
24 among them ($P > 0.05$, Supplemental Figure 2A). These results suggest that average

1 heart rates of st. 24 embryos at low temperatures were not determined genetically by the
2 group but varied among the populations.
3 The heart rate varies depending on the stage of embryonic development, especially
4 around the heartbeat initiation stage (st. 24) at 25.5 °C (Matsui, 1941). We compared
5 the heart rate according to the developmental stage of embryos in st. 24 (supplemental
6 Figure 3A). The average heart rate of late st. 24 embryos was higher than that of early st.
7 24 embryos in Kaga, Odate, Tanabe ($P < 0.05$), and Maegok medaka ($P < 0.01$), but
8 showed no significant difference from that of early st. 24 in Maizuru ($P > 0.05$). These
9 results suggest that the heart rate varied at the developmental stage according to the
10 medaka populations, while there was a tendency for the heart rate to increase with the
11 embryonic development in all wild populations examined. There was no significant
12 difference in the average heart rate in st. 24 embryos with development among the
13 N.JPN, S.JPN, and W.KOR groups.

14 *Comparison of the CV at low temperatures in 13 wild populations from the N.JPN,*
15 *S.JPN, and W.KOR groups*

16 We next compared the variability of the heartbeat interval among the embryos of
17 local populations by comparing the CV of interbeat intervals in st. 24 embryos. In the
18 N.JPN group, the CV of Odate and Maizuru embryos were 0.17 ± 0.09 and 0.16 ± 0.07
19 ($P > 0.05$, Figure 3A), respectively, and heartbeat intervals were more consistent in both
20 populations than in Kaga embryos, for which the CV was 0.13 ± 0.06 ($P < 0.05$). In the
21 S.JPN medaka, the CV of Okaya and Tanabe embryos were 0.21 ± 0.12 and 0.19 ± 0.09
22 ($P > 0.05$), respectively, higher than that of Iida medaka, which was 0.14 ± 0.08 ($P <$
23 0.05 , Figure 3B). The CV of Ichinoseki, Urizura, Arita, Kazusa, and Gushikami

1 embryos were 0.17 ± 0.07 , 0.16 ± 0.11 , 0.16 ± 0.07 , 0.18 ± 0.10 , and 0.17 ± 0.07 ,
2 respectively, but there was no significant difference among them ($P > 0.05$, Figure 3B).
3 The CV of Maegok medaka in the W.KOR was 0.10 ± 0.04 , lower than that of
4 Shanghai medaka, which was 0.16 ± 0.05 ($P < 0.005$, Figure 3C). These results strongly
5 suggest that the CV within 12–15 °C was variable among local populations and there
6 was no tendency among the genetically distinctive three groups. The mean value of the
7 CV of three N.JPN, eight S.JPN, and two W.KOR medaka were 0.15 ± 0.02 , $0.17 \pm$
8 0.02 , and 0.13 ± 0.04 , respectively, and there was no significant difference among them
9 ($P > 0.05$, Supplemental Figure 2B). These results confirm that the mean value of the
10 CV at st. 24 within 12–15 °C was not different in the three groups.

11 We next compared the variation in heart rate using the standard deviation of heartbeat
12 interval (SD_{HR}) according to the developmental stage of embryo in st. 24 (supplemental
13 Fig. 3B) and found that there was no significant difference between early and late st. 24
14 in most of the medaka populations ($P > 0.05$), suggesting that the SD_{HR} was irrelevant
15 to the developmental stage.

16 *The temperature dependency of heart rate and CV at low temperatures*
17 We next analyzed the temperature dependency of embryonic heart physiology within
18 12–15 °C (Figure 4). The heart rate decrease of embryos per 1 °C within 12–15 °C
19 (dT_{HR}) was calculated as the temperature dependency of heart rate (Figure 4A). The
20 dT_{HR} of the Odate, Kaga, and Maizuru embryos in the N.JPN group were 0.77, 0.75,
21 and 2.01 beats/min/°C, respectively. The dT_{HR} of the Ichinoseki, Urizura, Okaya, Iida,
22 Tanabe, Arita, Kazusa, and Gushikami embryos in the S.JPN group were –0.15, 2.46,
23 0.39, 1.17, 1.49, 0.44, 8.56, and 0.25 beats/min/°C, respectively. The dT_{HR} of Maegok

1 and Shanghai embryos were 1.57 and 0.84 beats/min/°C, respectively. These results
2 suggested that there was no tendency in the temperature dependence except Kazusa
3 population.

4 The CV increment of embryos per 1 °C within 12–15 °C (dT_{CV}) was calculated as the
5 temperature dependency of CV (Figure 4B). The dT_{CV} of the Odate, Kaga, and Maizuru
6 embryos in the N.JPN medaka were -0.008 , -0.010 , and $-0.008/°C$, respectively. The
7 dT_{CV} of the Ichinoseki, Urizura, Okaya, Iida, Tanabe, Arita, Kazusa, and Gushikami
8 embryos in the S.JPN group were 0.003 , -0.036 , -0.021 , -0.005 , -0.030 , -0.025 , 0.012 ,
9 and $-0.027/°C$, respectively. The dT_{CV} of Maegok and Shanghai in the W.KOR group
10 were -0.003 and $0.005/°C$, respectively. In the S.JPN group, Ichinoseki, Iida, and
11 Kazusa embryos showed higher dT_{CV} values than the embryos of the other S.JPN
12 medaka. These results suggested that the dT_{CV} values of the S.JPN groups showed
13 existence of CV variation in temperature dependency only in the S.JPN embryos.

14

15 *Heartbeat at low temperature of two inbred strains from the N.JPN and S.JPN groups*
16 A series of ten heartbeats (open circles) in one embryo was listed vertically for each
17 embryo and arranged in ascending order of measurement temperature within 12–15 °C
18 (Figures 5A and B). Averages of heart rates of HNI and Hd-rR embryos were 5.6 ± 2.5
19 and 3.0 ± 0.9 beats/min ($P < 0.0001$, Figure 5C), and the CVs of HNI and Hd-rR
20 embryos were 0.13 ± 0.05 and 0.36 ± 0.11 ($P < 0.0001$, Figure 5D), respectively. The
21 dT_{HR} of the of Hd-rR and HNI strain was 0.38 and -0.42 beats/min/°C, respectively
22 (Figures 4A, 5E and F). These results confirmed the results from the wild populations.
23 The dT_{CV} of the Hd-rR and the HNI strain were -0.021 and $-0.008/°C$, respectively

1 (Figures 4B, 5G and H). These results suggest that temperature dependencies of the
2 heart rate and its CV were the phenotype characteristic to the S.JPN medaka embryo
3 and were undeniable to results of wild populations.

4

5 **Discussion**

6 These results suggest that average heart rates of st. 24 embryos at low temperatures
7 were not determined genetically by the group but varied among the populations.
8 Therefore, the difference between the heart rates of the HNI and Hd-rR embryos shown
9 in Figure 2C were the characteristics of HNI and Hd-rR embryos and did not represent
10 those of the N.JPN and S.JPN medaka groups.

11 It is noteworthy that the heart rate above 17 °C was temperature dependent in all
12 medaka populations (Matsui, 1941). The N.JPN, S.JPN, and W.KOR groups are
13 genetically different, consisting of distinct local populations (Takehana, 2003). Our
14 results show no strong temperature tendency or specific differences in the cold tolerance
15 of the embryonic heart physiology among the N.JPN and W.KOR group medaka;
16 however, the S.JPN showed two different phenotypes: Kazusa medaka with a strong
17 temperature dependency, and others without strong temperature dependency at
18 12–15 °C. We consider that the positive correlation in dT_{HR} of Kazusa embryos was
19 caused by the rapid heartbeat around 15 °C (supplemental Figure 1J).

20 These results clearly demonstrate that the two strains and the 13 local populations of
21 medaka can be divided into two groups: a “negative-correlation group,” which includes
22 the Hd-rR strain, Urizura, Okaya, Tanabe, Arita, and Gushikami medaka in the S.JPN
23 group and a “less-correlation group,” which includes the HNI strain, Odate, Kaga, and

1 Maizuru medaka in the N.JPN group, Ichinoseki, Iida, and Kazusa medaka in the S.JPN
2 group, and Maegok and Shanghai medaka in the W.KOR group by the evaluation of
3 temperature dependency of the CV within the range of 12–15 °C. These findings also
4 suggest that the N.JPN, S.JPN, and W.KOR medaka groups showed specific differences
5 in the temperature dependency of the CV of heartbeat interval in st. 24 embryos, while
6 there was no difference in the average heart rate, the CV of heartbeat interval, nor any
7 temperature dependency of heart rate (dT_{HR}) in temperature range of 12–15 °C.

8 The heart rate of Odate (N.JPN) embryos was more stable than that of Hd-rR (S.JPN)
9 embryos at st. 24 at 16 °C (Watanabe-Asaka, 2014). In the previous study, both S.JPN
10 medaka and W.KOR Shanghai medaka showed blood regurgitation at st. 36, but the
11 N.JPN medaka did not, suggesting that the N.JPN acquired a stable heartbeat during
12 embryogenesis at low temperature. This might allow the N.JPN to expand to the
13 northern part of Japan. On the other hand, this study demonstrated that the N.JPN and
14 W.KOR groups, including Shanghai medaka, showed stable heart rates at low
15 temperatures and the S.JPN group showed both stable and increased heart rate
16 variability with decreasing temperature. These contradictory results in the W.KOR
17 medaka indicated that the blood regurgitation at st. 36 was caused not only by the
18 bradyarrhythmia at st. 24 but also by other dysfunctions during embryogenesis before
19 st. 36 such as retardation of angiogenesis or impairment of hemodynamic forces
20 (Andrés-Delgado, 2016; Collins, 2016).

21 We consider that the difference in heart rate variability at low temperatures among the
22 populations was caused by the different genetic backgrounds of medaka rather than by
23 environmental effects, because all medaka populations examined in this study have
24 been maintained for generations as closed colonies at the same outdoor breeding

1 facility. It was widely accepted that the two regional Japanese populations, the N.JPN
2 and S.JPN groups, have diverged after the W.KOR group from the common ancestor of
3 these three groups (Watanabe, 2006; Kasahara, 2007). We may therefore propose that
4 the ancestral population of *O. latipes*, which had cold tolerance, spread to higher
5 latitudes in East Asia from the low-latitude areas, and the ancestral *O. latipes* population
6 might have diverged.

7 According to the neighbor-joining tree of the entire cytochrome *b* gene in the S.JPN
8 group (Takehana, 2003), Kazusa, Ichinoseki, and Iida medaka, which had CVs that were
9 not temperature dependent like the N.JPN and W.KOR medaka, were classified into the
10 subclades B-XI, B-I and B-I, respectively. However, the Hd-rR strain and the Urizura,
11 Okaya, Tanabe, Arita, and Gushikami medaka, which had temperature-dependent CVs,
12 were classified into the subclades B-II, B-I, B-I, B-VII, B-XI and B-XI, respectively.
13 When we consider the sharing of the temperature dependency of CV among the S.JPN
14 medaka in the different latitudes and with the different genetic backgrounds, the
15 following scenario of natural history of medaka in the Japan archipelago can be proposed.
16 The ancestral medaka population, which is common to the four wild medaka groups
17 (W.KOR, E.KOR, N.JPN, and S.JPN) expanded to high latitudes in mainland China with
18 their cold tolerance and reached the Korean Peninsula (Watanabe, 2006). Then, part of
19 the population further expanded to the Japan archipelago and divided into the two groups
20 that were the direct ancestors of the N.JPN and S.JPN medaka with their cold tolerance.
21 While the N.JPN medaka inhabited the cold-climate area and have retained their cold
22 tolerance up to the present era, some populations of the S.JPN group lost their cold
23 tolerance because of the loss of selective pressure in their warm-climate habitats and kept
24 varying until the present era. It is widely thought that the N.JPN medaka acquired their

1 cold tolerance and expanded to the cold climate habitats in the Japan archipelago;
2 however, the findings reported here suggest that cold tolerance is an intrinsic feature of
3 medaka and some of the S.JPN medaka lost it rather than that the medaka populations of
4 the S.JPN group acquired their cold tolerance independently.

5 **Conclusions**

6 In this study, we have analyzed the heart rates of embryos of three N.JPN, eight
7 S.JPN, and two W.KOR medaka closed colonies at low temperatures (within 12–15 °C).
8 Our findings suggest that the N.JPN, S.JPN, and W.KOR medaka groups showed
9 specific differences in the temperature dependency of the CV of heartbeat interval in st.
10 24 embryos, while there was no difference in the average heart rate, the CV of heartbeat
11 intervals, nor the temperature dependency of heart rate (dT_{HR}) in this temperature range.
12 The difference in heart rate variability at low temperatures among the wild populations
13 was caused by the different genetic background of medaka rather than environmental
14 effects. The findings in this study confirm that cold tolerance is an intrinsic feature of
15 medaka, but that some of the S.JPN medaka lost it. These findings provide cues for the
16 natural history of the S.JPN medaka inhabiting the Japanese archipelago.

17

1 **Declarations**

2 **Ethics approval and consent to participate:** Not applicable

3 **Availability of data and materials:** The datasets used and/or analyzed during the
4 current study are available from the corresponding author on reasonable request.

5 **Competing interests:** The authors declare that they have no competing interests.

6 **Funding:** This work was supported by Grants-in-Aid for Scientific Research (25860177
7 and 15K12201 to TW-A) from the Ministry of Education, Culture, Sports, Science and
8 Technology (MEXT) of Japan.

9 **Authors' contributions:** H. M. and T. W.-A. designed the experiments; W. Y., S. O.,
10 and T.W.-A. performed the experiments; W.Y., S.O., T.K., and T. W.-A. analysed the
11 data; S. O., T. K., H. M. and T. W.-A. interpreted the results of the experiments; S. O.
12 and T. W.-A. drafted the manuscript; W. Y., S. O., T. K., H. M., and T.W.-A. edited the
13 manuscript. S. O., H. M., and T.W.-A. revised the manuscript. All authors have read
14 and approved the final manuscript.

15

16 **Acknowledgements**

17 We express our appreciation to Mmes. Shizuko Chiba, Sumiko Tomizuka, Ikumi
18 Matsumoto and Mayuko Takagi for maintaining of medaka strains and closed colonies.
19 The authors thank NBRP for providing the wild medaka lab stocks.

20

1 **References**

2 Andrés-Delgado, L., & Mercader, N. (2016). Interplay between cardiac function and
3 development. *Biochimica et Biophysica Acta* 1863(7) Part B: 1707–1716. doi:
4 [10.1016/j.bbamcr.2016.03.004](https://doi.org/10.1016/j.bbamcr.2016.03.004)

5 Collins, M.M., & Stainier D.Y.R. (2016). Chapter 25: Organ function as a modulator of
6 organ formation: Lessons from zebrafish. *Current Topics in Developmental*
7 *Biology* 117: 417–433. doi: [10.1016/bs.ctdb.2015.10.017](https://doi.org/10.1016/bs.ctdb.2015.10.017)

8 Guevara, M.R., & Lewis, T.J. (1995). A minimal single-channel model for the regularity
9 of beating in the sinoatrial node. *Chaos (Woodbury, N.Y.)* 5: 174–183. doi:
10 [10.1063/1.166065](https://doi.org/10.1063/1.166065)

11 Igarashi, K., Kobayashi, J., Katsumura, T., Urushihara, Y., Hida, K., Watanabe-Asaka,
12 T., Oota, H. (2017). An approach to elucidate NBS1 function in DNA repair using
13 frequent nonsynonymous polymorphism in wild medaka (*Oryzias latipes*)
14 populations. *PLOS One* 12: 1–19. doi: [10.1371/journal.pone.0170006](https://doi.org/10.1371/journal.pone.0170006)

15 Iwamatsu, T. (2006). *The Integrated Book for the Biology of The Medaka*. University
16 Education Press Co., Ltd.

17 Iwamatsu, T. (1994). Stages of normal development in the Medaka, *Oryzias latipes*.
18 *Zoological Science* 11(6): 825–839. doi: [10.1016/j.mod.2004.03.012](https://doi.org/10.1016/j.mod.2004.03.012)

19 Iwamatsu, T., & Hanya, T. (1989). Difference in resistances to temperature and saline
20 among *Oryzias* species. *Bulletin of Aichi University of Education* 38: 101–107.

21 Kasahara, M., Naruse, K., Sasaki, S., Nakatani, Y., Qu, W., Ahsan, B., Yamada, T.
22 (2007). The medaka draft genome and insights into vertebrate genome evolution.
23 *Nature*, 447(7145): 714–719 doi: [10.1038/nature05846](https://doi.org/10.1038/nature05846)

1 Katsumura, T., Oda, S., Mano, S., Suguro, N., Watanabe, K., Mitani, H., Oota, H. (2009).

2 Genetic differentiation among local populations of medaka fish (*Oryzias latipes*)
3 evaluated through grid- and deme-based sampling. *Gene* 443(1): 170–177. doi:
4 [10.1016/j.gene.2009.04.017](https://doi.org/10.1016/j.gene.2009.04.017)

5 Katsumura, T., Oda, S., Nakagome, S., Hanihara, T., Kataoka, H. (2014). Natural allelic
6 variations of xenobiotic-metabolizing enzymes affect sexual dimorphism in
7 *Oryzias latipes*. *Proceedings of the Royal Society of London B: Biological
8 Sciences* 281(1797): 20142259. doi: [10.1098/rspb.2014.2259](https://doi.org/10.1098/rspb.2014.2259)

9 Katsumura, T., Oda, S., Tsukamoto, K., Sekiya, Y., Yamashita, T., Aso, M., Hata, M.
10 (2012). A population genetic study on the relationship between medaka fish and
11 the spread of wet-rice cultivation across the Japanese archipelago.
12 *Anthropological Science* 120(1): 81–89. doi: [10.1537/ase.110525](https://doi.org/10.1537/ase.110525)

13 Katsumura, T., Oda, S., Mitani, H., & Oota, H. (2017). Medaka population genome
14 structure and demographic history unveiled via genotyping-by-sequencing.
15 *bioRxiv* doi: [10.1101/233411](https://doi.org/10.1101/233411)

16 Matsui, K. (1941). Temperature and heart beat in a fish embryo, *Oryzias latipes* III. Heart
17 beat of the developing embryo at a constant temperature. *Science Reports of the
18 Tokyo Burtrika Daigaku* 88: 325–346.

19 Matsumoto, Y., Oota, H., Asaoka, Y., Nishina, H., Watanabe, K., Bujnicki, J.M., Oda, S.
20 (2009). Medaka: A promising model animal for comparative population
21 genomics. *BMC Research Notes* 2(1): 88. doi: [10.1186/1756-0500-2-88](https://doi.org/10.1186/1756-0500-2-88)

22 Murayama, Y., Kori, H., Oshima, C., Kondo, T., Iwasaki, H., & Ito, H. (2017). Low
23 temperature nullifies the circadian clock in cyanobacteria through Hopf

1 bifurcation. *Proceedings of the National Academy of Sciences* 114(22):
2 5641–5646. doi: [10.1073/pnas.1620378114](https://doi.org/10.1073/pnas.1620378114)

3 Sakaizumi, M. (1984). Rigid isolation between the northern population and the southern
4 population of the medaka *Oryzias latipes* (Genetics). *Zoological Science* 1(5):
5 795–800.

6 Sakaizumi, M. (1985). Species-specific expression of parvalbumins in the genus *Oryzias*
7 and its related species. *Comparative Biochemistry and Physiology - Part B* 80:
8 499–505.

9 Sakaizumi, M. (1986). Genetic divergence in wild populations of medaka, *Oryzias*
10 *latipes* (Pisces, Oryziatidae) from Japan and China. *Genetica* 69(2): 119–125.
11 doi: [10.1007/BF00115131](https://doi.org/10.1007/BF00115131)

12 Sakaizumi, M., Egami, N., & Moriwaki, K. (1980). Allozymic variation in wild
13 populations of the fish, *Oryzias latipes*. *Proceedings of the Japan Academy,*
14 *Series B* 56(7): 448–451. doi: [10.2183/pjab.56.448](https://doi.org/10.2183/pjab.56.448)

15 Sakaizumi, M., Moriwaki, K., & Egami, N. (1983). Allozymic variation and regional
16 differentiation in wild populations of the fish *Oryzias latipes*. *Copeia* 2: 311–318.
17 doi: [10.2307/1444373](https://doi.org/10.2307/1444373)

18 Shima, A., Shimada, A., Komura, J., Isa, K., Naruse, K., Sakaizumi, M., & Egami, N.
19 (1985a). The preservation and utilization of wild populations of the medaka
20 *Oryzias latipes*. *Medaka* 3: 1–4.

21 Shima, A., Shimada, A., Sakaizumi, M., & Egami, N. (1985b). First listing of wild stocks
22 of the medaka *Oryzias latipes* currently kept by the Zoological Institute, Faculty
23 of Science, University of Tokyo. *Journal of Faculty of Science* 16: 27–35.

1 Shirai, T. (1937). Effect of temperature on embryonic development of medaka (in
2 Japanese) *Hakubutsugaku Zasshi* 35: 202–210.

3 Spivakov, M., Auer, T.O., Perivali, R., Dunham, I., Dolle, D., Fujiyama, A., Toyoda, A.
4 (2014). Genomic and phenotypic characterization of a wild medaka population:
5 towards the establishment of an isogenic population genetic resource in fish. *G3:*
6 *Genes, Genomes, Genetics* 4(3): 433–445. doi: [10.1534/g3.113.008722](https://doi.org/10.1534/g3.113.008722)

7 Takehana, Y., Nagai, N., Matsuda, M., Tsuchiya, K., Sakaizumi, M. (2003). Geographic
8 variation and diversity of the cytochrome b gene in Japanese wild populations of
9 medaka, *Oryzias latipes*. *Zoological Science* 20(10): 1279–1291. doi:
10 [10.2108/zsj.20.1279](https://doi.org/10.2108/zsj.20.1279)

11 Watanabe, K., Takahashi, H., Kitamura, A. (2006). Biogeographical history of Japanese
12 freshwater fishes: Phylogeographic approaches and perspectives. *Japanese*
13 *Journal of Ichthyology* 53(1): 1–38. doi: [10.11369/jji1950.53.1](https://doi.org/10.11369/jji1950.53.1)

14 Watanabe-Asaka, T., Sekiya, Y., Wada, H., Yasuda, T., Okubo, I., Oda, S., Mitani, H.
15 (2014). Regular heartbeat rhythm at the heartbeat initiation stage is essential for
16 normal cardiogenesis at low temperature. *BMC Developmental Biology* 14(1): 12.
17 doi: [10.1186/1471-213X-14-12](https://doi.org/10.1186/1471-213X-14-12)

18 Wilders, R., & Jongsma, H. (1993). Beating irregularity of single pacemaker cells
19 isolated from the rabbit sinoatrial node. *Biophysical Journal* 65(6): 2601–2613.
20 doi: [10.1016/S0006-3495\(93\)81289-X](https://doi.org/10.1016/S0006-3495(93)81289-X)

21

1 **Figure legends**

2 **Figure 1.** Heartbeat interval of medaka closed colonies under low temperature. The
3 interbeat interval of embryonic medaka and its measurement temperature of each
4 embryo in Odate (A), Kaga (B), Maizuru (C), Kazusa (D), Arita (E), Urizura (F),
5 Ichinoseki (G), Okaya (H), Iida (I), Tanabe (J), Gushikami (K), Maegok (L), and
6 Shanghai (M) medaka are shown in the initial ten interbeats for each embryo (dots in
7 tandem) and in the line graph (secondary axis), respectively. Odate; n = 57, Kaga; n =
8 125, Maizuru; n = 111, Kazusa; n = 28, Arita; n = 72, Urizura; n = 43, Ichinoseki; n =
9 81, Okaya; n = 40, Iida; n = 38, Tanabe; n = 100, Gushikami; n = 122, Maegok; n = 88,
10 Shanghai; n = 11.

11

12 **Figure 2. Comparison of heart rate at low temperatures in 13 wild populations.**

13 The heart rates of 13 medaka populations are compared in the N.JPN (A), S.JPN (B),
14 and W.KOR groups (C). Bars labeled by the same letter (a, b, c, d, e) on the graph are
15 not significantly different from each other ($P > 0.05$) by Tukey's test. All data are
16 presented as the means \pm SD. (*: $P < 0.01$, n.s.: $P > 0.05$)..

17

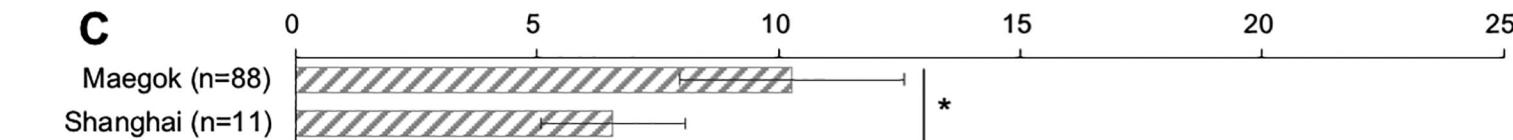
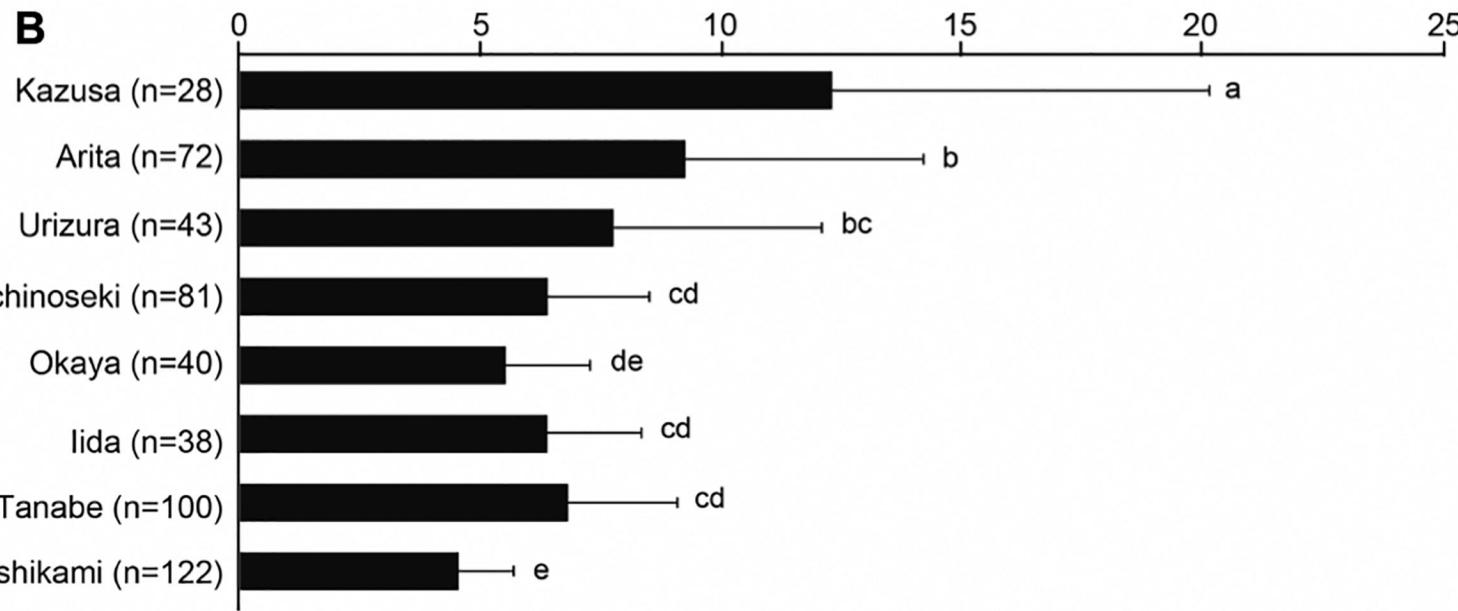
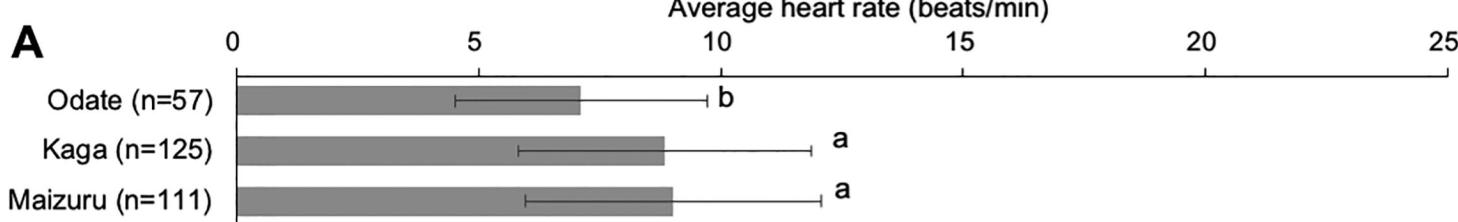
18 **Figure. 3. Comparison of the CV at low temperatures in 13 wild populations.**

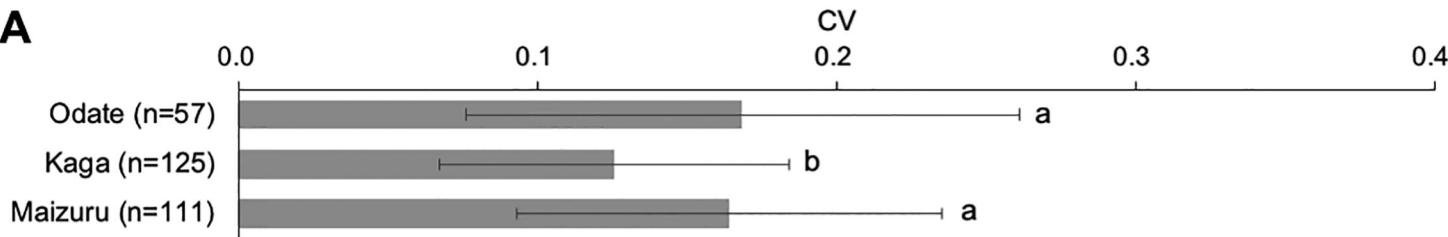
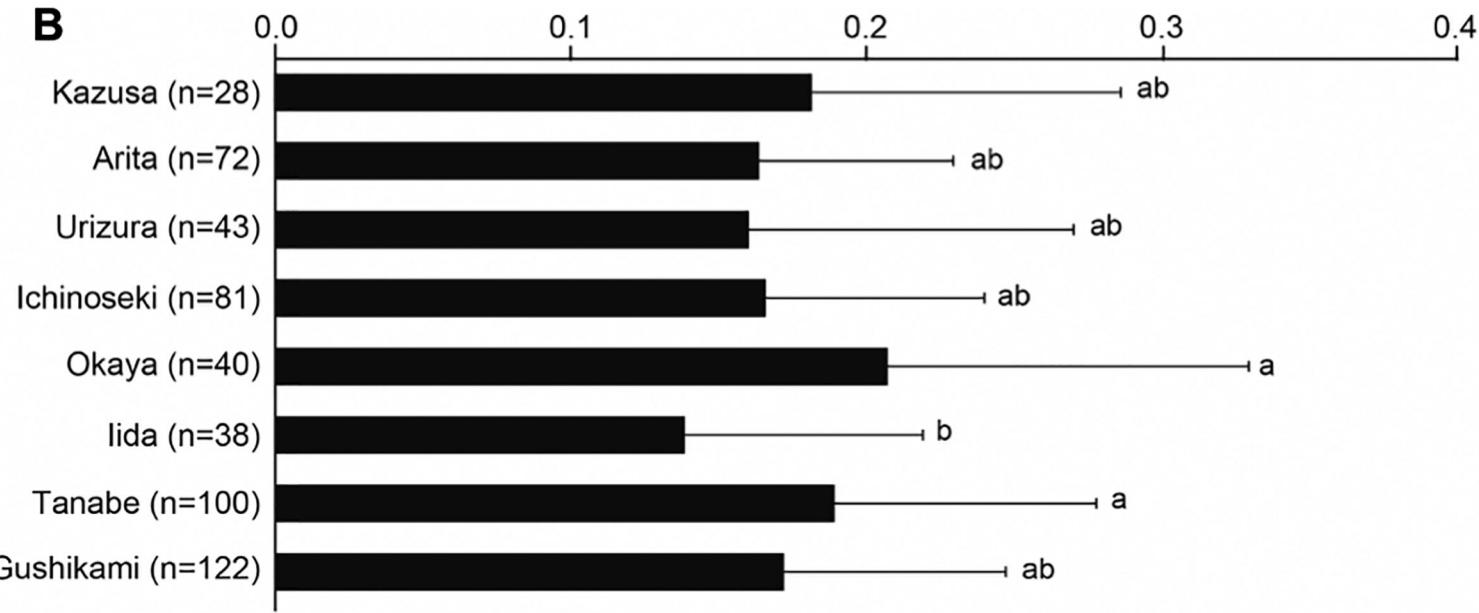
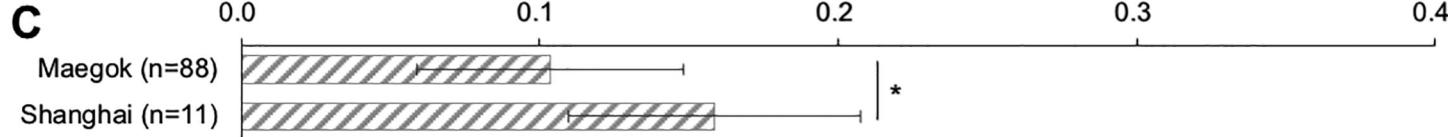
19 The CV of medaka embryos was compared in the N.JPN (A), S.JPN (B), and W.KOR
20 groups (C). Bars labeled by the same letter (a, b) on the graphs are not significantly
21 different from each other ($P > 0.05$) by Tukey's test. All data are presented as the means
22 \pm SD. (*: $P < 0.01$, n.s.: $P > 0.05$). All data are presented as the means \pm SD. (*: $P <$
23 0.01 , n.s.: $P > 0.05$).

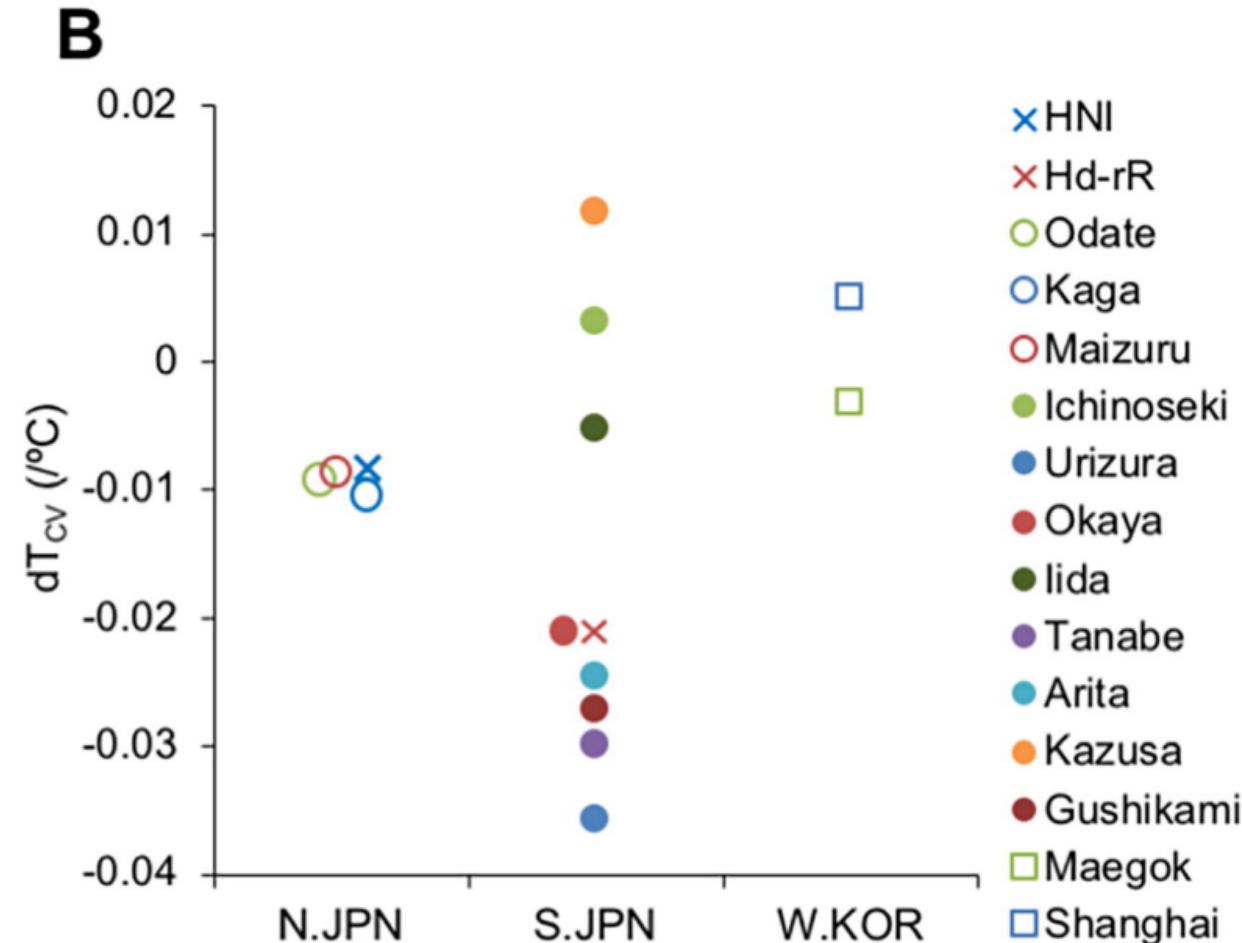
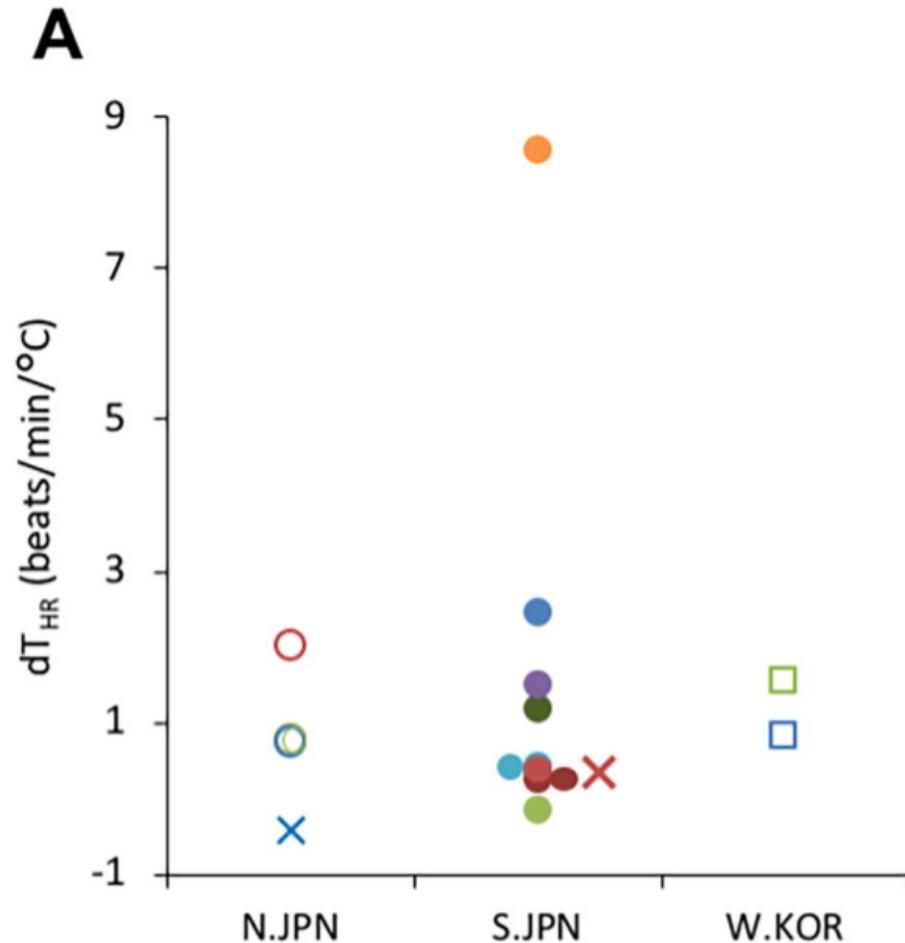
1

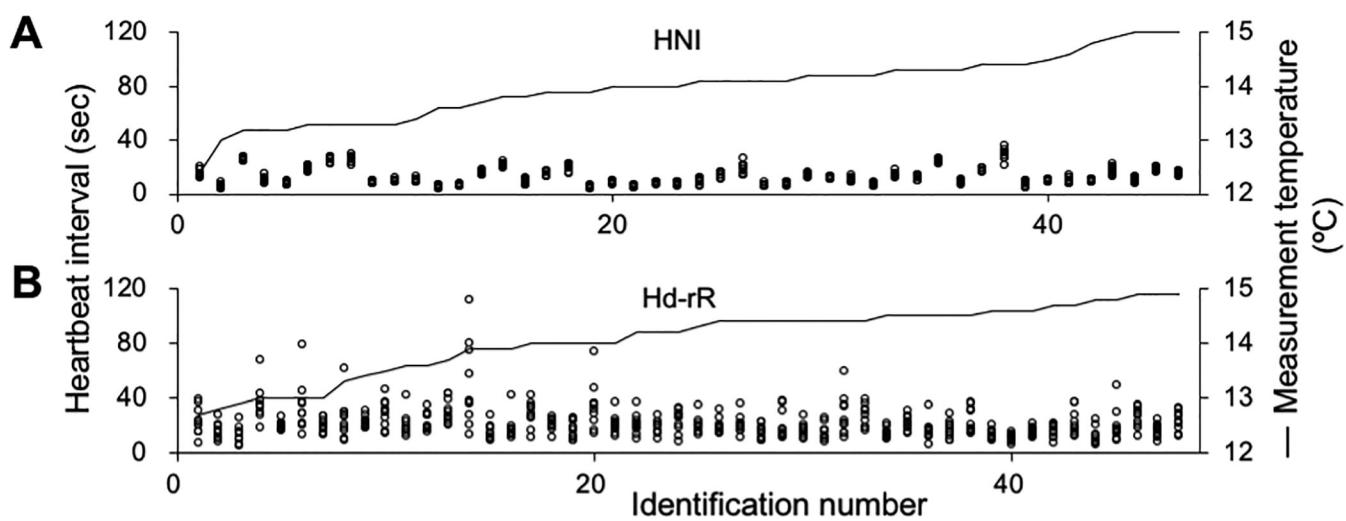
2 **Figure 4. Comparison of the average heart rate and the CV in the three groups and**
3 **temperature dependency at low temperatures in 13 wild populations.** The heart rate
4 (A) and the CV (C) of 13 wild populations were averaged in its respective group; N.JPN,
5 S.JPN or W.KOR. The slopes of the approximate straight lines from the scatter plots of
6 measurement temperature and the heart rate (dT_{HR}) and the CV (dT_{CV}) are compared as a
7 temperature dependency of the heart rate (B) and the CV (D) in the N.JPN, S.JPN, and
8 W.KOR groups including the inbred strains, respectively. All data are presented as the
9 means \pm SD. (*: $P < 0.01$, n.s.: $P > 0.05$). The population of N.JPN, S.JPN, W.KOR and
10 inbred strains indicated in open circles, solid circles, squares and crosses, respectively.
11 HNI, n = 46; Hd-rR, n = 48; Odate, n = 57; Kaga, n = 125; Maizuru, n = 111; Ichinoseki,
12 n = 81; Urizura, n = 43; Okaya, n = 40; Iida, n = 38; Tanabe, n = 100; Arita, n = 72;
13 Kazusa, n = 28; Gushikami, n = 122; Maegok, n = 88; Shanghai, n = 11.

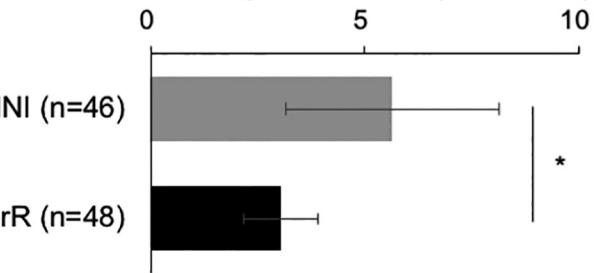
14




15 **Figure 5. Comparison of heartbeat at low temperatures between two inbred**

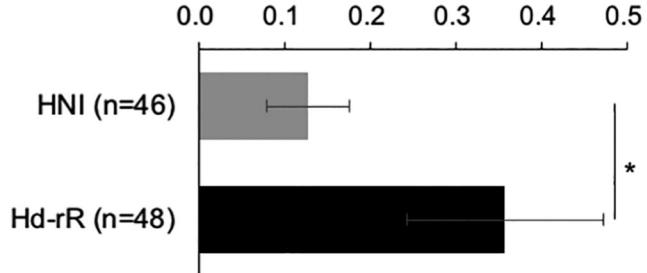



16 **strains.**

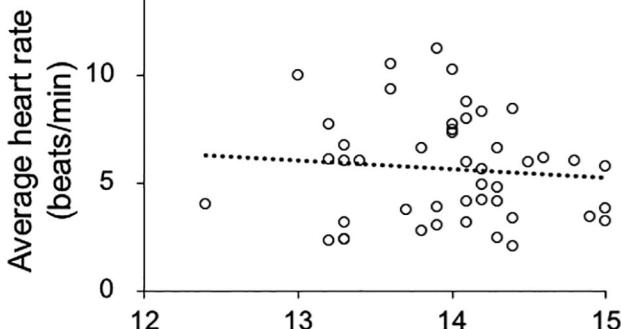


17 Heartbeat interval of embryonic medaka and the measurement temperature of each
18 embryo in HNI (A) and Hd-rR (B) strains are shown in the initial ten interbeats for each
19 embryo (dots in tandem) and in the line graph (secondary axis), respectively. The heart
20 rate (C) and the CV (D) are compared between the two strains. The heart rate and the
21 CV of each embryo are compared for each measurement temperature and shown in a
22 scatter plot of measurement temperature and heart rate or CV in HNI (E, G) and Hd-rR
23 (F, H) strains. All data are presented as means \pm SD. (*: $P < 0.01$). HNI, n = 46; Hd-rR,
24 n = 48.

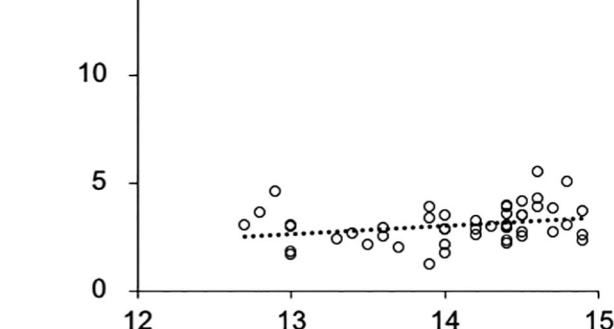


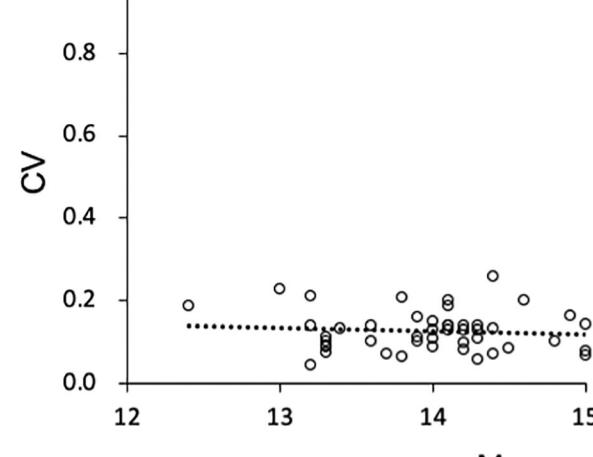


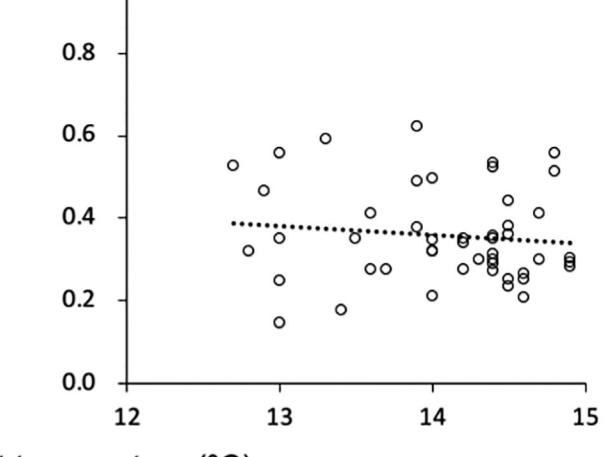
A**B****C**




C Average heart rate (beats/min)


D CV


E Average heart rate (beats/min)


F Average heart rate (beats/min)

G CV

H CV

