

1 **Kidins220 promotes thymic iNKT cell development by reducing TCR signals, but  
2 enhances TCR signals in splenic iNKT cells**

3

4 Laurenz A. Herr<sup>1,2,3</sup>, Gina J. Fiala<sup>1,2,3,4</sup>, Anna-Maria Schaffer<sup>1,2,3</sup>, Katrin Raute<sup>1,2,3,4</sup>, Rubí M.-  
5 H. Velasco Cárdenas<sup>1,2,3</sup>, Jonas F. Hummel<sup>5</sup>, Karolina Ebert<sup>5</sup>, Yakup Tanriver<sup>5,6</sup>, Susana  
6 Minguet<sup>1,2,3,4</sup>, Wolfgang W. Schamel<sup>1,2,3,4\*</sup>

7

8 <sup>1</sup>Signaling Research Centers BIOSS and CIBSS; <sup>2</sup>Department of Immunology, Faculty of  
9 Biology, University of Freiburg, Freiburg, Germany; <sup>3</sup>Centre for Chronic Immunodeficiency  
10 (CCI), University of Freiburg, Freiburg, Germany, Faculty of Medicine; <sup>4</sup>Spemann Graduate  
11 School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg,  
12 Germany; <sup>5</sup>Institute of Medical Microbiology and Hygiene, Medical Center, University of  
13 Freiburg, Freiburg, Germany, <sup>6</sup>Department of Medicine IV: Nephrology and Primary Care,  
14 Medical Center, University of Freiburg, Freiburg, Germany.

15

16 \* Corresponding author: [wolfgang.schamel@biologie.uni-freiburg.de](mailto:wolfgang.schamel@biologie.uni-freiburg.de)

17

18

19 **Running title:** Kidins220 modulates iNKT cell development

20

21 **40-word summary statement:** We demonstrate that the transmembrane scaffold protein  
22 Kidins220 switches its role twice in iNKT cell biology: from a positive to a negative  
23 regulator of TCR signal strength during thymic development and back to a positive regulator  
24 in the periphery.

25

26 **Keywords:** iNKT, Kidins220, ARMS, development, TCR, T cell

27

28 **Abstract**

29

30 The stepwise development of thymic invariant natural killer T (iNKT) cells is controlled by  
31 the TCR signal strength. The scaffold protein Kinase D interacting substrate of 220 kDa  
32 (Kidins220) binds to the TCR regulating TCR signaling. T cell-specific Kidins220 knock-out  
33 (T-KO) mice contain severely decreased iNKT numbers. Very early in iNKT development  
34 TCR signals are reduced in the T-KO. In later steps, TCR signaling is increased in the T-KO  
35 leading to enhanced apoptosis of iNKT cells. Kidins220's absence affects the iNKT1 subset  
36 most as it requires the weakest TCR signals for development. We also show that in iNKT1  
37 development, weak TCR signals promote the progressive loss of CD4. In the periphery,  
38 Kidins220 switches its role back to promoting TCR signaling as splenic T-KO iNKT cells  
39 produce less cytokines and show reduced TCR signaling after *in vivo* stimulation with  $\alpha$ -  
40 galactosylceramide. In conclusion, Kidins220 promotes or inhibits TCR signaling depending  
41 on the developmental context.

42

43 **Introduction**

44

45 T lymphocytes are a crucial part of the adaptive immune system.  $\alpha\beta$  T cells, which express  
46 the  $\alpha\beta$  T cell antigen receptor (TCR) to recognize foreign and pathogenic antigens, can be  
47 further subdivided into conventional T cells, such as CD4 $^{+}$  T helper and CD8 $^{+}$  T killer cells,  
48 and unconventional T cells, such as invariant natural killer T (iNKT) cells.

49 iNKT cells are innate-like  $\alpha\beta$  T cells expressing a limited set of TCR $\alpha$  and TCR $\beta$  chains.  
50 Unlike conventional T cells, iNKT cells react on threats almost immediately. One of their  
51 main actions is the secretion of cytokines, such as interleukin 4 (IL-4), IL-17 and interferon- $\gamma$   
52 (IFN- $\gamma$ ) (Lee et al., 2013; Yoshimoto and Paul, 1994; Bendelac, 1995; Godfrey et al., 2000;  
53 Kronenberg and Gapin, 2002; Stetson et al., 2003; Crowe et al., 2003; Michel et al., 2007).  
54 Hence, they are crucial for initiating and regulating immune responses. With their invariant  
55 TCR they recognize a variety of glycolipids such as  $\alpha$ -glucosyldiacylglycerol which  
56 originates from the cell wall of several bacteria, e.g., *S. pneumoniae*. These glycolipids are  
57 loaded onto and presented by the major histocompatibility complex I (MHC I)-like molecule  
58 CD1d on antigen presenting cells (APCs) (Kinjo et al., 2011).

59 All T cells are generated in the thymus and depending on their TCR's specificity they are  
60 instructed to develop into conventional CD4 $^{+}$  or CD8 $^{+}$  T cells or among others into iNKT  
61 cells. To be positively selected to become conventional T cells, the TCR of CD4 $^{+}$  CD8 $^{+}$   
62 (double positive, DP) thymocytes bind to peptide-loaded, classical MHC proteins present on  
63 thymic epithelial cells (Robey and Fowlkes, 1994; Robey et al., 1990; Kaye et al., 1989;  
64 Marušić-Galesić et al., 1989; Teh et al., 1988; Kruisbeek et al., 1985; Wang et al., 2020). To  
65 become positively selected to the iNKT lineage, DP thymocytes carrying the V $\alpha$ 14J $\alpha$ 18 TCR,  
66 bind to glycolipid-loaded CD1d molecules which are expressed on DP thymocytes (Bendelac  
67 et al., 1995; Coles and Raulet, 2000; Gapin et al., 2001). This binding generates a strong TCR  
68 signal that is required for iNKT cell selection (Moran et al., 2011). After selection, iNKT  
69 cells can develop along one of three developmental routes and thereby become iNKT1,  
70 iNKT2 or iNKT17 terminally differentiated iNKT cells (Lee et al., 2013). The developmental  
71 route taken depends on the iNKT cell's TCR signal strength (Tuttle et al., 2018). Strong TCR  
72 signals result in the preferential generation of iNKT2 and iNKT17 cells. In contrast, weaker  
73 signals promote the development of iNKT1 cells. Thus, genetic mutations affecting positive  
74 regulators of TCR signaling and thereby reducing TCR signal strength, such as ZAP-70 (Hsu  
75 et al., 2009; Sakaguchi et al., 2003), were shown to decrease iNKT2 and iNKT17 cell  
76 numbers, whereas iNKT1 cell numbers were increased (Tuttle et al., 2018). Hence, iNKT2

77 and iNKT17 cells depend on strong TCR signals whereas iNKT1 cells rely on weaker  
78 signals.

79 In mice, iNKT2 cells express CD4 whereas iNKT17 cells do not. iNKT1 cells can either be  
80 CD4<sup>+</sup> or CD4<sup>-</sup> (Lee et al., 2013). Interestingly, the CD4<sup>-</sup> and CD4<sup>+</sup> iNKT1 subsets fulfil  
81 different functional roles with CD4<sup>-</sup> iNKT1 cells possessing more NK cell-like functions such  
82 as tumor killing, whereas CD4<sup>+</sup> iNKT1 cells express more proteins associated with helper T  
83 cell functions like IL-4 (Georgiev et al., 2016). The signals that drive CD4<sup>+</sup> iNKT1 or CD4<sup>-</sup>  
84 iNKT1 cell development remain unknown.

85 Directly after selection the developing iNKT cells are CD24<sup>+</sup> CD44<sup>-</sup> NK1.1<sup>-</sup> and called stage  
86 0 cells (iNKT0). They develop through stage 1 to stage 2 cells. Stage 1 (CD24<sup>-</sup> CD44<sup>-</sup> NK1.1<sup>-</sup>  
87 ) already contains iNKT2 cells which are also found in stage 2 (CD24<sup>-</sup> CD44<sup>+</sup> NK1.1<sup>-</sup>). In  
88 stage 2 iNKT17 cells are also present. Stage 3 contains iNKT1 cells (CD24<sup>-</sup> CD44<sup>+</sup> NK1.1<sup>+</sup>)  
89 (Benlagha et al., 2002; Bennstein, 2018). Thus, in the thymus all three subsets (iNKT1,  
90 iNKT2, iNKT17) are present as mostly resident and terminally differentiated cells (Hogquist  
91 and Georgiev, 2020; Wang and Hogquist, 2018).

92 Since TCR signal strength directs iNKT cell development, it is important to gain more insight  
93 into how this strength is regulated. We previously identified the scaffold protein Protein  
94 Kinase D (PKD)-interacting substrate of 220 kDa (Kidins220), also called Ankyrin repeat-  
95 rich membrane spanning (ARMS), to bind to the TCR resulting in increased TCR signaling  
96 (Deswal et al., 2013). Kidins220 is a large protein with four transmembrane regions with  
97 both, N- and C-termini, reaching into the cytoplasm. It does not belong to the tetraspanin  
98 family and has various protein-protein interaction domains, such as 11 ankyrin repeats, a  
99 SAM domain, a proline-rich sequence and a PDZ-binding motif. Kidins220 is thought to act  
100 as a signaling hub (Neubrand et al., 2012; Good et al., 2011). It was initially discovered in  
101 neurons, where it interacts with the nerve growth factor receptor (NGFR) and Neurotrophin  
102 receptors like Trk (Iglesias et al., 2000; Chang et al., 2004; Arévalo et al., 2004).

103 In the adaptive immune system, Kidins220 binds to the TCR in T cells and the B cell antigen  
104 receptor in B cells. In both cases Kidins220 contributes to the activation of the MAP  
105 kinase/Erk pathway by binding to B-Raf (Deswal et al., 2013; Fiala et al., 2015). The  
106 function of Kidins220 was studied in a murine T cell line by utilizing an shRNA-based  
107 Kidins220 knock down (KD) (Deswal et al., 2013). Following TCR stimulation Erk and Ca<sup>2+</sup>  
108 signaling were reduced in Kidins220 KD cells, although TCR levels on the surface were  
109 increased. This excluded the possibility of weaker signaling due to a reduced number of  
110 TCRs. Consequently, after TCR stimulation Kidins220 KD cells were less activated, as seen

111 by reduced production of IL-2, IFN- $\gamma$  and CD69. Hence, Kidins220 is an important positive  
112 regulator of TCR signaling *in vitro* (Deswal et al., 2013).

113 Here, we gained insight into the function of Kidins220 in T cells *in vivo*. To this end, we  
114 generated T cell-specific Kidins220 KO (T-KO) mice which showed strongly reduced iNKT  
115 cell numbers. Analyzing the T-KO iNKT cells, we found that in thymic development  
116 Kidins220 first enhances TCR signals at the stage 0 selection step of iNKT cells.  
117 Surprisingly, Kidins220 then switches its function to reduce TCR signal strength in stage 2  
118 and 3 iNKT cells, thus preventing excessive apoptosis. In peripheral iNKT cells, Kidins220  
119 again switches its role to enhance TCR-mediated signaling in response to antigen.

120

121

122 **Results**

123

124 **Absence of Kidins220 reduces iNKT cell numbers**

125 To study the role of Kidins220 in iNKT cell development, we generated a T cell-specific  
126 Kidins220 KO (T-KO) C57BL/6 mouse line. Mice with a floxed Kidins220 gene (Cesca et  
127 al., 2011, 2012) were crossed with mice expressing the Cre recombinase under the proximal  
128 Lck promotor (Orban et al., 1992; Hennet et al., 1995) which deletes floxed genes starting at  
129 the double negative 2 (DN2) stage of thymocyte development (Shimizu et al., 2001; Shi and  
130 Petrie, 2012; Fiala et al., 2019). T-KO mice carry the floxed Kidins220 gene on both alleles  
131 and LckCre, whereas control (Ctrl) mice carry at least one WT Kidins220 allele and LckCre  
132 (Fig. 1A). A flow cytometric analysis of the spleens shows that T cell numbers were  
133 diminished two-fold in T-KO compared to Ctrl mice, indicating that the T cell compartment  
134 is affected by the absence of Kidins220. As expected, B cell numbers were unaffected in T-  
135 KO mice (Fig. 1B).

136 To test whether unconventional T cell numbers were also impacted by the loss of Kidins220,  
137 we analyzed iNKT cells by staining with CD1d-tetramers loaded with PBS57, an analog of  
138  $\alpha$ -Galactosylceramide ( $\alpha$ GalCer). When bound to CD1d  $\alpha$ GalCer (and PBS57) serve as  
139 potent ligands for the iNKT cell's invariant TCR (Brossay et al., 1998; Kawano et al., 1997).  
140 In liver, spleen and thymus, we found a reduction of iNKT cell numbers in T-KO mice by 2-,  
141 3- and 6-fold, respectively (Fig. 1C), suggesting that iNKT cell development is hampered in  
142 the absence of Kidins220.

143 During thymic development, iNKT precursor cells are selected by DP thymocytes presenting  
144 glycolipid-loaded CD1d molecules (Bendelac, 1995; Coles and Raulet, 2000). We found that

145 CD1d levels were reduced by 1.2-fold in DP thymocytes of T-KO mice compared to Ctrl  
146 mice (Fig. S1A), while CD4 and CD8 levels showed no differences, indicating that there was  
147 not a general reduction in surface protein levels (Fig. S1B). The lower CD1d expression on  
148 DP cells could have caused a reduced selection of iNKT cells, since the latter need strong  
149 TCR signals for positive selection (Moran et al., 2011). To test whether the reduced CD1d  
150 expression could be the reason for inefficient iNKT cell development in T-KO mice, we  
151 generated bone marrow chimeras, for which equal amounts of bone marrow cells from  
152 CD45.1<sup>+</sup> WT mice were mixed with CD45.2<sup>+</sup> Ctrl or CD45.2<sup>+</sup> T-KO bone marrow cells and  
153 injected intravenously into irradiated C57BL/6 Rag2<sup>-/-</sup> (Rag2 KO) mice. In this setup,  
154 CD45.2<sup>+</sup> T-KO iNKT precursor cells have access to normal amounts of CD1d molecules on  
155 the surface of CD45.1<sup>+</sup> WT DP thymocytes. After eight weeks we analyzed iNKT cells in the  
156 recipient thymi. When WT cells were co-injected with Ctrl cells, the percentages of iNKT  
157 cells were almost the same in the WT CD45.1<sup>+</sup> and Ctrl CD45.2<sup>+</sup> populations (Fig. 1D, upper  
158 panel). However, after reconstitution with CD45.1<sup>+</sup> WT and CD45.2<sup>+</sup> T-KO bone marrow  
159 cells, the thymic T-KO iNKT cells showed a reduction of about 2-fold compared to the WT  
160 cells (Fig. 1D, lower panel and Fig. S1C). Hence, the decrease of iNKT cell numbers in T-  
161 KO mice was an iNKT intrinsic effect, since it could not be rescued once T-KO cells had  
162 access to sufficient amounts of CD1d during development.

163

#### 164 **Kidins220 enhances T cell activation and TCR signaling in splenic iNKT cells**

165 Next, we analyzed, whether Kidins220 plays a role for the execution of iNKT cell effector  
166 functions in the periphery. Since iNKT cells are a major source of early IL-4 and IFN- $\gamma$   
167 production after  $\alpha$ GalCer challenge, we analyzed the production of these cytokines by splenic  
168 iNKT cells 2 hours after intraperitoneal (i.p.)  $\alpha$ GalCer injection. By intracellular flow  
169 cytometric staining we found that the percentage of iNKT cells producing IL-4 or IFN- $\gamma$  were  
170 reduced in T-KO compared to Ctrl mice (Fig. 2A and S2A). Further, the MFI for both  
171 cytokines was reduced in the cytokine-producing cells from T-KO mice. Injection of buffer  
172 alone did not lead to detectable cytokine production. Thus, T-KO iNKT cells were less  
173 activated than Ctrl iNKT cells upon TCR stimulation. This is in line with reduced TCR-  
174 mediated T cell activation in a conventional T cell line in which Kidins220 expression was  
175 downregulated (Deswal et al., 2013).

176 Less production of IL-4 and IFN- $\gamma$  could be due to reduced signaling via the iNKT cells'  
177 TCR. Nur77 is expressed after TCR engagement, thus reporting on TCR signal strength  
178 (Moran et al., 2011; Cruz Tleugabulova et al., 2016; Kumar et al., 2020). We found that

179  $\alpha$ GalCer-treated T-KO mice had 60%, whereas Ctrl mice had 81% Nur77<sup>+</sup> iNKT cells in the  
180 spleen (Fig. 2B), and that the Nur77 expression levels in iNKT cells had the tendency of  
181 being lower in T-KO compared to Ctrl. This indicates that in splenic iNKT cells the absence  
182 of Kidins220 reduces TCR signaling. Indeed, diminished TCR signaling in T-KO iNKT cells  
183 would also explain the reduced CD69 expression levels following  $\alpha$ GalCer challenge *in vivo*  
184 (Figs. 2C and S2B).

185 Splenic T-KO iNKT cells expressed 1.1-fold higher TCR levels compared to the Ctrl iNKT  
186 cells as detected by an anti-TCR $\beta$  stain. The same held true when separating total iNKT cells  
187 into NK1.1<sup>-</sup> and NK1.1<sup>+</sup> iNKT cells (Fig. 2D). This is consistent with findings that a  
188 downregulation of Kidins220 in a mature conventional T cell line led to slightly increased  
189 TCR levels (Deswal et al., 2013), and excludes that less TCR signaling in the absence of  
190 Kidins220 was due to lower TCR levels.

191 In conclusion, Kidins220 promotes TCR signaling in peripheral iNKT cells. This is in line  
192 with its binding to the TCR and the kinase B-Raf in a conventional T cell line (Deswal et al.,  
193 2013).

194

195 **Development of T-KO iNKT cells is impeded in T-KO mice, with strongly reduced  
196 iNKT1 numbers**

197 Reduced iNKT cell numbers in T-KO mice might originate from an inefficient development  
198 of these cells in the thymus. To elucidate iNKT cell development, we analyzed thymic iNKT  
199 cells (CD1dt<sup>+</sup> TCR $\beta$ <sup>+</sup>) from Ctrl and T-KO mice by flow cytometry. These cells were  
200 divided into the established stages 0 and 1 (stage 0 + 1, CD44<sup>-</sup> NK1.1<sup>-</sup>), stage 2 (CD44<sup>+</sup>  
201 NK1.1<sup>-</sup>) and stage 3 (CD44<sup>+</sup> NK1.1<sup>+</sup>; Fig. 3A). Further, stage 0 was assessed separately  
202 (CD44<sup>-</sup> CD24<sup>+</sup>; Fig. 3B). Similar total iNKT cell numbers in stage 0 + 1 and in stage 0 alone  
203 were detected in T-KO and Ctrl mice. In sharp contrast, stage 2 and 3 cell numbers were  
204 reduced in T-KO mice, with stage 3 cells being affected the most (Fig. 3A). This reduction  
205 led to a percentwise increase of cells in stages 0 and 1 and a decrease in stage 3. Furthermore,  
206 CCR7<sup>+</sup> iNKT precursor cells (Wang and Hogquist, 2018) were equal in numbers in Ctrl and  
207 T-KO mice (Fig. 3C), being in line with equal stage 0 numbers.

208 The strong reduction of stage 3 iNKT cell numbers suggested that iNKT1 cell numbers were  
209 reduced. The iNKT1 cells express the transcription factor Tbet and are either positive or  
210 negative for CD4. The iNKT2 cells are Tbet<sup>-</sup> CD4<sup>+</sup>, whereas iNKT17 cells are Tbet<sup>-</sup> CD4<sup>-</sup>  
211 (Lee et al., 2013). Indeed, numbers of iNKT1 cells were reduced in T-KO mice 10-fold,

212 iNKT2 cell numbers 2-fold and iNKT17 cell numbers were unchanged (Fig. 3D). This shows  
213 that the absence of Kidins220 strongly interferes with iNKT1, slightly with iNKT2 and not  
214 with iNKT17 development. Numbers of both CD4<sup>+</sup> and CD4<sup>-</sup> iNKT1 cells were reduced;  
215 with CD4<sup>-</sup> iNKT1 cells being affected stronger (Fig. 3D). Using CD122 as an alternative  
216 strategy to identify iNKT1 cells (Georgiev et al, 2016), we also saw a strong reduction of  
217 these cells in the absence of Kidins220 (Fig. S3).

218 Since iNKT1 (NK1.1<sup>+</sup> CD44<sup>+</sup>) cells showed the strongest reduction, we subdivided those  
219 cells into iNKT1a, b and c subsets based on Sca-1 and NK1.1 expression (Baranek et al.,  
220 2020). iNKT1a cell numbers were only slightly reduced in T-KO mice. (Fig. 3E). However,  
221 there was a strong reduction of iNKT1b and iNKT1c cell numbers, indicating that the partial  
222 developmental block might occur at the transition from iNKT1a to iNKT1b in T-KO mice.

223 Since the ratio of CD4<sup>+</sup> to CD4<sup>-</sup> iNKT1 cells was larger in T-KO mice (Fig. 3D), we tested at  
224 which stage the CD4<sup>-</sup> iNKT1 cells would be reduced. In Ctrl mice, there were 4 times and 2  
225 times more CD4<sup>+</sup> than CD4<sup>-</sup> iNKT1a and iNKT1b cells, respectively (Fig. 3E). This was  
226 unchanged in the T-KO mice. In Ctrl mice CD4<sup>-</sup> cells seem to “catch up” at the iNKT1c cell  
227 subset, since there were equal numbers of CD4<sup>+</sup> and CD4<sup>-</sup> cells. However, in T-KO mice  
228 there were still more CD4<sup>+</sup> than CD4<sup>-</sup> iNKT1c cells. Thus, the loss of Kidins220 interferes  
229 with the later stages of iNKT1 development, and hinders CD4<sup>-</sup> iNKT1c cells to develop.

230

### 231 **T-KO iNKT cells are more susceptible to apoptosis and show higher proliferative 232 activity**

233 In the absence of Kidins220, iNKT cell numbers were increasingly reduced the further they  
234 progressed in development. Hence, we tested whether iNKT T-KO cells exhibit increased  
235 apoptosis. To this end, thymocytes were cultured overnight *ex vivo* and subsequently stained  
236 to visualize active Caspase 3/7 by flow cytometry. In thymi of T-KO mice about 4 times  
237 more iNKT cells were apoptotic compared to Ctrl mice (Fig. 4A), which was further  
238 confirmed by Annexin V staining (Fig. S4A). As seen by 7-AAD staining, thymic T-KO  
239 iNKT cells contained higher percentages of dead cells than the ones of Ctrl mice (Fig. S4B).  
240 In line with the strongest reduction of NK1.1<sup>+</sup> stage 3 iNKT cell numbers in T-KO mice (Fig.  
241 3A), the increase of apoptosis (T-KO vs Ctrl) was stronger in NK1.1<sup>+</sup> iNKT cells compared  
242 to the one of NK1.1<sup>-</sup> iNKT cells (Fig. 4B). In general, apoptosis was more prominent in  
243 NK1.1<sup>-</sup> iNKT cells compared to NK1.1<sup>+</sup> iNKT cells and this is in line with previous studies  
244 (Lu et al., 2019).

245 The anti-apoptotic protein BCL2 was expressed to the same levels in Ctrl and T-KO iNKT  
246 cells (Fig. S4C), suggesting that reduced BCL2 was not the cause for enhanced apoptosis in  
247 T-KO iNKT cells. Indeed, besides BCL2 (Yao et al., 2009), BCL<sub>XL</sub> was also shown to be  
248 important for cell survival during iNKT cell development (Egawa et al., 2005), and this might  
249 have been altered in the T-KO cells.

250 To test for iNKT cell proliferation *in vivo*, we injected BrdU i.p. into T-KO and Ctrl mice.  
251 Since BrdU incorporates into the DNA during DNA synthesis, the proliferated cells can be  
252 visualized by flow cytometry using anti-BrdU antibodies. Unexpectedly, T-KO iNKT cells  
253 had proliferated more compared to the Ctrl cells (Fig. 4C). This held true for NK1.1<sup>-</sup> and  
254 NK1.1<sup>+</sup> iNKT cells.

255 In conclusion, Kidins220-deficient thymic iNKT cells proliferated more, but also were more  
256 prone to apoptosis than the Ctrl cells. And the latter might explain the reduction of iNKT cell  
257 numbers in T-KO mice.

258

259 **TCR signaling is reduced in stage 0 thymic T-KO iNKT cells and elevated in stage 2 and  
260 3 T-KO iNKT cells**

261 Enhanced proliferation and apoptosis in thymic T-KO iNKT cells could be caused by  
262 stronger TCR signaling during development and this can be measured by CD5 surface  
263 expression that correlates with the TCR signal strength (Azzam et al., 1998, 2001). Indeed, in  
264 total iNKT cells from T-KO mice we found elevated CD5 levels of about 1.4-fold compared  
265 to the ones from Ctrl mice (Fig. 5A). Interestingly, CD5 expression levels on the different  
266 iNKT stages is differentially affected by the absence of Kidins220: at stage 0 the CD5 levels  
267 were reduced in the T-KO, at stage 1 the levels of Ctrl and T-KO cells were similar and at  
268 stages 2 and 3 the CD5 levels were increased in the T-KO cells. Elevated CD5 expression  
269 was preserved in peripheral NK1.1<sup>+</sup> and NK1.1<sup>-</sup> iNKT cells from the spleen (Fig. 5B).

270 As Nur77 expression levels can also be used to quantify TCR signal strength (Moran et al.,  
271 2011), we analyzed the percentage of Nur77<sup>+</sup> iNKT cells in the thymus. In the total iNKT  
272 population there were three times more Nur77<sup>+</sup> iNKT cells in T-KO mice compared to Ctrl  
273 mice (Fig. 5C). Consolidating the CD5 data, we again detected a lower (stage 0), equal (stage  
274 1) and higher (stages 2 and 3) percentage of Nur77<sup>+</sup> T-KO cells compared to Ctrl cells (Fig.  
275 5C). In stage 3 the largest increase of Nur77<sup>+</sup> in the T-KO cells was found (namely 4-fold  
276 compared to Ctrl). Nur77 expression levels in the cells as quantified by the MFI revealed the  
277 same trend (Fig. 5D).

278 Strikingly, these data suggest that Kidins220 enhances TCR signaling in thymic stage 0 iNKT  
279 cells but reduces TCR signaling at stages 2 and 3.

280 This change in TCR signaling might be due to altered TCR expression levels. Indeed, in total  
281 iNKT cells we detected increased TCR levels in the T-KO cells (Fig. 6A). In stage 0 TCR  
282 levels were lower, in stage 1 equal and in stages 2 and 3 higher in the T-KO compared to the  
283 Ctrl. The higher levels in stages 2 and 3 are in line with increased TCR levels of T-KO iNKT  
284 cells in the spleen (Fig. 2D) and in a T cell line where Kidins220 expression was  
285 downregulated (Deswal et al., 2013).

286 Increased TCR levels correlated with increased binding of the TCR's ligand CD1dt to the  
287 iNKT cells (Fig. 6B). Since more surface TCR on iNKT cells might lead to more TCR  
288 signaling (Tuttle et al., 2018), the enhanced CD1d binding we detected in the T-KO stage 2  
289 and 3 cells might contribute to the stronger TCR signals observed in Figure 5, causing more  
290 apoptosis in those iNKT cells (Fig. 4).

291

292

## 293 **Discussion**

294

295 Here, we show that the T cell-specific KO of Kidins220 leads to a severe reduction of iNKT  
296 cell numbers, whereas the number of conventional T cells is only slightly reduced.  
297 Surprisingly, Kidins220 switches its role twice in iNKT cell biology: from promoting TCR  
298 signaling in the selection of DP thymocytes to the iNKT lineage, to inhibiting signaling  
299 during iNKT cell development limiting TCR signal strength and allowing iNKT1 cells to  
300 develop, and back to promoting TCR signaling in peripheral iNKT cells (Fig. 7).

301 During the development of iNKT cells, the TCR signal strength progressively decreases from  
302 developmental stage 0 to stage 3 (Lu et al., 2019; Moran et al., 2011). Like others (Moran et  
303 al., 2011; Azzam et al., 1998; Lu et al., 2019; Cruz Tleugabulova et al., 2016), we have used  
304 CD5 and Nur77 expression as readouts for TCR signal strength to evaluate the role of  
305 Kidins220 in iNKT cell development. In stage 0, the TCR signal is lower in T-KO cells  
306 compared to Ctrl, suggesting that Kidins220 is a positive regulator of TCR signaling (Fig. 7).  
307 This is in line with data derived from a murine T cell line in which TCR signaling was  
308 reduced when Kidins220 was knocked down (Deswal et al., 2013), and from cardiovascular  
309 and neurological systems, where Kidins220 positively couples several receptors to  
310 intracellular signaling (Arévalo et al., 2004). However, although strong signals are required  
311 for iNKT positive selection (Dutta et al., 2013; Seiler et al., 2012; Moran et al., 2011), we did

312 not find reduced cell numbers in stage 0 in T-KO mice. Most likely, the lower signals were  
313 still above a threshold required for the DP cells to be selected to the iNKT lineage.  
314 TCR signal strength also steers development of the selected iNKT cells into the different  
315 subsets (iNKT1, iNKT2 and iNKT17). iNKT1 cells, which require a weak TCR signal to  
316 develop (Tuttle et al., 2018), were affected most by the T-KO being reduced 10-fold. Indeed,  
317 remaining iNKT1 cells exhibited increased TCR signaling (CD5 and Nur77) (stage 3 cells are  
318 mostly iNKT1 cells) and enhanced apoptosis. We also found increased proliferation in stage  
319 3 iNKT cells (iNKT1), but this obviously could not compensate for the enhanced apoptosis.  
320 The generation of iNKT17 cells is promoted by TCR signals of medium strength and indeed  
321 their cell numbers were similar in T-KO and Ctrl. The generation of iNKT2 cells benefits  
322 from strong TCR signals and was slightly diminished (2-fold). As we did not see elevated  
323 apoptosis of iNKT2 cells, we expected an increase in the number of those cells in T-KO  
324 mice. In support of our finding, it was already shown that stronger TCR signaling in iNKT  
325 cells leads to a slight reduction of iNKT2 cell numbers (Lu et al., 2019).  
326 Interestingly, Kidins220 shows progressively higher expression levels from stage 1 to stage 3  
327 (<https://www.immgen.org/>), supporting the assumption that in later stages of development  
328 Kidins220 is needed the most to dampen TCR signals. This would make iNKT1 cells, which  
329 are mostly stage 3 cells, the most Kidins220-dependent iNKT subtype – as we found.  
330 Conversely, in the hypomorphic ZAP-70 mice, TCR signaling was reduced in stages 2 and 3,  
331 and iNKT1 cells were percentwise increased whereas iNKT2 and iNKT17 cells were reduced  
332 (Hsu et al., 2009; Sakaguchi et al., 2003; Tuttle et al., 2018; Zhao et al., 2018).  
333 The phenotype of T-KO mice is very similar to the Slam family receptors (SFRs)-deficient  
334 mice (Lu et al., 2019), suggesting that these molecules might play similar roles in iNKT cells.  
335 For example, stage 3 iNKT cell numbers were diminished the most in SFR KO mice and  
336 TCR signaling was also elevated in stage 2 and 3 iNKT cells. However, there are differences  
337 to the Kidins220 KO, such as that Nur77 was equal in stage 0 SFR KO compared to the Ctrl,  
338 whereas in T-KO mice it was lower. Moreover, BCL2 expression was lower in SFR KO  
339 iNKT cells, explaining the enhanced apoptosis, whereas in iNKT cells lacking Kidins220  
340 BCL2 levels remained unchanged.  
341 CD1d, the ligand for the iNKT TCR, is expressed at slightly lower levels in the T-KO mice.  
342 Using bone marrow chimeric mice in which T-KO iNKT precursors have access to sufficient  
343 amounts of CD1d, we showed that iNKT cell numbers were also diminished, substantiating  
344 our conclusion that it is an iNKT cell intrinsic mechanism that led to reduced iNKT cell  
345 numbers, namely an altered TCR signal strength caused by the absence of Kidins220. Indeed,

346 enhanced TCR signaling in the T-KO developing iNKT cells cannot be explained by lower  
347 CD1d levels.

348 In conclusion, the function of Kidins220 switches during development. In stage 0 Kidins220  
349 promotes TCR signaling, and in stages 2 and 3 it dampens TCR signaling (Fig. 7). This is  
350 specific to Kidins220, since ZAP-70 was a positive regulator at all stages (Tuttle et al., 2018).  
351 Intriguingly, in peripheral iNKT cells Kidins220 switched back to its positive regulatory  
352 function. In fact, TCR signaling as measured by Nur77 expression was reduced after  
353 stimulation with  $\alpha$ GalCer in splenic T-KO iNKT cells (Fig. 7). This resulted in lower iNKT  
354 cell activation as expression of CD69 and IL-4 was reduced. This is in line with Kidins220's  
355 positive function in stage 0 cells and in a murine T cell line (Deswal et al., 2013).

356 How is the changing role of Kidins220 on TCR signaling regulated? This might be at two  
357 levels; firstly, by controlling TCR expression levels and secondly, by coupling to different  
358 signaling proteins.

359 Firstly, Kidins220 is involved in regulating receptor levels on the cell surface. When  
360 Kidins220 was downregulated in neurons or in a T cell line, glutamate receptor 1 or TCR  
361 levels were increased, respectively (Arévalo et al., 2010; Deswal et al., 2013). Likewise, TCR  
362 levels were increased in T-KO compared to Ctrl in stage 2 and 3 thymic and in splenic iNKT  
363 cells. Since in stage 2 and 3 iNKT cells TCR signals were enhanced, but reduced in splenic  
364 iNKT cells, Kidins220 has other means to regulate signaling besides controlling receptor  
365 levels (see below). However, in all thymic iNKT cell stages TCR signal strength correlated  
366 with the TCR surface levels in T-KO versus Ctrl: in stage 0 cells TCR levels and signaling  
367 were reduced but increased in stage 2 and 3 cells in the T-KO and in stage 1 cells TCR levels  
368 and signaling were the same in T-KO and Ctrl.

369 Secondly, a different role of Kidins200 in the different iNKT cell developmental stages might  
370 also be accomplished through either binding to a protein that promotes signaling (in precursor  
371 and peripheral iNKT cells) or that reduces signaling (in thymic stage 2 and 3 iNKT cells). In  
372 a T cell line, it was shown that Kidins220 binds to the TCR and to B-Raf and thus connects  
373 the TCR to the MAP kinase/Erk pathway and couples the TCR to calcium signaling (Deswal  
374 et al., 2013). Binding to and coupling receptors to these pathways is a general function of  
375 Kidins220, as it was also demonstrated in B cells and neurons (Fiala et al., 2015; Arévalo et  
376 al., 2004; Jaudon et al., 2021; Cesca et al., 2011; Scholz-Starke and Cesca, 2016). Indeed,  
377 Ras, being part of the Erk pathway, is involved in iNKT development, since expression of a  
378 dominant negative Ras led to reduced iNKT cell numbers (Hu et al., 2011). The function of  
379 Kidins220 to couple the TCR to calcium influx is in line with the fact that Nur77

380 transcription relies not only on TCR-mediated signals, but that calcium signaling was the  
381 most important player (Liu, 2009; Youn Hong-Duk, Chatila Talal A., 2000; Lith et al., 2020).  
382 Kidins220's putative binding to a negative regulator of TCR signaling in developing iNKT  
383 cells remains speculative. However, a changing role of Kidins220 was also shown in the  
384 nervous system when triggering TrkB. In embryonic astrocytes, Kidins220 promotes kinase-  
385 based signaling, and after birth  $\text{Ca}^{2+}$ -dependent signaling (Jaudon et al., 2021).  
386 Finally, our data shed some light on the generation of  $\text{CD4}^-$  and  $\text{CD4}^+$  iNKT1 cells. iNKT1a  
387 cells which are mostly  $\text{CD4}^+$  differentiate stepwise to iNKT1b and 1c. We show here that in  
388 these steps  $\text{CD4}$  is progressively lost, until the number of  $\text{CD4}^+$  and  $\text{CD4}^-$  cells is similar in  
389 the iNKT1c subset. Interestingly, total cell numbers of iNKT1a cells are similar and the ratio  
390 of  $\text{CD4}^+$  and  $\text{CD4}^-$  iNKT cells are equal in T-KO and Ctrl, showing that Kidins220 has little  
391 effect during this developmental decision. Only in the following two stages, iNKT1b and 1c,  
392 T-KO iNKT1 cell numbers are decreasing compared to Ctrl, with  $\text{CD4}^-$  being reduced more  
393 than  $\text{CD4}^+$  cells, showing that Kidins220 promotes the generation of  $\text{CD4}^-$  iNKT cells. This  
394 suggests that the TCR signal strength also plays a role in the decision of whether an iNKT1  
395 cells loses or preserves  $\text{CD4}$  expression, in that weak signals promote the generation of  $\text{CD4}^-$   
396 iNKT1 cells.  
397 Reduced TCR signaling in stage 0 and enhanced signaling in later stages of T-KO iNKT  
398 cells, are a further support for the notion that iNKT cells receive persisting TCR engagement  
399 also at later stages (Park et al., 2019; Hogquist and Georgiev, 2020).  
400 In conclusion, we show that the scaffold protein Kidins220, which binds to the TCR, serves  
401 to either enhance or reduce TCR signals in iNKT biology, dependent on the developmental  
402 stage of the cell. Thus, in the absence of Kidins220, developing thymic iNKT cells receive  
403 too strong signals and die by apoptosis, thus limiting the number of iNKT cells. Since iNKT1  
404 cells are more affected than iNKT2 or iNKT17 cells, our data are in line with earlier findings  
405 that iNKT1 cells require weak TCR signals to develop (Tuttle et al., 2018). Since Kidins220  
406 binds to many receptors in different cell types (Fiala et al., 2015; Arévalo et al., 2004; Jaudon  
407 et al., 2021; Cesca et al., 2011; Scholz-Starke and Cesca, 2016), our new findings might serve  
408 as a blueprint to re-examine signal transduction by other receptors.

409

410

## 411 **Materials and methods**

412

### 413 **Mice**

414 Kidins220<sup>+/flox</sup> mice (Cesca et al., 2012) provided by G. Schiavo (University College London,  
415 London, England, UK) were crossed to pLckCre mice (Kidins220lckCre mice). Mice were  
416 between 6 and 46 weeks old but for most experiments between 9 and 15 weeks. The  
417 C57BL/6Rag2<sup>-/-</sup> (Rag2 KO), C57BL/6-Ly5.1 (CD45.1) and Kidins220lckCre mice were bred  
418 under specific pathogen-free conditions. All mice were maintained in C57BL/6 background.  
419 Mice were sex and age matched with litter controls whenever possible. Mice were  
420 backcrossed minimum 10 generations to C57BL/6. All animal protocols (G19/151) were  
421 performed in accordance with the German animal protection law with authorization from the  
422 Veterinär- und Lebensmittelüberwachungsbehörde, Freiburg, Germany.

423

#### 424 **Flow cytometry**

425 To gain single cell suspensions from thymus or spleen the organs were mechanically  
426 disrupted. Lungs were cut with scissors and treated with 1 mg/ml Collagenase P and 0.1  
427 mg/ml DNase1 at 37°C for 1 h. Afterwards, the digested lungs were forced through a 70 µm  
428 strainer. Single cells are the obtained by gradient centrifugation using percoll. Livers were cut  
429 with scissors and forced through a 70 µm strainer. Hepatocytes were gained by centrifugation  
430 with percoll supplemented with 100 u/ml heparin. Erythrocytes were lysed using ACK lysis  
431 buffer (150 mM NH<sub>4</sub>Cl and 10 mM KHCO<sub>3</sub>) in all single cell suspensions. Afterwards the  
432 cells were stained. Flow Cytometry was performed as shown in the company's instructions  
433 using a Gallios (Beckam Coulter) or LSRFortessa (BD Biosciences). Data evaluation was  
434 performed using FlowJo X.

435

#### 436 **Antibodies and tetramers**

437 The following antibodies were used to stain cells for flow cytometry: PE-labeled anti-CD1d  
438 (1B1), PerCP-Cy5.5-labeled anti-CCR7 (4B12), PE-Cy7-labeled anti-CD44 (IM7), PE-  
439 labeled anti-CD45.2 (104), FITC Annexin V Apoptosis Detection Kit I, FITC BrdU Flow  
440 Kit, AF647-labeled anti-Nur77 (12.14) were purchased from BD Biosciences. APC-labeled  
441 anti-CD122 (TM-β1), PB-labeled anti-CD19 (6D5), FITC-labeled anti-CD45.1 (A20), FITC-  
442 labeled anti-IFNγ (XMG1.2), PE-Cy7-labeled anti-IL-4 (11B11), PE-labeled anti-MR1  
443 (26.5), FITC-labeled anti-NK1.1 (PK136), PE-Cy7-labeled anti-Sca-1 (D7), PE-labeled anti-  
444 Tbet (4B10), FITC-labeled anti-TCRbeta (H57-597), PB-labeled anti-TCRbeta (H57-597)  
445 were purchased from Biolegend. PerCP-Cy5.5-labeled anti-CD24 (M1/69), FITC-labeled  
446 anti-CD4 (GK1.5), PE-labeled anti-CD4 (RM4-5), PE-Cy7-labeled anti-CD4 (RM4-5), APC-  
447 labeled anti-CD44 (IM7), APC-labeled anti-CD5 (53-7.3), PE-Cy7-labeled anti-CD69

448 (H1.2F3), eFluor660-labeled anti-CD8 $\alpha$  (53-6.7), APC-labeled anti-TCRbeta (H57-597) were  
449 purchased from eBioscience. PE-Cy7-labeled anti-NK1.1 (PK136) was purchased from  
450 Invitrogen. CellEvent Caspase-3/7 green flow cytometry assay kit was purchased from  
451 Thermo Fisher Scientific. CD1d tetramers and MR1 tetramers were provided by the NIH  
452 Tetramer Core Facility.

453

#### 454 **Apoptosis assays**

455 To analyze relative amounts of apoptotic cells, the cells were cultured in RPMI medium  
456 supplemented with 10% FBS for 18 h prior to analysis. After staining with surface antibodies,  
457 the cells were treated with the Caspase 3/7 reagent (1:200) for 45 min on room temperature  
458 (CellEvent Caspase-3/7 green flow cytometry assay kit). This reagent comprises a nucleic  
459 acid-binding dye coupled to a peptide (DEVD) which is cleaved by active Caspase 3/7. After  
460 cleavage, the dye enters the nucleus and stains nucleic acids enabling the detection of  
461 apoptotic cells. For analyzing apoptosis with Annexin V (1:200) it was added for 15 min on  
462 room temperature (FITC Annexin V Apoptosis Detection Kit I). For both approaches after  
463 incubation the cells were flow cytometrically analyzed without washing. Dead cells were  
464 excluded based on FSC and SSC intensities.

465

#### 466 **Mixed bone marrow chimera**

467 Bone marrow cells were isolated from CD45.1 $^{+}$  mice and mixed in a 1:1 ratio with either  
468 isolated bone marrow cells from CD45.2 $^{+}$  Ctrl or CD25.2 $^{+}$  T-KO mice. 10 million cells of  
469 mixed bone marrow cells were intravenously injected into lethally irradiated (9.5 Gy) Rag2  
470 KO mice. Chimeric mice were sacrificed and relative iNKT cell numbers were analyzed 7-8  
471 weeks after injection.

472

#### 473 **In vivo BrdU assay**

474 1.5 mg BrdU diluted in 200  $\mu$ L PBS were i.p. injected into Ctrl and T-KO mice. Mice were  
475 sacrificed 16 h or 24 h after injection. Thymocyte proliferation of BrdU-treated mice was  
476 assessed following the FITC BrdU Flow Kit (BD) protocol.

477

#### 478 **In vivo $\alpha$ GalCer challenge**

479 To test antigen response of iNKT cells in vivo 5  $\mu$ g of  $\alpha$ GalCer (purchased from Biozol)  
480 dissolved in 200  $\mu$ L PBS supplemented with 5.6% sucrose, 0.75% L-histidine and 0.5%  
481 Tween20 or only buffer were intraperitoneally injected into Ctrl and T-KO mice. Two hours

482 after injection, mice were sacrificed and splenocytes were isolated to analyze the antigen  
483 response of splenic iNKT cells. For this, intracellular cytokines were analyzed as described in  
484 the “intracellular staining of cytokines and transcription factors” section.

485

#### 486 **Intracellular staining of cytokines and transcription factors**

487 To detect intracellular cytokines and activation markers via flow cytometry, the  
488 Cytofix/Cytoperm Kit (BD) was used. Fluorescently labeled CD1dt as well as surface  
489 antibodies were stained as usual. Following to this, cells were fixed, permeabilized and  
490 stained with anti-IFN $\gamma$ , anti-IL-4 and anti-Nur77 antibodies in Perm/Wash buffer following  
491 the manufacturer’s protocol of the Cytofix/Cytoperm Kit. To stain transcription factors,  
492 fluorescently labeled CD1dt and antibodies were used to stain surface molecules.  
493 Furthermore, fixation and permeabilization was done according to the manufacturer’s  
494 protocol of the Foxp3 / Transcription Factor Staining Buffer Set (eBioscience). Following,  
495 cells were incubated with transcription factor antibodies and analyzed by flow cytometry.

496

497

#### 498 **Acknowledgments**

499

500 We thank Kerstin Fehrenbach and Tabea Reinbold for technical help and Fabrizia Cesca for  
501 the Kidins220 floxed mice and discussions. We also thank the Signaling Factory of the  
502 Signaling Campus of the University Freiburg. We thank the NIH Tetramer Core Facility  
503 (contract number 75N93020D00005) for providing CD1d and MR1 tetramers. We also want  
504 to thank BioRender.com for providing schemes of biological systems. This study was  
505 supported by the German Research Foundation (DFG) through BIOSS - EXC294 and CIBSS  
506 - EXC 2189 (WS and SM,) SFB1381 (A9 to WWS), SFB1160 (B01 to SM) and the DFG  
507 grant SCHA-976/7-1 to WWS. KR and GF were supported by the DFG through GSC-4  
508 (Spemann Graduate School).

509

510

#### 511 **Author contributions**

512

513 LAH, GJF and AMS performed all experiments and data evaluations. The bone marrow  
514 chimera experiment was performed with support from KR and SM. BrdU and  $\alpha$ GalCer *in*  
515 *vivo* experiments were done with help from RMVC and SM. Apoptosis stains and flow

516 cytometric analysis of iNKT cell stages was done with help from KE, JFH and YT. Data were  
517 interpreted by LAH, GJF, AMS and WWS. WWS supervised and conceived the study. LAH  
518 and WWS wrote the manuscript. All authors approved the final version of the manuscript.

519

520

521

## 522 **References**

523

524 Arévalo, J.C., S.H. Wu, T. Takahashi, H. Zhang, T. Yu, H. Yano, T.A. Milner, L. Tessarollo,  
525 I. Ninan, O. Arancio, and M. V. Chao. 2010. The ARMS/Kidins220 scaffold protein  
526 modulates synaptic transmission. *Mol. Cell. Neurosci.* 45:92–100.  
527 doi:10.1016/j.mcn.2010.06.002.

528 Arévalo, J.C., H. Yano, K.K. Teng, and M. V Chao. 2004. A unique pathway for sustained  
529 neurotrophin signaling through an ankyrin-rich membrane-spanning protein. *EMBO J.*  
530 23:2358–68. doi:10.1038/sj.emboj.7600253.

531 Azzam, H.S., J.B. DeJarnette, K. Huang, R. Emmons, C.-S. Park, C.L. Sommers, D. El-  
532 Khoury, E.W. Shores, and P.E. Love. 2001. Fine Tuning of TCR Signaling by CD5. *J.*  
533 *Immunol.* 166:5464–5472. doi:10.4049/jimmunol.166.9.5464.

534 Azzam, H.S., A. Grinberg, K. Lui, H. Shen, E.W. Shores, and P.E. Love. 1998. CD5  
535 Expression Is Developmentally Regulated By T Cell Receptor (TCR) Signals and TCR  
536 Avidity. *J. Exp. Med.* 188:2301–2311. doi:10.1084/jem.188.12.2301.

537 Baranek, T., K. Lebrigand, C. de Amat Herbozo, L. Gonzalez, G. Bogard, C. Dietrich, V.  
538 Magnone, C. Boisseau, Y. Jouan, F. Trottein, M. Si-Tahar, M. Leite-de-Moraes, T.  
539 Mallevaey, and C. Paget. 2020. High Dimensional Single-Cell Analysis Reveals iNKT  
540 Cell Developmental Trajectories and Effector Fate Decision. *Cell Rep.* 32.  
541 doi:10.1016/j.celrep.2020.108116.

542 Bendelac, A. 1995. Mouse NK1+ T cells. *Curr. Opin. Immunol.* 7:367–374.  
543 doi:10.1016/0952-7915(95)80112-X.

544 Bendelac, A., O. Lantz, M.E. Quimby, J.W. Yewdell, J.R. Bennink, and R.R. Brutkiewicz.  
545 1995. CD1 recognition by mouse NK1+ T lymphocytes. *Science (80-. ).* 268:863–865.  
546 doi:10.1126/science.7538697.

547 Benlagha, K., T. Kyin, A. Beavis, L. Teyton, and A. Bendelac. 2002. A thymic precursor to  
548 the NK T cell lineage. *Science (80-. ).* 296:553–555. doi:10.1126/science.1069017.

549 Bennstein, S.B. 2018. Unraveling Natural Killer T-Cells Development. *Front. Immunol.* 8.

550 doi:10.3389/fimmu.2017.01950.

551 Brossay, L., M. Chioda, N. Burdin, Y. Koezuka, G. Casorati, P. Dellabona, and M.  
552 Kronenberg. 1998. CD1d- mediated recognition of an  $\alpha$ -galactosylceramide by natural  
553 killer T cells is highly conserved through mammalian evolution. *J. Exp. Med.* 188:1521–  
554 1528. doi:10.1084/jem.188.8.1521.

555 Cesca, F., a Yabe, B. Spencer-Dene, a Arrigoni, M. Al-Qatari, D. Henderson, H. Phillips,  
556 M. Koltzenburg, F. Benfenati, and G. Schiavo. 2011. Kidins220/ARMS is an essential  
557 modulator of cardiovascular and nervous system development. *Cell Death Dis.* 2:e226.  
558 doi:10.1038/cddis.2011.108.

559 Cesca, F., a Yabe, B. Spencer-Dene, J. Scholz-Starke, L. Medrihan, C.H. Maden, H.  
560 Gerhardt, I.R. Orriss, P. Baldelli, M. Al-Qatari, M. Koltzenburg, R.H. Adams, F.  
561 Benfenati, and G. Schiavo. 2012. Kidins220/ARMS mediates the integration of the  
562 neurotrophin and VEGF pathways in the vascular and nervous systems. *Cell Death  
563 Differ.* 19:194–208. doi:10.1038/cdd.2011.141.

564 Chang, M.S., J.C. Arevalo, and M. V. Chao. 2004. Ternary complex with Trk, p75, and an  
565 ankyrin-rich membrane spanning protein. *J. Neurosci. Res.* 78:186–192.  
566 doi:10.1002/jnr.20262.

567 Coles, M.C., and D.H. Raulet. 2000. NK1.1 + T Cells in the Liver Arise in the Thymus and  
568 Are Selected by Interactions with Class I Molecules on CD4 + CD8 + Cells . *J.  
569 Immunol.* 164:2412–2418. doi:10.4049/jimmunol.164.5.2412.

570 Crowe, N.Y., A.P. Uldrich, K. Kyriassoudis, K.J.L. Hammond, Y. Hayakawa, S. Sidobre, R.  
571 Keating, M. Kronenberg, M.J. Smyth, and D.I. Godfrey. 2003. Glycolipid Antigen  
572 Drives Rapid Expansion and Sustained Cytokine Production by NK T Cells. *J. Immunol.*  
573 171:4020–4027. doi:10.4049/jimmunol.171.8.4020.

574 Cruz Tleugabulova, M., N.K. Escalante, S. Deng, S. Fieve, J. Ereño-Orbea, P.B. Savage, J.-P.  
575 Julien, and T. Mallevaey. 2016. Discrete TCR Binding Kinetics Control Invariant NKT  
576 Cell Selection and Central Priming. *J. Immunol.* 197:3959–3969.  
577 doi:10.4049/jimmunol.1601382.

578 Deswal, S., A. Meyer, G.J. Fiala, A.E. Eisenhardt, L.C. Schmitt, M. Salek, T. Brummer, O.  
579 Acuto, and W.W. a Schamel. 2013. Kidins220/ARMS associates with B-Raf and the  
580 TCR, promoting sustained Erk signaling in T cells. *J. Immunol.* 190:1927–35.  
581 doi:10.4049/jimmunol.1200653.

582 Dutta, M., Z.J. Kraus, J. Gomez-Rodriguez, S. Hwang, J.L. Cannons, J. Cheng, S.-Y. Lee,  
583 D.L. Wiest, E.K. Wakeland, and P.L. Schwartzberg. 2013. A Role for Ly108 in the

584 Induction of Promyelocytic Zinc Finger Transcription Factor in Developing  
585 Thymocytes. *J. Immunol.* 190:2121–2128. doi:10.4049/jimmunol.1202145.

586 Egawa, T., G. Eberl, I. Taniuchi, K. Benlagha, F. Geissmann, L. Hennighausen, A. Bendelac,  
587 and D.R. Littman. 2005. Genetic evidence supporting selection of the V $\alpha$ 14i NKT cell  
588 lineage from double-positive thymocyte precursors. *Immunity*. 22:705–716.  
589 doi:10.1016/j.jimmuni.2005.03.011.

590 Fiala, G.J., I. Janowska, F. Prutek, E. Hobeika, A. Satapathy, A. Sprenger, T. Plum, M. Seidl,  
591 J. Dengjel, M. Reth, F. Cesca, T. Brummer, S. Minguet, and W.W.A. Schamel. 2015.  
592 Kidins220/ARMS binds to the B cell antigen receptor and regulates B cell development  
593 and activation. *J. Exp. Med.* 212:1693–1708. doi:10.1084/jem.20141271.

594 Fiala, G.J., A.-M. Schaffer, K. Merches, A. Morath, J. Swann, L.A. Herr, M. Hils, C. Esser,  
595 S. Minguet, and W.W.A. Schamel. 2019. Proximal Lck Promoter–Driven Cre Function  
596 Is Limited in Neonatal and Ineffective in Adult  $\gamma\delta$  T Cell Development. *J. Immunol.*  
597 203:569–579. doi:10.4049/jimmunol.1701521.

598 Gapin, L., J.L. Matsuda, C.D. Surh, and M. Kronenberg. 2001. NKT cells derive from  
599 double-positive thymocytes that are positively selected by CD1d. *Nat. Immunol.* 2:971–  
600 978. doi:10.1038/ni710.

601 Georgiev, H., I. Ravens, C. Benarafa, R. Förster, and G. Bernhardt. 2016. Distinct gene  
602 expression patterns correlate with developmental and functional traits of iNKT subsets.  
603 *Nat. Commun.* 7. doi:10.1038/ncomms13116.

604 Godfrey, D.I., K.J.L. Hammond, L.D. Poulton, M.J. Smyth, and A.G. Baxter. 2000. NKT  
605 cells: Facts, functions and fallacies. *Immunol. Today*. 21:573–583. doi:10.1016/S0167-  
606 5699(00)01735-7.

607 Good, M.C., J.G. Zalatan, and W.A. Lim. 2011. Scaffold proteins: Hubs for controlling the  
608 flow of cellular information. *Science (80-. ).* 332:680–686.  
609 doi:10.1126/science.1198701.

610 Hennet, T., F.K. Hagen, L.A. Tabak, and J.D. Marth. 1995. T-cell-specific deletion of a  
611 polypeptide N-acetylgalactosaminyl-transferase gene by site-directed recombination.  
612 *Proc. Natl. Acad. Sci.* 92:12070–12074. doi:10.1073/pnas.92.26.12070.

613 Hogquist, K., and H. Georgiev. 2020. Recent advances in iNKT cell development.  
614 *F1000Research*. 9:1–10. doi:10.12688/f1000research.21378.1.

615 Hsu, L.Y., Y.X. Tan, Z. Xiao, M. Malissen, and A. Weiss. 2009. A hypomorphic allele of  
616 ZAP-70 reveals a distinct thymic threshold for autoimmune disease versus autoimmune  
617 reactivity. *J. Exp. Med.* 206:2527–2541. doi:10.1084/jem.20082902.

618 Hu, T., I. Gimferrer, A. Simmons, D. Wiest, and J. Alberola-Ila. 2011. The Ras/MAPK  
619 pathway is required for generation of iNKT cells. *PLoS One*. 6.  
620 doi:10.1371/journal.pone.0019890.

621 Iglesias, T., N. Cabrera-Poch, M.P. Mitchell, T.J.P. Naven, E. Rozengurt, and G. Schiavo.  
622 2000. Identification and cloning of Kidins220, a novel neuronal substrate of protein  
623 kinase D. *J. Biol. Chem.* 275:40048–40056. doi:10.1074/jbc.M005261200.

624 Jaudon, F., M. Albini, S. Ferroni, F. Benfenati, and F. Cesca. 2021. A developmental stage-  
625 and Kidins220-dependent switch in astrocyte responsiveness to brain-derived  
626 neurotrophic factor. *J. Cell Sci.* 134. doi:10.1242/jcs.258419.

627 Kawano, T., J. Cui, Y. Koezuka, I. Toura, Y. Kaneko, K. Motoki, H. Ueno, R. Nakagawa, H.  
628 Sato, E. Kondo, H. Koseki, and M. Taniguchi. 1997. CD1d-restricted and TCR-  
629 mediated activation of V(α)14 NKT cells by glycosylceramides. *Science (80-)*.  
630 278:1626–1629. doi:10.1126/science.278.5343.1626.

631 Kaye, J., M.L. Hsu, M.E. Sauron, S.C. Jameson, N.R.J. Gascoigne, and S.M. Hedrick. 1989.  
632 Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-  
633 restricted antigen receptor. *Nature*. 341:746–749. doi:10.1038/341746a0.

634 Kinjo, Y., P. Illarionov, J.L. Vela, B. Pei, E. Girardi, X. Li, Y. Li, M. Imamura, Y. Kaneko,  
635 A. Okawara, Y. Miyazaki, A. Gómez-Velasco, P. Rogers, S. Dahesh, S. Uchiyama, A.  
636 Khurana, K. Kawahara, H. Yesilkaya, P.W. Andrew, C.H. Wong, K. Kawakami, V.  
637 Nizet, G.S. Besra, M. Tsuji, D.M. Zajonc, and M. Kronenberg. 2011. Invariant natural  
638 killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. *Nat.*  
639 *Immunol.* 12:966–974. doi:10.1038/ni.2096.

640 Kronenberg, M., and L. Gapin. 2002. The unconventional lifestyle of NKT cells. *Nat. Rev.*  
641 *Immunol.* 2:557–568. doi:10.1038/nri854.

642 Kruisbeek, A.M., J.J. Mond, B.J. Fowlkes, J.A. Carmen, S. Bridges, and D.L. Longo. 1985.  
643 Absence of the Lyt-2-,L3T4+ lineage of T cells in mice treated neonatally with anti-I-A  
644 correlates with absence of intrathymic I-A-bearing antigen-presenting cell function. *J.*  
645 *Exp. Med.* 161:1029–1047. doi:10.1084/jem.161.5.1029.

646 Kumar, A., T.M. Hill, L.E. Gordy, N. Suryadevara, L. Wu, A.I. Flyak, J.S. Bezbradica, L.  
647 Van Kaer, and S. Joyce. 2020. Nur77 controls tolerance induction, terminal  
648 differentiation, and effector functions in semi-invariant natural killer T cells. *Proc. Natl.*  
649 *Acad. Sci. U. S. A.* 117:17156–17165. doi:10.1073/pnas.2001665117.

650 Lee, Y.J., K.L. Holzapfel, J. Zhu, S.C. Jameson, and K.A. Hogquist. 2013. Steady-state  
651 production of IL-4 modulates immunity in mouse strains and is determined by lineage

652 diversity of iNKT cells. *Nat. Immunol.* 14:1146–1154. doi:10.1038/ni.2731.

653 Lith, S.C., B.W. van Os, T.T.P. Seijkens, and C.J.M. de Vries. 2020. ‘Nur’turing tumor T cell  
654 tolerance and exhaustion: novel function for Nuclear Receptor Nur77 in immunity. *Eur.*  
655 *J. Immunol.* 50:1643–1652. doi:10.1002/eji.202048869.

656 Liu, J.O. 2009. Calmodulin-dependent phosphatase, kinases, and transcriptional corepressors  
657 involved in T-cell activation. *Immunol. Rev.* 228:184–198. doi:10.1111/j.1600-  
658 065X.2008.00756.x.

659 Lu, Y., M.C. Zhong, J. Qian, V. Calderon, M. Cruz Tleugabulova, T. Mallevaey, and A.  
660 Veillette. 2019. SLAM receptors foster iNKT cell development by reducing TCR signal  
661 strength after positive selection. *Nat. Immunol.* 20:447–457. doi:10.1038/s41590-019-  
662 0334-0.

663 Marusić-Galesić, S., D.L. Longo, and A.M. Kruisbeek. 1989. Preferential differentiation of T  
664 cell receptor specificities based on the MHC glycoproteins encountered during  
665 development. Evidence for positive selection. *J. Exp. Med.* 169:1619–1630.  
666 doi:10.1084/jem.169.5.1619.

667 Michel, M.L., A.C. Keller, C. Paget, M. Fujio, F. Trottein, P.B. Savage, C.H. Wong, E.  
668 Schneider, M. Dy, and M.C. Leite-de-Moraes. 2007. Identification of an IL-17-  
669 producing NK1.1neg iNKT cell population involved in airway neutrophilia. *J. Exp. Med.*  
670 204:995–1001. doi:10.1084/jem.20061551.

671 Moran, A.E., K.L. Holzapfel, Y. Xing, N.R. Cunningham, J.S. Maltzman, J. Punt, and K.A.  
672 Hogquist. 2011. T cell receptor signal strength in  $T_{reg}$  and iNKT cell development  
673 demonstrated by a novel fluorescent reporter mouse. *J. Exp. Med.* 208:1279–1289.  
674 doi:10.1084/jem.20110308.

675 Neubrand, V.E., F. Cesca, F. Benfenati, and G. Schiavo. 2012. Kidins220/ARMS as a  
676 functional mediator of multiple receptor signalling pathways. *J. Cell Sci.* 125:1845–54.  
677 doi:10.1242/jcs.102764.

678 Orban, P.C., D. Chui, and J.D. Marth. 1992. Tissue- and site-specific DNA recombination in  
679 transgenic mice. *Proc. Natl. Acad. Sci.* 89:6861–6865. doi:10.1073/pnas.89.15.6861.

680 Park, J.Y., D.T. DiPalma, J. Kwon, J. Fink, and J.H. Park. 2019. Quantitative Difference in  
681 PLZF Protein Expression Determines iNKT Lineage Fate and Controls Innate CD8 T  
682 Cell Generation. *Cell Rep.* 27:2548-2557.e4. doi:10.1016/j.celrep.2019.05.012.

683 Robey, E., and B.J. Fowlkes. 1994. Selective events in T cell development. *Annu. Rev.*  
684 *Immunol.* 12:675–705. doi:10.1146/annurev.iy.12.040194.003331.

685 Robey, E.A., B.J. Fowlkes, and D.M. Pardoll. 1990. Molecular mechanisms for lineage

686 commitment in T cell development. *Semin. Immunol.* 2:25–34.

687 Sakaguchi, N., T. Takahashi, H. Hata, T. Nomura, T. Tagami, S. Yamazaki, T. Sakihama, T.

688 Matsutani, I. Negishi, S. Nakatsuru, and S. Sakaguchi. 2003. Altered thymic T-cell

689 selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice.

690 *Nature*. 426:454–460. doi:10.1038/nature02119.

691 Scholz-Starke, J., and F. Cesca. 2016. Stepping out of the shade: Control of neuronal activity

692 by the scaffold protein Kidins220/ARMS. *Front. Cell. Neurosci.* 10:1–12.

693 doi:10.3389/fncel.2016.00068.

694 Seiler, M.P., R. Mathew, M.K. Liszewski, C. Spooner, K. Barr, F. Meng, H. Singh, and A.

695 Bendelac. 2012. Elevated and sustained expression of the transcription factors Egr1 and

696 Egr2 controls NKT lineage differentiation in response to TCR signaling. *Nat. Immunol.*

697 13:264–271. doi:10.1038/ni.2230.

698 Shi, J., and H.T. Petrie. 2012. Activation Kinetics and Off-Target Effects of Thymus-Initiated

699 Cre Transgenes. *PLoS One*. 7. doi:10.1371/journal.pone.0046590.

700 Shimizu, C., H. Kawamoto, M. Yamashita, M. Kimura, E. Kondou, Y. Kaneko, S. Okada, T.

701 Tokuhisa, M. Yokoyama, M. Taniguchi, Y. Katsura, and T. Nakayama. 2001.

702 Progression of T cell lineage restriction in the earliest subpopulation of murine adult

703 thymus visualized by the expression of lck proximal promoter activity. *Int. Immunol.*

704 13:105–117. doi:10.1093/intimm/13.1.105.

705 Stetson, D.B., M. Mohrs, R.L. Reinhardt, J.L. Baron, Z.E. Wang, L. Gapin, M. Kronenberg,

706 and R.M. Locksley. 2003. Constitutive cytokine mRNAs mark natural killer (NK) and

707 NK T cells poised for rapid effector function. *J. Exp. Med.* 198:1069–1076.

708 doi:10.1084/jem.20030630.

709 Teh, H.S., P. Kisielow, B. Scott, H. Kishi, Y. Uematsu, H. Blüthmann, and H. Von Boehmer.

710 1988. Thymic major histocompatibility complex antigens and the  $\alpha\beta$  T-cell receptor

711 determine the CD4/CD8 phenotype of T cells. *Nature*. 335:229–233.

712 doi:10.1038/335229a0.

713 Tuttle, K.D., S.H. Krovi, J. Zhang, R. Bedel, L. Harmacek, L.K. Peterson, L.L. Dragone, A.

714 Lefferts, C. Halluszczak, K. Riemondy, J.R. Hesselberth, A. Rao, B.P. O'Connor, P.

715 Marrack, J. Scott-Browne, and L. Gapin. 2018. TCR signal strength controls thymic

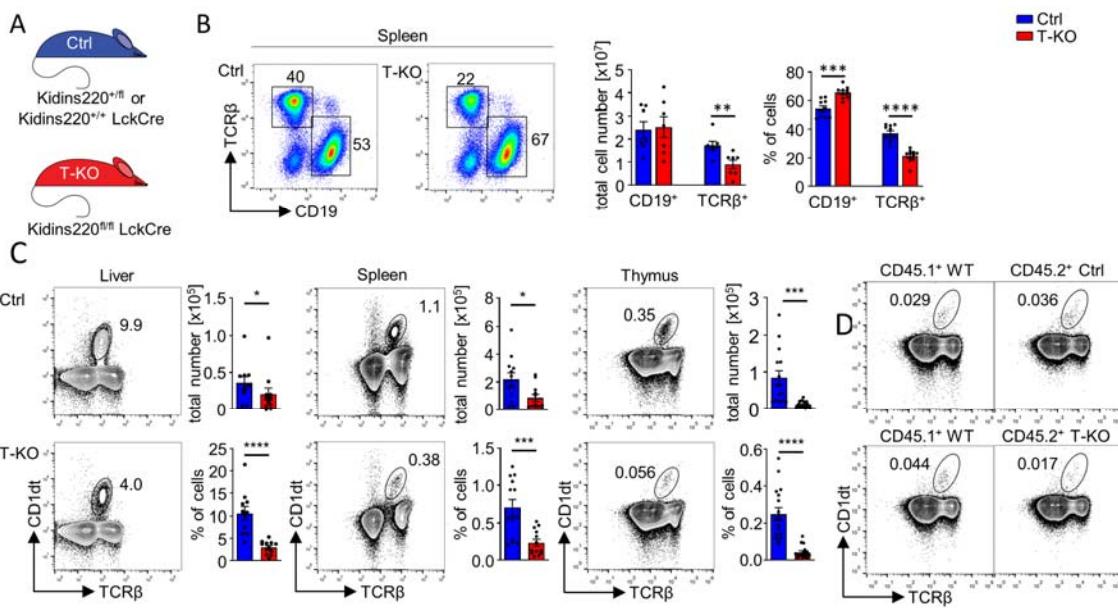
716 differentiation of iNKT cell subsets. *Nat. Commun.* 9:2650. doi:10.1038/s41467-018-

717 05026-6.

718 Wang, H., and K.A. Hogquist. 2018. CCR7 defines a precursor for murine iNKT cells in

719 thymus and periphery. *Elife*. 7:1–4. doi:10.7554/eLife.34793.

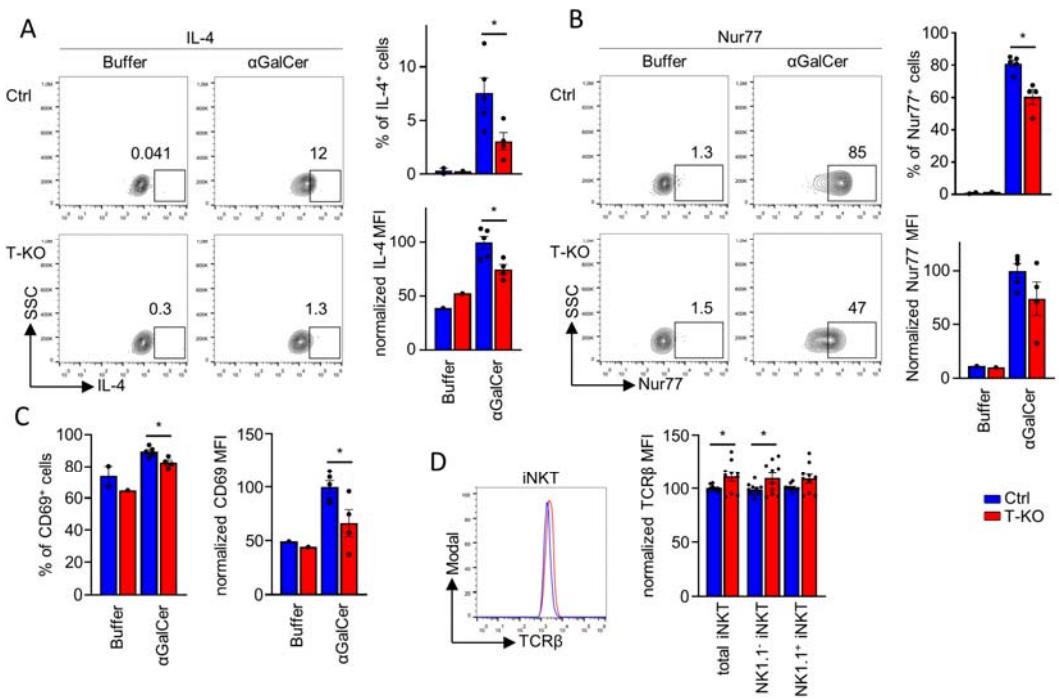
720 Wang, H.X., W. Pan, L. Zheng, X.P. Zhong, L. Tan, Z. Liang, J. He, P. Feng, Y. Zhao, and  
721 Y.R. Qiu. 2020. Thymic Epithelial Cells Contribute to Thymopoiesis and T Cell  
722 Development. *Front. Immunol.* 10:1–10. doi:10.3389/fimmu.2019.03099.


723 Yao, Z., Y. Liu, J. Jones, and S. Strober. 2009. Differences in Bcl-2 expression by T-cell  
724 subsets alter their balance after in vivo irradiation to favor CD4+Bcl-2hiNKT cells. *Eur.*  
725 *J. Immunol.* 39:763–775. doi:10.1002/eji.200838657.

726 Yoshimoto, T., and W.E. Paul. 1994. CD4pos NK1.1pos t cells promptly produce interleukin  
727 4 in response to in vivo challenge with anti-cd3. *J. Exp. Med.* 179:1285–1295.  
728 doi:10.1084/jem.179.4.1285.

729 Youn Hong-Duk, Chatila Talal A., L.J.O. 2000. Integration of calcineurin and MEF2 signals  
730 by the coactivator p300 during T-cell apoptosis. *EMBO J.* 19:4323–4331.  
731 doi:10.1093/emboj/19.16.4323.

732 Zhao, M., M.N.D. Svensson, K. Venken, A. Chawla, S. Liang, I. Engel, P. Mydel, J. Day, D.  
733 Elewaut, N. Bottini, and M. Kronenberg. 2018. Altered thymic differentiation and  
734 modulation of arthritis by invariant NKT cells expressing mutant ZAP70. *Nat. Commun.*  
735 9. doi:10.1038/s41467-018-05095-7.

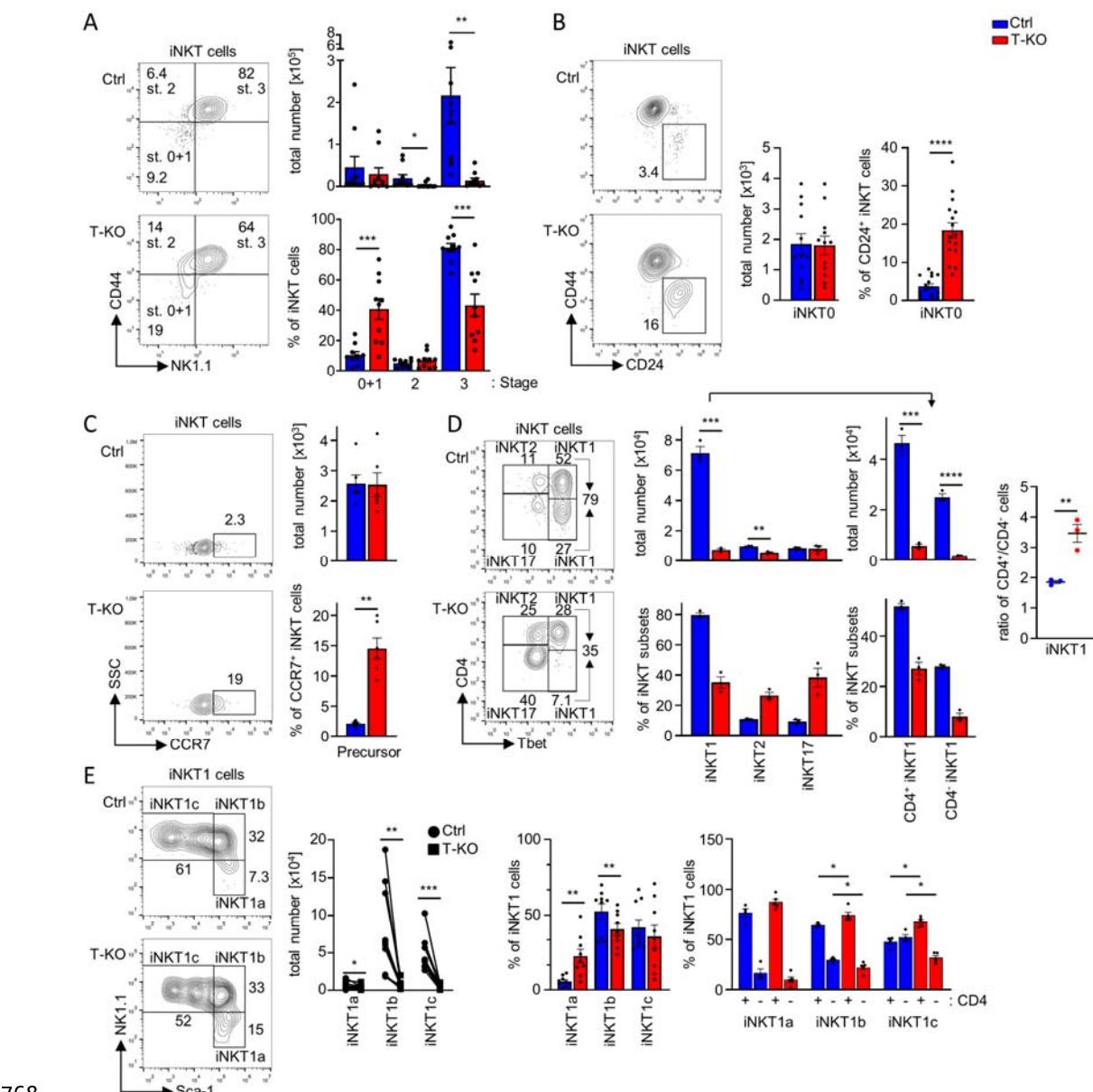

736



737 **Figure 1. The numbers of conventional and un-conventional T cells are decreased in T-  
738 KO mice.**

739 (A) Schematics of the genotypes of Ctrl and T cell-specific Kidins220 KO (T-KO) mice are  
740 shown. (B) B and T cells in the spleen of Ctrl and T-KO mice were analyzed by anti-CD19  
741 and anti-TCR $\beta$  staining. Total cell numbers and relative values are shown (n = 7-10). (C)  
742 iNKT cells were analyzed by staining lymphocytes from Ctrl and T-KO liver, spleen and  
743 thymus with CD1d tetramers (CD1dt) and anti-TCR $\beta$  antibodies. Total and relative cell  
744 numbers are depicted (n > 11). (D) Flow cytometric analyses of iNKT cells in the thymus of  
745 mixed bone-marrow chimeric mice are shown. RAG2 KO mice were lethally irradiated and  
746 reconstituted with bone marrow cells from CD45.1<sup>+</sup> WT and CD45.2<sup>+</sup> Ctrl or CD45.2<sup>+</sup> T-KO  
747 mice in a 1:1 ratio. A representative analysis of the thymocytes of the WT/Ctrl (upper panel)  
748 and WT/T-KO (lower panel) chimeras is shown (n = 7-8). For this figure and all following  
749 ones, Ctrl samples are depicted in blue, and T-KO samples in red. Statistical analyses for total  
750 cell numbers was done by two-sided Student's t test and for relative cell numbers by Mann-  
751 Whitney U test; \* p < 0.05; \*\* p < 0.01; \*\*\* p < 0.001; \*\*\*\* < 0.0001. Error bars indicate  
752 SEM.

753




755

756 **Figure 2. Reduced activation of iNKT cells from T-KO mice after αGalCer challenge.**

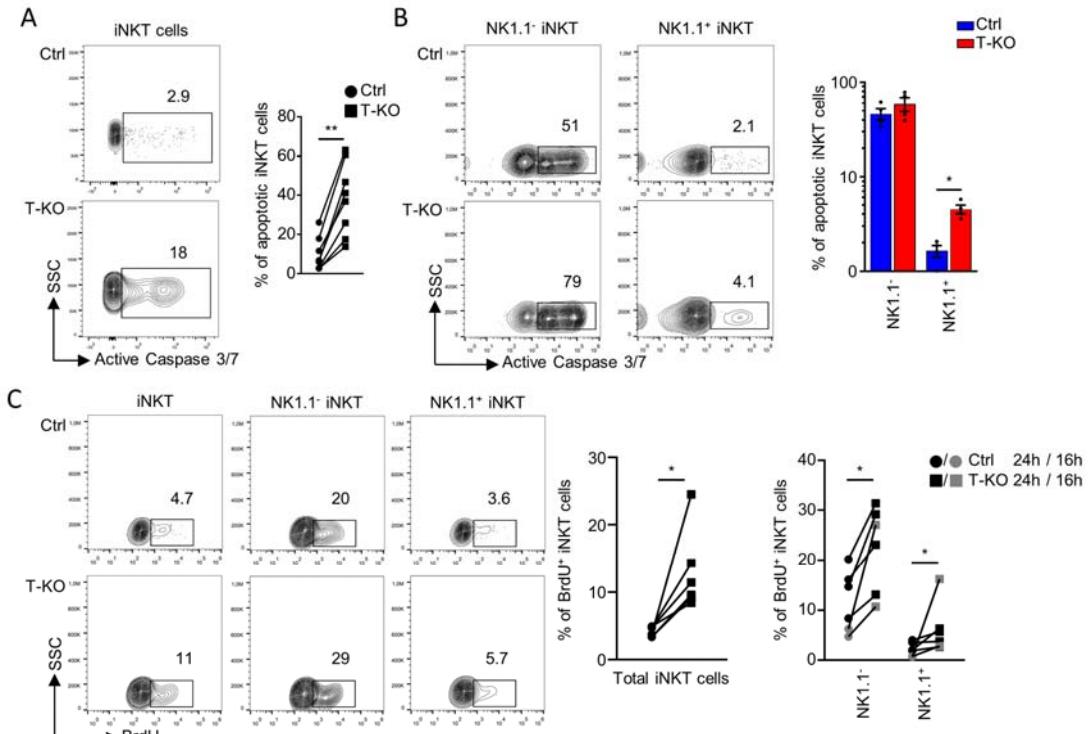
757 (A, B) Ctrl and T-KO mice were killed 2 h after i.p. injection of αGalCer or buffer alone.  
758 Expression of IL-4 (A) and Nur77 (B) was analyzed in iNKT cells by intracellular flow  
759 cytometry using anti-IL-4 and anti-Nur77 antibodies (n = 4-5). Plots were pre-gated on  
760 CD1dt<sup>+</sup> TCRβ<sup>+</sup> iNKT cells and MFI values were normalized to the ones of Ctrl samples for  
761 each independent experiment. (C) Statistics of the percent of CD69 expressing iNKT cells  
762 and of the CD69 MFI is shown after flow cytometry using anti-CD69 antibodies (n = 4-5).  
763 (D) TCRβ expression levels in total splenic iNKT cells or in iNKT cells, which were divided  
764 into NK1.1<sup>-</sup> and NK1.1<sup>+</sup> populations, were determined by flow cytometry (n = 10). Statistical  
765 analysis for relative cell numbers was done by Mann-Whitney U test and for MFIs by two-  
766 sided Student's t test; \* p < 0.05. Error bars indicate SEM.

767



768

769 **Figure 3. Partial block of iNKT development from stage 2 to stage 3 in T-KO mice.**

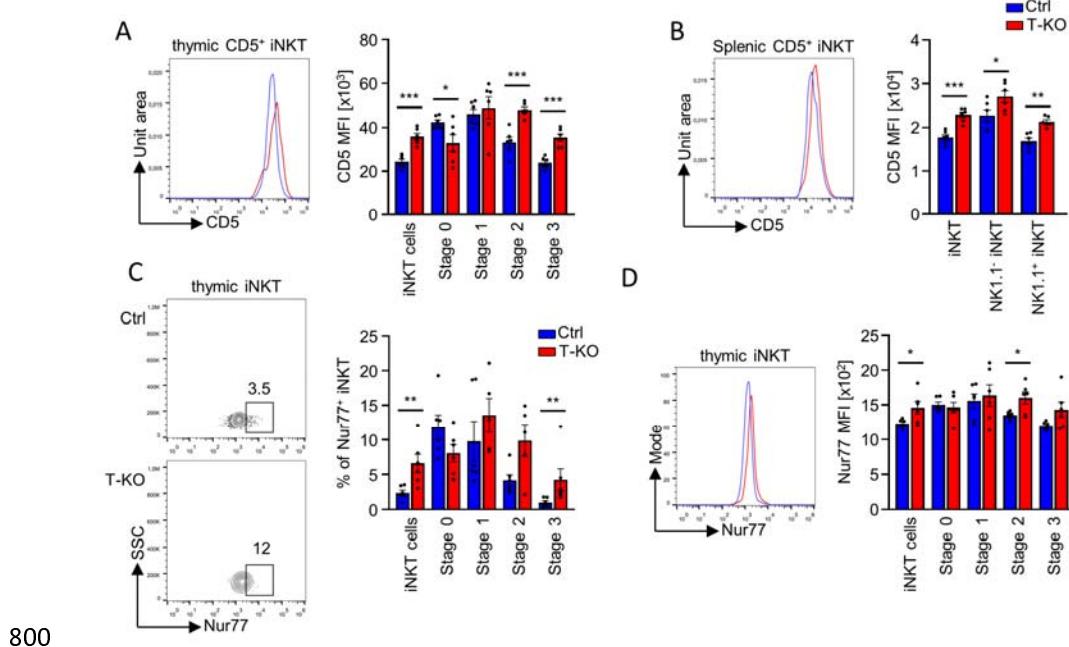

770 (A) CD1dt<sup>+</sup> TCR $\beta$ <sup>+</sup> iNKT cells were analyzed by flow cytometry using anti-CD44 and anti-  
 771 NK1.1 antibodies and grouped into stages 0 + 1, 2 and 3. Graphs show total iNKT and  
 772 relative cell numbers (n = 10). (B) The amount of CD24<sup>+</sup> iNKT0 cells was analyzed using  
 773 anti-CD24 and anti-CD44 antibodies (n = 12-16). (C) The expression of CCR7<sup>+</sup> identifying  
 774 iNKT precursor cells is depicted (n = 6). (D) Thymocytes were stained with anti-CD4 and  
 775 with anti-Tbet antibodies intranuclearly (n = 3). (E) iNKT1 cells were subdivided into  
 776 iNKT1a, b and c cells by using anti-Sca-1 and anti-NK1.1 antibodies (n = 11). Subsequently,  
 777 each subset was divided into CD4<sup>+</sup> and CD4<sup>-</sup> populations using anti-CD4 antibodies (n = 4).  
 778 In all panels, cells were pre-gated for CD1dt<sup>+</sup> TCR $\beta$ <sup>+</sup> iNKT cells. Statistical analysis for

779 relative cell numbers was performed by Mann-Whitney U test, and for total cell numbers by  
780 two-sided Student's t test and for paired analysis of total cell numbers by Wilcoxon matched-  
781 pairs signed rank test; \* p < 0.05; \*\* p < 0.01; \*\*\* p < 0.001; \*\*\*\* < 0.0001. Error bars  
782 indicate SEM.

783

784

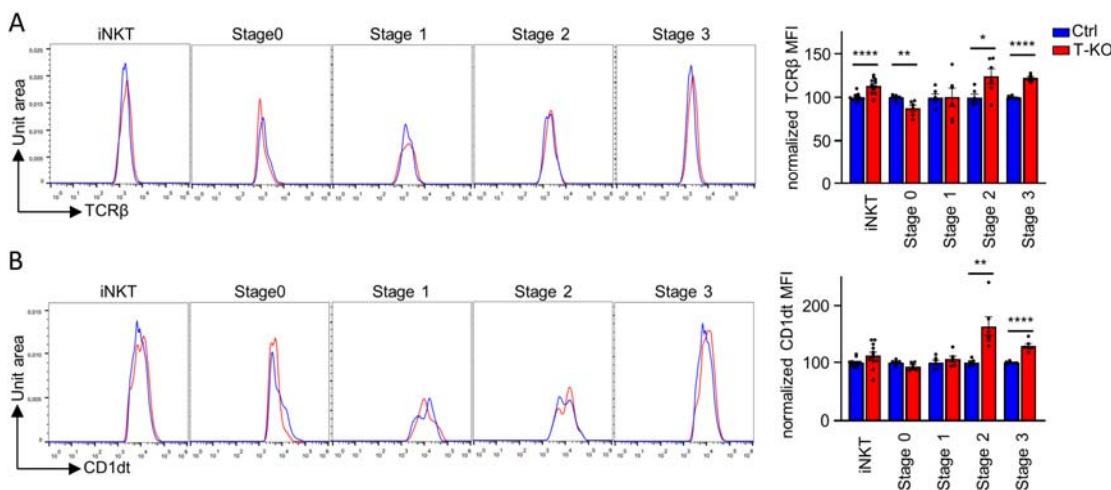
785




786

787 **Figure 4. iNKT cells of T-KO mice are more proliferative and more susceptible to**  
788 **apoptosis compared to Ctrl cells.**

789 (A) To quantify apoptosis in iNKT cells, total thymocytes were cultivated for 18 h in RPMI  
790 medium supplemented with 10% FBS. Graph shows percentages of CD1dt<sup>+</sup> TCR $\beta$ <sup>+</sup> iNKT  
791 cells with active Caspase 3/7. Dead cells were excluded based on FSC and SSC values  
792 (n = 8). (B) Apoptotic iNKT cells as in (A) were subdivided into NK1.1<sup>-</sup> and NK1.1<sup>+</sup> cells  
793 (n = 4). (C) Ctrl and T-KO mice were i.p. injected with BrdU to analyze proliferating cells.  
794 BrdU-treated mice were killed 16 (grey) or 24 h (black) after BrdU injection and thymocytes  
795 were stained with anti-BrdU antibodies. CD1dt<sup>+</sup> TCR $\beta$ <sup>+</sup> iNKT cells and iNKT cells which  
796 were subdivided into NK1.1<sup>+</sup> and NK1.1<sup>-</sup> iNKT cells were analyzed using flow cytometry.  
797 Graphs show relative numbers of BrdU<sup>+</sup> cells (n = 6-7). Statistical analysis for relative cell


798 numbers in (B) was done by Mann-Whitney U test and in (A) and (C) by Wilcoxon matched-  
799 pairs signed rank test; \*  $p < 0.05$ ; \*\*  $p < 0.01$ . Error bars indicate SEM.



801 **Figure 5. Stage 2 and 3 iNKT cells of T-KO mice exhibit stronger TCR signaling**  
802 **compared to Ctrl cells.**

803 (A) CD5 MFI in thymic iNKT cells was assessed by flow cytometry using anti-CD5  
804 antibodies. Cells were pre-gated on CD1dt<sup>+</sup> TCR $\beta$ <sup>+</sup> iNKT cells. iNKT stages were analyzed  
805 using anti-CD24, anti-CD44, and anti-NK1.1 antibodies (n = 6). (B) CD5 MFI was assessed  
806 in splenic iNKT cells divided into NK1.1<sup>+</sup> and NK1.1<sup>-</sup> iNKT cells using anti-NK1.1  
807 antibodies (n = 6). (C) Total thymic iNKT cells and iNKT stages as distinguished in (A) were  
808 analyzed regarding Nur77<sup>+</sup> cells using anti-Nur77 antibodies. Graphs show relative numbers  
809 of Nur77<sup>+</sup> iNKT cells (n = 6). (D) Nur77 MFI in iNKT cells as in (A) was determined by  
810 flow cytometric analysis using anti-Nur77 antibodies (n = 6). Statistical analysis for relative  
811 cell numbers was determined by Mann-Whitney U test and for MFIs by two-sided Student's  
812 t test; \* p < 0.05; \*\* p < 0.01; \*\*\* p < 0.001. Error bars indicate SEM.

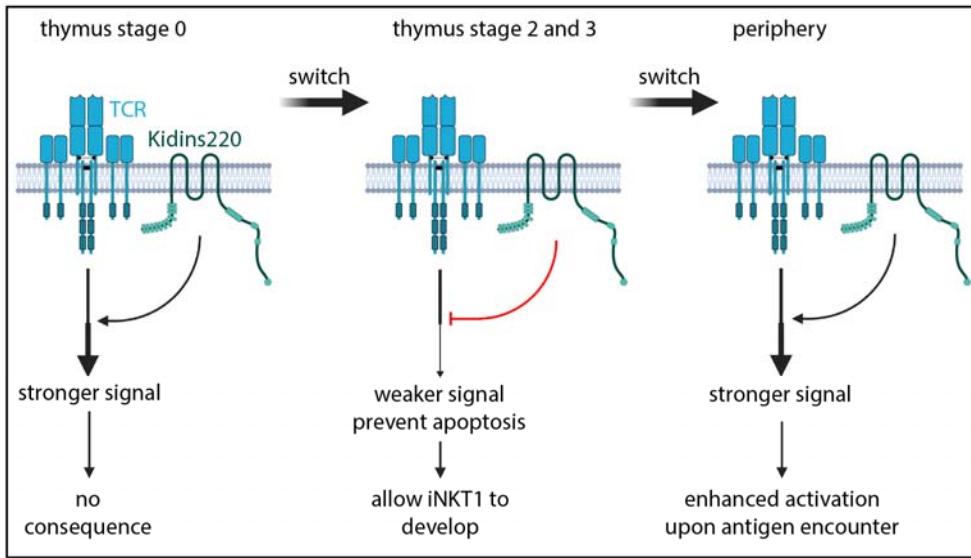
813  
814



**Figure 6. In T-KO mice stage 2 and 3 iNKT cells have increased TCR levels.**

(A) TCR $\beta$  expression levels and (B) CD1dt binding were analyzed by flow cytometry in iNKT cells. Cells were pre-gated on CD1dt $^+$  TCR $\beta$  $^+$  iNKT cells. iNKT stages were analyzed using anti-CD24 and anti-CD44 antibodies to visualize stage 0 iNKT cells and anti-CD44 and anti-NK1.1 antibodies were utilized to stain stages 1, 2, and 3. MFIs are depicted for (A) and (B) (n = 6-12). Statistical analysis for MFIs was performed by two-sided Student's t test; \* p < 0.05; \*\* p < 0.01; \*\*\* p < 0.0001. Error bars indicate SEM.

815


816

817 (A) TCR $\beta$  expression levels and (B) CD1dt binding were analyzed by flow cytometry in  
818 iNKT cells. Cells were pre-gated on CD1dt $^+$  TCR $\beta$  $^+$  iNKT cells. iNKT stages were analyzed  
819 using anti-CD24 and anti-CD44 antibodies to visualize stage 0 iNKT cells and anti-CD44 and  
820 anti-NK1.1 antibodies were utilized to stain stages 1, 2, and 3. MFIs are depicted for (A) and  
821 (B) (n = 6-12). Statistical analysis for MFIs was performed by two-sided Student's t test; \* p  
822 < 0.05; \*\* p < 0.01; \*\*\* p < 0.0001. Error bars indicate SEM.

823

824

825



826

827 **Figure 7. Kidins220 switches its function from a positive, to a negative and back to a**  
828 **positive TCR signal regulator during iNKT cell development and function.**

829 During stage 0 in thymic development, Kidins220 leads to stronger TCR signaling in iNKT  
830 cells. During stages 2 and 3 of development, this function switches to the opposite as  
831 Kidins220 dampens TCR signaling. In the periphery, after stimulation with  $\alpha$ GalCer,  
832 Kidins220 again switches its role by enhancing TCR signaling. Created with BioRender.com.

833

834