

1 Title: A Genome-Wide Association Analysis of Happiness: Consistent Genetic Effects Across the Lifespan
2 and Across Genetic Ancestries in Multiple Cohorts.

3 Authors: Joey Ward¹, Laura Lyall¹, Breda Cullen¹, Rona J. Strawbridge^{1,2}, Xingxing Zhu¹, Ioana
4 Stanciu¹, Alisha Aman¹, Claire L. Niedzwiedz¹, Jana Anderson¹, Mark E. S. Bailey³, *Donald M.

5 Lyall¹, *Jill Pell¹

6

7 1 Institute of Health & Wellbeing, University of Glasgow, Scotland, UK.

8 2 Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet,
9 Stockholm, Sweden.

10 3 School of Life Sciences, University of Glasgow, Scotland, UK.

11 *These authors contributed equally

12 **Corresponding author**

13 Dr. Joey Ward

14 Institute of Health and Wellbeing

15 University of Glasgow

16 1 Lilybank Gardens

17 G12 8RZ, Glasgow, UK.

18 Email: Joey.Ward@Glasgow.ac.uk

19 Tel: +44 (0) 141 330 8547

20

21

22 **Funding**

23 UK Biobank was established by the Wellcome Trust medical charity, Medical Research Council,
24 Department of Health, Scottish Government and the Northwest Regional Development Agency. It
25 has also had funding from the Welsh Assembly Government and the British Heart Foundation. The
26 funders had no role in study design, data collection or management, analyses or interpretation of
27 the data, nor preparation, review or approval of the manuscript.

28

29 CLN acknowledges funding from the Medical Research Council (MR/R024774/1) and a Lord
30 Kelvin/Adam Smith Fellowship.

31

32 **Contributions**

33 Concept and design: Joey Ward
34 Acquisition, analysis, or interpretation of data: Joey Ward, Donald Lyall (imaging), Jill Pell
35 Drafting of the manuscript: Joey Ward
36 Critical revision of the manuscript for important intellectual content: all co-authors.
37 Statistical analysis: Joey Ward
38 Administrative, technical, or material support: all co-authors.

39 **Conflict of interest statement**

40 The authors have no conflicts of interest to report.

41

42

43

44

45

46 Abstract

47 We present a genome-wide association study of a general happiness measure in 118,851
48 participants from the UK Biobank. Using BOLT-LMM, we identify 3 significant loci with a
49 heritability estimate of 0.8%. Linkage disequilibrium score regression was performed on the
50 'big five' personality traits finding significant associations with lower neuroticism and higher
51 extraversion and conscientiousness. Using a novel approach, we construct LDpred-inf
52 polygenic risk scores in the Adolescent Brain Cognitive Development (ABCD) cohort and the
53 Add Health cohort. We detected nominally significant associations with several well-being
54 measures in ABCD and significant correlations with a happiness measure in Add Health.
55 Additionally, we tested for associations with several brain regions in a white British subsample
56 of UK Biobank finding significant associations with several brain structure and integrity
57 phenotypes.

58 We demonstrated a genetic basis for general happiness level and brain structure that appears
59 to remain consistent throughout the lifespan and across multiple ancestral backgrounds.

60 **Keywords:** Happiness; genetics; GWAS, imaging; bias; UK Biobank, ABCD, Add Health.

61 Author summary

62 At the genetic level, there has been little investigation into whether people may have a
63 baseline happiness level which varies from person to person. Here we perform a genetic
64 analysis in the UK Biobank to identify three genetic loci that associate with general happiness
65 level and preform genetic correlations of our results with the 'Big Five' personality traits,
66 identifying significant correlations with neuroticism, conscientiousness and extraversion.

67 We use the resulting summary statistics to create LDpred-inf polygenic risk scores in UK
68 biobank identifying several brain metrics and regions associate with genetic loading for
69 general happiness level. We also use a novel method to create LDpred-inf polygenic risk
70 scores in two other cohorts, ABCD and Add Health. We found significant correlations with an
71 independent happiness measure in Add Health and nominally significant correlations with
72 several well-being measures in ABCD in both those of European Ancestry and all other
73 ancestries found in these cohorts. We also attempted to replicate our UK Biobank MRI finding
74 in ABCD.

75 We conclude there is evidence that individuals have a general happiness level that is in part
76 genetic which spans across age and ancestry.

77 **Introduction**

78 Happiness is the core positive emotional state. As an emotional trait that is affected in clinical
79 outcomes (e.g. lack of happiness in depression and exacerbation of happiness in the manic
80 phase of bipolar disorder) it can be considered a positive valence Research Domain Criteria
81 (RDOC) trait¹. At the genetic level it is usually analysed as part of a wider concept of mental
82 well-being². There is evidence that, generally, an individual has a baseline happiness level
83 which remains relatively stable over time³ even after major positive or negative life events
84 such as winning the lottery or being the victim of an accident⁴.

85 There has been little investigation into the genetics of general happiness level and most of
86 the research has been performed via twin studies⁵, with a recent meta-analysis giving an
87 estimate for heritability of a ‘well-being’ trait of 36% and a slightly lower estimate of 32% for
88 heritability of ‘life satisfaction’⁶. However, to date there has been no genome-wide
89 association study (GWAS) of a general happiness measure to establish features of its genetic

90 architecture and to identify specific areas of the genome that contribute to this trait. Greater
91 understanding of the genetic basis of subjective happiness could be useful in identifying
92 whether and how targeted interventions could improve happiness, both in the general
93 population and in clinical populations⁵. This in turn will increase our understanding of
94 psychology and neurodevelopment aiding in the future treatment of patients⁷.

95 Here we report the first GWAS of general happiness in individuals of white British ancestry,
96 as self-reported in the UK Biobank⁸ cohort, using BOLT-LMM⁹ and the use of polygenic risk
97 scores (PRS) in two additional cohorts: the Adolescent Brain Cognitive Development (ABCD)
98 cohort¹⁰ and the National Longitudinal Study of Adolescent to Adult Health (Add Health)¹¹.
99 This study had three aims: (1) to identify specific loci in the genome that are associated with
100 self-reported general happiness level; (2) to test whether increased genetic loading of this
101 measure is significantly associated with happiness and well-being measures in independent
102 cohorts that span differing age ranges and different ancestries compared to the discovery
103 GWAS cohort; and (3) to investigate whether genetic predisposition for general happiness
104 level is associated with average differences in brain structure.

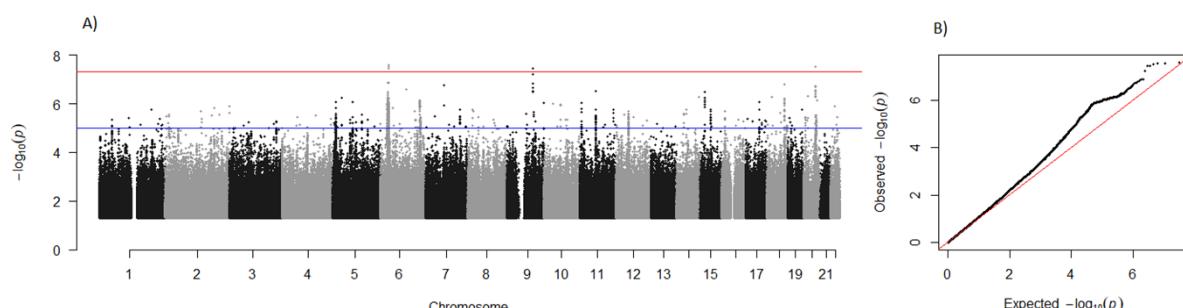
105 **Results**

106 **Phenotype stability**

107 We established stability of general happiness level in UK Biobank over time in those with a
108 repeat measure (Pearson's $r = 0.58$, S.E. = 0.01, $p < 2.2 \times 10^{-16}$, $n = 4,703$).

109 Weighted Pearson's correlations were calculated to establish the stability of the Add Health
110 happiness phenotype using the function weightedCorr of the R package wCorr, which showed
111 a correlation between waves I and II of 0.34, S.E. = 0.008, $p < 0.0001$ (weighted by wave 2

112 variable gswgt2) and between waves II and IV of 0.22, S.E. = 0.01, $p < 0.0001$ (weighted by
113 wave 4 variable gswgt4).


114 **GWAS in UK Biobank**

115 After all exclusions, the final sample size of the GWAS was 118,851, main due to low response
116 rate of the question. The sample had a mean age of 57.5 (S.D. = 8) years and 53.9% were
117 female. A full breakdown of the demographics at each happiness response level can be found
118 in Table S1.

119 Three loci that achieved genome-wide significance (Table 1, Figure 1, Figures S1-3). They were
120 rs3129791 on chromosome six, rs72743916 on chromosome nine and rs11474549 on
121 chromosome twenty. The heritability estimate h_2^{SNP} was 0.0084 (S.E. = 0.004) and there was
122 minimal inflation of the test statistics as $\lambda_{\text{GC}} = 1.001$. The LDSR intercept was 0.999 (S.E. =
123 0.004) showing there was no inflation of the test statistics due to unaccounted population
124 stratification.

125 *Table 1 Genomic loci significantly associated with general happiness level.*

SNP	CHR	BP	A1	A2	BETA	SE	P	start of locus (BP)	end of locus (BP)
rs3129791	6	28954293	A	G	-0.023	0.0042	3.70E-08	25038442	32963948
rs72743916	9	98789019	T	C	-0.064	0.011	1.40E-08	97986571	99687691
rs11474549	20	45833129	TCA	T	-0.016	0.0029	2.70E-08	45722939	45930747

126

127 *Figure 1 Manhattan plot and QQ plot of general happiness. A) X axis = chromosome from 1 -22 y axis = -log10 p value. Blue*
128 *line shows suggestive genome wide significance threshold, red line shows genome wide significance threshold. B) x axis = -*
129 *log10 of the expected p values, y axis = -log10 of the observed p values.*

130 [Linkage Disequilibrium Score Regression](#)

131 Three of the five tested traits were significant after FDR correction (Table 2). The strongest
132 correlation was with neuroticism which showed an inverse relationship with happiness ($rg =$
133 -0.84 , S.E. = 0.34, $p.fdr = 0.021$). Both extraversion and conscientiousness showed positive
134 correlations with happiness (extraversion: $rg = 0.8$, S.E. = 0.32, $p.fdr = 0.021$,
135 conscientiousness: $rg = 0.58$, S.E. = 0.16, $p.fdr = 0.0007$).

136 *Table 1 Linkage disequilibrium score regression with general happiness level and the 'Big Five' personality traits.*

Trait	rg	se	z	p	P.FDR
conscientiousness	0.589	0.1549	3.80	1.43E-04	7.15E-04
neuroticism	-0.8448	0.33725	-2.51	1.22E-02	0.021
extraversion	0.8025	0.32086	2.50	1.24E-02	0.021
openness	-0.1909	0.10298	-1.85	6.38E-02	0.080
agreeableness	0.8574	0.9374	0.91	3.60E-01	0.360

137

138 [Polygenic risk scoring](#)

139 UK Biobank

140 In those who were excluded from the GWAS due to them having MRI data but who responded
141 to the happiness question and passed genetic quality control ($n = 18,795$), we detected a
142 significant association of happiness with the LDpred polygenic risk scores ($\beta = 0.057$, S.E. =
143 0.005 , $p = 4.85 \times 10^{-31}$) with the model explaining 0.018% of the variance.

144 [ABCD](#)

145 In the white subsample, two of the well-being outcomes tested were significantly correlated
146 with the LDpred happiness PRS (Table 3) but neither survived FDR correction. The strongest
147 associations were with being interested ($\beta = 0.0311$, S.E. = 0.016, $p = 0.05$, $p.FDR = 0.13$) and
148 being able to concentrate ($\beta = 0.0307$, S.E. = 0.015, $p = 0.04$, $p.FDR = 0.12$). All of the models

149 showed that greater genetic loading for happiness was associated with greater agreement
150 with the well-being items.

151 *Table 2 Association of LDpred-inf PRS of general happiness level and well-being measures in ABCD white subsample*

outcome	BETA	S.E	P	P.FDR
attentive	8.13E-03	0.017	0.63	0.67
delighted	0.010	0.015	0.51	0.67
calm	0.008	0.014	0.57	0.667
relaxed	0.000	0.014	0.99	0.99
enthusiastic	0.014	0.016	0.39	0.585
interested	0.031	0.016	0.05	0.13
confident	0.027	0.015	0.07	0.15
energetic	0.009	0.016	0.55	0.679
concentrate	0.031	0.015	0.04	0.12

152 In the whole sample, five of the nine aspects of well-being tested were nominally significant;
153 however, none survived FDR correction (Table 4). The strongest association was with being
154 confident ($\beta = 0.03$, S.E. = 0.013, $p = 0.018$, p.FDR = 0.07). Being enthusiastic and energetic
155 showed the same strength of effects (both: $\beta = 0.029$, S.E. = 0.014, $p = 0.039$, p.FDR = 0.07)
156 followed by being able to concentrate ($\beta = 0.028$, S.E. = 0.013, $p = 0.028$, p.FDR = 0.07) and
157 being calm ($\beta = 0.025$, S.E. = 0.012, $p = 0.035$, p.FDR = 0.07). As with the white subsample
158 analysis, all the models showed that greater genetic loading for happiness associated with
159 greater agreement with the well-being items.

160 *Table 3 Association of LDpred-inf PRS of general happiness level and well-being measures in ABCD multi ancestry sample*

outcome	BETA	S.E	P	P.FDR
confident	0.030	0.013	0.018	0.0702
enthusiastic	0.029	0.014	0.039	0.0702
energetic	0.029	0.014	0.039	0.0702
concentrate	0.028	0.013	0.028	0.0702
calm	0.025	0.012	0.035	0.0702
delighted	0.024	0.013	0.074	0.111
attentive	0.022	0.015	0.148	0.19
interested	0.018	0.014	0.189	0.213
relaxed	0.006	0.012	0.617	0.617

161

162 The results of the ABCD P&T models generally reflected those of the LDpred scores (Tables S2
163 and S3). In the white subsample, being interested and able to concentrate were nominally
164 significant. In the P&T scores, being interested was significant at the $p < 0.05$ threshold and
165 showed the same direction of effect as did all the other interested outcome models. Similarly,
166 with concentration, models were significant at the $p < 0.01$ threshold and higher and all
167 models showed the same direction of effect as the LDpred model. Two differences in the P&T
168 models compared to the LDpred models were that being delighted was significant at the $p <$
169 $5*10^{-5}$ threshold ($\beta = 0.039$, S.E. = 0.016, $p = 0.013$) and being confident was significant at the
170 $p < 0.05$ ($\beta = 0.038$, S.E. = 0.015, $p = 0.014$) and $p = 1$ thresholds ($\beta = 0.034$, S.E. = 0.016, $p =$
171 0.027). All other P&T models in the white subsample did not achieve statistical significance.
172 In the whole sample, being confident, enthusiastic, energetic, able to concentrate and calm
173 were all nominally significant. In the P&T models, being confident and being enthusiastic were
174 both significant at the $p < 0.05$ threshold (confident: $\beta = 0.028$, S.E. = 0.013, $p = 0.029$.
175 enthusiastic: $\beta = 0.027$, S.E. = 0.014, $p = 0.05$). Being energetic was nominally significant at p
176 <0.5 ($\beta = 0.021$, S.E. = 0.009, $p = 0.017$) and $p = 1$ thresholds ($\beta = 0.02$, S.E. = 0.086, $p = 0.02$).
177 Being able to concentrate showed greatest concurrence with all models being nominally
178 significant from $p < 0.01$ and above. This outcome showed the strongest association in the
179 LDpred models and had the most significant thresholds in the P&T models. Being calm was
180 significant at both the $p < 0.5$ ($\beta = 0.024$, S.E. = 0.02, $p = 0.04$) and the $p = 1$ ($\beta = 0.025$, S.E. =
181 0.02, $p = 0.037$) thresholds. All the other P&T models did not achieve statistical significance.
182 Also note that all P&T models like the LDpred models would not pass FDR correction.

183 Add Health

184 A significant association was found in the LDpred analysis in the European ancestry subsample

185 ($\beta = 0.036$, S.E. = 0.012, $p = 0.0019$) and also in the whole sample ($\beta = 0.025$, S.E. = 0.009, $p =$

186 0.009). The P&T models reflected similar findings with significant associations found in the

187 European ancestry subsample (best threshold $p < 0.05$; $\beta = 0.03$, S.E. = 0.012, $p = 0.01$), and in

188 the whole sample (best threshold $p < 0.1$; $\beta = 0.022$, S.E. = 0.009, $p = 0.017$) (Tables S4 and S5

189 respectively). In both the European subsample and in the whole sample the models showed

190 a positive correlation with greater genetic loading for happiness with the exception of the p

191 $< 5 * 10^{-5}$ threshold in both groups and $p < 0.01$ threshold in the whole sample however, none

192 of these models were statistically significant.

193 MRI

194 UK Biobank

195 After correcting for multiple testing via FDR, both (head-size adjusted) white and grey matter volumes

196 (white $\beta = 0.014$, S.E. = 0.0053, $p.fdr = 0.04$; grey $\beta = 0.012$, S.E. = 0.0042, $p.fdr = 0.016$), as well as the

197 general factor for frontal lobe volume ($\beta = 0.019$, S.E. = 0.0048, $p.fdr = 0.001$), remained significant,

198 showing that increasing genetic loading for happiness is associated with higher values of these brain

199 measures (Table S6). We also detected significant associations between genetic loading for general

200 happiness and the left hippocampus tail ($\beta = 0.015$, S.E. = 0.005, $p.fdr = 0.013$) and nominally

201 significant associations with the right hippocampus body ($\beta = 0.012$, S.E. = 0.005, $p = 0.021$, $p.fdr$

202 = 0.078) and the left and right thalamus (left: $\beta = 0.011$, S.E. = 0.0048, $p = 0.024$, $p.fdr = 0.078$.

203 right: $\beta = 0.01$, S.E. = 0.0048, $p = 0.038$, $p.fdr = 0.11$).

204 The DTI MRI parameters MD and FA both associated with genetic loading for happiness. Greater FA

205 (reflecting better white matter integrity) was associated with higher genetic loading for happiness

206 while the effect was in the opposite direction for MD, for which higher values reflect worse white
207 matter integrity (FA: $\beta = 0.019$, S.E. = 0.0056, p.fdr = 0.009; MD: $\beta = -0.021$, S.E. = 0.0054, p.fdr < 0.001)

208 ABCD

209 In the whole sample (Tables S7) greater right amygdala volume ($\beta = 0.031$, S.E. = 0.01, p = 0.005,
210 p.fdr = 0.1), greater white matter volume ($\beta = 0.028$, S.E. = 0.01, p = 0.01, p.fdr = 0.1) and greater
211 frontal lobe volume ($\beta = 0.023$, S.E. = 0.01, p = 0.035, p.fdr = 0.2) were all nominally significantly
212 associated with increased genetic loading for general happiness, although none passed FDR
213 correction. Both MD and FA, which were significant in UK Biobank, as well as left and right
214 thalamus, which were nominally significant in the UK Biobank, had the same direction of
215 effect in the whole sample ABCD models. The same was true for all the directions of effect in
216 the white sub sample but none of these models were significant (Table S8).

217 Discussion

218 We have shown that a single-item, self-reported happiness measure can be used to identify
219 loci in the genome that are associated with happiness, adding to the evidence that individuals
220 do have a baseline happiness level. Given that our sample size was moderate, the heritability
221 estimate was far below that determined by the twin study meta-analysis of Bartels⁶. The
222 mechanism by which the genes at these loci may be affecting the phenotype is unclear; each
223 locus identified in the GWAS does contain genes thought to play a role in neurodevelopment,
224 although this may reflect pleiotropy. The major histocompatibility complex (MHC) region on
225 chromosome 6 contains hundreds of genes in very high LD. Genes in the MHC region have
226 been shown to be involved in several aspects of neural development, including neurite
227 outgrowth and synapse formation¹². The most statistically significant SNP within the locus
228 identified on chromosome 9 was rs72743916, located in an intron of *ERCC6L2*. Mutations in

229 this gene have been shown to cause bone marrow failure syndrome 2, symptoms of which
230 include developmental delay and learning difficulties¹³. The third locus, identified on
231 chromosome 20, is found between *EYA2* and *ZMYND8*. No mutations in *EYA2* have been
232 associated with Mendelian disorders, but over-expression has been found in astrocytoma (a
233 type of brain tumour)¹⁴. *ZMYND8* is a transcriptional regulator¹⁵ and has been shown to bind
234 Drebrin which regulates the distribution of *ZMYND8* protein between nucleus and the
235 synapse¹⁶.

236 There were significant genetic correlations between the happiness phenotype and three of
237 the 'big five' personality traits tested and the direction of these effects is generally in
238 agreement with the psychological trait literature. Our results were consistent with a meta-
239 analysis of phenotypic happiness and the big five by Steel et al.¹⁷ as well as work by Hayes and
240 Joseph¹⁸ showing that conscientiousness and extraversion positively correlate with general
241 happiness whereas neuroticism shows a strong negative correlation. The genetic correlation
242 with openness matched that of Hayes and Joseph in that it was negative (though non-
243 significant), whereas Steel et al. showed a significant positive correlation. With agreeableness
244 our results reflected that of Steel et al in that the correlation was positive (though non-
245 significant) whereas Hayes & Joseph showed a non-significant negative correlation.

246 The results of the LDpred PRS analyses in ABCD and Add Health showed that the genetic
247 loading of this happiness measure not only remained consistent across the lifespan from age
248 12 to 73 in those of European ancestry but also across multiple ancestral backgrounds giving
249 evidence that the pathways involved are common to a range of ancestral backgrounds.
250 Although the models for the ABCD cohort were not significant there was a consistent direction
251 of association with all nine of the tested traits in both the white subsample and the multi-

252 ancestry analyses. These models may have been limited by relatively small sample size and
253 also in that the measures used reflect the responses of the parent and not of the child
254 themselves. They are also measures of well-being and not a direct happiness measure.

255 The use of a novel method involving use of UK Biobank participants as the discovery set for
256 the construction of LDpred scores was also validated by similar results in the P&T PRS that
257 used participants of the respective cohorts to establish LD. This allowed for the sample size
258 to be maximised in these smaller cohorts increasing the statistical power of the analyses.

259 The results of the MRI analyses detected several brain regions associated with genetic loading
260 for happiness. The frontal lobe has been implicated in hedonic emotions^{19,20} and we showed
261 that greater values of a general factor for frontal lobe volume significantly correlated with
262 genetic loading for happiness; however we were unable to replicate this finding in the ABCD
263 cohort which may be due to a lack of power as the sample size was only approximately 7000.
264 It is also the case that the frontal lobes continue to develop until around age 25 years so ABCD
265 participants may yet be too young for this relationship to be demonstrated. We also detected
266 a positive correlation with white and grey matter volumes in the UK Biobank, which was
267 reflected in the ABCD analyses but only white matter in the whole sample achieved nominal
268 statistical significance.

269 Larger left hippocampal tail and right hippocampal body both associated with greater genetic
270 loading for happiness whereas the whole hippocampal volume was not significantly
271 associated in either UK Biobank or ABCD. The hippocampus outcomes in both cohorts were
272 insignificant which contradicts what has been found elsewhere in the literature, for example
273 in the meta-analysis of Tanzer & Wayandt²¹, however, they included parahippocampal

274 regions along with the hippocampus. There were no data available for sub-hippocampal
275 structures in the ABCD so a direct comparison was not possible.

276 We also found significant correlations with MD and FA showing higher white matter integrity
277 correlated with greater loading for happiness. This result was reflected in the ABCD cohort
278 but did not reach statistical significance.

279 **Strengths and Limitations**

280 The initial GWAS was large enough to detect significant loci and the use of BOLT-LMM allowed
281 for maximisation of the sample size by accounting for relatedness using the genetic
282 relationship matrix. The GWAS was limited by only including those of white British ancestry.
283 This was due to the imputation panels used in the UK Biobank: both the HRC and the
284 1000genomes reference panel were European only. Future analyses that include those of
285 other ancestries will be possible once the TOPMED dataset becomes available which has
286 participants imputed using the most appropriate ancestral reference panel. UK Biobank is not
287 representative of the UK general population in that participants are generally healthier and
288 have a higher socioeconomic status than the general population and therefore may have a
289 different happiness level distribution than the UK as a whole²². The MRI sample is even less
290 representative in that participation was slightly biased towards the fitter, healthier
291 participants in UK Biobank²³.

292 A similar issue arises in the PRS analyses in that those of European ancestry were used to
293 establish LD structure of the genome. This was due to the lower numbers of the non-European
294 ancestry participants in these cohorts.

295 Conclusions

296 These analyses demonstrate that general happiness level has a genetic contribution which
297 has a consistent effect across age groups and ancestral backgrounds. These analyses not only
298 help increase our understanding of psychology and neurodevelopment, the novel
299 methodology of using UK Biobank participants as a reference panel for LDpred risk scores
300 could be adapted for a wide range of other phenotypes.

301 It is important to note however, the difference in heritability estimates between our genetic
302 study and those obtained at the phenotypic level suggests that there are still many more
303 genetic loci yet to be discovered that will contribute to baseline happiness level. As such,
304 further analyses will be required using larger datasets with less bias towards those of
305 European ancestry.

306 Methods

307 Cohorts, genotyping and phenotyping

308 UK Biobank

309 *Cohort Description*

310 UK Biobank is a cohort of over half a million UK residents, aged from approximately 40 to
311 70 years at baseline. It was created to study environmental, lifestyle and genetic factors in
312 middle and older age⁸. Baseline assessments occurred over a 4-year period, from 2006 to
313 2010, across 22 UK centres. These assessments were comprehensive and included social,
314 cognitive, lifestyle and physical health measures.

315 UK Biobank obtained informed consent from all participants, and this study was conducted
316 under generic approval from the NHS National Research Ethics Service (approval letter

317 dated 29 June 2021, Ref 21/NW/0157) and under UK Biobank approvals for application
318 #6553 'Genome-wide association studies of mental health' (PI Rona Strawbridge; GWAS)
319 and #17689 (PI Donald Lyall; imaging).

320 *Genotyping*

321 In March 2018, UK Biobank released genetic data for 487,409 individuals, genotyped using
322 the Affymetrix UK BiLEVE Axiom or the Affymetrix UK Biobank Axiom arrays (Santa Clara, CA,
323 USA) containing over 95% common content. Pre-imputation quality control, imputation and
324 post-imputation cleaning were conducted centrally by UK Biobank (described in the UK
325 Biobank release documentation)²⁴.

326 *Phenotyping and exclusion criteria*

327 The GWAS was based on the response to the question "In general, how happy are you?" (Data
328 Field 4526), with ordinal responses on a six-point scale ranging from extremely happy to
329 extremely unhappy. Participants were excluded if they were missing more than 10% of their
330 genetic data, if their self-reported sex did not match their genetic sex, if they were
331 determined by UK Biobank to be heterozygosity outliers, and if they were not of white British
332 ancestry (classified by UK Biobank based on self-report and genetic principal components)²⁴.
333 Those who had attended for magnetic resonance imaging (MRI) were excluded from the
334 GWAS, in order to maintain independence for subsequent analyses of the MRI phenotypes.

335 *MRI brain scans*

336 Several structural and functional brain MRI measures are available in UK Biobank as imaging
337 derived phenotypes (IDPs)²⁵. The brain imaging data, as of January 2021, were used
338 (N=47,920). Brain imaging data used here were processed and quality-checked by UK Biobank
339 and we made use of the IDPs^{26,27}. Details of the UK Biobank imaging acquisition and

340 processing, including structural segmentation and white matter diffusion processing, are
341 freely available from three sources: the UK Biobank protocol:
342 <http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367> and documentation:
343 <http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977> and in protocol publications
344 (https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf). Total white matter
345 hyperintensity volumes were calculated on the basis of T1 and T2 fluid-attenuated inversion
346 recovery, derived by UK Biobank. White matter hyperintensity volumes were log-transformed
347 due to a positively skewed distribution. We constructed general factors of white matter tract
348 integrity using principal component analysis. The two separate unrotated factors used were
349 fractional anisotropy (FA), gFA, and mean diffusivity (MD), gMD, previously shown to explain
350 54% and 58% of variance respectively²⁸. We constructed a general factor of frontal lobe grey
351 matter volume using 16 subregional volumes as per Ferguson et al²⁸. Total grey matter and
352 white matter volumes were corrected for skull size (by UK Biobank). Models were adjusted
353 for age, sex, genetic principal components (GPCs) 1-8 and the happiness PRS. (see below)

354 Adolescent Brain Cognitive Development

355 *Cohort description*

356 The Adolescent Brain Cognitive Development (ABCD) cohort is a longitudinal study of brain
357 development and child health¹⁰. Investigators at 21 sites around the USA conducted repeated
358 assessments of brain maturation in the context of social, emotional, and cognitive
359 development, as well as a variety of health and environmental outcomes. We analysed data
360 from release 3.0. At the time of the survey questions, the children ranged in age from 9 to 12
361 years. Informed written consent was provided by parents and assent was provided by
362 children. The ABCD research protocol approved by study itself was approved by the
363 Institutional Review Board of University of California San Diego (IRB# 160091) ²⁹.

364 *Genotyping*

365 DNA was extracted from saliva samples of the ABCD participants³⁰. These samples were
366 genotyped on the Affymetrix NIDA SmokeScreen Array (Affymetrix, Santa Clara, CA, USA). The
367 QC procedures are described in full at the following URL: <https://doi.org/10.15154/1503209>.

368 *Phenotyping and exclusion criteria*

369 As no direct measurement of general happiness was available, a set of questions taken from
370 the ABCD Youth NIH Toolbox Positive Affect Items was used instead. These questions
371 measured aspects of positive emotions and affective well-being in the past week, specifically
372 being attentive, delighted, calm, relaxed, enthusiastic, interested, confident, energetic and
373 able to concentrate. Responses were measured as 'not true', 'somewhat true' or 'very true'.
374 Each item was analysed separately.

375 As the initial UK Biobank GWAS was run in the white British sub-group, testing was performed
376 firstly in the white (as defined by ABCD) participants and secondly in the whole sample, with
377 ancestry treated as a factor variable. Participant ancestry was derived from a series of yes/no
378 questions where the respondent's parent selected from a list of options. Those options were:
379 white, black, Native American, Alaskan, Hawaiian, Guamanian, Samoan, Other Pacific
380 Islander, Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, Other Asian, Other Race,
381 Refuse To Answer, and Don't Know. Those who responded with either of the last two options
382 were excluded. An additional question, "Is your child Hispanic?", was also asked and those
383 who responded yes were defined as Hispanic irrespective of whether they also selected
384 another option. Other categories were then defined as follows: White (n = 4,655), Black (n =
385 1,016), Hispanic (n = 1,201), Native American (Native American and Alaskan, n = 37), East
386 Asian (Chinese, Filipino, Japanese, Korean, Vietnamese and Other Asian, n = 94), Indian (n =

387 37), Pacific Islanders (Hawaiian, Guamanian, Samoan, Other Pacific Islander, n = 8) and Other
388 Race (n= 39).

389 *MRI*

390 Creation of the derived MRI variables from the ABCD cohort has been described in detail elsewhere³¹.
391 For the purposes of this study, total frontal lobe volume was derived by summing the 22 frontal lobe
392 subsection variables of the left and right hemisphere³². Additionally, we looked at total grey and white
393 matter volume and left and right hippocampus volume. The hippocampal body and tail regions and
394 white matter hyperintensity volume were not available for replication. All outcomes were
395 transformed into z scores and all models were adjusted for age, sex, PGCs 1-8, MRI site, and the
396 happiness PRS. For models that included participants from different ancestries, a factor variable for
397 ancestry was included. Models were weighted to match the American community survey (ACS) data
398 by the weighting variable “acs raked propensity score”. Relationship filtering was also performed
399 removing one individual at random from any pair of participants who were 2nd cousins or closer with
400 valid phenotypes.

401 *Add Health*

402 *Cohort description*

403 Add Health is a nationally representative cohort study of more than 20 000 adolescents from
404 the USA who were aged 12–19 years at baseline assessment in 1994–95. They have been
405 followed through adolescence and into adulthood with five in-home interviews in five waves
406 (I–V) conducted in 1995, 1996, 2001–02, 2008–09 and 2016–18. In this analysis, participants
407 ranged from 24.3 – 34.7 years old, 53% were female and 62% were non-Hispanic white. The
408 study was approved by the University of California San Diego Institutional Review Board (IRB
409 #190002XX).

410 *Genotyping*

411 Saliva samples were obtained as part of the Wave IV data collection. Two Illumina arrays were
412 used for genotyping, with approximately 80% of the sample genotyped with the Illumina
413 Omni1-Quad BeadChip and the remainder of the group genotyped with the Illumina Omni2.5-
414 Quad BeadChip. After quality control, genotyped data were available for 9,974 individuals
415 (7,917 from the Omni1 chip and 2,057 from the Omni2 chip) on 609,130 SNPs present on both
416 genotyping arrays³³. Imputation was performed separately for European ancestry (imputed
417 using the HRC reference panel) and non-European ancestry samples (imputed using the 1000
418 Genomes Phase 3 reference panel)³⁴. For more information on the genotyping and quality
419 control procedures see the Add Health GWAS QC report online at:
420 https://addhealth.cpc.unc.edu/wp-content/uploads/docs/user_guides/AH_GWAS_QC.pdf

421 *Phenotyping and exclusion criteria*

422 The outcome variable was collected during the at-home interview of Wave IV and was derived
423 from the response to the question: "How often was the following true during the past seven
424 days? You felt happy." Responses were given as: "never or rarely"; "sometimes"; "a lot of the
425 time"; "most of the time or all of the time"; "refused"; "don't know". Those who responded
426 with the latter two options were excluded. Remaining categories were coded from "never" =
427 0 to "all of the time" = 3.

428 Ancestry in Add Health is defined in the 'psancest' variable as European, African, Hispanic and
429 East Asian. Additionally, Add Health provides a weighting variable to make the results
430 reflective of the US population. In these analyses the models were weighted by the Wave IV
431 variable 'gswgt4_2'. All p values for PRS analyses were False Discovery Rate (FDR)-adjusted³⁵.

432 **Analyses**

433 **Genetic Association**

434 Genetic association analysis was performed in UK Biobank using BOLT-LMM^{9,36} treating the
435 outcome variable as a quasi-quantitative trait. BOLT-LMM uses a genetic relationship model
436 constructed from genotyped SNPs, which allows for maximisation of sample size by adjusting
437 for relatedness, thus also avoiding the need to adjust the model for GPCs. The model was
438 adjusted for age, sex and genotyping array. SNPs were filtered by minor allele frequency
439 (MAF) > 0.01, Hardy-Weinberg equilibrium $p > 1 \times 10^{-6}$, and imputation quality score > 0.8,
440 leaving 9,286,407 SNPs for testing. BOLT-REML³⁷ was also used to provide a heritability
441 estimate and λ_{GC} estimate to test for inflation of the test statistics.

442 **Linkage disequilibrium score regression**

443 Linkage disequilibrium (LD) score regression was performed using LDSC³⁸. The summary statistics from
444 the GWAS carried out using the UK Biobank data were compared against four of the 'big five'
445 personality traits: openness, conscientiousness, extraversion and agreeableness from Lo et al³⁹. For
446 neuroticism we used the summary statistics from a GWAS reported in Smith et al⁴⁰ due to the larger
447 sample size and a greater number of significant loci found compared to Lo et al's³⁹ neuroticism output.

448 **LDpred risk score generation**

449 ***UK Biobank***

450 LDpred⁴¹ established the LD structure of the genome using a reference panel of 1000
451 unrelated white British UK Biobank participants (the PRS discovery set). These participants
452 had been excluded from the GWAS, due to having a missing phenotype or because they had
453 valid MRI data, but still passed the same QC as described above. SNPs were filtered using the
454 same parameters as for the GWAS. Scores were then created in the validation set using an

455 infinitesimal model. Models using polygenic risk scores (PRS) derived using LDpred were
456 adjusted for age, sex, genotyping array and the first eight GPCs.

457 *ABCD and Add Health*

458 Due to the lower cohort size of ABCD and Add Health, it would not have been possible to
459 remove 1000 participants from the analyses to use as a discovery set without markedly
460 reducing the power of the analyses. Therefore, we used the 1000 unrelated UK Biobank
461 participants as the discovery set to establish LD and this was used to generate the risk scores
462 for the participants in these datasets⁴². The only additional step was to find the SNPs that
463 were found in both the discovery and validation datasets and passed the same SNP filtering
464 criteria in both datasets, with an additional filter that MAF threshold was set at > 0.05 due to
465 the lower mean imputation quality of the less common SNPs found in these smaller cohorts.
466 Models were additionally adjusted for age at view, sex and the first 10 GPCs. For multi-
467 ancestry models, ancestry was treated as a factor variable.

468 *Pruning and Threshold PRS generation in ABCD and Add Health*

469 To ensure that using the UK Biobank participants as a reference panel was not introducing
470 biases into the LDpred risk scores in the ABCD and Add Health cohorts, pruning and
471 thresholding (P&T) PRSs were also created using participants from within the respective
472 cohorts to corroborate the findings of the LDpred PRS models. Linkage disequilibrium was
473 established using a reference of unrelated white participants from each their respective
474 cohorts, as described above. SNPs were clumped in plink⁴³ using a cut-off of $r^2 > 0.1$ in a 500kb
475 window. SNPs were filtered using p-value thresholds of $p < 5 \times 10^{-5}$, $p < 0.01$, $p < 0.05$, $p < 0.1$,
476 $p < 0.5$ and $p < 1$.

477 References

- 478 1 Cuthbert, B. N. & Insel, T. R. Toward the future of psychiatric
479 diagnosis: the seven pillars of RDoC. *BMC medicine* **11**, 126,
480 doi:10.1186/1741-7015-11-126 (2013).
- 481 2 Okbay, A. *et al.* Genetic variants associated with subjective well-
482 being, depressive symptoms, and neuroticism identified through
483 genome-wide analyses. *Nature Genetics* **48**, 624-633,
484 doi:10.1038/ng.3552 (2016).
- 485 3 Mancini, A. D., Bonanno, G. A. & Clark, A. E. Stepping Off the
486 Hedonic Treadmill. *Journal of Individual Differences* **32**, 144-152,
487 doi:10.1027/1614-0001/a000047 (2011).
- 488 4 Brickman, P., Coates, D. & Janoff-Bulman, R. Lottery winners and
489 accident victims: is happiness relative? *J Pers Soc Psychol* **36**, 917-
490 927, doi:10.1037//0022-3514.36.8.917 (1978).
- 491 5 Nes, R. B. & Røysamb, E. Happiness in Behaviour Genetics: An
492 Update on Heritability and Changeability. *Journal of Happiness
493 Studies* **18**, 1533-1552, doi:10.1007/s10902-016-9781-6 (2017).
- 494 6 Bartels, M. Genetics of Wellbeing and Its Components
495 Satisfaction with Life, Happiness, and Quality of Life: A Review
496 and Meta-analysis of Heritability Studies. *Behavior Genetics* **45**,
497 137-156, doi:10.1007/s10519-015-9713-y (2015).
- 498 7 Shu, L., Blencowe, M. & Yang, X. Translating GWAS Findings to
499 Novel Therapeutic Targets for Coronary Artery Disease. *Front
500 Cardiovasc Med* **5**, 56-56, doi:10.3389/fcvm.2018.00056 (2018).
- 501 8 Sudlow, C. *et al.* UK biobank: an open access resource for
502 identifying the causes of a wide range of complex diseases of
503 middle and old age. *PLoS Med* **12**, e1001779,
504 doi:10.1371/journal.pmed.1001779 (2015).
- 505 9 Loh, P. R. *et al.* Efficient Bayesian mixed-model analysis increases
506 association power in large cohorts. *Nat Genet* **47**, 284-290,
507 doi:10.1038/ng.3190 (2015).
- 508 10 Jernigan, T. L., Brown, S. A. & Dowling, G. J. The Adolescent Brain
509 Cognitive Development Study. *J Res Adolesc* **28**, 154-156,
510 doi:10.1111/jora.12374 (2018).

- 511 11 Harris, K. M. The National Longitudinal Study of Adolescent to
512 Adult Health (Add Health), Waves I & II, 1994–1996; Wave III,
513 2001–2002; Wave IV, 2007-2009 [machine-readable data file and
514 documentation]. *Chapel Hill, NC: Carolina Population Center,*
515 *University of North Carolina at Chapel Hill.* (2009).
- 516 12 McAllister, A. K. Major Histocompatibility Complex I in Brain
517 Development and Schizophrenia. *Biological Psychiatry* **75**, 262-
518 268, doi:10.1016/j.biopsych.2013.10.003 (2014).
- 519 13 Shabanova, I. *et al.* ERCC6L2-associated inherited bone marrow
520 failure syndrome. *Mol Genet Genomic Med* **6**, 463-468,
521 doi:10.1002/mgg3.388 (2018).
- 522 14 Wen, Z., Liang, C., Pan, Q. & Wang, Y. Eya2 overexpression
523 promotes the invasion of human astrocytoma through the
524 regulation of ERK/MMP9 signaling. *Int J Mol Med* **40**, 1315-1322,
525 doi:10.3892/ijmm.2017.3132 (2017).
- 526 15 Malovannaya, A. *et al.* Analysis of the human endogenous
527 coregulator complexome. *Cell* **145**, 787-799,
528 doi:10.1016/j.cell.2011.05.006 (2011).
- 529 16 Yao, N. *et al.* The Structure of the ZMYND8/Drebrin Complex
530 Suggests a Cytoplasmic Sequestering Mechanism of ZMYND8 by
531 Drebrin. *Structure* **25**, 1657-1666.e1653,
532 doi:<https://doi.org/10.1016/j.str.2017.08.014> (2017).
- 533 17 Steel, P., Schmidt, J. & Shultz, J. Refining the Relationship
534 Between Personality and Subjective Well-Being. *Psychological*
535 *bulletin* **134**, 138-161, doi:10.1037/0033-2909.134.1.138 (2008).
- 536 18 Hayes, N. & Joseph, S. Big 5 correlates of three measures of
537 subjective well-being. *Personality and Individual Differences* **34**,
538 723-727, doi:[https://doi.org/10.1016/S0191-8869\(02\)00057-0](https://doi.org/10.1016/S0191-8869(02)00057-0)
539 (2003).
- 540 19 Kringelbach, M. L. & Berridge, K. C. The Neuroscience of
541 Happiness and Pleasure. *Soc Res (New York)* **77**, 659-678 (2010).
- 542 20 Tăbăcaru, B. in *2013 E-Health and Bioengineering Conference*
543 (*EHB*). 1-4.

- 544 21 Tanzer, J. R. & Weyant, L. Imaging Happiness: Meta Analysis and
545 Review. *Journal of Happiness Studies* **21**, 2693-2734,
546 doi:10.1007/s10902-019-00195-7 (2020).
- 547 22 Fry, A. *et al.* Comparison of Sociodemographic and Health-
548 Related Characteristics of UK Biobank Participants With Those of
549 the General Population. *American journal of epidemiology* **186**,
550 1026-1034, doi:10.1093/aje/kwx246 (2017).
- 551 23 Lyall, D. *et al.* Quantifying bias in psychological and physical
552 health in the UK Biobank imaging sub-sample. (2021).
- 553 24 Bycroft, C. *et al.* Genome-wide genetic data on ~500,000 UK
554 Biobank participants. *bioRxiv*, 166298, doi:10.1101/166298
555 (2017).
- 556 25 Elliott, L. T. *et al.* The genetic basis of human brain structure and
557 function: 1,262 genome-wide associations found from 3,144
558 GWAS of multimodal brain imaging phenotypes from 9,707 UK
559 Biobank participants. *bioRxiv*, 178806, doi:10.1101/178806
560 (2017).
- 561 26 Miller, K. L. *et al.* Multimodal population brain imaging in the UK
562 Biobank prospective epidemiological study. *Nature Neuroscience*
563 **19**, 1523-1536, doi:10.1038/nn.4393 (2016).
- 564 27 Smith, S. M. *et al.* Enhanced Brain Imaging Genetics in UK
565 Biobank. *bioRxiv*, 2020.2007.2027.223545,
566 doi:10.1101/2020.07.27.223545 (2020).
- 567 28 Ferguson, A. C. *et al.* Association of SBP and BMI with cognitive
568 and structural brain phenotypes in UK Biobank. *J Hypertens* **38**,
569 2482-2489, doi:10.1097/hjh.0000000000002579 (2020).
- 570 29 Auchter, A. M. *et al.* A description of the ABCD organizational
571 structure and communication framework. *Developmental
572 Cognitive Neuroscience* **32**, 8-15,
573 doi:<https://doi.org/10.1016/j.dcn.2018.04.003> (2018).
- 574 30 Uban, K. A. *et al.* Biospecimens and the ABCD study: Rationale,
575 methods of collection, measurement and early data.
576 *Developmental Cognitive Neuroscience* **32**, 97-106,
577 doi:<https://doi.org/10.1016/j.dcn.2018.03.005> (2018).

- 578 31 Hagler, D. J., Jr. *et al.* Image processing and analysis methods for
579 the Adolescent Brain Cognitive Development Study. *NeuroImage*
580 **202**, 116091, doi:10.1016/j.neuroimage.2019.116091 (2019).
- 581 32 Desikan, R. S. *et al.* An automated labeling system for subdividing
582 the human cerebral cortex on MRI scans into gyral based regions
583 of interest. *NeuroImage* **31**, 968-980,
584 doi:10.1016/j.neuroimage.2006.01.021 (2006).
- 585 33 (Highland, H. M. A., Christy L.; Duan, Qing; Li, Yun; Mullan Harris,
586 Kathleen 2018). *Polygenic Scores (PGSs) in the National*
587 *Longitudinal Study of Adolescent to Adult Health (Add Health) –*
588 *Release 2.*
- 589 34 Auton, A. *et al.* A global reference for human genetic variation.
590 *Nature* **526**, 68-74, doi:10.1038/nature15393 (2015).
- 591 35 Benjamini, Y. & Hochberg, Y. *Controlling The False Discovery Rate*
592 *- A Practical And Powerful Approach To Multiple Testing.* Vol. 57
593 (1995).
- 594 36 Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L.
595 Mixed-model association for biobank-scale datasets. *Nature*
596 *Genetics* **50**, 906-908, doi:10.1038/s41588-018-0144-6 (2018).
- 597 37 Loh, P.-R. *et al.* Contrasting genetic architectures of schizophrenia
598 and other complex diseases using fast variance-components
599 analysis. *Nature Genetics* **47**, 1385-1392, doi:10.1038/ng.3431
600 (2015).
- 601 38 Bulik-Sullivan, B. K. *et al.* LD Score regression distinguishes
602 confounding from polygenicity in genome-wide association
603 studies. *Nat Genet* **47**, 291-295, doi:10.1038/ng.3211
- 604 <http://www.nature.com/ng/journal/v47/n3/abs/ng.3211.html#supplementary-information> (2015).
- 605 39 Lo, M.-T. *et al.* Genome-wide analyses for personality traits
606 identify six genomic loci and show correlations with psychiatric
607 disorders. *Nature genetics* **49**, 152-156, doi:10.1038/ng.3736
608 (2017).
- 609 40 Smith, D. J. *et al.* Genome-wide analysis of over 106000
610 individuals identifies 9 neuroticism-associated loci. *Molecular*
611 *Psychiatry* **21**, 749-757, doi:10.1038/mp.2016.49 (2016).

- 613 41 Vilhjálmsdóttir, Bjarni J. *et al.* Modeling Linkage Disequilibrium
614 Increases Accuracy of Polygenic Risk Scores. *The American*
615 *Journal of Human Genetics* **97**, 576-592,
616 doi:10.1016/j.ajhg.2015.09.001 (2015).
- 617 42 Pain, O. *et al.* Evaluation of polygenic prediction methodology
618 within a reference-standardized framework. *PLOS Genetics* **17**,
619 e1009021, doi:10.1371/journal.pgen.1009021 (2021).
- 620 43 Purcell, S. *et al.* PLINK: A Tool Set for Whole-Genome Association
621 and Population-Based Linkage Analyses. *American Journal of*
622 *Human Genetics* **81**, 559-575 (2007).
- 623

DRAFT