bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.485833; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Deploying genomics workflows on high performance computing (HPC) platforms: storage, memory, and
compute considerations

Marissa E. Powersl*, Keith Manntheyl, Priyanka Sebastian?, Snehal Adsule?, Elizabeth Kiernan®, Jonathan
T. Smith®, Jessica Way®, Beri Shifaw®, David Roazen’, Paolo Narvaez'

YIntel Corporation, Santa Clara, California, United States of America
’Microsoft, Redmond, Washington, United States of America

*Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America

About the authors: This work was completed as part of the Intel-Broad Center for Genomic Data
Engineering. At the time of writing all authors worked for either Intel Corp or the Broad Institute.

*Corresponding author

Email: marissa.e.powers@intel.com

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.485833; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Abstract

Next Generation Sequencing (NGS) workloads largely consist of pipelines of tasks with heterogeneous
compute, memory, and storage requirements. |dentifying the optimal system configuration has
historically required expertise in both system architecture and bioinformatics. This paper outlines
infrastructure recommendations for one commonly used genomics workload based on extensive
benchmarking and profiling, along with recommendations on how to tune genomics workflows for high
performance computing (HPC) infrastructure. The demonstrated methodology and learnings can be
extended for other genomics workloads and for other infrastructures such as the cloud.

Introduction

Since the advent of Next Generation Sequencing (NGS), the cost of sequencing genomic data has
drastically decreased, and the amount of genomic samples processed continues to increase [1,2]. With
this growth comes the need to more efficiently process NGS datasets.

Prior work has focused on custom methods for deploying exomes on HPC systems [3], as well as best
practices for deploying genomics workflows on the cloud [4]. This paper outlines how to optimize
system utilization for one commonly used genomics workflow, along with recommendations on how to
tune genomics workflows for HPC infrastructure.

The Broad Institute’s Genome Analysis Toolkit (GATK) Best Practices Pipeline for Germline Short Variant
Discovery is a commonly used workflow for processing human whole genome sequences (WGS)
datasets. This pipeline consists of 24 tasks, each with specific compute, memory, and disk requirements.

See S1 Table for a full list of the tasks and their requirements. Of these 24 tasks, six are multithreaded,
and the rest are single threaded.

For multithreaded tasks, the genome is broken into shards, and each is executed as a parallel process.

At the end of the task, the output datasets from all shards are aggregated and passed as a single input to
the next task. This ability to “scatter” a task across multiple jobs, and then “gather” outputs for the next
task is called “scatter-gather” functionality [5]. The ability to process multiple jobs concurrently is
referred to as “parallelization.” Both scatter-gather functionality and parallelization are key concepts for
efficiently distributing genomic pipelines on a system.

For example, in the task BWA, which aligns fragments output by the sequencer into a single aligned
string, the genome is broken into 24 shards. On local high performance computing (HPC) infrastructure,
each of these 24 shards is packaged as a single batch scheduler job. Once all 24 shards of BWA
complete, the task MergeBamAlignment (Mba) consolidates the 24 output files into a single input file for
the next task, MarkDuplicates, which is single threaded.

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.485833; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Each of these 24 BWA jobs is deployed on the cluster and executed in parallel, and each job is allocated
a recommended four CPU threads and 14GB DRAM (see S1 Table). When BWA is running with these
parameters, therefore, it consumes in total 96 threads and 336GB DRAM.

It's important to note that while BWA can readily consume 96 threads on a system, most of the tasks are
single threaded. Figure 1 below shows CPU utilization (gray) and memory utilization (in red) for the
duration of the pipeline when processing a single 30X coverage human whole genome sequence (WGS).
Note that memory utilization is close to its maximum for roughly only a third of the overall processing
time. CPU utilization is at 100% for even less time.

__ 250000 100
s 200000 i 80
s 200 g
c =
.S 150000 60 2 CPU (%)
g 2
£ 100000 40 5 emmmmmNMemory
> = (MiB/s)
2 50000 20 O
L
= 0 0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Runtime (Hours)

Fig 1. CPU and Memory Utilization for single WGS run. The runtime for key tasks in the pipeline (with
start and end times in parens) is BWA (0.0-2.4); MarkDuplicates (2.4-4.8); SortSampleBam (4.8-5.7);
BaseRecalibrator (5.7-6.3); GatherBQSRReports (6.3-6.4); ApplyBQSR (6.4-6.9); GatherBamFiles (6.9-7.3);
HaplotypeCaller (7.3-8.7); MergeVCFs (8.7-9.3). CPU Utilization is at 100% for BWA, and 40-50% for
HaplotypeCaller. Memory utilization is close to 100% only for BWA and SortSampleBam. Because of
this heterogeneity in resource utilization, achieving maximum throughput requires efficient scheduling
of multiple WGS samples in parallel.

Because of this heterogeneity, making efficient use of HPC infrastructure requires tuning and
orchestration of the workflow. First, these tasks need to be efficiently sharded and distributed across
the cluster. Second, each task needs to be allocated the optimal number of threads and memory. Local
disk must be used for temporary storage. Finally, the tasks need to take advantage of underlying
hardware features.

This paper outlines the impact of each of these factors on performance, and details best known
methods for configuring the Germline Variant Discovery pipeline on local HPC infrastructure.

Materials and Methods

Benchmarking was performed on a five-server cluster, with one application server and four compute
servers. A full hardware configuration can be found in Supporting Information S2 Table.

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.485833; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

The publicly available NA12878 30X coverage whole genome sequence (WGS) dataset was used for all
benchmarking. For the resource profiling (e.g. Fig 1), a single sample was run. For throughput tuning 40
WGS were submitted concurrently.

Jobs were orchestrated on the cluster with Slurm. The Broad Institute provides a Slurm backend for
Cromwell, which can be found in the Cromwell documentation [6]. GATK Best Practices Pipelines are
defined in Workflow Description Language (WDL). A given WDL defines which GATK tools to call in the
form of tasks and is accompanied by a JSON file with dataset locations and other configuration settings.

The full list of tasks in the Germline Variant Discovery pipeline can be found in S1 Table, along with the
compute requirements for each task. Testing was performed with GATK v4.1.8.0. A full software bill of
materials is provided in the Supporting Information S3 Table.

The specific WDL and JSON files used for testing can be found in S3 Table. The recommended resource
allocation values are included in those workflows.

Results

1. Tuning Resource Allocation Values

To allocate specific amounts of cores and memory to each task, the HPC batch scheduler must be
configured to enable consumable resources. With Slurm, this is set in slurm.conf by specifying both
“SelectType=select/cons_res” and “SelectTypeParameters=CR_Core_Memory.” Additional detail on
consumable resources is available in the Slurm documentation [7].

Another key component of resource tuning is Hyperthreading. With Hyperthreading turned on (HT=0n)
two processes can be executed simultaneously on a single physical core. Testing shows a 10% overall
pipeline speedup with HT=0n. With HT=0n, a task is allocated a set number of threads, with two
threads available per physical core.

The most compute-intensive task in the Germline Variant Discovery pipeline is BWA. Manipulating the
number of threads per shard for BWA has a substantial impact on the overall runtime of the pipeline, as
shown in Figure 2A.

A Single Shard Runtime B Total CoreHours

BWA BWA

2500 . 200

2 o

£ 2000 @ é 15.0 =}

E 150.0 x

E £ 100 o R

~ 100.0 o o0 0 ®

E 500 | @ = g 50

DSC 0.0 L © @ = 00

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Threads per Shard Threads per Shard

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.485833; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Fig. 2. Impact of Increasing threads-per-shard on BWA Performance. Figure 2A shows the effect of
increasing threads per shard on single shard runtime for BWAmem. Figure 2B shows the effect of
increasing the number of threads per shard on total corehours consumed.

Figure 2A shows impact of increasing the number of threads per shard on the shard runtime. When two
threads are allocated per shard, the runtime is 200 minutes. Increasing to 16 threads per shard
decreases the runtime by 10X down to 27 minutes.

Increasing the thread count higher than 16 threads per shard has limited positive impact on shard
runtime. Figure 2B shows the impact, however, on total corehours. Increasing the number of threads
per shard gradually increases the total corehours consumed on the cluster. When processing a single
WGS, 16 threads per shard provides a fast task runtime while limiting corehours.

S1 Table provides a detailed list of thread count and memory recommendations for each individual task
in the pipeline, including BWA. These values were determined empirically specifically optimizing for
throughput processing. The Discussion covers considerations when optimizing for fastest single sample
runtime, as well as considerations for cloud infrastructure.

While 16 threads per shard results in the fastest single shard runtime, and the fastest runtime for BWA,
it does not necessarily result in the best throughput, or number of genomes that can be processed on a
system per day. On a 4-server 2-socket system with 24-core CPUs and HT=0n, there are 384 available
threads available at any given time. Setting BWA to consume 16 threads per shard for 24 shards results
in BWA consuming all 384 threads for a single WGS. Adjusting this thread count to, for example, 4
threads per shard, results in a longer runtime for BWA but allows for processing four WGS samples in
parallel.

While this section has focused on BWA tuning, similar methods were used to identify optimal thread
and memory allocations for each task in the pipeline. These recommended values can be found in S1
Table.

2. Distributing Tasks Efficiently

The second most compute-intensive task in the pipeline is HaplotypeCaller, which performs variant
calling. For HaplotypeCaller, the number of shards the tasks are distributed across is set in the WDL as
the variable “scattercount.”

Figure 3 shows the relationship between the runtime of HaplotypeCaller and scattercount. When
HaplotypeCaller is sharded into just two jobs (scattercount=2), the task takes 400 minutes to complete.
As shown in Figure 3A, the task runtime decreases as scattercount increases up to scattercount=48.
Beyond scattercount=48, there’s limited benefit in further sharding the task into smaller jobs.

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.485833; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A Max Shard Runtime B Total CoreHours
HaplotypeCaller HapotypeCaller
- 400.0 ® . 40.0
[
£ 300.0 é 30.0 o° @
= o0 ®
£ 200.0 L] g 20.0
) o =]
E 100.0 ®e S 5 10.0
5 00 2 0.0
=’
0 50 100 150 0 50 100 150
scattercount (Number of Shards) scattercount (Number of Shards)

Figure 3. Impact of scattercount on HaplotypeCaller Runtime and total Core Hours. As scattercount
increases, the runtime of the longest running shard decreases (A) while the total corehours consumed
increases (B).

Figure 3B shows the relationship between scattercount and total corehours consumed by
HaplotypeCaller. Corehours gradually increases with scattercount. As HaplotypeCaller is split into more
small jobs the total corehours consumed increases.

It's important to note that scattercount cannot be arbitrarily set without considering potential artifact
generation. For this reason, scattercount is set specifically to 48. Concordance analysis is always
required when tuning scattercount to ensure fidelity.

3. Local Disk for Temporary Storage

While BWA and HaplotypeCaller are the two most compute-intensive tasks in the pipeline, one of the
longest running tasks is the single threaded MarkDuplicates. MarkDuplicates takes in a BAM or SAM file
and compares and identifies duplicate reads.

The uncompressed files processed by MarkDuplicates for a 30X human whole genome sequence can
total over 200GB in size. The task is highly dependent on fast local storage for processing these
datasets.

Figure 4 shows the impact of running with a local Solid State Drive (SSD) compared to running without
an SSD and just using the parallel file system. With an SSD, MarkDuplicates runtime is 2.5 hours.
Without an SSD, MarkDuplicates runtime is 37.6 hours.

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.485833; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Runtime with and without Local Disk
50.0
45.0
40.0
35.0
30.0
25.0
20.0
15.0

10.0
5.0 9.2

0.0 =S T

SSD Lustre Only
(No Local Disk)

10.0

Other Tasks
® MarkDuplicates

Runtime (Hours)

Fig. 4. Local disk for MarkDuplicates Performance. The runtime for the entire Germline Variant Calling
pipeline drastically decreases with use of a local SSD. This is primarily due to the decrease in runtime of
MarkDuplicate (blue).

S2 Table includes an NVMe Pxxx SSD in each of the compute servers, largely for the sake of
MarkDuplicates processing.

4. Genomics Kernel Library (GKL) to Utilize Hardware Features

Ultimately each shard of each task is executed on a single thread of a CPU. Ensuring these tasks are able
to take advantage of the underlying CPU features is a key factor for performance.

As of GATK 4.0, a number of tasks in the Germline Variant Discovery pipeline have been accelerated to
take advantage of Intel AVX-512 Instructions through the Genomics Kernel Library (GKL). GKL is
developed and maintained by Intel and is distributed open source with GATK [8].

GKL includes compression and decompression from Intel’s ISA-L and zIlib libraries, as well as AVX-512
implementations of PairHMM and Smith-Waterman [8-10]. PairHMM and Smith-Waterman are two key
kernels included in a number of genomics tasks, including HaplotypeCaller.

Figure 5 shows the benefit of GKL compression for the three tasks with the largest input file sizes:
ApplyBQSR (133GB), GatherBamFiles (62GB) and MarkDuplicates (222GB). GKL provides compression at
levels from 1-9 (CL=1-9). CL=1 (orange) with GKL provides a 2-4X compression ratio relative to with no
compression (blue). The compression ratio continues to improve as compression levels increase up to
level 5.

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.485833; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Compression Ratio per Task Completion Time per Task
File Size Relative to Size with Compression Level = 1 MarkDuplicates
20 1200
o 40 1000
&
— 800
§30 E
a = 600
50 g
g‘ F 400
O 10 7” —] 200 =
o HANNNEN HNESNEER RENNNER . HR
call-ApplyBQSR call-GatherBamFiles call-MarkDuplicates call-MarkDuplicates
m0 W1 W3 w5 m7 ®m8 m)9 E0ElE3ESE7E3 N9

Fig. 5. Compression with GKL for tasks with largest input file sizes. The Genomics Kernel Library (GKL)
performs compression at levels 1 through 9 (CL=1-9). Compression ratios relative to CL=1 are shown in
Figure 5A for three different tasks in the pipeline. Figure 5B shows the impact of each compression level
on completion time for MarkDuplicates.

Figure 5B shows the task runtime as a function of compression level for these three tasks.

As the name suggests, MarkDuplicates checks the input BAM file for duplicate reads, and tags any
identified duplicates [11]. In doing so the task reads and writes small (kB) intermediary files throughout
the 2+ hours of processing. Each of these intermediary files is compressed and decompressed. Because
of this, higher compression levels result in a high runtime cost with this task (see Figure 5B).

Based on these results, compression level is set to CL=2 in GATK 4.2.0.0. This compression level provides
a good balance between high compression ratio across tasks (Figure 5A) and low runtime for
MarkDuplicates (Figure 5B).

Figure 6 shows the difference between HaplotypeCaller runtime with the AVX-512 implementations of
both kernels (left) compared to with the original implementations with no AVX instructions (right). The
middle bar shows the runtime with the AVX512 implementation of SW and the Java AVX2
implementation of pairHMM.

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.485833; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

HaploTypeCaller Performance

125,754

o

122,813

13,068

COMPLETION TIME (S)

2,862

<
AVX_ENABLED AVX_ENABLED JAVA
AVX_LOGLESS_CACHING LOGLESS_CACHING ORIGINAL
INSTRUCTION
W PairHMM(sec) mSWTime(sec) ™ OtherKernels ¢ Total Time(sec)

Fig. 6. Impact of GKL AVX flags on HaplotypeCaller Performance. HaplotypeCaller performance, as
measured by task runtime in seconds, drastically improves with the use of GKL pairHMM and
SmithWaterman (SW). Runtimes for pairHMM are shown in blue; SW in orange.

Note the y-axis is a log scale. Without the AVX implementations, HaplotypeCaller takes 125,754
seconds, or 35 hours, to complete. With the GKL AVX512 implementations the same task completes in
less than one hour.

Notably, users do not need to set any special flags to run with the GKL implementations. As shown in
the HaplotypeCaller documentation, running with default flag (FASTEST_AVAILABLE) automatically
detects if the underlying CPU includes support for AVX-512 instructions and, if so, deploys the GKL
implementation [12].

Discussion

As illustrated above, optimal performance of the Germline Variant Discovery pipeline is dependent on
(1) efficiently distributing tasks across the cluster; (2) tuning resource allocation values; (3) utilization of
fast local storage; and (4) libraries that take advantage of underlying CPU features.

Intel and Broad Institute have partnered to form the Intel-Broad Center for Genomics Data Engineering.
The Genomics Kernel Library (GKL) is a direct outcome of this joint engineering Center. As part of this
partnership, many of the configuration recommendations outlined above (eg the Slurm backend for
Cromwell and resource allocation values) are directly incorporated into the Broad Institute workflows
and documentation.

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.485833; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A specific reference architecture, including a detailed Installation Guide, is available as the Intel Select
Solution for Genomics Analytics [13]. The Solution includes a detailed hardware and software
configuration similar to that provided in the Supporting Information (A2 and A3).

The recommended resource allocation values provided in S1 Table have been specifically tuned for
throughput, or the number of WGS samples that can be processed on a cluster per day. For institutions
processing dozens, hundreds, or even thousands of samples per month, this throughput metric is a
higher priority than single sample processing time. In these scenarios, reducing the number of threads
per task allows for more jobs to run concurrently on the system, increasing throughput.

In other cases, such as with single threaded tasks, it makes sense to increase the thread allocation to
increase throughput. As shown in S1 Table, most tasks in the pipeline are allocated two threads each
despite being single threaded. This is specifically to optimize for throughput. The second thread (1)
allows for Java collection and (2) intentionally limits the number of jobs concurrently running on the
system. Limiting the number of overall jobs helps ensure each task has sufficient memory while also
leaving sufficient memory for scheduling and system level operations.

For scenarios where single sample processing time is the highest priority, increasing the threads and
memory allocated per task will reduce single sample runtime, while decreasing the overall throughput of
the cluster. A workflow optimized for single sample runtime is provided in the same repository as the
throughput WDL (see S3 Table).

Increasing threads per task is also beneficial in the cloud. When deploying the Germline Variant
Discovery pipeline through the Broad Institute’s Platform as a Service (PaaS) Terra.bio, each shard of
each task is allocated its own VM with a set number of virtual CPUs (vCPUs) and DRAM. In this scenario,
each of the 24 BWA shards is allocated 16 vCPUs, compared to the four threads per shard
recommended for local deployments. Allocating each 16 vCPUs to each BWA shard does not negatively
impact the runtime of other tasks and samples on the cloud, since there are no infrastructure scale
constraints. Van der Auwera and O’Connor provide a detailed guide on best practices for deploying
Broad Institute workflows on the cloud [4].

As shown, the optimal workflow configuration is dependent on both underlying infrastructure and key
performance metrics (e.g. throughput vs single sample runtime). Profiling workloads with methods
described here can be extended to genomics workflows beyond Germline Variant Calling. Future work
will include tuning additional workflows as well as comparing cloud and local performance
considerations.

Key Points

e Because genomics workflows consist of pipelines of tasks with heterogeneous compute
requirements, achieving maximum throughput requires efficient tuning and orchestration of
these workflows.

10

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.485833; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Tasks need to be efficiently sharded and distributed across the cluster; Each task needs to be
allocated the optimal number of threads and memory; and local disk must be used for
temporary storage.

The Genomics Kernel Library (GKL) improves GATK performance by taking advantage of AVX-512
instruction sets and accelerating compression and decompression.

Acknowledgements

The authors thank Michael J. McManus PhD for his input and guidance from study conception through

data analysis. We thank Kyle Vernest, Kylee Degatano, and Louis Bergelson for technical support
throughout benchmarking.

References

10.

11.

Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program
(GSP) [Internet]. [cited 2021 Sept 30]. Available from: www.genome.gov/sequencingcostsdata
Muir P, Li S, Lou S, Wang D, et al. The real cost of sequencing: scaling computation to keep pace
with data generation. Genome biology. 2016 Dec;17(1):1-9.

Kawalia A, Motameny S, Wonczak S, et al. Leveraging the power of high performance computing
for next generation sequencing data analysis: tricks and twists from a high throughput exome
workflow. PloS one. 2015 May 5;10(5):e0126321.

Van der Auwera GA, O'Connor BD. Genomics in the Cloud: Using Docker, GATK, and WDL in
Terra. O'Reilly Media; 2020 Apr 2.

Parallelism - Multithreading - Scatter Gather [Internet]. Broad Institute; 2021 June 6 [cited 2021
Aug 26]. Available from: https://gatk.broadinstitute.org/hc/en-us/articles/360035532012-
Parallelism-Multithreading-Scatter-Gather

Cromwell Read the Docs — Slurm backend [Internet]. Broad Institute; 2017 Oct 31 [updated
2019 Sept 5; cited 2021 Aug 26]. Available from:
https://cromwell.readthedocs.io/en/stable/backends/SLURM/

Consumable Resources in Slurm [Internet]. SchedMD; 2021 June 9 [cited 2021 Aug 26].
Available from: https://slurm.schedmd.com/cons_res.html

Genomics Kernel Library [Internet]. Github; 2017 Oct 6 [updated 2021 Mar 29; cited 2021 Aug
26]. Available from: https://github.com/Intel-HLS/GKL

Guilford J, Powley G, Tucker G, Vaidya P, et al. Accelerating the Compression and

Decompression of Genomics Data using GKL Provided by Intel [Internet]. Intel Corporation;
2017 [cited 2021 Aug 26]. Available from:
https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/accelerating-genomics-data-gkl-white-paper.pdf

Intel Intelligent Storage Acceleration Library [Internet]. Intel Corporation; 2021 [cited 2021 Aug
26]. Available from: https://software.intel.com/content/www/us/en/develop/tools/isa-l.html
MarkDuplicates (Picard) [Internet]. Broad Institute; 2021 April 9 [cited 2021 Aug 26]. Available
from: https://gatk.broadinstitute.org/hc/en-us/articles/360037052812-MarkDuplicates-Picard-

11

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.485833; this version posted April 8, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

12. HaplotypeCaller [Internet]. Broad Institute; 2021 June 9 [cited 2021 Aug 26]. Available from:
https://gatk.broadinstitute.org/hc/en-us/articles/360037225632-HaplotypeCaller

13. Intel Select Solutions for High Performance Computing (HPC) [Internet]. Intel Corporation 2021
[cite 2021 Aug 25]. Available from:
https://www.intel.com/content/www/us/en/products/solutions/select-solutions/hpc.html

Supporting Information
S1 Table. Recommended Resource Allocations for Germline Variant Discovery tasks.
S2 Table. Hardware Configuration Used for Testing.

S3 Table. Software Configuration Used for Testing.

12

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

250000

200000

150000

100000

50000

Memory Utilization (MiB/s)

0

0.0

1.0

2.0

3.0

4.0 5.0

Runtime (Hours)

6.0

7.0

8.0

9.0

100

80

60

40

20

CPU Utilzation (%)

CPU (%)

e \lemory
(MiB/s)

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

Runtime (minutes)

N
I
o
o

2000 @

150.0

100.0
50.0

o
o

Single Shard Runtime
BWA

o0 o
20 40 60 80
Threads per Shard

100

120

Total Core Hours

20.0
15.0
10.0
5.0
0.0

Total CoreHours
BWA

Qo0 ®

0 20 40 60 80

Threads per Shard

100

120

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

Max Shard Runtime
HaplotypeCaller

400.0
n [J
£ 3000
=
£ 200.0 { J
o []
2 1000
£ ®e P
S 0.0
o

50 100 150

scattercount (Number of Shards)

40.0
30.0
20.0
10.0

Total Core Hours

o
=]

Total CoreHours
HapotypeCaller

50 100

scattercount (Number of Shards)

150

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

Runtime (Hours)

Runtime with and without Local Disk
50.0
45.0
40.0
35.0
30.0
25.0
20.0
15.0

10.0
5.0
0.0

SSD Lustre Only
(No Local Disk)

W Other Tasks
B MarkDuplicates

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

Compression Ratio

5.0

4.0

3.0

Compression Ratio per Task
File Size Relative to Size with Compression Level = 1

call-ApplyBQSR call-GatherBamFiles

HO0 mH] =E3

m5 EH/ E8 HI

call-MarkDuplicates

1200

1000

Time (min)
[Y ()] 00
o o o O
o O o6 o

o

Completion Time per Task
MarkDuplicates

call-MarkDuplicates
EOE]1E3E5E/E80H9

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

COMPLETION TIME (S)

100000

10000

HaploTypeCaller Performance

2,862

1,381
AVX_ENABLED

AVX_LOGLESS_CACHING

m PairHMM (sec)

13,068

11,548

AVX_ENABLED
LOGLESS_CACHING
INSTRUCTION

W SWTime(sec) B Other Kernels

125,754

JAVA
ORIGINAL

© Total Time(sec)

https://doi.org/10.1101/2022.04.05.485833
http://creativecommons.org/licenses/by-nd/4.0/

