

1 **Title**

2 Protist diversity and metabolic strategy in freshwater lakes are shaped by trophic state and watershed
3 land use at a continental scale

4

5 **Running title**

6 Continental distributions of freshwater lake protists

7

8 **Authors and affiliations**

9 Rebecca E. Garner^{a,f}#, Susanne A. Kraemer^{a,b,c,f}, Vera E. Onana^{a,f}, Yannick Huot^{d,f}, Irene Gregory-
10 Eaves^{e,f}, David A. Walsh^{a,f}#

11

12 ^aDepartment of Biology, Concordia University, Montreal, Quebec, Canada

13 ^bGenome Center, Department of Microbiology & Immunology, McGill University, Montreal, Quebec,
14 Canada

15 ^cDepartment of Civil Engineering, McGill University, Montreal, Quebec, Canada

16 ^dDépartement de géomatique appliquée, Université de Sherbrooke, Sherbrooke, Quebec, Canada

17 ^eDepartment of Biology, McGill University, Montreal, Quebec, Canada

18 ^fGroupe de recherche interuniversitaire en limnologie, Quebec, Canada

19

20 #Address correspondence to Rebecca E. Garner, rebecca.garner@mail.concordia.ca or David A. Walsh,
21 david.walsh@concordia.ca.

22

23 **Word counts**

24 Abstract: 239

25 Importance statement: 137

26 Main text: 4,579

27

28

29 **Abstract**

30 Protists play key roles in aquatic food webs as primary producers, predators, nutrient recyclers, and
31 symbionts. Yet, a comprehensive view of protist diversity in freshwaters has been challenged by the
32 immense environmental heterogeneity among lakes worldwide. We assessed protist diversity in the
33 surface waters of 366 freshwater lakes across a north temperate to subarctic extent covering nearly 8.4
34 million km² of Canada. Sampled lakes represented broad gradients in size, trophic state, and watershed
35 land use. Hypereutrophic lakes contained the least diverse and most distinct protist communities relative
36 to nutrient-poor lakes. Greater taxonomic variation among eutrophic lakes was mainly a product of
37 heterotroph and mixotroph diversity, whereas phototroph assemblages were more similar under high-
38 nutrient conditions. Overall, local physicochemical factors, particularly ion and nutrient concentrations,
39 elicited the strongest responses in community structure, far outweighing the effects of geographic
40 gradients. Despite their contrasting distribution patterns, obligate phototroph and heterotroph turnover
41 was predicted by an overlapping set of environmental factors, while the metabolic plasticity of mixotrophs
42 may have made them less predictable. Notably, protist diversity was associated with variation in
43 watershed soil pH and agricultural crop coverage, pointing to human impact on the land-water interface
44 that has not been previously identified in studies at smaller scales. Our study exposes the importance of
45 both within-lake and external watershed characteristics in explaining protist diversity and biogeography,
46 critical information in further developing an understanding of how freshwater lakes and their watersheds
47 are impacted by anthropogenic stressors.

48

49 **Importance**

50 Freshwater lakes are experiencing rapid changes under accelerated anthropogenic stress and a warming
51 climate. Microorganisms underpin aquatic food webs, yet little is known about how freshwater microbial
52 communities are responding to human impact. Here, we assessed the diversity of protists and their
53 myriad ecological roles in lakes varying in size across watersheds experiencing a range of land use
54 pressures by leveraging data from a continental-scale survey of Canadian lakes. We found evidence of
55 human impact on protist assemblages through an association with lake trophic state and extending to
56 agricultural activity and soil characteristics in the surrounding watershed. Furthermore, trophic state

57 appeared to explain the distributions of phototrophic and heterotrophic protists in contrasting ways. Our
58 findings highlight the vulnerability of lake ecosystems to increased land use and the importance of
59 assessing terrestrial interfaces to elucidate freshwater ecosystem dynamics.

60

61 **Keywords**

62 microbial eukaryotes; trophic state; plankton; phototrophy; heterotrophy; mixotrophy; human impact

63

64 **Introduction**

65 Protists have evolved a vast morphological and ecological diversity (1). In aquatic ecosystems, protists
66 play key roles in the transfer of energy and nutrients by converting sunlight into chemical energy,
67 remineralizing organic matter, controlling microbial biomass, feeding higher trophic levels, and
68 maintaining symbioses, some of which recruit prokaryotic metabolisms (2–4).

69 Elucidating protist diversity in lakes is relevant for clarifying microbial distributions across a wide
70 array of environmental conditions and for tracking the health of critical freshwaters. Covering <1% of
71 Earth's surface (5), lakes contribute disproportionately to the global carbon cycle (6–8) and hold essential
72 water resources (9). Lakes display a rich environmental heterogeneity, generated by integrating fluxes of
73 materials and energy from their catchments and airsheds (10, 11). Freshwater lakes are hotspots of
74 biodiversity, collectively containing higher levels of eukaryote richness and endemism (12) and protist
75 community turnover (13) than the marine and terrestrial realms. In the Anthropocene, lakes are
76 increasingly altered by eutrophication (14), warming temperatures (15), deoxygenation (16), salinization
77 (17), and myriad other persistent and emergent stressors (18). There is accumulating evidence that
78 anthropogenic modifications to lake habitats affect protist assemblages (19–21), in turn influencing
79 ecosystem dynamics.

80 Efforts to study protists from a variety of biomes have unearthed a vast diversity and begun to
81 map their distributions at a global scale (22–24). Such investigations have brought insights into protist
82 environmental preferences and community assembly processes (25–28), food web dynamics (29–33),
83 symbioses (34–36), viruses (37), functional traits (38), and bioindicator values (39, 40). Large-scale lake
84 surveys have shown that protist assemblages are shaped by broad biogeographic patterns (41–43) but

85 are also influenced by local environmental factors and interactions with bacteria (44). Phytoplankton
86 surveys recapitulate these observations, while exclusively investigating photosynthetic taxa including
87 Cyanobacteria (45–47). However, there is no clear understanding yet of the distributions of different
88 trophic life history strategies and the environmental drivers underlying their diversity. This knowledge gap
89 is particularly glaring since heterotrophy is likely the most abundant trophic mode (48). Meanwhile,
90 mixotrophs have dramatically altered our view of plankton food webs by combining primary production
91 and prey consumption (49), sometimes surpassing obligate heterotrophs as the leading grazers of
92 bacteria in lakes (50, 51).

93 In this study, 18S rRNA gene amplicon sequencing was used to investigate the distributions of
94 protists in the surface waters of 366 freshwater lakes across a north temperate to subarctic continental
95 extent. We hypothesized that (1) protist diversity at the local scale and community turnover decrease
96 under high-nutrient conditions, (2) trophic groups respond to different environmental factors, specifically,
97 phototrophs are more sensitive than heterotrophs to bottom-up resource availability, and (3) because
98 lakes integrate their catchments, protist diversity in lakes should reflect watershed conditions. This project
99 was conducted within the LakePulse survey, which sampled hundreds of lakes of different sizes in
100 watersheds under varying levels of human impact with the primary aim to assess lake health through a
101 multidisciplinary lens (52). The current study fills a gap in the mapping of microbial biogeography through
102 this first standardized assessment of protist diversity across Canada, which stewards the greatest
103 abundance of lakes worldwide (53). Our study draws attention to the diversity of protists and the
104 ecological patterns that emerge in a broad collection of newly explored habitats being reshaped by
105 increasing human impact.

106

107 **Results**

108 *Sampled lakes and watersheds display high environmental heterogeneity*

109 Protist assemblages were surveyed in the euphotic zones of 366 freshwater to oligosaline lakes in 12
110 ecozones across Canada (43 – 68 °N, 53 – 141 °W) (Figure 1). Watersheds ranged widely in area (0.3 –
111 9,332.3 km²) and were characterized by a variety of human population densities (0 – 3,785 people/km²)
112 and land use, including different proportions of crop agriculture (0 – 81%) and built development (0 –

113 93%). Lakes had a wide range of surface areas (0.05 – 99.66 km²) and maximum depths (1 – >150 m)
114 and were either vertically mixed (~40% of lakes) or thermally stratified (~60%) at the time of sampling.
115 Physicochemical conditions differed substantially across lakes, as represented by a broad pH gradient
116 (5.6 – 10.2) and ultraoligotrophic to hypereutrophic states evaluated by total phosphorus (TP)
117 concentrations (2 – 2,484 µg/L) (Figure 1).

118 Sampled lakes and watersheds reflected regional variation in environmental conditions including
119 anthropogenic gradients (Figure S1). Lakes in northern Canada (Taiga Cordillera, Boreal Cordillera, and
120 Taiga Plains ecozones) were subject to the coldest climates and lowest intensities and proportions of land
121 use within their watersheds. Lakes in western Canada (Montane Cordillera, Pacific Maritime, and Semi-
122 Arid Plateaux) were the deepest on average and located in watersheds with the largest proportions of
123 harvested forests. In central Canada (Boreal Plains and Prairies), a region dominated by plains and
124 prairies with intensive agriculture, lakes were generally shallow, exposed to winds, productive, and high in
125 pH, carbon, ions, and nutrients. Lakes in eastern Canada (Mixedwood Plains, Boreal Shield, Atlantic
126 Highlands, and Atlantic Maritime) had the warmest surface waters and generally the most built-up
127 landscapes, a feature shared with watersheds in the Pacific Maritime. Overall, hypereutrophic, ion- and
128 carbon-rich, and high-pH lake conditions were most often observed in agricultural watersheds with
129 alkaline soils (Figure S2).

130

131 *Lakes support taxonomically and functionally diverse protist assemblages*
132 Eukaryotic diversity was assessed through the sequencing of 18S rRNA gene fragments amplified from
133 DNA collected in 0.22 – 100 µm surface water particles. A total of 15,848 amplicon sequence variants
134 (ASVs) were inferred in 17,749,930 sequences across 366 lake samples. A final data set of 13,046
135 putative protist ASVs encompassing 14,622,273 sequences was retained after ASVs assigned to
136 animals, fungi, and plants were removed (Table S1). The rarefaction of pooled samples showed that the
137 sampling of new ASVs plateaued toward 2,000,000 sequences, signaling that the global sequencing
138 effort had exhaustively captured the protist diversity targeted by the primer pair (Figure S3). The most
139 abundant taxonomic groups were Ochrophyta (24% of all sequences), Cryptophyta (18%), Ciliophora

140 (15%), and Dinoflagellata (11%) (Figure 1). Lineages with the highest ASV richness were Ochrophyta
141 (22% of all ASVs), Dinoflagellata (12%), and Chlorophyta (11%).

142 We analyzed ASV incidence to assess the contribution of individual assemblages to total
143 landscape diversity. New genotypes accumulated at a high rate in the first ~100 randomly ordered
144 assemblages, followed by a gradual deceleration (Figure 2A). The majority of ASVs were restricted to one
145 or a few lakes (Figure 2B). A smaller number of ASVs were distributed widely, including one ASV
146 assigned to *Cryptomonas curvata* (Cryptophyta) that was ubiquitous yet highly variable in relative
147 abundance (0.0031 – 64%) across all the lakes sampled.

148 Trophic functions were assigned to ASVs representing 85% of the total sequence space by
149 leveraging natural history descriptions summarized from the literature (Figure 1; Table S1). Of the
150 functionally annotated ASVs, most were classified as obligate phototrophs (32% of all sequences). The
151 most abundant phototrophs were classified under Chrysophyceae (Ochrophyta; 16% of all sequences),
152 Bacillariophyta (Ochrophyta; 3%), and Chlorophyceae (Chlorophyta; 5%). Bacterivory (20% of all
153 sequences) and mixotrophy (20%) were the next most abundant trophic modes. The most abundant
154 mixotrophs were classified under Cryptophyceae (Cryptophyta; 17% of all sequences) and Dinophyceae
155 (Dinoflagellata; 2%). Cytotrophy (i.e. feeding on other protists), parasitism, commensalism, saprotrophy,
156 and osmotrophy were detected to a lesser extent. Parasites (3% of all sequences) were most abundant in
157 the Coccidiomorpha (Apicomplexa; 2%) and Oomycota (Pseudofungi; 1%). Heterotrophs – which
158 broadly encompassed bacterivores, cytotrophs, saprotrophs, and osmotrophs – comprised 27% of all
159 sequences. Heterotrophy was most abundant in the ciliates Spiotrichaea (9% of all sequences),
160 Oligohymenophorea (2%), and Litostomatea (2%) and in other lineages including Bicoecea (Opalozoa;
161 3%) and Katablepharidaceae (Katablepharidophyta; 2%).

162 Genotypic similarity to known protist 18S rRNA gene diversity was assessed through the global
163 alignment of ASVs to V7 region fragments in the Protist Ribosomal Reference database (PR²) (Figure
164 S4). Of the 12,511 ASVs that met the threshold global alignment length, the majority showed high
165 sequence similarity with references in the database. Most ASVs (58%) were ≥96% identical to references.
166 ASVs with 100% similarity to reference sequences occupied 56% of the total sequence space, while
167 ASVs with ≥96% similarity occupied 91% of sequences. The most novel genotypes included the 738

168 ASVs with <90% sequence similarity to PR² references and were either not assigned to a supergroup
169 (415 ASVs) or primarily classified as Opisthokonta (141), Alveolata (88), or Stramenopiles (30).

170 Local diversity at each lake was estimated by richness (67 – 1,275 ASVs) (Figure S5), the
171 Shannon index (0.17 – 5.67; Figure 3A), Pielou's evenness index (0.04 – 0.83), and Faith's phylogenetic
172 diversity index (8.15 – 76.04). The Shannon index was negatively correlated with magnesium ($r = -0.33$),
173 total nitrogen (TN; $r = -0.32$), dissolved inorganic carbon (DIC; $r = -0.31$), and potassium ($r = -0.30$)
174 concentrations (all correlations had $p < 0.001$). Tukey's tests of ANOVAs comparing the association of
175 trophic state with local diversity showed that mean richness, Shannon diversity, and evenness were
176 significantly lower in hypereutrophic lakes than in eutrophic, mesoeutrophic, mesotrophic, or oligotrophic
177 lakes (all $p \leq 0.002$) (Figure 3B).

178

179 *Protist assemblages vary regionally and across lake trophic states*

180 Next, we looked at how communities varied in taxonomic and phylogenetic composition among lakes. A
181 principal component analysis (PCA) of ASV assemblages showed a clear pattern of taxonomic variation
182 by lake trophic state and ecozone along the first dimension (Figure 4A). Assemblages in the typically
183 nutrient- and ion-rich lakes of the Prairies and Boreal Plains were distinguished from assemblages in the
184 lower-nutrient lakes of the Boreal Shield and other eastern regions. Cryptophyte diversity (*Cryptomonas*,
185 *Geminigera*, *Plagioselmis*, and *Komma* species) contributed the most strongly to the variation among
186 assemblages (Figure 4A). A principal coordinate analysis (PCoA) of generalized UniFrac distances
187 between assemblages showed patterns of phylogenetic variation that were highly congruent with the
188 taxonomic variation observed in the PCA, as evaluated by an RV coefficient correlating the first two
189 dimensions of each ordination ($RV = 67\%$, $p = 1.3 \times 10^{-98}$) (Figure 4B).

190 Taxonomically distinct assemblages as quantified by local contributions to β -diversity (LCBD)
191 were mostly localized in the Prairies and Boreal Plains, with a few high-LCBD assemblages scattered
192 across other regions (Figure 5). β -diversity partitioning showed that the taxonomic dissimilarities between
193 assemblages were primarily generated through ASV turnover (75% of total variance) and differences in
194 richness to a lesser extent (25%). Highly significant ($p < 0.001$) positive correlations were detected
195 between LCBD and a complement of physicochemical variables including potassium ($r = 0.53$), TN ($r =$

196 0.50), DIC ($r = 0.45$), TP ($r = 0.44$), dissolved organic carbon (DOC; $r = 0.42$), magnesium ($r = 0.40$),
197 sodium ($r = 0.38$), sulfate ($r = 0.37$), chlorophyll-a ($r = 0.33$), lake colour ($r = 0.22$), and pH ($r = 0.22$).
198 LCBD further correlated ($p < 0.001$) with watershed crop cover ($r = 0.35$) and soil pH ($r = 0.27$) and
199 correlated negatively with soil nitrogen ($r = -0.25$). LCBD was negatively correlated with local diversity,
200 estimated as ASV richness ($r = -0.44$) and the Shannon ($r = -0.54$) and Faith's phylogenetic diversity ($r = -$
201 0.34) indices (all $p < 0.001$).

202

203 *Physicochemical and watershed conditions predict community turnover*

204 Following the previous observations of high community variability across an environmentally
205 heterogeneous set of lakes, we evaluated the drivers of taxonomic and phylogenetic turnover based on
206 five categories of environmental variables: (1) geography (i.e. latitude, longitude, and altitude), (2)
207 weather, (3) lake morphometry, (4) physicochemistry, and (5) watershed characteristics including land
208 use and edaphic properties.

209 We employed generalized dissimilarity models (GDMs) to detect nonlinear trends between
210 community turnover and environmental gradients. Physicochemical factors explained the highest
211 deviance in GDMs modeling taxonomic or phylogenetic turnover. In order of decreasing strength, DIC,
212 TP, chlorophyll-a, magnesium, pH, potassium, lake colour, surface temperature, and DOC were
213 statistically significant predictors of taxonomic turnover, whereas chlorophyll-a, magnesium, TN, pH,
214 calcium, and colour were significant predictors of phylogenetic turnover. After physicochemistry,
215 watershed characteristics were the most important predictors of community turnover, with both taxonomic
216 and phylogenetic diversity responding most strongly to soil pH and then proportion of cropland cover. The
217 volumetric fraction of soil coarse fragments and natural landscape coverage were additional predictors of
218 taxonomic and phylogenetic turnover, respectively. Lake morphometry, comprising maximum depth,
219 watershed slope, and shoreline circularity, had relatively weak effects on turnover. Weather and
220 geography did not generate statistically significant GDMs. Model deviances are summarized in Table 1
221 and the partial effects of individual variables are summarized in Figure S6 and Table S2.

222

223 *Trophic strategies exhibit contrasting distributions*

224 To examine the distributions of different trophic strategies, we investigated the taxonomic variation of
225 phototroph, heterotroph, and mixotroph communities in separate PCAs (Figure 6). Reflecting the
226 taxonomic variation emerging at the whole-community level, assemblages of each trophic mode were
227 distinguished by lake trophic state and ecozone along the first dimension. However, phototrophs
228 displayed contrasting taxonomic variation patterns to heterotrophs and mixotrophs. To compare the
229 taxonomic turnover of phototrophs, heterotrophs, or mixotrophs among lakes of the same trophic state,
230 we measured the distances of assemblages to the trophic state median within the two-dimensional
231 principal coordinate space. The mean distance of phototroph assemblages to the trophic state median
232 (i.e. turnover) was significantly lower in hypereutrophic lakes than in eutrophic, mesoeutrophic,
233 mesotrophic, or oligotrophic lakes (all $p < 0.001$) (Figure S7). In contrast, the mean distance of
234 heterotroph assemblages was significantly higher in eutrophic lakes than in mesotrophic or oligotrophic
235 lakes (all $p \leq 0.007$) (Figure S7). Compared with either phototroph or heterotroph assemblages, mixotroph
236 assemblages were highly dispersed within trophic state groups (Figure S7).

237 Partitioning protist assemblages by trophic function further allowed us to examine the responses
238 of different groups to environmental conditions. GDMs showed that phototrophs, heterotrophs, and
239 mixotrophs each responded most strongly to physicochemical gradients. Chlorophyll-a, DIC, potassium,
240 and pH were predictors common to the three trophic modes, while calcium, colour, and chloride were
241 additional predictors of phototroph turnover, and TP, surface temperature, sulfate, TN, colour, and
242 chloride were additional predictors of heterotroph turnover. Chlorophyll-a followed by potassium were the
243 top predictors of phototroph turnover, while DIC followed by chlorophyll-a were the top predictors of
244 heterotroph and mixotroph turnover. Watershed characteristics explained an important amount of
245 deviance in phototroph and heterotroph turnover: phototroph turnover was explained by soil pH, crop
246 coverage, soil organic carbon density, and built development, whereas heterotroph turnover was
247 additionally explained by soil coarse fragments. Only phototroph turnover was predicted by lake
248 morphometry variables (watershed slope, lake maximum depth, and circularity). Heterotroph turnover was
249 weakly explained by weather, specifically air temperature and wind speed, and geography, specifically
250 altitude and distances between lakes. Mixotroph turnover was the least predictable from environmental
251 conditions, as physicochemical factors explained less deviance than for obligate phototroph or

252 heterotroph turnover and GDMs modeled on geography, weather, lake morphometry, and watershed
253 characteristics were not statistically significant. Model deviances are summarized in Table 1 and the
254 partial effects of individual variables are summarized in Figure S8 and Table S2.

255

256 **Discussion**

257 *Protist diversity unveiled at a continental scale*

258 Establishing a comprehensive perspective of freshwater protist diversity is challenging given the
259 substantial environmental heterogeneity of the millions of lakes distributed globally. Our study fills a
260 sizable gap by mapping protist distributions across hundreds of lakes spanning an area covering nearly
261 8.4 million km² in the largest study of its kind to employ a standardized sampling scheme (52). Protist
262 diversity was determined in the sunlit surface waters of 366 freshwater lakes varying in size and degree
263 of human impact on the watershed. The sampled biomass bridged cell diameters across four orders of
264 magnitude (0.22 – 100 µm), allowing us to recover pico- to microscale organisms, many of which are not
265 resolved under standard light microscopy and which constitute an expansive microbial diversity
266 encompassing the major eukaryotic lineages and trophic strategies. Our global rarefaction analysis
267 showed that the sequencing effort provided a reasonable estimate of the genotypic variation captured by
268 the primer pair. The rapid accumulation of genotypes across sites indicated that sampling hundreds of
269 lakes was required to assess landscape diversity. The integration of our work with the collection of recent
270 large-scale surveys is leading to a synoptic view of protist ecology (23, 24, 28, 42, 43, 54–57).

271

272 *Surface water assemblages contain high proportions of phototrophs and heterotrophs*

273 Lacustrine protist diversity was dominated by ochrophytes, which accounted for both the highest
274 sequence abundance and ASV richness. Cryptophytes, ciliates, dinoflagellates, and chlorophytes were
275 also highly represented, reflecting taxonomic profiles typical of freshwater biomes on other continents and
276 identified with primer pairs targeting other gene regions (58). The main taxa contributing to the
277 dissimilarity between assemblages were mixotrophic cryptophytes, whose distributions as major
278 bacterivores may be dependent on the occurrence of specific prey (59).

279 Phototrophic taxa accounted for the greatest richness and relative abundance of ASVs, perhaps
280 not unexpectedly given that assemblages were sampled from the euphotic zone. Notably, the dominance
281 of phototrophs within the protist fraction appears to be a distinct feature of freshwater photic zones in
282 contrast with the prevalence of heterotrophs in the sunlit ocean and surface soils (13). We showed that
283 heterotrophs and mixotrophs were numerically important groups after phototrophs, which, along with a
284 smaller collection of parasites, illustrates that lake surface waters harbour a broad array of microbial
285 functions linking multiple trophic levels.

286

287 *Protist communities respond to local environmental conditions*

288 The key environmental drivers of protist diversity in Canadian lakes departed from those observed in
289 previous large-scale surveys. Assemblages showed the strongest responses to physicochemical factors,
290 including nutrient, major ion, and chlorophyll-a concentrations, pH, and lake colour. The environmental
291 drivers in lakes differed from those in marine and soil ecosystems, where protist diversity at large scale is
292 generally predicted by temperature (60) and annual precipitation (28), respectively. The differences in
293 environmental filtering between biomes likely represent fundamental differences in the types of habitats
294 and degrees of ecosystem connectivity. Compared with the more spatially continuous and expansive
295 ocean and soil macroenvironments, lakes are fragmented across the landscape and neighbouring lakes
296 can exhibit widely contrasting physicochemical attributes (10, 61). Lake heterogeneity is amplified by
297 temporal variability and punctuated perturbations. Higher community turnover has previously been
298 measured among lakes than within marine or soil ecosystems (12, 13), which we reassert is linked to
299 physicochemical heterogeneity.

300 We found that the influence of local environmental conditions far outweighed the effects of
301 geographic variation across the continental extent. Among LakePulse sites, systems with the highest
302 trophic states (typically, Prairies and Boreal Plains lakes) were located at intermediate longitudes,
303 latitudes, and altitudes. A study of Scandinavian boreal lakes spanning a longitudinally-aligned and
304 narrower trophic state gradient (oligotrophic to mesoeutrophic) reported that geography explained more
305 protist community variation than water chemistry (42), complementing our assessment that regional
306 physicochemical heterogeneity is a major determinant of protist diversity. Other surveys identified

307 biogeographic patterns of protist diversity structured by the isolation and dispersal limitation of mountain
308 lake communities (41, 43). Geographic barriers (e.g., the Rocky Mountains) did not appear to generate
309 strong compositional divisions in our set of protist assemblages but were identified as having an important
310 influence on the distributions across LakePulse sites of crustacean zooplankton (62), a group with greater
311 dispersal limitation due to their larger body sizes. Instead, we found the greatest taxonomic and
312 phylogenetic divisions between regions distinguished by differences in lake trophic state and other local
313 environmental conditions.

314 Partitioning protist trophic diversity allowed us to examine how different components of freshwater
315 food webs respond to the environment. We observed contrasting distribution patterns for each trophic
316 mode. Phototroph assemblages among hypereutrophic lakes exhibited significantly lower taxonomic
317 turnover (as evaluated by mean distance to the trophic state median) than lakes at lower nutrient states,
318 whereas heterotroph assemblages did not follow this trend but turned over significantly more rapidly
319 among eutrophic lakes than mesotrophic or oligotrophic lakes. Yet, the turnover within each trophic mode
320 was predicted by a mostly overlapping suite of physicochemical factors, including chlorophyll-a, DIC, ions,
321 pH, and colour, although rank order of importance varied among groups. Nutrient (TP and TN)
322 concentrations and surface temperature were exclusive predictors of heterotroph turnover. All of the
323 environmental predictors of mixotroph turnover were common to both phototrophs and heterotrophs, with
324 no predictors unique to mixotrophs. Changes in low levels of chlorophyll-a were associated with the most
325 rapid turnover in phototroph composition, which is to be expected given that chlorophyll-a is linked to
326 phytoplankton biomass and phototroph diversity shifts along a lake productivity gradient. The next
327 strongest predictor of phototroph turnover was potassium, which is not a limiting resource (63) but
328 displayed extreme regional variation peaking in the Prairies, followed by the Boreal Plains. Heterotroph
329 and mixotroph turnover was primarily predicted by DIC concentrations. Overall, the environmental drivers
330 of heterotroph diversity mostly reflect the bottom-up controls on primary producers traversing multiple
331 trophic levels but are rendered further complex by the added effects of nutrient and temperature factors.
332 Bacterial prey and top-down controls, encompassing predation and parasitism (not measured in this
333 study), likely also determine trophic functional diversity.

334 Mixotroph distributions were the least aligned with trophic state and the least predictable from
335 environmental conditions, which should be expected for organisms with the metabolic versatility to occupy
336 variable niche spaces. The balance between primary production and prey consumption is dependent on a
337 mixotroph's phenotypic plasticity (64). While mixotrophy is competitively advantageous over obligate
338 phototrophy or heterotrophy under low-nutrient conditions (65), primarily phototrophic mixotrophs prevail
339 in oligotrophic lakes and are replaced by primarily heterotrophic mixotrophs as trophic state increases
340 (66). Another variable driving mixotroph diversity in aquatic ecosystems is light availability (67, 68), which
341 is modulated by lake colour, a predictor identified in this study. Here too, bacterial prey and zooplankton
342 predators with a preference for nutritious mixotrophs likely also exert controls (69).

343

344 *Hypereutrophic lakes are taxonomically distinct*

345 Hypereutrophic lakes, located mostly in agricultural watersheds, contained protist assemblages with the
346 lowest diversity and highest taxonomic distinctness (i.e. LCBD) relative to other lakes in the landscape.
347 Specifically, Shannon diversity was inversely related to ion and nutrient concentrations, while taxonomic
348 distinctness tracked with ion- and nutrient-rich conditions. Hypereutrophic conditions potentially filter
349 protist communities by creating relatively extreme conditions (e.g., light attenuation), tolerated by a small
350 number of taxa assembling into uneven communities distinct from those in lakes at lower nutrient states.
351 Phosphorus is often the limiting nutrient of phytoplankton in numerous freshwater systems (70, 71), yet
352 TP was a predictor of turnover exclusive to heterotrophs. Phosphorus was found to be an important
353 predictor of littoral protist diversity in European lakes (44) and of long-term microeukaryote community
354 turnover evidenced from paleolimnological trends (19). Interactions between protists and Cyanobacteria
355 likely also play a role in determining protist assemblages in hypereutrophic lakes, especially as
356 Cyanobacteria of the order *Microcystis* were found to be associated with high-nutrient conditions across
357 LakePulse sites (72).

358 Ordinations of separate trophic modes showed that the high community variation among
359 eutrophic lakes was generated by heterotroph diversity, whereas obligate phototroph assemblages were
360 the least varied under hypereutrophic conditions. A positive relationship between compositional
361 heterogeneity and trophic state runs counter to the expectation of reduced community variability (e.g., for

362 phytoplankton (73)) that is predicted to follow the leveling of abiotic conditions among lakes induced by
363 land use and eutrophication. Biotic homogenization appears to have trended with long-term climate
364 warming and eutrophication in Cyanobacteria (74) and protist (20) assemblages reconstructed from
365 sediment core chronologies. Following our observation of increased compositional heterogeneity among
366 lakes as a function of trophic state, we posit that protist communities in productive lakes are less stable
367 over time, including over the same season as observed in bacterial time series (75). The temporal fluxes
368 in abiotic conditions prompting succession may be induced by allochthonous inputs or nutrient
369 resuspension from sediments accrued at higher rates in regions of extensive lake use and high
370 populations densities (76). Furthermore, given that many Prairies and Boreal Plains lakes are shallow and
371 exposed to winds, temporary stratification followed by destratification is not uncommon (77). We
372 speculate that taxon replacement linked to land use and eutrophication may force a re-evaluation of
373 human impact on biodiversity. In particular, anthropogenic pressures may not inherently decrease
374 diversity but instead increase turnover, possibly at the expense of rare or specialist taxa disappearing
375 from the landscape pool (78).

376

377 *Watersheds influence lacustrine protist diversity*

378 While the importance of physicochemical factors on lacustrine protist diversity has been described (42,
379 44) and elaborated upon in this study, the influence of the watershed, in particular soil properties and land
380 use that are often but not entirely correlated with lake physicochemical attributes, until now have not been
381 documented at the continental scale. We found that the taxonomic distinctness of local assemblages (i.e.
382 LCBD) corresponded strongly with the proportion of crop agriculture in the watershed, while surface soil
383 pH was an important predictor of community turnover. Because of their concave topographies and
384 position in the landscape, lakes are recipients of major allochthonous subsidies, with global effects (e.g.,
385 carbon storage) that are disproportionate to the spatial extent of lakes (6). The influence of terrestrial
386 catchments on within-lake community dynamics is compelling evidence for why lakes cannot be studied
387 in isolation of their watersheds.

388 The filtering of lacustrine protist diversity by watershed soil chemistry points to the influence of
389 external factors on lake conditions. Soil buffering capacity, determined by soil texture, organic matter

390 content, and mineral composition, is a main abiotic control on lake water pH (79). Furthermore, soil
391 properties control the mobility of nutrients and their eventual input into lakes. Specifically, soil pH
392 determines the availability and chemical forms of nutrients, and particle size governs the movement of
393 groundwater carrying released nutrients (80). Soil properties also determine the composition and activity
394 of soil microbiomes, which perform biogeochemical transformations modulating the availability of nutrients
395 (81) and seed potential colonists from soils to lakes. Altered precipitation regimes and warming
396 temperatures associated with climate change are expected to increase soil erosion (82) as well as
397 terrestrial nutrient exports (83).

398 Given the continual increase in land surface transformed by agricultural production and
399 urbanization (84), accelerated watershed land use conversions are widespread. Changes in soils
400 associated with human activities range from increased nutrient loading and acidification by nitrogenous
401 fertilizers in agriculture (85) to shifts in carbon storage precipitated by changes in land management
402 practices or climate (86). Moreover, land use and climate change interact to increase the frequency and
403 magnitude of nutrient and carbon pulses to waterbodies (87). In the interest of securing a healthy future
404 for critical freshwaters, we suggest that current soil chemistry heterogeneity across the landscape can
405 inform predictions about the potential consequences of anthropogenic watershed alterations on lakes. In
406 particular, work can be done to understand the microbial diversity and food web dynamics driven by
407 various soil states under future land use scenarios. Overall, the ability to predict lacustrine protist diversity
408 from watershed conditions, as demonstrated in this study, highlights an expanded potential for monitoring
409 lake ecosystems using remote sensing products (88).

410

411 *Conclusion*

412 This is the first study to examine the taxonomic and trophic functional variation in protist diversity across
413 the expansive and lake-rich Canadian landscape. We showed that lakes at this continental scale
414 displayed broad environmental heterogeneity including substantial variation in local physicochemical
415 conditions driving taxonomic and phylogenetic community turnover. Watershed soil pH and crop
416 agriculture additionally predicted community turnover and exceptional local-scale diversity.
417 Hypereutrophic lakes were found to contain less diverse and more distinct assemblages than lower-

418 nutrient lakes, primarily as a product of their variable heterotroph and mixotroph compositions. In
419 contrast, phototroph assemblages were more similar among hypereutrophic lakes. While phototrophy was
420 the prevailing nutritional strategy in lake euphotic zones, heterotrophy was nearly as numerically
421 important; each of these trophic modes was highly predictable from physicochemical and other
422 environmental factors. Our survey and findings serve as a valuable resource for mapping species
423 distributions and provide a basis for future research into the increasing anthropogenic impact on lake
424 microbiomes.

425

426 **Methods**

427 *Lake selection and sampling*

428 Hundreds of lakes were sampled between July and early September in 2017 – 2019 by the Natural
429 Sciences and Engineering Research Council of Canada (NSERC) Canadian Lake Pulse Network (52).
430 Sampling was timed to coincide with the summertime period of water column thermal stratification, where
431 relevant. Lakes were sampled across 12 terrestrial ecozones, regions defined by landform, geology, and
432 vegetation (89). Lake selection was stratified across lake surface area and watershed land use impact
433 categories to capture natural and human-mediated lake heterogeneity. Only natural lakes with a
434 maximum depth of at least 1 m and within 1 km from a road were considered. Freshwater to oligosaline
435 lakes (identified as having conductivity <8 mS/cm and total major ions <4,000 mg/L) were retained for this
436 analysis.

437 Water was collected using an integrated tube sampler from the euphotic zone over a depth of up
438 to 2 m below the surface at the deepest point in the lake (90). The site of maximum lake depth was
439 located by depth sounding with the aid of bathymetric maps where available. The depth of the euphotic
440 zone was estimated as twice the Secchi disk depth. All water sampling equipment was acid-washed and
441 rinsed three times with lake water before use. Carboys were stored in icepack-chilled coolers until water
442 filtration later in the day. Water was prefiltered through 100 μ m nylon mesh and vacuum-filtered on 47
443 mm-diameter 0.22 μ m Durapore membranes through a glass funnel at a maximum pressure of 8 inHg. Up
444 to 500 mL of water was filtered until the filter was nearly clogged. Filters were stored in sterile cryovials at
445 -80 °C.

446

447 *18S rRNA gene amplification and sequencing*

448 DNA was extracted using the DNeasy PowerWater kit (QIAGEN, Hilden, Germany) according to the
449 manufacturer's instructions with the addition of two optional steps: after bead beating and centrifugation,
450 1 μ L ribonuclease A was added to samples, followed by 30 min incubation at 37 °C. DNA was quantified
451 using the Qubit dsDNA BR Assay (Invitrogen, Carlsbad, CA, USA). A ~265 bp fragment of the 18S rRNA
452 gene V7 region was amplified with the primers 960F (5'-GGCTTAATTGACTAACRCG-3') (91) and
453 NSR1438 (5'-GGGCATCACAGACCTGTTAT-3') (92) to broadly target microeukaryotes (93). Each PCR
454 reaction contained a total 25 μ L mixture of 14.25 μ L MilliQ, 5 μ L 5X High-Fidelity buffer, 1.25 μ L of each
455 10 μ M primer, 0.5 μ L 10 mM dNTPs, 0.25 μ L DMSO, 0.5 μ L Phusion DNA polymerase (Thermo Fisher
456 Scientific, Waltham, MA, USA), and 2 ng DNA template. PCR conditions followed an initial denaturation at
457 98 °C for 1 min, 30 cycles of 98 °C for 10 s, 60 °C melting for 30 s, 72 °C for 20 s, and a final extension at
458 72 °C for 5 min. PCR products were loaded with Orange G dye into ethidium bromide-stained 2%
459 agarose gel and electrophoresed at 40 V for 100 min. DNA bands aligned at the target fragment length
460 against a 100 bp DNA ladder were excised with razor blades and gel-extracted with the QIAquick Gel
461 Extraction kit (QIAGEN, Hilden, Germany), modified by final elution into MilliQ. PCR products were
462 submitted to Genome Quebec for library barcoding and sequencing of 250 bp paired-end reads in three
463 sequencing runs on an Illumina MiSeq platform.

464

465 *ASV inference and annotation*

466 Primer sequences were removed in Cutadapt v. 3.1 (94). Trimmed reads were processed into ASVs
467 through DADA2 v. 1.16 (95). Samples were pooled for ASV inference using otherwise default parameters.
468 Taxonomy was assigned with naïve Bayesian classification trained on PR² v. 4.12.0 (96). Potentially
469 spurious ASVs were removed by visually inspecting a *de novo* alignment performed in MAFFT (97). To
470 retain only putative protist ASVs, ASVs assigned to Metazoa, Fungi, and Embryophyceae were removed.
471 Taxa were assigned to trophic functional groups as either photoautotrophs, heterotrophs (bacterivores,
472 cytotrophs, saprotrophs, or osmotrophs), mixotrophs, or parasites according to lineage-specific feeding
473 habits summarized by Adl *et al.* (98).

474

475 *Sequence similarities with known diversity*

476 A database of 18S rRNA gene references restricted to the V7 region was constructed by applying the
477 960F/NSR1438 primer pair to PR² v. 4.13.0 in Cutadapt. ASV top hits were queried against the PR²
478 database in BLAST v. 2.6.0+ (99). Sequence identities were reported for ASVs that were globally aligned
479 to references over a length \geq 220 nucleotides.

480

481 *Environmental data collection*

482 Lake trophic states were assigned based on TP concentration thresholds estimated for Canadian
483 freshwater systems: ultraoligotrophic (TP <4 μ g/L), oligotrophic (4 – 10), mesotrophic (10 – 20),
484 mesoeutrophic (20 – 35), eutrophic (35 – 100), and hypereutrophic (>100) (100). Meteorological
485 conditions recorded over seven days leading up to sampling and ice disappearance day data were
486 accessed from ERA5-Land hourly reanalysis (101). Data on watershed slope and lake volume, discharge,
487 and hydraulic residence time were accessed from HydroLAKES v. 1.0 (5). Watershed surface soil
488 properties were accessed from SoilGrids250m (102). Land cover information was compiled as described
489 by Huot *et al.* (52). Maps were constructed in R with the NAD 83 coordinate reference system and using
490 the coordinates of Canada from the package maps (103) and ecozone shapefiles sourced from the
491 Canada Council of Ecological Areas (89).

492 Environmental data were categorized into thematic groups of variables. Latitude, longitude, and
493 altitude were categorized as geography variables. Ice disappearance day and meteorological variables
494 (air temperature, precipitations, and net solar radiation) were categorized as weather variables. Lake
495 surface area, circularity, volume, maximum depth, discharge, residence time, watershed slope within 100
496 m of the shoreline, watershed area, and lake-to-watershed area ratio were categorized as lake
497 morphometry variables. Watershed land use (crop agriculture, pasture, built development, and clear-cut
498 forestry) and natural land cover fractions, human population density, and mean surface soil properties
499 (bulk density of the fine earth fraction, cation exchange capacity, nitrogen, pH, organic carbon density,
500 organic carbon content in the fine earth fraction, volumetric fraction of coarse fragments, clay, sand, and
501 silt) were categorized as watershed variables. Surface water temperature, calcium, magnesium,

502 potassium, sodium, chloride, sulfate, TP, TN, DIC, DOC, and chlorophyll-a concentrations, pH, and lake
503 colour were categorized as lake physicochemical variables. Missing physicochemical data were replaced
504 with ecozone median values. Highly collinear variables, evaluated by Pearson's correlation $r \geq 0.7$, within
505 all categories except physicochemistry were removed.

506

507 *Diversity analyses*

508 ASVs were aligned in the SILVA Incremental Aligner v. 1.7.2 (104) against the SILVA 138.1 SSU Ref NR
509 99 database (2020/08/27 release) (105). A maximum-likelihood phylogeny was constructed in FastTree v.
510 2.1.11 using the Generalized Time-Reversible model of nucleotide evolution (106). Phylogenetic
511 dissimilarities between ASV assemblages were calculated as generalized UniFrac distances, which are
512 sensitive to compositional changes in lineages of intermediate abundance (107). Generalized UniFrac
513 distances ($\alpha = 0.5$) were computed using the GUniFrac package.

514 To deal with uneven total sequence abundance across samples, sequence count composition
515 was scaled to relative abundance. Rarefaction analysis was conducted on the total data set by measuring
516 ASV richness in assemblages randomly subsampled at each 1,000-sequence step. Taxon accumulation
517 was estimated in a random ordering of lakes using 100 permutations in the package vegan (108). Local
518 diversity indices (richness, Pielou's evenness, Shannon diversity, and Faith's phylogenetic diversity) were
519 calculated from rarefied community data (i.e. randomly subsampled to the lowest sample abundance
520 equaling 10,069 sequences) in the R packages vegan (108) and picante (109). PCAs were computed on
521 Hellinger-transformed community data in vegan.

522 LCBD and β -diversity partitioning analyses were performed on β -diversity estimated using 100
523 permutations from Hellinger-transformed community data in the package adespatial (110). RV coefficients
524 were computed from the first two principal components or coordinates in the package FactoMineR (111).
525 Nonlinear relationships between β -diversity and untransformed environmental gradients were modeled in
526 GDMs (112, 113) in the package gdm (114). To create GDM site-pair tables, pairwise dissimilarities
527 between sites were weighted proportionally to the total number of sequences associated with each
528 sample. Variable selection for GDMs was performed using backward elimination with 100 permutations
529 per step. To assess the dispersion in taxonomic composition among lakes of the same trophic state, the

530 mean Bray-Curtis distances of assemblages to trophic state medians (i.e. centroids) calculated across the
531 first two principal coordinates were compared using Tukey's tests of ANOVAs.

532 Data wrangling and statistical analysis were performed in R v. 4.0.2 (115).

533

534 *Data availability*

535 Sequence data have been deposited in the European Nucleotide Archive under study accession
536 PRJEB42538 (www.ebi.ac.uk). Scripts are accessible from
537 https://github.com/rebeccagarner/lakepulse_protists.

538

539 **Acknowledgements**

540 This research was funded by the NSERC Canadian Lake Pulse Network (Strategic Network Grant
541 NETGP-479720) and Canada Research Chairs held by DAW, IGE, and YH. REG and VEO were
542 supported by the NSERC CREATE ÉcoLac training program in lake and fluvial ecology. REG also
543 acknowledges support from a *Fonds de recherche du Québec – Nature et technologies* doctoral research
544 scholarship and the Stephen Bronfman Scholarship in Environmental Studies.

545 We thank the LakePulse sampling crews and the many landowners, municipal and park
546 employees, lake associations, and First Nations who welcomed and facilitated the sampling effort. We
547 also thank the researchers in LakePulse who contributed to the data set, Zofia Tararu for helpful
548 discussions on statistical methods, and Paul MacKeigan, Cindy Paquette, Marieke Beaulieu, and
549 Katherine Griffiths for their collaboration on data quality assessment and curation.

550

551 **References**

- 552 1. Simpson AGB, Egli Y. 2016. Protist Diversification, p 344–360. *In* Kliman, RM (ed), Encyclopedia
553 of Evolutionary Biology. Academic Press, Waltham, MA.
- 554 2. Gadd GM, Raven JA. 2010. Geomicrobiology of Eukaryotic Microorganisms. Geomicrobiol J
555 27:491–519.
- 556 3. Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. 2015. Rethinking
557 the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347:1257594.

558 4. Caron DA, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C, Bell CJ, Bharti A,
559 Dyhrman ST, Guida SM, Heidelberg KB, Kaye JZ, Metzner J, Smith SR, Worden AZ. 2017.
560 Probing the evolution, ecology and physiology of marine protists using transcriptomics. *Nat Rev*
561 *Microbiol* 15:6–20.

562 5. Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O. 2016. Estimating the volume and age of
563 water stored in global lakes using a geo-statistical approach. *Nat Commun* 7:13603.

564 6. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K,
565 Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, Leigh McCallister
566 S, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman
567 BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, Von Wachenfeldt E,
568 Weyhenmeyer GA. 2009. Lakes and reservoirs as regulators of carbon cycling and climate.
569 *Limnol Oceanogr* 54:2298–2314.

570 7. Beaulieu JJ, DelSontro T, Downing JA. 2019. Eutrophication will increase methane emissions
571 from lakes and impoundments during the 21st century. *Nat Commun* 10:1375.

572 8. Anderson NJ, Heathcote AJ, Engstrom DR. 2020. Anthropogenic alteration of nutrient supply
573 increases the global freshwater carbon sink. *Sci Adv* 6:eaaw2145.

574 9. Heino J, Alahuhta J, Bini LM, Cai Y, Heiskanen A, Hellsten S, Kortelainen P, Kotamäki N,
575 Tolonen KT, Vihervaara P, Vilmi A, Angeler DG. 2021. Lakes in the era of global change: moving
576 beyond single-lake thinking in maintaining biodiversity and ecosystem services. *Biol Rev* 96:89–
577 106.

578 10. Kratz TK, MacIntyre S, Webster KE. 2005. Causes and Consequences of Spatial Heterogeneity
579 in Lakes, p 329–347. *In* Lovett, GM, Jones, C, Turner, MG, Weathers, KC (eds), *Ecosystem*
580 *Function in Heterogeneous Landscapes*. Springer, New York, NY.

581 11. Williamson CE, Dodds W, Kratz TK, Palmer MA. 2008. Lakes and streams as sentinels of
582 environmental change in terrestrial and atmospheric processes. *Front Ecol Environ* 6:247–254.

583 12. Strayer DL, Dudgeon D. 2010. Freshwater biodiversity conservation: recent progress and future
584 challenges. *J N Am Benthol Soc* 29:344–358.

585 13. Singer D, Seppey CVW, Lentendu G, Dunthorn M, Bass D, Belbahri L, Blandenier Q, Debroas D,
586 de Groot GA, de Vargas C, Domaizon I, Duckert C, Izaguirre I, Koenig I, Mataloni G, Schiaffino
587 MR, Mitchell EAD, Geisen S, Lara E. 2021. Protist taxonomic and functional diversity in soil,
588 freshwater and marine ecosystems. *Environ Int* 146:106262.

589 14. Smith VH, Schindler DW. 2009. Eutrophication science: where do we go from here? *Trends Ecol
590 Evol* 24:201–207.

591 15. O'Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD,
592 McIntyre PB, Kraemer BM, Weyhenmeyer GA, Straile D, Dong B, Adrian R, Allan MG, Anneville
593 O, Arvola L, Austin J, Bailey JL, Baron JS, Brookes JD, Etyo E, Dokulil MT, Hamilton DP, Havens
594 K, Hetherington AL, Higgins SN, Hook S, Izmost'eva LR, Joehnk KD, Kangur K, Kasprzak P,
595 Kumagai M, Kuusisto E, Leshkevich G, Livingstone DM, MacIntyre S, May L, Melack JM, Mueller-
596 Navarra DC, Naumenko M, Noges P, Noges T, North RP, Plisnier P, Rigos A, Rimmer A, Rogora
597 M, Rudstam LG, Rusak JA, Salmaso N, Samal NR, Schindler DE, Schladow SG, Schmid M,
598 Schmidt SR, Silow E, Soylu ME, Teubner K, Verburg P, Voutilainen A, Watkinson A, Williamson
599 CE, Zhang G. 2015. Rapid and highly variable warming of lake surface waters around the globe.
600 *Geophys Res Lett* 42:10773–10781.

601 16. Jane SF, Hansen GJA, Kraemer BM, Leavitt PR, Mincer JL, North RL, Pilla RM, Stetler JT,
602 Williamson CE, Woolway RI, Arvola L, Chandra S, DeGasperi CL, Diemer L, Dunalska J, Erina O,
603 Flaim G, Grossart H-P, Hambright KD, Hein C, Hejzlar J, Janus LL, Jenny J-P, Jones JR, Knoll
604 LB, Leoni B, Mackay E, Matsuzaki S-IS, McBride C, Müller-Navarra DC, Paterson AM, Pierson D,
605 Rogora M, Rusak JA, Sadro S, Saulnier-Talbot E, Schmid M, Sommaruga R, Thiery W, Verburg
606 P, Weathers KC, Weyhenmeyer GA, Yokota K, Rose KC. 2021. Widespread deoxygenation of
607 temperate lakes. *Nature* 594:66–70.

608 17. Dugan HA, Skaff NK, Doubek JP, Bartlett SL, Burke SM, Krivak-Tetley FE, Summers JC, Hanson
609 PC, Weathers KC. 2020. Lakes at Risk of Chloride Contamination. *Environ Sci Technol* 54:6639–
610 6650.

611 18. Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ,
612 Olden JD, Ormerod SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D, Cooke SJ.

613 2018. Emerging threats and persistent conservation challenges for freshwater biodiversity. *Biol*
614 *Rev* 94:849–873.

615 19. Capo E, Debroas D, Arnaud F, Perga ME, Chardon C, Domaizon I. 2017. Tracking a century of
616 changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate
617 warming. *Environ Microbiol* 19:2873–2892.

618 20. Keck F, Millet L, Debroas D, Etienne D, Galop D, Rius D, Domaizon I. 2020. Assessing the
619 response of micro-eukaryotic diversity to the Great Acceleration using lake sedimentary DNA. *Nat*
620 *Commun* 11:3831.

621 21. Salmaso N, Tolotti M. 2021. Phytoplankton and anthropogenic changes in pelagic environments.
622 *Hydrobiologia* 848:251–284.

623 22. Massana R, Castresana J, Balagué V, Guillou L, Romari K, Groisillier A, Valentin K, Pedrós-Alió
624 C. 2004. Phylogenetic and Ecological Analysis of Novel Marine Stramenopiles. *Appl Environ*
625 *Microbiol* 70:3528–3534.

626 23. de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, Lara E, Berney C, Le Bescot N,
627 Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury J-M, Bittner L, Chaffron S, Dunthorn
628 M, Engelen S, Flegontova O, Guidi L, Horak A, Jaillon O, Lima-Mendez G, Luke J, Malviya S,
629 Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S,
630 Kandels-Lewis S, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D,
631 Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S,
632 Weissenbach J, Wincker P, Karsenti E, Boss E, Follows M, Karp-Boss L, Krzic U, Reynaud EG,
633 Sardet C, Sullivan MB, Velayoudon D. 2015. Eukaryotic plankton diversity in the sunlit ocean.
634 *Science* 348:1261605.

635 24. Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, Singer D, Mayor J, Bunge J,
636 Sernaker S, Siemensmeyer T, Trautmann I, Romac S, Berney C, Kozlov A, Mitchell EAD, Seppey
637 CVW, Egge E, Lentendu G, Wirth R, Trueba G, Dunthorn M. 2017. Parasites dominate
638 hyperdiverse soil protist communities in Neotropical rainforests. *Nat Ecol Evol* 1:0091.

639 25. Giner CR, Balagué V, Krabberød AK, Ferrera I, Reñé A, Garcés E, Gasol JM, Logares R,
640 Massana R. 2019. Quantifying long-term recurrence in planktonic microbial eukaryotes. *Mol Ecol*
641 28:923–935.

642 26. Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB, Rubinat-Ripoll
643 L, Mestre M, Salazar G, Ruiz-González C, Sebastián M, de Vargas C, Acinas SG, Duarte CM,
644 Gasol JM, Massana R. 2020. Disentangling the mechanisms shaping the surface ocean
645 microbiota. *Microbiome* 8:55.

646 27. Vass M, Székely AJ, Lindström ES, Langenheder S. 2020. Using null models to compare
647 bacterial and microeukaryotic metacommunity assembly under shifting environmental conditions.
648 *Sci Rep* 10:2455.

649 28. Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. 2020. The global-
650 scale distributions of soil protists and their contributions to belowground systems. *Sci Adv*
651 6:eaax8787.

652 29. Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L, Thingstad F. 1983. The Ecological Role of
653 Water-Column Microbes in the Sea. *Mar Ecol Prog Ser* 10:257–263.

654 30. Sherr EB, Sherr BF. 2002. Significance of predation by protists in aquatic microbial food webs.
655 *Antonie Van Leeuwenhoek* 81:293–308.

656 31. Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, Chaffron S, Ignacio-Espinosa
657 JC, Roux S, Vincent F, Bittner L, Darzi Y, Wang J, Audic S, Berline L, Bontempi G, Cabello AM,
658 Coppola L, Cornejo-Castillo FM, D'Ovidio F, De Meester L, Ferrera I, Garet-Delmas M-J, Guidi L,
659 Lara E, Pesant S, Royo-Llonch M, Salazar G, Sanchez P, Sebastian M, Souffreau C, Dimier C,
660 Picheral M, Searson S, Kandels-Lewis S, Gorsky G, Not F, Ogata H, Speich S, Stemmann L,
661 Weissenbach J, Wincker P, Acinas SG, Sunagawa S, Bork P, Sullivan MB, Karsenti E, Bowler C,
662 de Vargas C, Raes J. 2015. Determinants of community structure in the global plankton
663 interactome. *Science* 348:1262073.

664 32. Bjorbækmo MFM, Evenstad A, Røsæg LL, Krabberød AK, Logares R. 2020. The planktonic
665 protist interactome: where do we stand after a century of research? *ISME J* 14:544–559.

666 33. Piwosz K, Mukherjee I, Salcher MM, Grujčić V, Šimek K. 2021. CARD-FISH in the Sequencing
667 Era: Opening a New Universe of Protistan Ecology. *Front Microbiol* 12:640066.

668 34. Gast RJ, Sanders RW, Caron DA. 2009. Ecological strategies of protists and their symbiotic
669 relationships with prokaryotic microbes. *Trends Microbiol* 17:563–569.

670 35. Monteil CL, Vallenet D, Menguy N, Benzerara K, Barbe V, Fouteau S, Cruaud C, Floriani M,
671 Viollier E, Adryanczyk G, Leonhardt N, Faivre D, Pignol D, López-García P, Weld RJ, Lefevre CT.
672 2019. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. *Nat Microbiol*
673 4:1088–1095.

674 36. Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. 2021. Bacterial and
675 archaeal symbioses with protists. *Curr Biol* 31:R862–R877.

676 37. Coy SR, Gann ER, Pound HL, Short SM, Wilhelm SW. 2018. Viruses of Eukaryotic Algae:
677 Diversity, Methods for Detection, and Future Directions. *Viruses* 10:487.

678 38. Ramond P, Sourisseau M, Simon N, Romac S, Schmitt S, Rigaut-Jalabert F, Henry N, de Vargas
679 C, Siano R. 2019. Coupling between taxonomic and functional diversity in protistan coastal
680 communities. *Environ Microbiol* 21:730–749.

681 39. Payne RJ. 2013. Seven Reasons Why Protists Make Useful Bioindicators. *Acta Protozool*
682 52:105–113.

683 40. Sagova-Mareckova M, Boenigk J, Bouchez A, Cermakova K, Chonova T, Cordier T, Eisendle U,
684 Elersek T, Fazi S, Fleituch T, Frühe L, Gajdosova M, Graupner N, Haegerbaeumer A, Kelly A-M,
685 Kopecky J, Leese F, Nöges P, Orlic S, Panksep K, Pawlowski J, Petrussek A, Piggott JJ, Rusch
686 JC, Salis R, Schenk J, Simek K, Stovicek A, Strand DA, Vasquez MI, Vrålstad T, Zlatkovic S,
687 Zupancic M, Stoeck T. 2021. Expanding ecological assessment by integrating microorganisms
688 into routine freshwater biomonitoring. *Water Res* 191:116767.

689 41. Filker S, Sommaruga R, Vila I, Stoeck T. 2016. Microbial eukaryote plankton communities of high-
690 mountain lakes from three continents exhibit strong biogeographic patterns. *Mol Ecol* 25:2286–
691 2301.

692 42. Khomich M, Kauserud H, Logares R, Rasconi S, Andersen T. 2017. Planktonic protistan
693 communities in lakes along a large-scale environmental gradient. *FEMS Microbiol Ecol* 93:fiw231.

694 43. Boenigk J, Wodniok S, Bock C, Beisser D, Hempel C, Grossmann L, Lange A, Jensen M. 2018.
695 Geographic distance and mountain ranges structure freshwater protist communities on a
696 European scale. *Metabarcoding and Metagenomics* 2:e21519.

697 44. Bock C, Jensen M, Forster D, Marks S, Nuy J, Psenner R, Beisser D, Boenigk J. 2020. Factors
698 shaping community patterns of protists and bacteria on a European scale. *Environ Microbiol*
699 22:2243–2260.

700 45. Ptacnik R, Lepistö L, Willén E, Brettum P, Andersen T, Rekolainen S, Lyche Solheim A, Carvalho
701 L. 2008. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe.
702 *Aquat Ecol* 42:227–236.

703 46. Stomp M, Huisman J, Mittelbach GG, Litchman E, Klausmeier CA. 2011. Large-scale biodiversity
704 patterns in freshwater phytoplankton. *Ecology* 92:2096–2107.

705 47. Maileht K, Nõges T, Nõges P, Ott I, Mischke U, Carvalho L, Dudley B. 2013. Water colour,
706 phosphorus and alkalinity are the major determinants of the dominant phytoplankton species in
707 European lakes. *Hydrobiologia* 704:115–126.

708 48. Keeling PJ, del Campo J. 2017. Marine Protists Are Not Just Big Bacteria. *Curr Biol* 27:R541–
709 R549.

710 49. Stoecker DK, Hansen PJ, Caron DA, Mitra A. 2017. Mixotrophy in the Marine Plankton. *Ann Rev*
711 *Mar Sci* 9:311–335.

712 50. Berninger U-G, Caron DA, Sanders RW. 1992. Mixotrophic algae in three ice-covered lakes of the
713 Pocono Mountains, U.S.A. *Freshw Biol* 28:263–272.

714 51. Hitchman RB, Jones HLJ. 2000. The role of mixotrophic protists in the population dynamics of the
715 microbial food web in a small artificial pond. *Freshw Biol* 43:231–241.

716 52. Huot Y, Brown CA, Potvin G, Antoniades D, Baulch HM, Beisner BE, Bélanger S, Brazeau S,
717 Cabana H, Cardille JA, del Giorgio PA, Gregory-Eaves I, Fortin M-J, Lang AS, Laurion I,
718 Maranger R, Prairie YT, Rusak JA, Segura PA, Siron R, Smol JP, Vinebrooke RD, Walsh DA.
719 2019. The NSERC Canadian Lake Pulse Network: A national assessment of lake health providing
720 science for water management in a changing climate. *Sci Total Environ* 695:133668.

721 53. Minns CK, Moore JE, Shuter BJ, Mandrak NE. 2008. A preliminary national analysis of some key
722 characteristics of Canadian lakes. *Can J Fish Aquat Sci* 65:1763–1778.

723 54. Giner CR, Pernice MC, Balagué V, Duarte CM, Gasol JM, Logares R, Massana R. 2020. Marked
724 changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. *ISME J*
725 14:437–449.

726 55. Ortiz-Álvarez R, Triadó-Margarit X, Camarero L, Casamayor EO, Catalan J. 2018. High
727 planktonic diversity in mountain lakes contains similar contributions of autotrophic, heterotrophic
728 and parasitic eukaryotic life forms. *Sci Rep* 8:4457.

729 56. Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, Chambouvet A, Christen R, Claverie
730 J-M, Decelle J, Dolan JR, Dunthorn M, Edvardsen B, Forn I, Forster D, Guillou L, Jaillon O,
731 Kooistra WHCF, Logares R, Mahé F, Not F, Ogata H, Pawlowski J, Pernice MC, Probert I, Romac
732 S, Richards T, Santini S, Shalchian-Tabrizi K, Siano R, Simon N, Stoeck T, Vaultot D, Zingone A,
733 de Vargas C. 2015. Marine protist diversity in European coastal waters and sediments as
734 revealed by high-throughput sequencing. *Environ Microbiol* 17:4035–4049.

735 57. Parfrey LW, Walters WA, Lauber CL, Clemente JC, Berg-Lyons D, Teiling C, Kodira C, Mohiuddin
736 M, Brunelle J, Driscoll M, Fierer N, Gilbert JA, Knight R. 2014. Communities of microbial
737 eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. *Front
738 Microbiol* 5:298.

739 58. Debroas D, Domaizon I, Humbert J-FF, Jardillier L, Lepère C, Oudart A, Taïb N, Lepère C,
740 Oudart A, Taib N. 2017. Overview of freshwater microbial eukaryotes diversity: a first analysis of
741 publicly available metabarcoding data. *FEMS Microbiol Ecol* 93:fix023.

742 59. Grujicic V, Nuy JK, Salcher MM, Shabarova T, Kasalicky V, Boenigk J, Jensen M, Simek K. 2018.
743 Cryptophyta as major bacterivores in freshwater summer plankton. *ISME J* 12:1668–1681.

744 60. Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, Coelho LP, Endo H, Gasol
745 JM, Gregory AC, Mahé F, Rigonato J, Royo-Llonch M, Salazar G, Sanz-Sáez I, Scalco E,
746 Soviadan D, Zayed AA, Zingone A, Labadie K, Ferland J, Marec C, Kandels S, Picheral M, Dimier
747 C, Poulain J, Pisarev S, Carmichael M, Pesant S, Acinas SG, Babin M, Bork P, Boss E, Bowler C,
748 Cochrane G, de Vargas C, Follows M, Gorsky G, Grimsley N, Guidi L, Hingamp P, Iudicone D,

749 Jaillon O, Karp-Boss L, Karsenti E, Not F, Ogata H, Poulton N, Raes J, Sardet C, Speich S,
750 Stemmann L, Sullivan MB, Sunagawa S, Wincker P, Pelletier E, Bopp L, Lombard F, Zinger L.
751 2019. Global trends in marine plankton diversity across kingdoms of life. *Cell* 179:1084–1097.

752 61. Martin SL, Soranno PA. 2006. Lake landscape position: Relationships to hydrologic connectivity
753 and landscape features. *Limnol Oceanogr* 51:801–814.

754 62. Paquette C, Gregory-Eaves I, Beisner BE. 2021. Multi-scale biodiversity analyses identify the
755 importance of continental watersheds in shaping lake zooplankton biogeography. *J Biogeogr*
756 48:2298–2311.

757 63. Jaworski GHM, Talling JF, Heaney SI. 2003. Potassium dependence and phytoplankton ecology:
758 an experimental study. *Freshw Biol* 48:833–840.

759 64. Wilken S, Choi CJ, Worden AZ. 2020. Contrasting mixotrophic lifestyles reveal different ecological
760 niches in two closely related marine protists. *J Phycol* 56:52–67.

761 65. Katechakis A, Stibor H. 2006. The mixotroph *Ochromonas tuberculata* may invade and suppress
762 specialist phago- and phototroph plankton communities depending on nutrient conditions.
763 *Oecologia* 148:692–701.

764 66. Saad JF, Unrein F, Tribelli PM, López N, Izaguirre I. 2016. Influence of lake trophic conditions on
765 the dominant mixotrophic algal assemblages. *J Plankton Res* 38:818–829.

766 67. Wilken S, Soares M, Urrutia-Cordero P, Ratcovich J, Ekwall MK, Van Donk E, Hansson L-A. 2018.
767 Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake
768 warming and browning. *Limnol Oceanogr* 63:S142–S155.

769 68. Fischer R, Giebel H-A, Hillebrand H, Ptacnik R. 2017. Importance of mixotrophic bacterivory can
770 be predicted by light and loss rates. *Oikos* 126:713–722.

771 69. Hansson TH, Grossart H, Giorgio PA, St-Gelais NF, Beisner BE. 2019. Environmental drivers of
772 mixotrophs in boreal lakes. *Limnol Oceanogr* 64:1688–1705.

773 70. Schindler DW, Armstrong FAJ, Holmgren SK, Brunskill GJ. 1971. Eutrophication of Lake 227,
774 Experimental Lakes Area, Northwestern Ontario, by Addition of Phosphate and Nitrate. *J Fish
775 Res Board Canada* 28:1763–1782.

776 71. Liang Z, Soranno PA, Wagner T. 2020. The role of phosphorus and nitrogen on chlorophyll a:
777 Evidence from hundreds of lakes. *Water Res* 185:116236.

778 72. MacKeigan PW, Garner RE, Monchamp M-È, Walsh DA, Onana VE, Kraemer SA, Pick FR,
779 Beisner BE, Agbeti MD, da Costa NB, Shapiro BJ, Gregory-Eaves I. 2022. Comparing
780 microscopy and DNA metabarcoding techniques for identifying cyanobacteria assemblages
781 across hundreds of lakes. *Harmful Algae* 113:102187.

782 73. Maloufi S, Catherine A, Mouillot D, Louvard C, Couté A, Bernard C, Troussellier M. 2016.
783 Environmental heterogeneity among lakes promotes hyper β -diversity across phytoplankton
784 communities. *Freshw Biol* 61:633–645.

785 74. Monchamp M-E, Spaak P, Domaizon I, Dubois N, Bouffard D, Pomati F. 2018. Homogenization of
786 lake cyanobacterial communities over a century of climate change and eutrophication. *Nat Ecol
787 Evol* 2:317–324.

788 75. Aguilar P, Sommaruga R. 2020. The balance between deterministic and stochastic processes in
789 structuring lake bacterioplankton community over time. *Mol Ecol* 29:3117–3130.

790 76. Baud A, Jenny J-P, Francus P, Gregory-Eaves I. 2021. Global acceleration of lake sediment
791 accumulation rates associated with recent human population growth and land-use changes. *J
792 Paleolimnol* 66:453–467.

793 77. Mitchell P, Prepas EE (eds). 1990. *Atlas of Alberta Lakes*. University of Alberta Press, Edmonton,
794 AB.

795 78. Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F, Sievers C, Magurran AE. 2014.
796 Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss. *Science*
797 344:296–299.

798 79. Dillon PJ, Jeffries DS, Snyder W, Reid R, Yan ND, Evans D, Moss J, Scheider WA. 1978. Acidic
799 Precipitation in South-Central Ontario: Recent Observations. *J Fish Res Board Canada* 35:809–
800 815.

801 80. Delgado A, Gómez JA. 2016. The Soil. Physical, Chemical and Biological Properties, p 15–26. *In*
802 Villalobos, FJ, Fereres, E (eds), *Principles of Agronomy for Sustainable Agriculture*. Springer
803 International Publishing, Cham.

804 81. Fierer N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome.
805 Nat Rev Microbiol 15:579–590.

806 82. Nearing MA, Pruski FF, O’Neal MR. 2004. Expected climate change impacts on soil erosion
807 rates: A review. J Soil Water Conserv 59:43–50.

808 83. Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, Andersen HE, Lauridsen TL,
809 Liboriussen L, Beklioglu M, Özen A, Olesen JE. 2009. Climate Change Effects on Runoff,
810 Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations. J Environ
811 Qual 38:1930–1941.

812 84. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily
813 GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA,
814 Prentice IC, Ramankutty N, Snyder PK. 2005. Global Consequences of Land Use. Science
815 309:570–574.

816 85. Barak P, Jobe BO, Krueger AR, Peterson LA, Laird DA. 1997. Effects of long-term soil
817 acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil 197:61–69.

818 86. Ontl TA, Schulte LA. 2012. Soil Carbon Storage. Nat Educ Knowl 3:35.

819 87. Kaushal SS, Mayer PM, Vidon PG, Smith RM, Pennino MJ, Newcomer TA, Duan S, Welty C, Belt
820 KT. 2014. Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a
821 review with management implications. J Am Water Resour Assoc 50:585–614.

822 88. Oliva A, Garner RE, Walsh D, Huot Y. 2022. The occurrence of potentially pathogenic fungi and
823 protists in Canadian lakes predicted using geometrics, *in situ* and satellite-derived variables:
824 Towards a tele-epidemiological approach. Water Res 209:117935.

825 89. Wiken EB, Gauthier D, Marshall I, Lawton K, Hirvonen H. 1996. A Perspective on Canada’s
826 Ecosystems: An Overview of the Terrestrial and Marine Ecozones. In Canadian Council on
827 Ecological Areas Occasional Papers. Ottawa, ON.

828 90. NSERC Canadian Lake Pulse Network. 2021. NSERC Canadian Lake Pulse Network field
829 manual 2017 - 2018 - 2019 surveys. Varin MP, Beaulieu ML, Huot Y (eds). Université de
830 Sherbrooke.

831 91. Gast RJ, Dennett MR, Caron DA. 2004. Characterization of Protistan Assemblages in the Ross
832 Sea, Antarctica, by Denaturing Gradient Gel Electrophoresis. *Appl Environ Microbiol* 70:2028–
833 2037.

834 92. Van de Peer Y. 2000. The European Small Subunit Ribosomal RNA database. *Nucleic Acids Res*
835 28:175–176.

836 93. Capo E, Debroas D, Arnaud F, Guillemot T, Bichet V, Millet L, Gauthier E, Massa C, Develle AL,
837 Pignol C, Lejzerowicz F, Domaizon I. 2016. Long-term dynamics in microbial eukaryotes
838 communities: a palaeolimnological view based on sedimentary DNA. *Mol Ecol* 25:5925–5943.

839 94. Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
840 *EMBnet.journal* 17:10–12.

841 95. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: High-
842 resolution sample inference from Illumina amplicon data. *Nat Methods* 13:581–583.

843 96. Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C,
844 Decelle J, del Campo J, Dolan JR, Dunthorn M, Edvardsen B, Holzmann M, Kooistra WHCF, Lara
845 E, Le Bescot N, Logares R, Mahé F, Massana R, Montresor M, Morard R, Not F, Pawlowski J,
846 Probert I, Sauvadet A-L, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R. 2012. The
847 Protist Ribosomal Reference database (PR²): a catalog of unicellular eukaryote Small Sub-Unit
848 rRNA sequences with curated taxonomy. *Nucleic Acids Res* 41:D597–D604.

849 97. Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment,
850 interactive sequence choice and visualization. *Brief Bioinform* 20:1160–1166.

851 98. Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW,
852 Burki F, Cárdenas P, Čepička I, Chistyakova L, Campo J, Dunthorn M, Edvardsen B, Eglit Y,
853 Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E,
854 Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell
855 EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L,
856 Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q. 2019. Revisions to the
857 Classification, Nomenclature, and Diversity of Eukaryotes. *J Eukaryot Microbiol* 66:4–119.

858 99. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009.

859 BLAST+: architecture and applications. *BMC Bioinformatics* 10:421.

860 100. Canadian Council of Ministers of the Environment. 2004. Canadian water quality guidelines for

861 the protection of aquatic life: Phosphorus: Canadian Guidance Framework for the Management of

862 Freshwater Systems. *In* Canadian environmental quality guidelines. Winnipeg, MB.

863 101. Muñoz Sabater J. 2019. ERA5-Land hourly data from 1981 to present. Copernicus Climate

864 Change Service (C3S) Climate Data Store (CDS).

865 102. Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A,

866 Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan

867 RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B. 2017. SoilGrids250m:

868 Global gridded soil information based on machine learning. *PLoS One* 12:e0169748.

869 103. Becker RA, Wilks AR, Brownrigg R, Minka TP, Deckmyn A. 2018. maps: Draw geographical

870 maps. CRAN.

871 104. Pruesse E, Peplies J, Glöckner FO. 2012. SINA: Accurate high-throughput multiple sequence

872 alignment of ribosomal RNA genes. *Bioinformatics* 28:1823–1829.

873 105. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012.

874 The SILVA ribosomal RNA gene database project: improved data processing and web-based

875 tools. *Nucleic Acids Res* 41:D590–D596.

876 106. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 – Approximately Maximum-Likelihood Trees for

877 Large Alignments. *PLoS One* 5:e9490.

878 107. Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, Collman RG, Bushman FD, Li H.

879 2012. Associating microbiome composition with environmental covariates using generalized

880 UniFrac distances. *Bioinformatics* 28:2106–2113.

881 108. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, Hara RBO, Simpson GL, Solymos P,

882 Stevens MHH, Wagner H. 2020. vegan: Community ecology package. CRAN.

883 109. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb

884 CO. 2010. Picante: R tools for integrating phylogenies and ecology. *Bioinformatics* 26:1463–

885 1464.

886 110. Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G,
887 Legendre P, Madi N, Wagner HH. 2021. adespatial: Multivariate multiscale spatial analysis.
888 CRAN.

889 111. Lê S, Josse J, Husson F. 2008. FactoMineR: An R Package for Multivariate Analysis. *J Stat Softw*
890 25:253–258.

891 112. Ferrier S, Manion G, Elith J, Richardson K. 2007. Using generalized dissimilarity modelling to
892 analyse and predict patterns of beta diversity in regional biodiversity assessment. *Divers Distrib*
893 13:252–264.

894 113. Rosauer DF, Ferrier S, Williams KJ, Manion G, Keogh JS, Laffan SW. 2014. Phylogenetic
895 generalised dissimilarity modelling: a new approach to analysing and predicting spatial turnover in
896 the phylogenetic composition of communities. *Ecography* 37:21–32.

897 114. Matthew C. Fitzpatrick, Mokany K, Manion G, Lisk M, Ferrier S, Nieto-Lugilde D. 2021. gdm:
898 Generalized dissimilarity modeling. CRAN.

899 115. R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for
900 Statistical Computing, Vienna, Austria.

901

902 **Figure legends**

903 **Figure 1.** Diversity and distributions of protists across 366 Canadian lakes. Lake trophic states and
904 ecozones are shown on the map of sampling sites as coloured circles and polygons, respectively. The
905 relative sequence abundance of protist taxonomic divisions in each lake is represented in the inner tract
906 of bar plots. The middle tract of bar plots shows the relative sequence abundance of trophic modes. The
907 heatmap on the outer edge illustrates the proportions of land use and land cover associated with the
908 watershed of each lake, whose trophic state is represented in an adjacent coloured circle. Watershed
909 land use proportions are hierarchically clustered to highlight the relationship between agriculture and
910 trophic state.

911 **Figure 2.** Accumulation and incidence of genotypes across lakes. A) Accumulation curve of genotypes in
912 a random ordering of lakes. Vertical bars are standard deviations. The accumulation of new genotypes
913 was rapid in the first ~100 lakes, followed by a gradual deceleration. B) Incidence of genotypes across

914 lakes. Most taxa are distributed across one or a few lakes, whereas a few taxa (magnified in inset plot)
915 are widely distributed. ASV taxonomic classifications are coloured according to the taxonomic divisions in
916 the legend of Figure 1.

917 **Figure 3.** Local protist diversity of each lake. A) Rarefied Shannon diversity index calculated for each
918 protist assemblage across the Canadian landscape. Ecozones are identified in the map legend of Figure
919 1. B) Local diversity metrics categorized by lake trophic state. TP concentration thresholds and sample
920 sizes of lakes categorized under each trophic state are: ultraoligotrophic (TP <4 µg/L; n = 4), oligotrophic
921 (4 – 10 µg/L; n = 48), mesotrophic (10 – 20 µg/L; n = 132), mesoeutrophic (20 – 35 µg/L; n = 71),
922 eutrophic (35 – 100 µg/L; n = 61), and hypereutrophic (>100 µg/L; n = 50).

923 **Figure 4.** Taxonomic and phylogenetic variation of protist assemblages among lakes. A) PCA of the
924 taxonomic variation among protist assemblages at the level of individual ASVs. The relative contributions
925 and taxonomic assignments are shown for the top 7 ASVs (an arbitrary cut-off selected for illustrative
926 clarity) contributing to the variation explained by the first two PC dimensions. B) PCoA of the phylogenetic
927 variation among protist assemblages. Ecozones and trophic state classifications of lakes are represented
928 by letter symbols and colours, respectively.

929 **Figure 5.** Local contribution to β -diversity (LCBD) of protist assemblages across the Canadian landscape.
930 LCBD describes the taxonomic uniqueness of a given assemblage, i.e. how much the taxonomic
931 composition differs from the rest of the communities in the landscape. Ecozones are identified in the map
932 legend of Figure 1.

933 **Figure 6.** PCAs of the taxonomic variation among (A) phototroph, (B) heterotroph, and (C) mixotroph
934 assemblages at the level of individual ASVs. The relative contributions and taxonomic assignments are
935 shown for the top 7 ASVs contributing to the variation explained by the first two PC dimensions. Ecozone
936 affiliations and trophic state classifications of lakes are represented by letter symbols and colours,
937 respectively.

938

939 **Tables**

940 **Table 1.** Percent deviance explained by GDMs. GDMs were constructed using various community
941 response data and categories of environmental explanatory variables. Models that were not statistically

942 significant ($p \geq 0.05$) are denoted by NS. *Analysis was performed only on taxonomic composition
943 response data.

Explanatory variables	All protists		Trophic mode*		
	Taxonomy	Phylogeny	Phototrophs	Heterotrophs	Mixotrophs
Physicochemistry	38	33	35	42	18
Watershed	15	16	20	19	NS
Morphometry	6	8	5	NS	NS
Weather	NS	NS	NS	3	NS
Geography	NS	NS	NS	2	NS

944

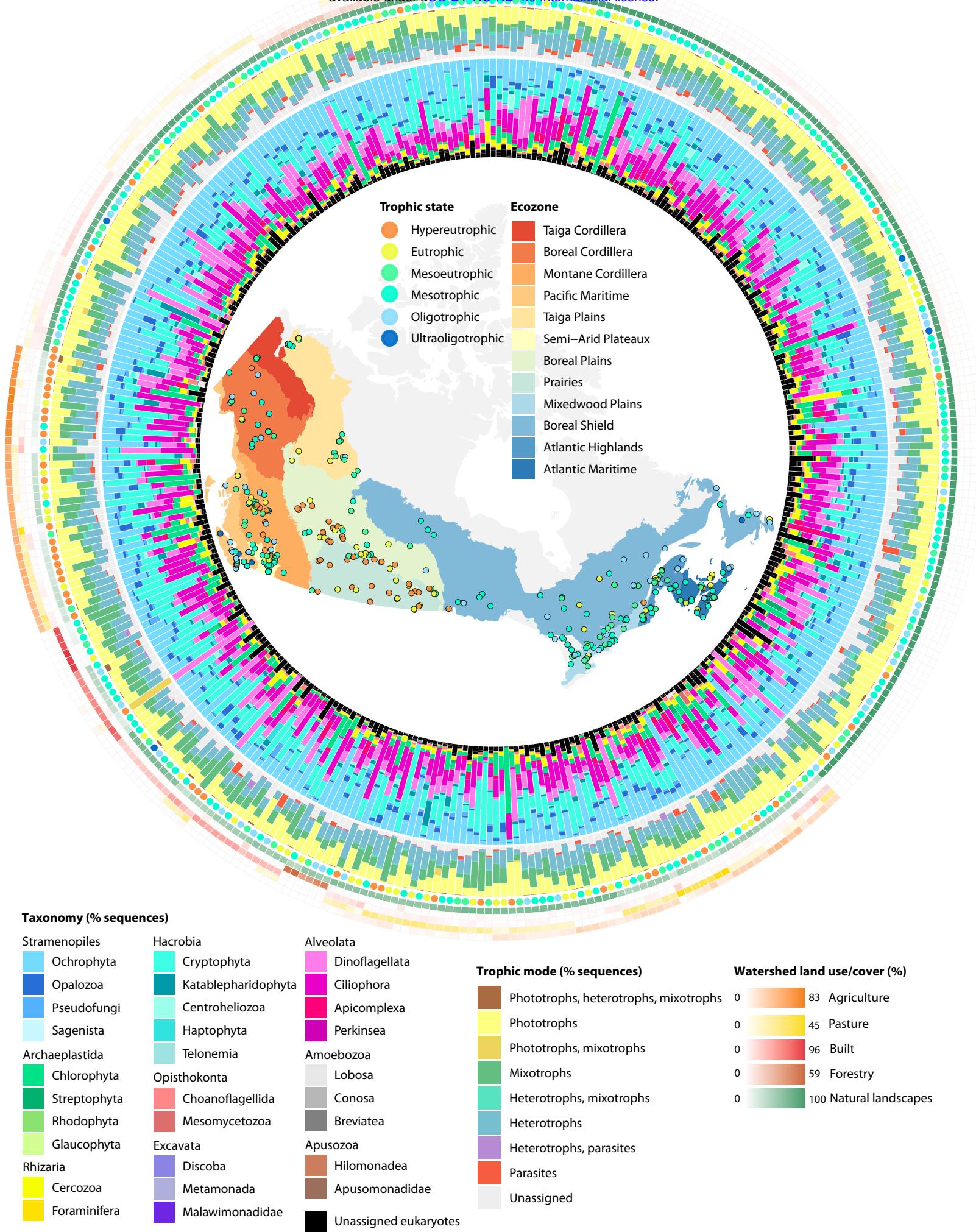
945 **Supplemental materials**

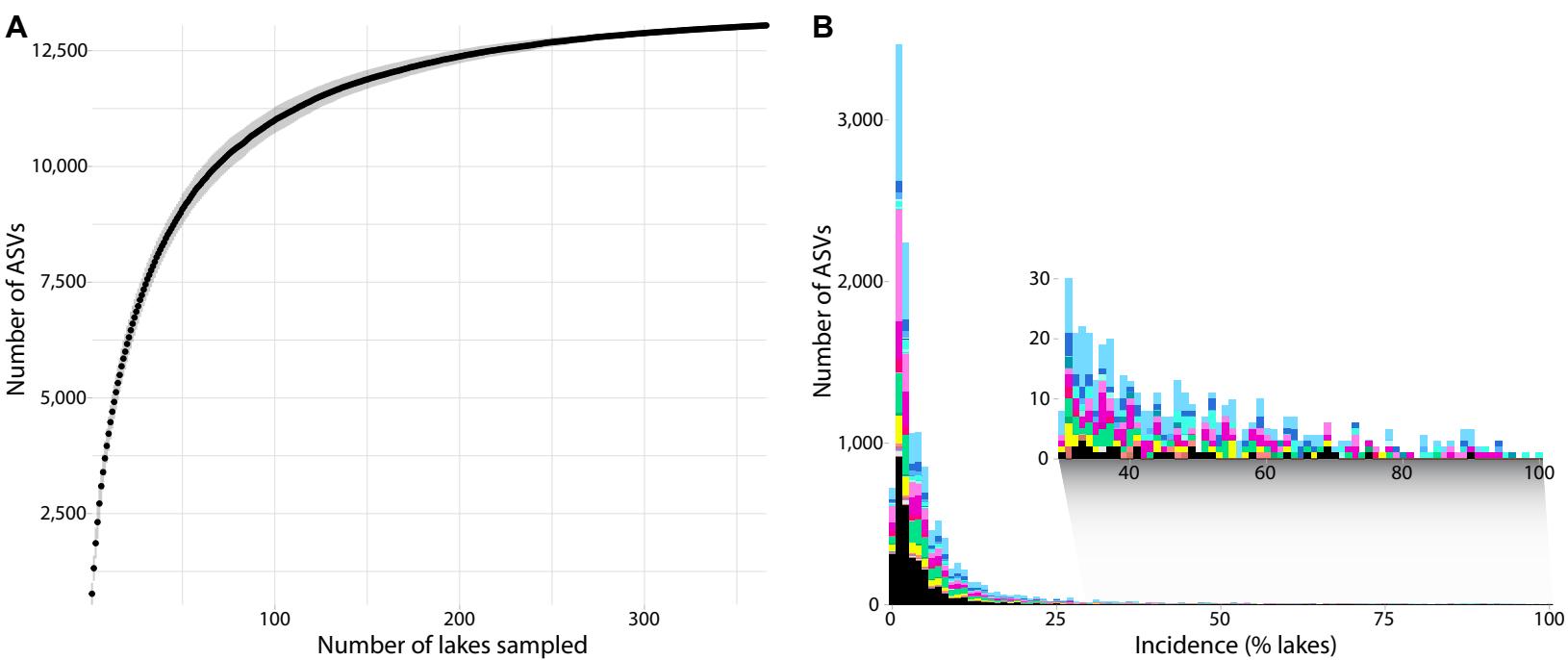
946 **Figure S1.** Distributions of A) geography, B) lake morphometry, C) watershed, D) weather, and E)
947 physicochemical variables by ecozone. Dashed lines denote ecozone medians.

948 **Figure S2.** Principal component analysis of sites based on lake and watershed environmental
949 characteristics.

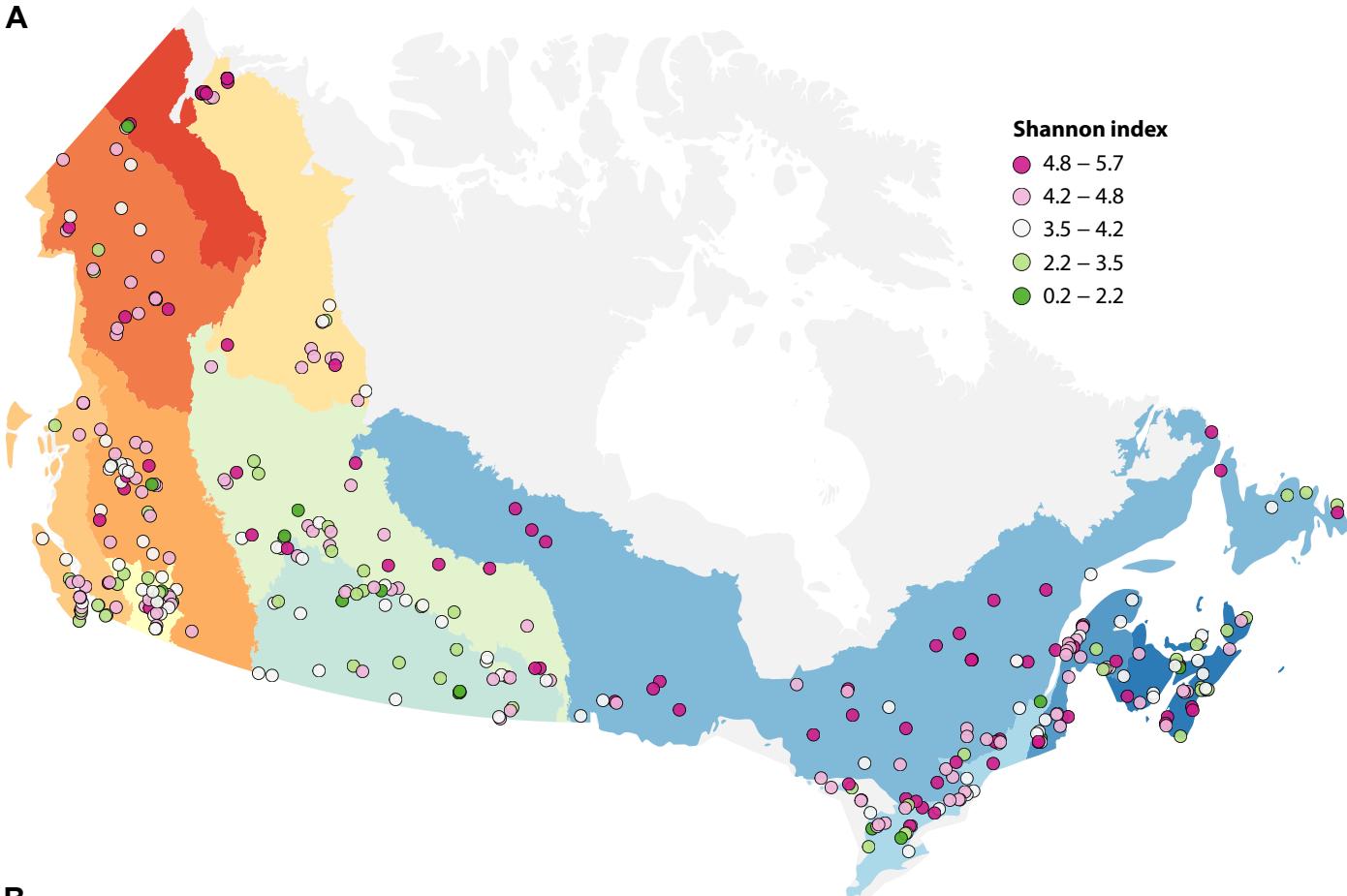
950 **Figure S3.** Rarefaction curve showing the number of ASVs detected as a function of sample size across
951 all sites.

952 **Figure S4.** Sequence similarities of ASVs to known 18S rRNA gene V7 region diversity. A) Frequency of
953 ASVs as a function of sequence identity with the top hit reference in PR². B) Number of sequences
954 associated with the sequence identities of top hits. Bar colours represent the division-rank taxonomic
955 assignment top hit references in PR².

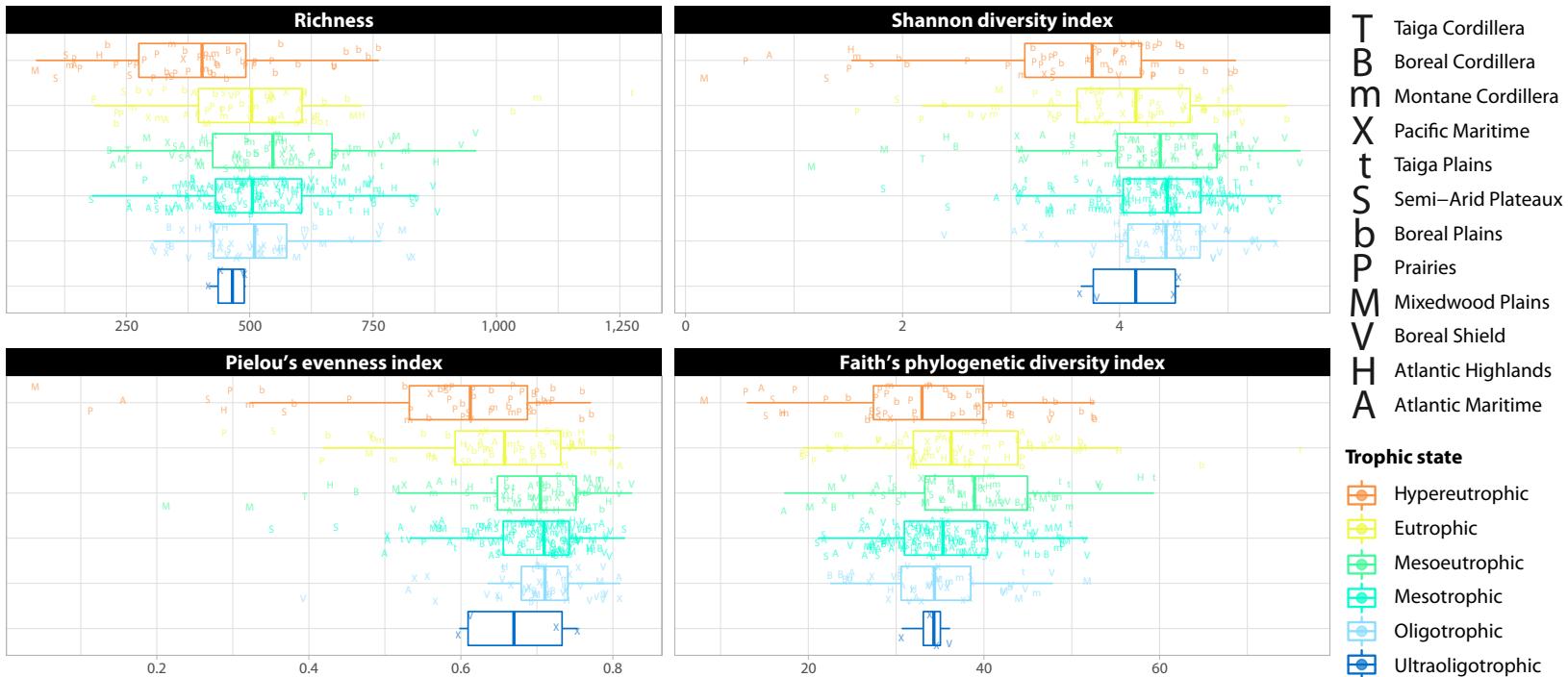

956 **Figure S5.** Map of rarefied ASV richness.

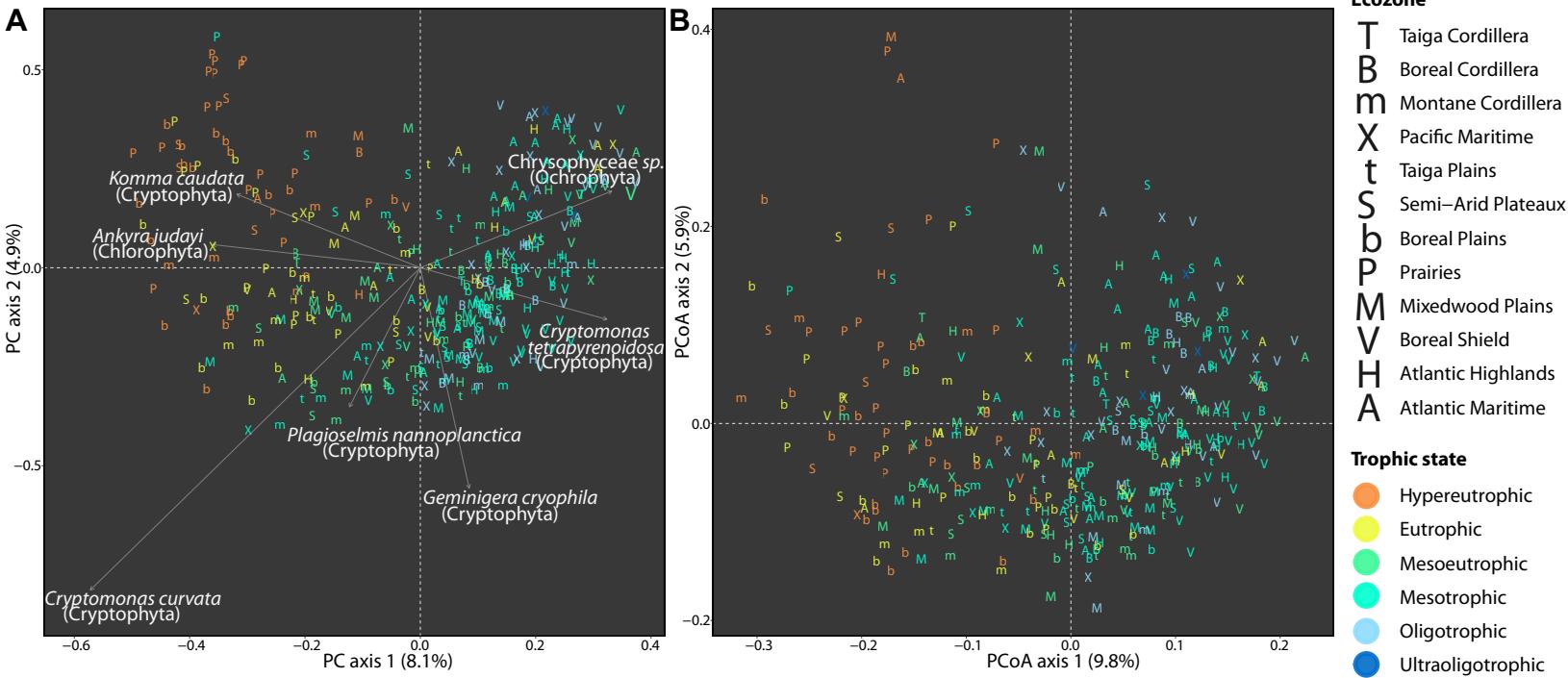

957 **Figure S6.** Partial effects of A) physicochemical, B) watershed, and C) lake morphometry variables on the
958 taxonomic and phylogenetic turnover of protist assemblages. Points along the x-axis denote the
959 distribution of explanatory variables and are coloured according to lake trophic state (see map legend in
960 Figure 1).

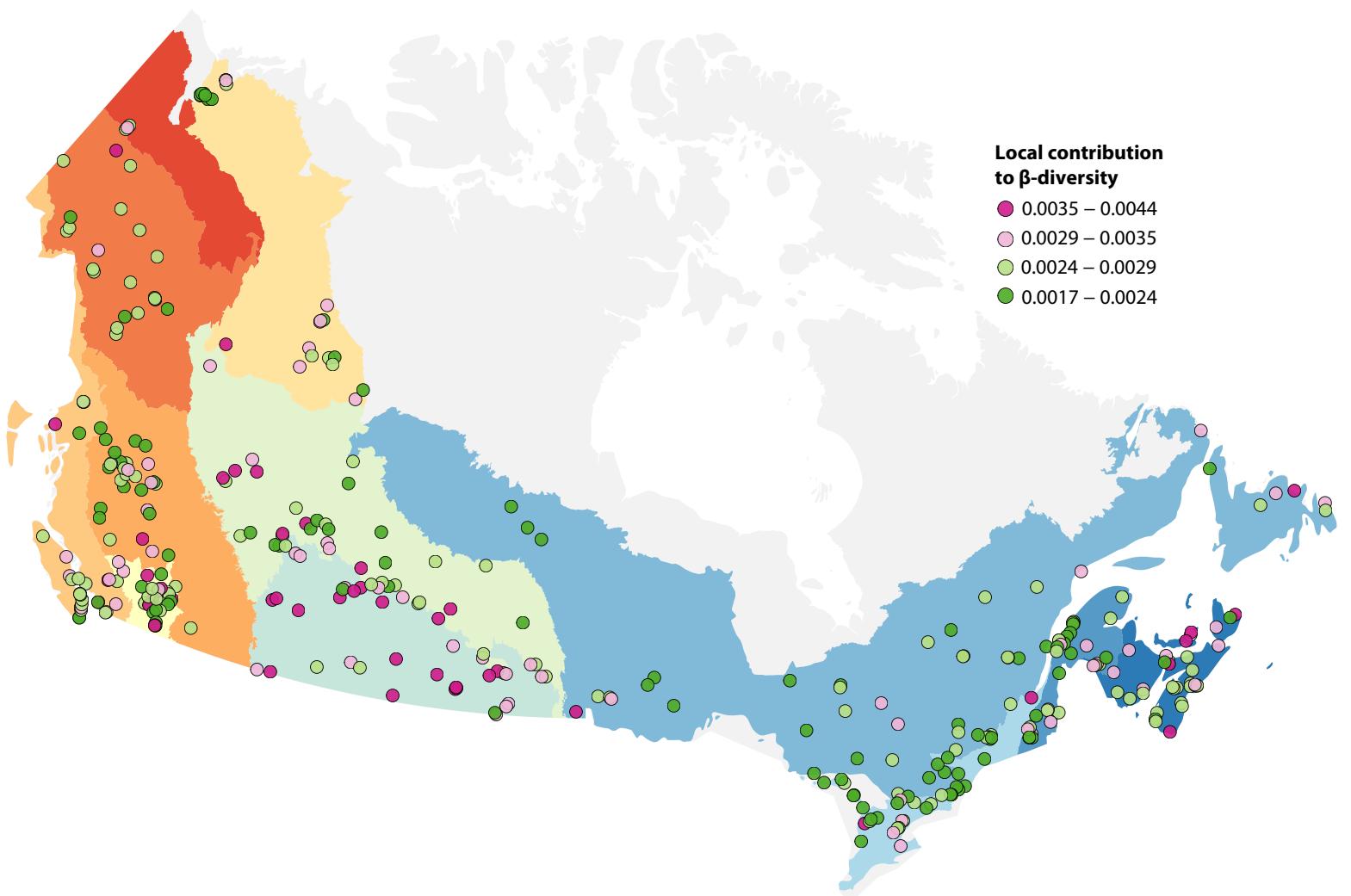
961 **Figure S7.** Phototroph, heterotroph, and mixotroph assemblage distances from trophic state centroids.

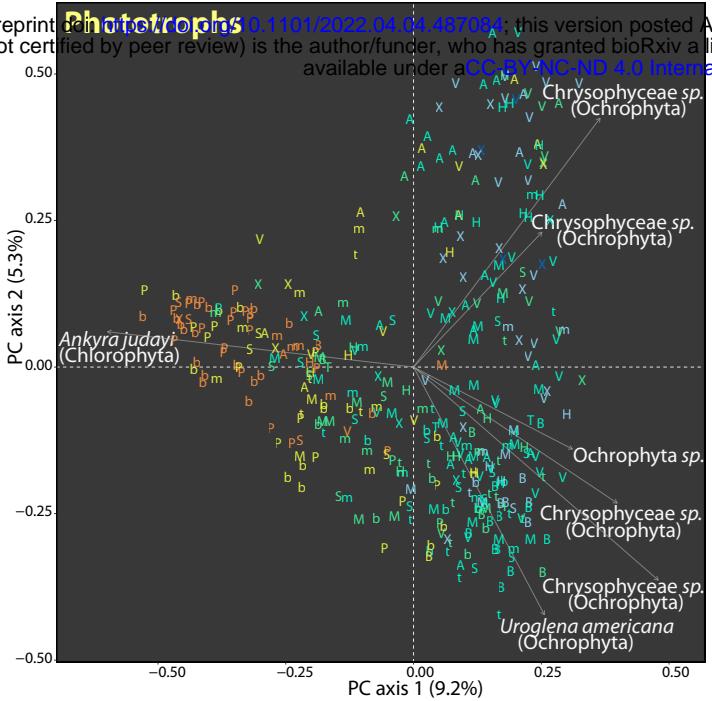

962 **Figure S8.** Partial effects of A) physicochemical, B) watershed, C) lake morphometry, D) weather, and E)

963 geography variables on the taxonomic turnover of phototroph, heterotroph, and mixotroph assemblages.
964 Points along the x-axis denote the distribution of explanatory variables and are coloured according to lake
965 trophic state (see map legend in Figure 1).
966 **Table S1.** ASV taxonomic and trophic functional annotations.
967 **Table S2.** Explanatory variables and relative importance of individual predictors in GDMs. Partial effects
968 (i.e. relative importance) of individual predictors within models (parenthesized and presented in
969 descending order of variable importance) were determined as the sum of I-spline coefficients equaling the
970 magnitude of turnover. Non-significant models are denoted NS. *For models of turnover in trophic mode
971 assemblages, analysis was performed only on taxonomic composition response data.






A



B

