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Abstract 20 

Climate change is rearranging the mosaic of biodiversity on our planet. These broad-21 

scale species re-distributions will affect the structure of communities across multiple 22 

biodiversity facets (taxonomic, phylogenetic, and functional diversity). The current 23 

challenges to understand such effects involve focusing on organisms other than 24 

vertebrates and considering the signature of species redistribution on phylogenetic and 25 

functional diversity in addition to species composition. Using European dragonflies and 26 

damselflies (Odonata), we asked: i) how climate change will redefine taxonomic, 27 

phylogenetic, and functional diversity at continental scales; ii) which traits will mediate 28 

species' response to global change; and iii) whether this response will be conserved 29 

across the phylogeny.  First, we constructed stacked species distribution models for 107 30 

species of Odonata under current and future climate conditions. Then, we quantified the 31 

temporal variation of taxonomic, functional and phylogenetic components, forecasting 32 

alpha and beta diversity changes through our geographical grid. Lastly, we used 33 

phylogenetic comparative models to test the influence of phylogeny and traits on range 34 

shifts. We observed broad latitudinal and altitudinal rearrangements in community 35 

composition driven by climate change. Given the high dispersal ability of Odonata, 36 

changes are predicted to be rapid, especially in areas experiencing faster climate change 37 

rates. According to our predictions, changes in species composition cascade to affect 38 

functional and phylogenetic diversity, determining broad turnovers in traits and 39 

evolutionary lineages. There was no clear phylogenetic signal in the range-shift 40 

response of European Odonata to climate change. According to our phylogenetic 41 

regression models, only body size and flight period can be partly correlated with 42 

observed range shifts. By considering all three primary facets of biodiversity, our results 43 

support the design of inclusive management and conservation strategies, accounting not 44 

only for the diversity of species, but also the services they provide and the phylogenetic 45 

heritage they carry in a targeted ecosystem. 46 

Keywords 47 

Ecological Niche Modelling, MaxEnt, Odonata, taxonomic diversity, functional diversity, 48 

phylogenetic diversity, freshwater, staked species distribution model.  49 
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Introduction 50 

Recent climate change is driving the reshuffling of the biodiversity patchwork on 51 

the Earth (Pecl el al., 2017). Upon those abrupt global changes, few species can survive 52 

in situ by adapting to the novel environmental conditions, whereas many more are 53 

forced to shift their ranges tracking their eco-physiological optima for growth and 54 

survival (Bellard et al., 2012; Diamond, 2018). Never before a single human generation 55 

witnessed such a rapid and massive biological migration induced by the increase of 56 

temperature, with terrestrial species rising towards higher latitudes and elevations and 57 

marine life sinking at greater depths (Perry et al., 2005; Chen et al., 2011; Lenoir et al., 58 

2020). Inevitably, these rapid readjustments in species ranges are leaving a 59 

considerable imprint on the structure of local communities, which has cascading effects 60 

on ecosystem functioning and the provisioning of nature’s contribution to human 61 

societies (Nelson et al., 2013; Prather et al., 2013). The ecological and economic impacts 62 

of these changes will be unprecedented (Ripple et al., 2021). 63 

Climate changes will lead to cumulative non-linear responses in the biological 64 

assemblages, which are expected to permeate through all biodiversity facets. This is 65 

because as climate changes, so does the distribution of certain species, with a ripple 66 

effect on species richness, trait composition, and evolutionary heritage of local 67 

communities (Saladin et al., 2020; Gallagher et al., 2013; Stewart et al., 2022). Therefore, 68 

the impact of climate change can be quantified by looking at predicted changes in the 69 

number of species that are present in an ecosystem (hereinafter “taxonomic diversity”), 70 

as well as in the diversity of function (“functional diversity”) and evolutionary lineages 71 

(“phylogenetic diversity”) represented therein. As approximative as the approach might 72 

be, a quantification of the rearrangement of these metrics is paramount to understand 73 

causally the mechanisms that drive the evolution of biodiversity across its multiple 74 

facets. Given that taxonomic, functional, and phylogenetic biodiversity are linked with 75 

ecosystem functioning and stability, ecologists and conservation biologists are 76 

increasingly considering these three facets when designing conservation plans (Pollock 77 

et al., 2020).  78 

Historically, ecologists to assess the potential effects of environmental 79 

constraints on the biological communities have focused mostly on the variation of alpha 80 

diversity, which summarises the structure of a biological community as the total 81 
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richness of taxa, traits, and evolutionary history, but does not incorporate information 82 

about their identity (Mammola et al., 2021a; Tucker et al., 2017; Pavoine & Bonsall, 83 

2011; Petchey & Gaston, 2002). This may be problematic. Even if experimental studies 84 

have matched higher alpha diversity with greater resilience to perturbations, the lack of 85 

information on community composition prevents causal understanding of the 86 

mechanisms that may regulate this relationship insofar as the identity of the 87 

interplaying elements is lost (Wang & Loreau, 2014). Conversely, this information is 88 

retained in the calculation of beta diversity, which traces the individual elements that 89 

change across biological communities. To better understand these mechanisms, beta 90 

diversity can further be decomposed into its replacement and richness components 91 

(sensu Cardoso et al., 2014). In particular, the replacement component measures 92 

turnover between species across two sample units as a consequence of abiotic or 93 

dispersal processes (Fontana et al., 2020); whereas the richness component (sensu 94 

Cardoso et al., 2014) measures the gain or loss of species due to colonisation and 95 

extinction events (Fontana et al., 2020). 96 

Here, we described the spatio-temporal effect produced by the shift of habitat 97 

suitability induced by climate changes on three biodiversity facets, incorporating both 98 

alpha and beta diversity metrics. We chose dragonflies and damselflies (Odonata) 99 

because they are well-established model organisms to address general macroecological 100 

questions in global change biology (Hassall, 2015; Grewe et al., 2013) and thermal 101 

physiology (Moore et al., 2021), being even regarded as “barometers” for climate change 102 

(Hassall, 2015). First, we modelled how global warming will affect the habitat suitability 103 

of each European species of Odonata. Next, we evaluated how the predicted changes in 104 

species habitat suitability will influence the Odonata communities in space, 105 

approximated using taxonomic, phylogenetic, and functional diversity. Finally, we used 106 

the predicted range shift to assess whether the response of Odonata to climate change is 107 

driven mainly by their evolutionary history or by distinctive biological and ecological 108 

traits. Under the assumption that Odonata species will track their ecological optima 109 

with dispersal, we expect to observe species redistributing poleward along the 110 

latitudinal gradient and upward along the altitudinal gradient. Furthermore, we predict 111 

that changes in community composition will permeate phylogenetic and functional 112 

components, such that alpha diversity will increase in areas with more conservative 113 

climates. In contrast, we predict that beta diversity change will be greater in areas 114 

experiencing faster climate change rates, especially so in the beta richness component 115 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.04.04.486993doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.04.486993
http://creativecommons.org/licenses/by-nd/4.0/


 

given the high dispersal ability of Odonata. Lastly, we expect that the response of 116 

Odonata to climate change will also be explained by a shared evolutionary history, since 117 

phylogenetically related species may have similar patterns of distribution change and 118 

similar biological and ecological traits related to their dispersal ability. 119 

 120 

Materials and Methods 121 

1 Rationale 122 

To model species distribution, we used Species Distribution Models (SDMs), 123 

mainstream analytical tools in ecological and biogeographical research (Peterson et al., 124 

2011; Franklin, 2010; Guisan and Thuiller, 2005), including to predict arthropod 125 

distributions (Mammola et al., 2021b). In short, distribution modelling refers to the 126 

practice of using an algorithm to infer a relationship between the occurrences for a 127 

given species (e.g., georeferenced points) and environmental predictors (e.g., climatic 128 

variables, topographic parameters, habitat type), forecasting its potential distribution in 129 

space and/or time. Due to the easy implementation and the often accessible 130 

interpretation of results (but see Ryo et al., 2021), species distribution models are 131 

routinely used in disciplines as diverse as conservation planning (Guisan et al., 2013), 132 

habitat restoration (Adams et al., 2016), invasion biology (Ficetola et al., 2009; Wang et 133 

al., 2007), and climate change biology (Santini et al., 2021; Guyennon et al., 2022). 134 

As a model organism, we selected Odonata, an order of insects with tropical 135 

evolutionary origin (Pritchard and Leggott, 1987) and including species with 136 

contrasting thermal preferences. Odonata are well-established model organisms in 137 

ecology and behaviour (Clausnitzer et al., 2009; Córdoba-Aguilar, 2008; Corbet et al., 138 

1999), and have been successfully used for tracking climate change using species 139 

distribution models (Hassall, 2015). These insects have an amphibiotic life with benthic 140 

vagile larvae living in freshwater habitats, whereas the adults are excellent fliers with 141 

high dispersibility compared to other freshwater invertebrates (Troast et al., 2016). 142 
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2 Taxonomic checklist and assembly of distribution data 143 

We produced a complete checklist of all 169 European Odonata by merging the 144 

information of the “Atlas of the European dragonflies and damselflies” (Boudot and 145 

Kalkman, 2015) and the field guide "Dragonflies of Britain and Europe’’ (Dijkstra and 146 

Schröter, 2020) (Supplementary material S1). These are the most comprehensive 147 

references for European Odonata available today. We focused on the European 148 

continent because it has been intensively studied compared to other areas of the world 149 

(Titley et al., 2017). We excluded European Russia (including Kaliningrad) due to the 150 

scarcity of Odonata occurrences therein. We included Turkey to account for the entire 151 

arch of northern Mediterranean countries. 152 

We downloaded all georeferenced occurrences of Odonata available at the Global 153 

Biodiversity Information Facility (GBIF, 09 January 2021; DOI: 10.15468/dl.kvrqug). 154 

Despite its biases (Beck et al., 2014), GBIF remains one of the most extensive global 155 

biodiversity databases (Zizka et al., 2020). The coverage provided by GBIF (highest 156 

coverage in UK, France, the Netherlands, Austria and Germany; lowest in southern and 157 

eastern Europe) for Odonata is congruent with the current expert-based knowledge 158 

about European odonates (Grewe et al., 2013; Kalkman et al., 2018). 159 

We discarded data for fossil, non-European species, records before 1970, and 160 

occurrences falling outside the study area. We also removed duplicates and records 161 

with spatial uncertainty greater than the resolution of our predictor variables (~10 km; 162 

see section 4). We minimised the effects of uneven sampling effort via spatial thinning 163 

with the function reduceSpatialCorrelation from the pack SDMworkshop 164 

(https://github.com/BlasBenito/sdmflow), setting the minimum.distance parameter to 165 

1 (~10 km) to match the resolution of our predictors.  166 

3 Accessible area delimitation 167 

For each species, we calibrated models within an accessible area, namely the 168 

geographical space that an organism has hypothetically occupied across its evolutionary 169 

history (Barve et al., 2011). In multi-species analyses, when lacking detailed information 170 

on species biogeographic history and dispersal ability, the simplest way to limit the 171 

boundary of the accessible area is by constructing a continuous border where most of 172 
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the occurrences of a taxon are contained. For this, we used a Minimum Convex Polygon, 173 

the smallest area surrounding the points in which every internal angle does not exceed 174 

180° (Burgman & Fox, 2003). We estimated a conservative Minimum Convex Polygon 175 

for each species using the R function mcp from the package adehabitatHR version 0.4.19 176 

(Calenge, 2006), setting the percentage of outliers to be omitted at 1%. Finally, as a 177 

proxy of potential dispersal, we created an external buffer around each accessible area, 178 

weighting the distance with the flight period of each species [100 000distance in meters * 179 

(Flight period in months/10)], assuming that the flight ability across the species stays 180 

constant. 181 

4 Selection of environmental predictors 182 

We downloaded four variables from WorldClim 2 (Fick & Hijmans, 2017): 183 

monthly minimum and maximum temperature (°C), monthly precipitation (mm), and 184 

Digital Elevation Model (m a.s.l.). Current climatic data are the average for the period 185 

1970–2000. We retrieved the water bodies’ map from the FAO’s GeoNetwork data 186 

portal. We adjusted the resolution of the water bodies’ map to 5 minutes using the 187 

function resample from the R package raster version 3.5-2 setting ‘bilinear’ method 188 

(Hijmans, 2020). Starting from the three climate variables (min/max temperature and 189 

precipitation), we calculated 19 bioclimatic variables using the function biovars from 190 

the R package dismo version 1.3-3 (Hijmans, 2020) and 16 environmental variables 191 

using the function layerCreation from the package envirem version 2.3 (Title & 192 

Bemmels, 2018). More information about the latter variables can be retrieved at 193 

https://www.worldclim.org/data/bioclim.html and https://envirem.github.io. 194 

We visualise the multicollinearity effect amongst our 37 predictors variables (19 195 

bioclimatic, 16 environmental, elevation, water bodies) via pairwise Pearson’s r 196 

correlation and a dendrogram based on variables’ distance matrix (Dormann et al., 197 

2013). We extracted the final set of predictor variables at |r| < 0.5 (Mukaka, 2012) and 198 

then we removed variables with a Variance Inflation Factor (VIF) > 3 (Zuur et al., 2010). 199 

We downloaded the same predictors for three future climate scenarios (Global 200 

Circulation Models: BCC-CSM1; MIROC-ESM-CHEM; NorESM1-M) and two time periods, 201 

2050 (average for 2041–2060) and 2070 (average for 2061–2080). We chose a 202 

moderate Representative Concentration Pathway (RCP 4.5), namely a scenario that 203 
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accounts for the greenhouse emission according to the current green policies 204 

(Hausfather & Peters, 2020). We assumed elevation and water bodies to remain 205 

constant in the future.  206 

5 Modelling procedure 207 

To model the distribution, we selected one algorithm for each main family of 208 

modelling algorithms (regression, maximum entropy, and decision trees) (Mammola et 209 

al., 2019; Mammola et al., 2018). We opted for Generalized Additive Model (GAM; Hastie 210 

& Tibshirani, 2017), MaxEnt (Phillips et al., 2006; Phillips et al., 2004), and Boosted 211 

Regression Trees (BRT; Elith et al., 2008), respectively, given their high performance 212 

(Elith et al., 2006). Furthermore, we compared the performance of each individual 213 

algorithm with an ensemble model, computed with the function calc in the package 214 

raster, since the aggregation of forecasts of different models (ensemble model) may 215 

improve the prediction habitat suitability of a given species (Araújo & New, 2007; 216 

Grenouillet et al., 2011). Specific settings and parameters for each algorithm are 217 

available in Supplementary material S2. To discriminate the areas where each species 218 

was more likely to be absent, we contrasted the presence data against a set of 219 

background points generated within their buffered accessible area. The number of 220 

background points doubled the number of presences (Phillips et al., 2009).  221 

We evaluated the model performance using a holdout approach, whereby we 222 

used 75% of the occurrences of each species as a “train” dataset and the remaining 25% 223 

as “test” dataset to evaluate their predictive power. We calculated two performance 224 

metrics: Area Under the Receiver Operator Curve (AUC) and Boyce index (Hirzel et al., 225 

2006). The AUC values range from 0 to 1, with higher values indicating better model 226 

discrimination. Whereas this metric is problematic for determining the absolute 227 

performance ability of SDMs, it is acceptable to use it for relative comparisons across 228 

models fitted with the same data (Zhang et al., 2021). The Boyce index is considered one 229 

of the most appropriate model evaluation metrics when absence data are lacking (Hirzel 230 

et al., 2006), and thus we chose it as a proxy measure of absolute model performance. 231 

The continuous Boyce index varies from –1 to 1: values above zero indicate model 232 

predictions consistent with distribution data, values around zero indicate performance 233 

no better than random, and values below zero refer to incorrect model predictions 234 
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(Hirzel et al., 2006). We considered predictions with AUC < 0.7 and/or Boyce < 0.4 as 235 

low-quality performance.  236 

After their evaluation, we fitted a final model for each species with the complete 237 

set of occurrences and used it to project potential distribution ranges under current and 238 

future climates. We converted the continuous habitat suitability projections into binary 239 

maps by using a threshold maximising the sensitivity (True Positive Rate) and 240 

specificity (True Negative Rate) (Liu et al., 2005; Martín-Vélez & Abellán, 2022). We 241 

calculated both spatial (e.g., suitable range size, mean elevation, and centroid) and 242 

biodiversity measures (see the next paragraph for biodiversity measures) only on the 243 

binary maps obtained from the best-performing modelling method (Qiao et al., 2015). 244 

6 Estimation of taxonomic, functional, and phylogenetic diversity metrics 245 

We calculated three diversity metrics for the predicted community of Odonata 246 

occurring within a cell of each raster map. We first stacked SDM projection for all the 247 

analysed species. We estimated taxonomic diversity as the number of species predicted 248 

to occur in each cell. We calculated functional and phylogenetic diversity as the total 249 

branch length entailed by the species predicted to occupy each cell, based on a 250 

functional and phylogenetic tree (Faith, 1992; Petchey and Gaston, 2002, 2006; Cadotte 251 

et al., 2010; see next sections). We chose tree-based descriptors of relationships to 252 

make the formulation of functional and phylogenetic diversity more comparable 253 

(Mammola et al., 2021a). 254 

6.1. Estimation of the functional dendrogram 255 

We calculated the functional tree for European Odonata using six traits broadly 256 

related to dispersal and species response to climate change, namely: total body size 257 

(mm), abdomen length (mm), wings length (mm), abdomen pigmentation (in RGB), 258 

habitat (lentic or lotic), and flight season time (in months) (Table 1). We focused on the 259 

adult stage because they disperse at large spatial scales via morphological (e.g., wings) 260 

and behavioural (e.g., reversible polarotaxis, repulsion/attraction of polarised light; 261 

Mitchell, 2018). In contrast, larva might disperse as well, but its ability is limited to the 262 

aquatic environment. Therefore, we expect that immigration promoted by climate 263 

change will involve mainly adults. 264 
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We determined the abdomen pigmentation from three pictures of each species, 265 

preferably downloaded from Dragonflypix (http://www.dragonflypix.com/index.html). 266 

We clipped the image around the abdomen using the software Gimp (GIMP 267 

Development Team 2019) and extracted the RGB colorspace using the function 268 

getImageHist (colordistance version 1.1.2; Weller, 2020). We obtained the mean value of 269 

the abdomen colour for each species as the average of the two predominant colours on 270 

the three photos (data available at https://osf.io/swnu4/download). 271 

We calculated functional dendrograms (Petchey & Gaston 2002) with the hclust 272 

function in the R package stats version 4.1.0 (R Core Team 2020) and a Gower’s 273 

dissimilarity matrix constructed with the package gawdis version 0.1.3 (de Bello et al., 274 

2021). This function is an extension of the classical Gower’s distance that provides a 275 

solution to limit unequal traits contribution when different traits are combined in a 276 

multi-trait dissimilarity matrix (de Bello et al., 2021) (functional dendrogram: 277 

Supplementary material S3). The Gower's distance groups are reported in Table 1. 278 

 279 

6.2. Estimation of the phylogenetic tree 280 

We calculated phylogenetic diversity from a tree calculated with sequences 281 

available in GenBank for the analysed species. We retained the five molecular markers 282 

(16S rRNA gene; 18S rRNA gene; Cytochrome c oxidase subunit I, COI; Histone H3; 283 

NADH dehydrogenase subunit 1, NADH) with the highest taxonomic coverage. We 284 

aligned each marker separately using the E-INS-i algorithm implemented in MAFFT v.7 285 

(Katoh & Standley, 2013). We translated alignments of protein-coding genes into amino 286 

acids and checked them for indels and stop codons. When multiple sequences were 287 

available for the same species, we chose the one with the greatest quality and length. 288 

Our final alignment included a 1996 base pair for the 16S rRNA gene (number of aligned 289 

sequences 87), 1772 base pairs for the 18S rRNA gene (37), 658 base pairs for COI 290 

(101), 329 base pairs for H3 (17), and 340 base pairs for NADH (31). We concatenated 291 

gene fragments with SequenceMatrix (Vaidya et al., 2011) and selected the optimal 292 

partition scheme using the Akaike Information Criterion calculated in PartitionFinder 293 

(Lanfear et al., 2017). We calculated ultrametric phylogenetic trees using BEAST 2 294 

(Bouckaert et al., 2019), setting a relaxed molecular clock model for each partition and a 295 

Yule model for the estimation of the topology. Our four Markov Chain Monte Carlo were 296 
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allowed to run for 100 000 000 generations and sampled every 10 000 generations. The 297 

10% of initial trees were discarded. We used Tracer version 1.7.1 (Rambaut et al., 2018) 298 

to confirm the correct mixing of all the parameters and TreeAnnotator version 2.6.0 299 

(Bouckaert et al., 2019) to calculate the consensus tree (Supplementary material S4). 300 

  301 

6.3 Elaboration of the taxonomic, functional, and phylogenetic diversity maps 302 

 303 

We assembled taxonomic, functional, and phylogenetic diversity maps using 304 

modified versions of the functions alpha (temporalAlpha) and beta (temporalBeta) from 305 

the package BAT version 2.7.1 (Cardoso et al., 2021). First, we stacked the binary maps 306 

obtained from the best-performing SDMs models of each species. Then, we calculate 307 

alpha diversity across the three biodiversity facets for present and future stacked maps. 308 

We quantified variations in alpha diversity between present and future scenarios by 309 

subtracting the alpha diversity values in the future and the present. We calculated beta 310 

diversity in the same way, estimating replacement and richness components of beta 311 

diversity (Cardoso et al., 2014) for each cell comparing future and present communities. 312 

To calculate the alpha/beta functional and phylogenetic diversity, we used the 313 

functional or phylogenetic tree as an additional parameter into the functions. 314 

 315 

7 Testing for phylogenetic signal and trait influence on species response to 316 

climate change 317 

 318 

 We used phylogenetic comparative methods to examine the influence of 319 

phylogeny and traits on the responses of Odonata to climate change. We characterised 320 

the response to climate change of each species using three response variables: i) the 321 

proportional variation in habitat suitability, calculated as the ratio between future and 322 

current predicted area; ii) the altitudinal shift in the distribution, estimated as the 323 

difference between future and current mean altitude; and iii) the centroid shift in the 324 

distribution, measured as the linear distance between the position of future and current 325 

centroid. We used the function distGeo from the r package geosphere version 1.5-14 to 326 

estimate the centroid position.  327 

 328 
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We investigated whether closely related species experience similar responses to 329 

climate change using Pagel's λ and Blomberg's K, as implemented in the function 330 

phylosig from the R package phytools version 0.7-80 (Revell, 2012). Values close to 0 331 

indicate a weak phylogenetic signal, whereas values close to 1 or higher suggest the 332 

presence of phylogenetic signal. We then visualised the phylogenetic signal of each trait 333 

using ancestral character reconstruction as implemented the function contMap of the R 334 

package phytools. 335 

Finally, we explored the relationship between traits and the species response to 336 

climate change (approximated with the three response variables above) using 337 

Phylogenetic Generalized Least Squares (PGLS), using the function pgls from the 338 

package caper version 1.0.1 (Orme et al., 2018). We used three functions of branch 339 

transformation (lambda, kappa, and delta) to adjust the covariance matrix to the data 340 

selecting the best transformation through a maximum likelihood procedure. Prior to 341 

model fitting, we performed data exploration, visually inspecting for the presence of 342 

outliers in the predictor and response variables with dotcharts and verifying 343 

multicollinearity among predictor variables (Zuur et al., 2010). 344 

8. Reproducibility  345 

In constructing and reporting SDMs, we followed the ODMAP (Overview, Data, 346 

Model, Assessment and Prediction) protocol (Zurrell et al., 2020), designed to maximise 347 

reproducibility and transparency of distribution modelling exercises. The ODMAP for 348 

this study is available as Supplementary material S2. 349 

We stored all data, raw predictor variables and detailed model outputs in the 350 

OSF repository (https://osf.io/4rjuc/). All code used to perform analyses and produce 351 

plots is available in GitHub (https://github.com/TommasoCanc/Odonata_SDM_2022). 352 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.04.04.486993doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.04.486993
http://creativecommons.org/licenses/by-nd/4.0/


 

Results 353 

1 Species distribution models 354 

1.1 Predictor variables and model performance 355 

We successfully calculated the habitat suitability for 107 species of European 356 

Odonata out of 169 contained in our checklist. We omitted 62 species due to the low 357 

number of occurrences available in GBIF. Our models incorporated seven non-collinear 358 

predictors: waterbodies, elevation, Emberger’s pluviometric quotient (embergerQ), 359 

temperature annual range (bio 7), mean temperature of the wettest quarter (bio 8), 360 

mean temperature of the warmest quarter (bio 10), and precipitation seasonality (bio 361 

15). Multicollinearity and Variance Inflation Factor analyses are reported in 362 

Supplementary material S5. Boosted Regression Trees favoured the AUC in 96 species, 363 

the ensemble of models in six species, the Maximum Entropy in four, and the 364 

Generalized Additive Model only in one (Supplementary materials S6).  365 

1.2 Species distribution model future predictions 366 

In accordance with our first hypothesis, climate projections consistently 367 

predicted an increase in habitat availability for the majority of species towards northern 368 

regions of Europe and at upper elevations (Tab. 2). These shifts were coupled with a 369 

contraction of suitable areas in the Mediterranean regions. We found only minor 370 

variations among the predictions under different future Global Circulation Models. The 371 

increased habitat availability in the northern areas is highlighted from a centroid’s shift 372 

towards northern latitudes for the majority of Odonata species (Tab. 2). The model 373 

outcomes also revealed a rise of mean elevation occupied by many species of Odonata in 374 

the future climate scenarios (Tab. 2). Example model projections for one of the species 375 

is available in Figure 2 (see Supplementary material S7 for the entire set of species).  376 

2 Quantification of change of biodiversity measures 377 

We calculated taxonomic, functional, and phylogenetic diversity for 105 of the 378 

107 species, since we lack genetic data for Orthetrum taeniolatum (Schneider, 1845) and 379 

Sympetrum sinaiticum Dumont, 1977. 380 
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2.1 Alpha diversity patterns 381 

Alpha diversity revealed congruent patterns across its three facets under the 382 

current climate scenario. The highest values of taxonomic diversity concentrated 383 

around the Central-Atlantic European region. Compared to taxonomic diversity, higher 384 

values for functional and phylogenetic diversity were attained in Italy, Ireland, and the 385 

North of the United Kingdom (Fig. 3). 386 

Alpha diversity projections towards the future revealed a substantial 387 

geographical re-arrangement over time again across the three biodiversity facets, with 388 

main increments in taxonomic, functional, and phylogenetic diversity recorded in the 389 

northern and eastern regions of Europe, particularly in the Scandinavian Peninsula, the 390 

British Isles, and the Black Sea region. In contrast, a decrease in the three facets of alpha 391 

diversity was predicted in Central Europe and Mediterranean areas, particularly in 392 

France, Germany, and the Baltic countries, as well as the Hellenic, Italian, and Iberian 393 

Peninsulas. Furthermore, the shift towards higher altitude predicted for many species 394 

was visible as an overall increase of species richness, together with functional and 395 

phylogenetic diversity, in the main European mountain range such as the Alps, 396 

Cantabrian Mountains, and the Pyrenees (Fig. 3; Supplementary material S8). 397 

 398 

2.2 Beta diversity patterns 399 

We observed greater beta diversity in the Iberian Peninsula, Scandinavia, and 400 

scattered areas across western Europe. Although with different values, this pattern was 401 

congruent across the three biodiversity metrics and future Global Circulation Models, 402 

not differing substantially between 2050 and 2070 predictions (Fig. 4). These changes 403 

were primarily explained by changes in the richness component of beta diversity, rather 404 

than replacement. The highest values of beta richness were predicted for the Iberian 405 

Peninsula, Turkey, Scandinavia, and Eastern European countries. The highest values of 406 

beta replacements were registered for the Iberian Peninsula, the Balkans, and the Baltic 407 

countries (Fig. 4; Supplementary material S8). 408 

 409 

3 Phylogenetic signal and Phylogenetic Generalized Least Squares 410 
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We observed a negligible phylogenetic signal in both Pagel's λ and Blomberg's K for all 411 

predictor variables (proportional variation in habitat suitability; altitudinal shift; 412 

centroid shift), climate scenarios (BCC-CSM1; MIROC-ESM-CHEM; NorESM1-M) and 413 

time periods (2050; 2070). The only exception was centroid shift (MIROC-ESM-CHEM 414 

2050), for which Pagel's λ revealed a significant phylogenetic signal (λ = 0.73; p = 0.003; 415 

Supplementary material S9). The lack of phylogenetic signals is further confirmed by 416 

the ancestral character reconstruction analysis, revealing no clustering pattern nested 417 

into the phylogeny (an example in Fig. 5, Supplementary material S10). 418 

For most climate scenarios and time periods, the outcomes of PGLS only partly 419 

support the effect of traits (body length, flight period, and habitat) on the response of 420 

Odonata to climate change. Body size and flight period returned significant effects on 421 

the proportional variation in habitat suitability and the centroid shift for different global 422 

circulation models and time periods (Tab. 3). No other traits revealed significant effects 423 

(Supplementary Material S11). 424 

Discussion 425 

 In this study, we forecasted variations in future habitat availability for 107 426 

species of European Odonata. Specifically, we quantified the impact of those changes as 427 

regional changes of alpha and beta diversity, and explored the role played by their 428 

evolutionary history or specific traits in promoting such changes. Overall, our results 429 

predict conspicuous readjustments in the Odonata communities following climate 430 

change; these changes permeate through all facets of biodiversity. Conversely, we did 431 

not find evidence that closely related species respond in a similar way to climate 432 

change, since there was no clear phylogenetic signal associated with the magnitude of 433 

range shift across the evolutionary tree of European Odonata. After accounting for 434 

phylogenetic effects, one biological (body size) and one ecological (flight period) trait 435 

affected the extent of change in distribution range induced by climate change. 436 

Foremost, our projections consistently predicted an increase in habitat 437 

suitability towards northern latitudes and upper elevations coupled with a contraction 438 

of suitable areas in the Mediterranean regions for most species of dragonflies and 439 

damselflies. This result was largely expected, since shifts induced by climate change are 440 
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well-documented for many freshwater invertebrates (Hickling et al., 2005, 2006; Heino 441 

et al., 2009; Mustonen et al., 2018), although their effects on the structure and 442 

composition of natural communities are still poorly examined. More precisely, our 443 

results hint that biological communities will not reshuffle randomly in the future. 444 

Indeed, our predictions show that odonate communities will face a future taxonomic 445 

rearrangement, paralleled by a readjustment of provided functional services and of the 446 

amount of evolutionary heritage enclosed in their aggregations. This has important 447 

implications for species management (Samways et al., 2020) and societal consequences 448 

since invertebrates represent irreplaceable nodes into ecological networks providing 449 

uncountable ecosystem services to human communities (Eisenhauer et al., 2019; 450 

Cardoso et al., 2020). 451 

Further gains or losses of biological diversity in its all three facets are 452 

challenging to predict using correlative methods, since they will depend on non-linear 453 

species-interactions branching throughout the system. For instance, increasing 454 

taxonomic, functional, and phylogenetic diversity might import new evolutionary 455 

lineages or improve the resilience of natural systems with novel ecosystem functions 456 

(Thomas, 2020). Also, the new possibilities of interaction might increase the 457 

competitive pressure among the species (Krosby et al., 2015), and boost the chances of 458 

hybridisation of previously isolated taxa (Bybee et al., 2016). For example, the rise of 459 

hybridisation events between two European damselflies Ischnura elegans (Vander 460 

Linden, 1820) and Ischnura graellsii (Rambur, 1842) have been documented and 461 

attributed to climate-driven range expansion of I. elegans to areas formerly occupied 462 

exclusively by I. graellsii (Sánchez-Guillén et al., 2011). In contrast, the decrease of 463 

biodiversity components could reduce ecosystem' stability and resilience due to 464 

narrowing possible species-specific responses to environmental fluctuations leading to 465 

functional homogenization (Tobias & Monika, 2012) and reducing genetic diversity 466 

(Pauls et al., 2013). A homogenisation of the odonate communities driven by climate 467 

change and urbanisation has already been documented for the North American 468 

populations. Indeed, Ball-Damerow et al., (2014) demonstrated that changes in 469 

environmental conditions led to a homogenization of odonates community favouring 470 

the expansion of highly mobile habitat generalists species and a parallel loss of habitat 471 

specialist or species with the peculiar physiological state as diapause.  472 
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Not without caveats (e.g., abundance patterns or fitness; Lee-Yaw et al., 2021, 473 

species coexistence; Pichler & Hartig, 2021), species distribution models are considered 474 

robust and reliable correlative approaches to map the species' potential habitat 475 

preference across space and time. Despite evaluation metrics suggesting our models 476 

being robust, we acknowledge that their outcome is unavoidably coupled with the 477 

goodness of the variables selected (Fourcade et al., 2018). Therefore, due to the lack of 478 

specific habitat variables (e.g., intermittent freshwater habitats or future water 479 

extension) and the main use of climatic variables, our projected ranges must be 480 

interpreted as general indications of future trends of biodiversity change, rather than 481 

precise descriptions of species range boundaries. Another potential criticism to our 482 

approach is the inference of the habitat availability of odonate using species occurrence 483 

retrieved from GBIF. We are conscious about the limitations of GBIF data (e.g., samples 484 

collected opportunistically and spatially distorted). However, we consider that the 485 

occurrences used to perform the model are in line with the actual knowledge about the 486 

current distribution of Odonata. Moreover, the availability of high-quality field guides 487 

and the facility to recognize the adult stage of these insects (compared to other 488 

freshwater insects) allows limiting taxonomical errors. Finally, our models do not 489 

consider potential immigration events of non-European species (for example, Trithemis 490 

kirbyi Sélys, 1891 is one of the most recent species that arrived in Europe from Africa 491 

due to climate changes; Boudot and Kalkman, 2015). Therefore, future estimates of 492 

biodiversity facets values might be slightly underestimated. Despite these limitations, 493 

we still consider our results of the current alpha taxonomy plausible since they agree 494 

with the distribution map proposed by Kalkman et al. (2018). 495 

Despite existing evidence that supports the tendency of the species to migrate 496 

toward poleward latitudes and upper altitudes in response to climate change (Freeman 497 

et al., 2018; Parmesan, 2006; Chen et al., 2011), sometimes the observed movements 498 

may follow unexpected directions compared to those predicted by models (Diamond, 499 

2018). Therefore, forecasting how the habitat availability might shift across species in 500 

the near future, exploring how such change may affect biological communities and 501 

uncovering the role played by biological and ecological traits in the organism range 502 

shift, is critical to designing effective management and conservation plans (Guisan and 503 

Thuiller, 2005). In the present work, we did not find any significant relation between 504 
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the predicted range shift and phylogenetic relatedness of European Odonata coupled 505 

with the lack of clusterization in the reconstruction of the ancestral character states. 506 

These results highlight how the effect of climate change will be pervasive across the 507 

entire phylogenetic tree of odonate with responses species-specific to climate variation. 508 

Moreover, PGLS models' outcomes did not show a solid and consistent effect of traits on 509 

range shifts. These results are in line with those proposed by Grewe et al., 2013, where 510 

neither biological (e.g., abdomen length and wing size) nor ecological (e.g., flight period) 511 

traits have returned significant relation with observed range shift. 512 

 513 

 Therefore, further research about ecology, physiology, and behaviour can benefit 514 

our knowledge about these freshwater insects and favour the design of efficient and 515 

effective conservation strategies. Further investigations based on mechanistic models 516 

(Chichorro et al., 2022) or high-resolution physiological and dispersal traits (Buckley & 517 

Kingsolver, 2012; Mammola et al., 2021b) could be useful to better identify key traits 518 

associated with climate-induced species range shifts and potentially even extinction 519 

risk. Our results might be substantially improved by including into the models traits 520 

directly linked with the dispersal ability (e.g., GPS-tracking, flight muscle mass, wing 521 

loading and shape) as well as traits and distribution of the larval stages, since most of 522 

the life of these insects is spent underwater [e.g., in Anax imperator (Leach, 1815) the 523 

life span is two years in larvae and eight to nine weeks in adults (Corbet, 1957)]. 524 

Unfortunately, this kind of information is still scarce for most odonate species. 525 

Therefore, further basic biological research about ecology, physiology, and behaviour 526 

can benefit our knowledge about these freshwater insects and favour the design of 527 

efficient and effective conservation strategies. 528 
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Fig. 1. Infographic summarising the study workflow. In this work, we first constructed a 855 

species distribution model for each species of European Odonata to predict their 856 

current and future habitat suitability. Then, we stacked the model projections and used 857 

community-level data to quantify the temporal variation of taxonomic, functional, and 858 

phylogenetic diversity via estimating alpha and beta diversity. Finally, we used the 859 

predicted range shift to assess whether the response of Odonata to climate change is 860 

driven mainly by their evolutionary history or by distinctive biological and ecological 861 

traits. 862 

Fig. 2. Example of summarised species distribution model projections for an individual 863 

odonate species. A) Best model prediction map for the current time period. B) Extent of 864 

elevation shift across time periods. C) Variation of habitat availability between future 865 

and current time periods. Habitat gain and loss are depicted with blue and red colours 866 

respectively. Centroid shift is represented by the variation among the orange (present) 867 

and yellow point (future). Summarised SDM outcomes for all species are available in 868 

Supplementary material S7. 869 

Fig. 3. Quantification of alpha diversity per different climate scenarios (BCC-CSM1-1; 870 

MIROC-ESM-CHEM; NorESM1-M) and time periods (current; 2050; 2070). For future 871 

scenarios, the cold-colour gradient indicates the extent of species loss, whereas the 872 

warm-colour gradient indicates the species gain. 873 

Fig. 4. Quantification of total-beta diversity (beta-replacement + beta-richness sensu 874 

Cardoso et al., 2014) per different climate change scenarios (BCC-CSM1-1; MIROC-ESM-875 

CHEM; NorESM1-M) and time periods (current; 2050; 2070). 876 

Fig. 5. Reconstruction of ancestral character states for the variables body size (left) and 877 

variation in habitat suitability (right). Pagel's λ and Blomberg's K indicate the estimated 878 

values for the response variables "Variation of habitat suitability" (see Supplementary 879 

material S10 for the other tree of ancestral character reconstructions). "Length" in the 880 

legend provides the scale for the branch lengths of the phylogenetic tree. The grey box 881 

delimits the Zygoptera clade whereas the brown one the Anisoptera clades. 882 

 883 

Table 1 Traits considered in the analyses with an indication of their expected functional 884 

meaning and the number of Gower distance groups (sensu de Bello et al., 2021). 885 

Table 2 Magnitude and number of species shifting toward Northward latitudes and 886 

upper altitudes.  887 

Table 3 Results of PGLS models with significative response variables (in bold). Total 888 

table containing PGLS results is in Supplementary material S11. 889 

 890 

 891 
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Table 1 892 

Trait Trait type Expected functional meaning Bibliograph

y 

Gower group 

Body size Biological 

[Continuous] 

Body size is tightly linked to 

temperature. Body size of assemblages 

of odonates is mainly driven by 

temperature. 

(1; 2) Group 1 

Abdomen 

length 

Biological 

[Continuous] 

As for body size.  Group 1 

Wings 

length 

Biological 

[Continuous] 

Proxy for dispersal. (3; 4) Group 1 

Habitat Ecological 

[Categorical] 

Freshwater habitats (lentic/lotic) are 

among the most threatened ecosystems 

by climate change. 

(5) Group 2 

Flight 

season 

time 

Ecological 

[Continuous] 

Indirect measure of dispersal potential. (6) Group 3 

Abdomen 

pigmentat

ion 

Biological 

[Continuous] 

Pigmentation and colour patterns are 

directly related with thermoregulatory 

mechanisms. For example, melanism is 

linked to greater absorption of solar 

radiation heat in cooler regions. 

(1; 2; 7; 8; 9) Group 4 

     

(1) Hassall & Thompson, 2008; (2) Acquah-Lamptey et al., 2020; (3) Outomuro & Johansson, 2019; (4) Rundle 893 

et al., 2007; (5) Finlayson et al., 2019; (6) Grewe et al., 2013; (7) Okude & Futahashi, 2021; (8) Mani, 2013; (9) 894 

Suárez�Tovar et al., 2022 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 
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 906 

Table 2 907 

Average northward shift in centroid latitude 

 2050 2070 

BCC-CSM1-1 0.93±0.11 (91/107) 1.12±0.12 (86/107) 

MIROC-ESM-CHEM  0.49±0.11 (73/107) 0.70±0.13 (81/107) 

NorESM1-M 0.81±0.11 (80/107) 0.37±0.11 (70/107) 

Average altitudinal shift in metres 

BCC-CSM1-1 37.14±5.10 (81/107) 33.43±6.08 (73/107) 

MIROC-ESM-CHEM  61.56±6.28 (88/107) 67.41±6.78 (91/107) 

NorESM1-M 44.44±5.09 (90/107) 56.43±5.47 (93/107) 

 908 
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Table 3 910 

 Estimate Std. Error t value Pr(>|t|) Res. variable Scenario Time period 

(Intercept) 207228.608 52990.1971 3.91069705 0.00016874 
Centroid 
difference MIROC 2050 

Body length -1828.0532 606.952165 -3.0118571 0.00329576 

Centroid 

difference MIROC 2050 

Flight Season 2777.48566 5808.89903 0.47814321 0.63360243 

Centroid 

difference MIROC 2050 

Habitat Lentic 12534.6293 31484.3892 0.39812204 0.69139748 

Centroid 

difference MIROC 2050 

Habitat Lotic 17994.3776 34691.3793 0.51869882 0.60512828 

Centroid 

difference MIROC 2050 

(Intercept) 253527.566 63388.1236 3.99960673 0.00012243 

Centroid 

difference MIROC 2070 

Body length -1767.575 709.51574 -2.4912414 0.01439255 

Centroid 

difference MIROC 2070 

Flight Season 1037.68713 6738.33589 0.15399754 0.87792517 

Centroid 

difference MIROC 2070 

Habitat Lentic 7731.64985 39206.2133 0.19720471 0.84407166 
Centroid 
difference MIROC 2070 

Habitat Lotic 8406.52507 42340.684 0.19854486 0.84302595 

Centroid 

difference MIROC 2070 

(Intercept) 1.87163593 0.32124278 5.826235 7.23E-08 

Relative area 

change BCC 2070 

Body length 0.00159414 0.00359034 0.44400809 0.6580156 

Relative area 

change BCC 2070 

Flight Season -0.1305059 0.03658227 -3.5674636 0.00055972 

Relative area 

change BCC 2070 

Habitat Lentic 0.28382835 0.18772987 1.51189769 0.13377797 

Relative area 

change BCC 2070 

Habitat Lotic 0.22166274 0.20737374 1.06890458 0.2877385 

Relative area 

change BCC 2070 

(Intercept) 1.24519775 0.33799621 3.68405838 0.00037442 

Relative area 

change MIROC 2050 

Body length 0.00813323 0.00379381 2.14381522 0.03449684 
Relative area 
change MIROC 2050 

Flight Season -0.0631417 0.03622388 -1.7430959 0.08442164 

Relative area 

change MIROC 2050 

Habitat Lentic 0.26332324 0.20705918 1.27172934 0.20644872 

Relative area 

change MIROC 2050 

Habitat Lotic 0.02818103 0.22588042 0.12476082 0.90096589 

Relative area 

change MIROC 2050 

(Intercept) 1.67191708 0.25146401 6.64873314 1.63E-09 

Relative area 

change NOR 2050 

Body length 0.00223091 0.00292457 0.76281493 0.44738758 

Relative area 

change NOR 2050 

Flight Season -0.0984925 0.02816582 -3.4968784 0.00070638 

Relative area 

change NOR 2050 
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Habitat Lentic 0.2071339 0.14418534 1.43658081 0.15398984 

Relative area 

change NOR 2050 

Habitat Lotic 0.23521455 0.1625593 1.44694616 0.151071 

Relative area 

change NOR 2050 
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