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20 Abstract

21 Climate change is rearranging the mosaic of biodiversity on our planet. These broad-
22 scale species re-distributions will affect the structure of communities across multiple
23  biodiversity facets (taxonomic, phylogenetic, and functional diversity). The current
24  challenges to understand such effects involve focusing on organisms other than
25  vertebrates and considering the signature of species redistribution on phylogenetic and
26  functional diversity in addition to species composition. Using European dragonflies and
27 damselflies (Odonata), we asked: i) how climate change will redefine taxonomic,
28  phylogenetic, and functional diversity at continental scales; ii) which traits will mediate
29  species' response to global change; and iii) whether this response will be conserved
30 across the phylogeny. First, we constructed stacked species distribution models for 107
31 species of Odonata under current and future climate conditions. Then, we quantified the
32  temporal variation of taxonomic, functional and phylogenetic components, forecasting
33 alpha and beta diversity changes through our geographical grid. Lastly, we used
34  phylogenetic comparative models to test the influence of phylogeny and traits on range
35 shifts. We observed broad latitudinal and altitudinal rearrangements in community
36 composition driven by climate change. Given the high dispersal ability of Odonata,
37 changes are predicted to be rapid, especially in areas experiencing faster climate change
38 rates. According to our predictions, changes in species composition cascade to affect
39 functional and phylogenetic diversity, determining broad turnovers in traits and
40 evolutionary lineages. There was no clear phylogenetic signal in the range-shift
41 response of European Odonata to climate change. According to our phylogenetic
42  regression models, only body size and flight period can be partly correlated with
43  observed range shifts. By considering all three primary facets of biodiversity, our results
44 support the design of inclusive management and conservation strategies, accounting not
45  only for the diversity of species, but also the services they provide and the phylogenetic
46  heritage they carry in a targeted ecosystem.

47 Keywords

48  Ecological Niche Modelling, MaxEnt, Odonata, taxonomic diversity, functional diversity,

49  phylogenetic diversity, freshwater, staked species distribution model.
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50 Introduction

51 Recent climate change is driving the reshuffling of the biodiversity patchwork on
52  the Earth (Pecl el al, 2017). Upon those abrupt global changes, few species can survive
53 in situ by adapting to the novel environmental conditions, whereas many more are
54  forced to shift their ranges tracking their eco-physiological optima for growth and
55  survival (Bellard et al, 2012; Diamond, 2018). Never before a single human generation
56  witnessed such a rapid and massive biological migration induced by the increase of
57 temperature, with terrestrial species rising towards higher latitudes and elevations and
58 marine life sinking at greater depths (Perry et al, 2005; Chen et al,, 2011; Lenoir et al.,
59  2020). Inevitably, these rapid readjustments in species ranges are leaving a
60 considerable imprint on the structure of local communities, which has cascading effects
61 on ecosystem functioning and the provisioning of nature’s contribution to human
62  societies (Nelson et al., 2013; Prather et al.,, 2013). The ecological and economic impacts

63  of these changes will be unprecedented (Ripple et al., 2021).

64 Climate changes will lead to cumulative non-linear responses in the biological
65 assemblages, which are expected to permeate through all biodiversity facets. This is
66 because as climate changes, so does the distribution of certain species, with a ripple
67 effect on species richness, trait composition, and evolutionary heritage of local
68 communities (Saladin et al, 2020; Gallagher et al, 2013; Stewart et al,, 2022). Therefore,
69 the impact of climate change can be quantified by looking at predicted changes in the
70  number of species that are present in an ecosystem (hereinafter “taxonomic diversity”),
71  as well as in the diversity of function (“functional diversity”) and evolutionary lineages
72 (“phylogenetic diversity”) represented therein. As approximative as the approach might
73  be, a quantification of the rearrangement of these metrics is paramount to understand
74  causally the mechanisms that drive the evolution of biodiversity across its multiple
75 facets. Given that taxonomic, functional, and phylogenetic biodiversity are linked with
76 ecosystem functioning and stability, ecologists and conservation biologists are
77  increasingly considering these three facets when designing conservation plans (Pollock
78 etal, 2020).

79 Historically, ecologists to assess the potential effects of environmental
80 constraints on the biological communities have focused mostly on the variation of alpha

81  diversity, which summarises the structure of a biological community as the total
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82 richness of taxa, traits, and evolutionary history, but does not incorporate information
83  about their identity (Mammola et al, 2021a; Tucker et al, 2017; Pavoine & Bonsall,
84  2011; Petchey & Gaston, 2002). This may be problematic. Even if experimental studies
85 have matched higher alpha diversity with greater resilience to perturbations, the lack of
86 information on community composition prevents causal understanding of the
87 mechanisms that may regulate this relationship insofar as the identity of the
88 interplaying elements is lost (Wang & Loreau, 2014). Conversely, this information is
89 retained in the calculation of beta diversity, which traces the individual elements that
90 change across biological communities. To better understand these mechanisms, beta
91 diversity can further be decomposed into its replacement and richness components
92 (sensu Cardoso et al, 2014). In particular, the replacement component measures
93 turnover between species across two sample units as a consequence of abiotic or
94  dispersal processes (Fontana et al, 2020); whereas the richness component (sensu
95 (Cardoso et al, 2014) measures the gain or loss of species due to colonisation and
96 extinction events (Fontana et al,, 2020).
97 Here, we described the spatio-temporal effect produced by the shift of habitat
98  suitability induced by climate changes on three biodiversity facets, incorporating both
99 alpha and beta diversity metrics. We chose dragonflies and damselflies (Odonata)
100 because they are well-established model organisms to address general macroecological
101 questions in global change biology (Hassall, 2015; Grewe et al, 2013) and thermal
102  physiology (Moore et al., 2021), being even regarded as “barometers” for climate change
103  (Hassall, 2015). First, we modelled how global warming will affect the habitat suitability
104  of each European species of Odonata. Next, we evaluated how the predicted changes in
105 species habitat suitability will influence the Odonata communities in space,
106  approximated using taxonomic, phylogenetic, and functional diversity. Finally, we used
107  the predicted range shift to assess whether the response of Odonata to climate change is
108 driven mainly by their evolutionary history or by distinctive biological and ecological
109 traits. Under the assumption that Odonata species will track their ecological optima
110 with dispersal, we expect to observe species redistributing poleward along the
111  latitudinal gradient and upward along the altitudinal gradient. Furthermore, we predict
112  that changes in community composition will permeate phylogenetic and functional
113  components, such that alpha diversity will increase in areas with more conservative
114  climates. In contrast, we predict that beta diversity change will be greater in areas

115  experiencing faster climate change rates, especially so in the beta richness component
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116 given the high dispersal ability of Odonata. Lastly, we expect that the response of
117  Odonata to climate change will also be explained by a shared evolutionary history, since
118 phylogenetically related species may have similar patterns of distribution change and

119  similar biological and ecological traits related to their dispersal ability.

120

121  Materials and Methods

122 1 Rationale

123 To model species distribution, we used Species Distribution Models (SDMs),
124  mainstream analytical tools in ecological and biogeographical research (Peterson et al,
125  2011; Franklin, 2010; Guisan and Thuiller, 2005), including to predict arthropod
126  distributions (Mammola et al, 2021b). In short, distribution modelling refers to the
127  practice of using an algorithm to infer a relationship between the occurrences for a
128 given species (e.g.,, georeferenced points) and environmental predictors (e.g, climatic
129 variables, topographic parameters, habitat type), forecasting its potential distribution in
130 space and/or time. Due to the easy implementation and the often accessible
131 interpretation of results (but see Ryo et al, 2021), species distribution models are
132  routinely used in disciplines as diverse as conservation planning (Guisan et al, 2013),
133  habitat restoration (Adams et al, 2016), invasion biology (Ficetola et al., 2009; Wang et
134  al, 2007), and climate change biology (Santini et al, 2021; Guyennon et al., 2022).

135 As a model organism, we selected Odonata, an order of insects with tropical
136  evolutionary origin (Pritchard and Leggott, 1987) and including species with
137  contrasting thermal preferences. Odonata are well-established model organisms in
138 ecology and behaviour (Clausnitzer et al, 2009; Cérdoba-Aguilar, 2008; Corbet et al,
139 1999), and have been successfully used for tracking climate change using species
140  distribution models (Hassall, 2015). These insects have an amphibiotic life with benthic
141  vagile larvae living in freshwater habitats, whereas the adults are excellent fliers with

142  high dispersibility compared to other freshwater invertebrates (Troast et al.,, 2016).
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143 2 Taxonomic checklist and assembly of distribution data

144 We produced a complete checklist of all 169 European Odonata by merging the
145 information of the “Atlas of the European dragonflies and damselflies” (Boudot and
146  Kalkman, 2015) and the field guide "Dragonflies of Britain and Europe” (Dijkstra and
147  Schroter, 2020) (Supplementary material S1). These are the most comprehensive
148 references for European Odonata available today. We focused on the European
149  continent because it has been intensively studied compared to other areas of the world
150 (Titley et al, 2017). We excluded European Russia (including Kaliningrad) due to the
151  scarcity of Odonata occurrences therein. We included Turkey to account for the entire

152  arch of northern Mediterranean countries.

153 We downloaded all georeferenced occurrences of Odonata available at the Global
154  Biodiversity Information Facility (GBIF, 09 January 2021; DOI: 10.15468/dl.kvrqug).
155 Despite its biases (Beck et al, 2014), GBIF remains one of the most extensive global
156 biodiversity databases (Zizka et al., 2020). The coverage provided by GBIF (highest
157  coverage in UK, France, the Netherlands, Austria and Germany; lowest in southern and
158 eastern Europe) for Odonata is congruent with the current expert-based knowledge

159  about European odonates (Grewe et al., 2013; Kalkman et al, 2018).

160 We discarded data for fossil, non-European species, records before 1970, and
161 occurrences falling outside the study area. We also removed duplicates and records
162  with spatial uncertainty greater than the resolution of our predictor variables (~10 km;
163  see section 4). We minimised the effects of uneven sampling effort via spatial thinning
164 with the function reduceSpatialCorrelation from the pack SDMworkshop
165  (https://github.com/BlasBenito/sdmflow), setting the minimum.distance parameter to
166 1 (~10 km) to match the resolution of our predictors.

167 3 Accessible area delimitation

168 For each species, we calibrated models within an accessible area, namely the
169 geographical space that an organism has hypothetically occupied across its evolutionary
170  history (Barve et al, 2011). In multi-species analyses, when lacking detailed information
171  on species biogeographic history and dispersal ability, the simplest way to limit the

172  boundary of the accessible area is by constructing a continuous border where most of
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173  the occurrences of a taxon are contained. For this, we used a Minimum Convex Polygon,
174  the smallest area surrounding the points in which every internal angle does not exceed
175 180° (Burgman & Fox, 2003). We estimated a conservative Minimum Convex Polygon
176  for each species using the R function mcp from the package adehabitatHR version 0.4.19
177  (Calenge, 2006), setting the percentage of outliers to be omitted at 1%. Finally, as a
178 proxy of potential dispersal, we created an external buffer around each accessible area,
179  weighting the distance with the flight period of each species [100 000gistance in meters *
180 (Flight period in months/10)], assuming that the flight ability across the species stays

181  constant.
182 4 Selection of environmental predictors

183 We downloaded four variables from WorldClim 2 (Fick & Hijmans, 2017):
184 monthly minimum and maximum temperature (°C), monthly precipitation (mm), and
185 Digital Elevation Model (m a.s.l.). Current climatic data are the average for the period
186 1970-2000. We retrieved the water bodies’ map from the FAO’s GeoNetwork data
187 portal. We adjusted the resolution of the water bodies’ map to 5 minutes using the
188 function resample from the R package raster version 3.5-2 setting ‘bilinear’ method
189 (Hijmans, 2020). Starting from the three climate variables (min/max temperature and
190 precipitation), we calculated 19 bioclimatic variables using the function biovars from
191 the R package dismo version 1.3-3 (Hijmans, 2020) and 16 environmental variables
192 using the function layerCreation from the package envirem version 2.3 (Title &
193 Bemmels, 2018). More information about the latter variables can be retrieved at

194  https://www.worldclim.org/data/bioclim.html and https://envirem.github.io.

195 We visualise the multicollinearity effect amongst our 37 predictors variables (19
196 bioclimatic, 16 environmental, elevation, water bodies) via pairwise Pearson’s r
197 correlation and a dendrogram based on variables’ distance matrix (Dormann et al,
198 2013). We extracted the final set of predictor variables at |r| < 0.5 (Mukaka, 2012) and

199 then we removed variables with a Variance Inflation Factor (VIF) > 3 (Zuur et al,, 2010).

200 We downloaded the same predictors for three future climate scenarios (Global
201  Circulation Models: BCC-CSM1; MIROC-ESM-CHEM; NorESM1-M) and two time periods,
202 2050 (average for 2041-2060) and 2070 (average for 2061-2080). We chose a

203 moderate Representative Concentration Pathway (RCP 4.5), namely a scenario that
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204  accounts for the greenhouse emission according to the current green policies
205 (Hausfather & Peters, 2020). We assumed elevation and water bodies to remain

206  constantin the future.

207 5 Modelling procedure

208 To model the distribution, we selected one algorithm for each main family of
209 modelling algorithms (regression, maximum entropy, and decision trees) (Mammola et
210  al, 2019; Mammola et al., 2018). We opted for Generalized Additive Model (GAM; Hastie
211 & Tibshirani, 2017), MaxEnt (Phillips et al, 2006; Phillips et al, 2004), and Boosted
212  Regression Trees (BRT; Elith et al, 2008), respectively, given their high performance
213  (Elith et al, 2006). Furthermore, we compared the performance of each individual
214  algorithm with an ensemble model, computed with the function calc in the package
215 raster, since the aggregation of forecasts of different models (ensemble model) may
216 improve the prediction habitat suitability of a given species (Aratjo & New, 2007;
217  Grenouillet et al, 2011). Specific settings and parameters for each algorithm are
218 available in Supplementary material S2. To discriminate the areas where each species
219 was more likely to be absent, we contrasted the presence data against a set of
220 background points generated within their buffered accessible area. The number of

221  background points doubled the number of presences (Phillips et al., 2009).

222 We evaluated the model performance using a holdout approach, whereby we
223  used 75% of the occurrences of each species as a “train” dataset and the remaining 25%
224  as “test” dataset to evaluate their predictive power. We calculated two performance
225 metrics: Area Under the Receiver Operator Curve (AUC) and Boyce index (Hirzel et al,
226  2006). The AUC values range from 0 to 1, with higher values indicating better model
227  discrimination. Whereas this metric is problematic for determining the absolute
228 performance ability of SDMs, it is acceptable to use it for relative comparisons across
229  models fitted with the same data (Zhang et al., 2021). The Boyce index is considered one
230 of the most appropriate model evaluation metrics when absence data are lacking (Hirzel
231 et al, 2006), and thus we chose it as a proxy measure of absolute model performance.
232  The continuous Boyce index varies from -1 to 1: values above zero indicate model
233  predictions consistent with distribution data, values around zero indicate performance

234  no better than random, and values below zero refer to incorrect model predictions
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235 (Hirzel et al, 2006). We considered predictions with AUC < 0.7 and/or Boyce < 0.4 as

236  low-quality performance.

237 After their evaluation, we fitted a final model for each species with the complete
238  setof occurrences and used it to project potential distribution ranges under current and
239 future climates. We converted the continuous habitat suitability projections into binary
240 maps by using a threshold maximising the sensitivity (True Positive Rate) and
241  specificity (True Negative Rate) (Liu et al, 2005; Martin-Vélez & Abellan, 2022). We
242  calculated both spatial (e.g, suitable range size, mean elevation, and centroid) and
243  biodiversity measures (see the next paragraph for biodiversity measures) only on the

244  binary maps obtained from the best-performing modelling method (Qiao et al, 2015).
245 6 Estimation of taxonomic, functional, and phylogenetic diversity metrics

246 We calculated three diversity metrics for the predicted community of Odonata
247  occurring within a cell of each raster map. We first stacked SDM projection for all the
248  analysed species. We estimated taxonomic diversity as the number of species predicted
249  to occur in each cell. We calculated functional and phylogenetic diversity as the total
250 branch length entailed by the species predicted to occupy each cell, based on a
251  functional and phylogenetic tree (Faith, 1992; Petchey and Gaston, 2002, 2006; Cadotte
252 et al, 2010; see next sections). We chose tree-based descriptors of relationships to
253 make the formulation of functional and phylogenetic diversity more comparable

254  (Mammola et al,, 2021a).
255  6.1. Estimation of the functional dendrogram

256 We calculated the functional tree for European Odonata using six traits broadly
257 related to dispersal and species response to climate change, namely: total body size
258 (mm), abdomen length (mm), wings length (mm), abdomen pigmentation (in RGB),
259  habitat (lentic or lotic), and flight season time (in months) (Table 1). We focused on the
260 adult stage because they disperse at large spatial scales via morphological (e.g., wings)
261 and behavioural (e.g, reversible polarotaxis, repulsion/attraction of polarised light;
262  Mitchell, 2018). In contrast, larva might disperse as well, but its ability is limited to the
263 aquatic environment. Therefore, we expect that immigration promoted by climate

264  change will involve mainly adults.
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265 We determined the abdomen pigmentation from three pictures of each species,
266  preferably downloaded from Dragonflypix (http://www.dragonflypix.com/index.html).
267 We clipped the image around the abdomen using the software Gimp (GIMP
268 Development Team 2019) and extracted the RGB colorspace using the function
269  getlmageHist (colordistance version 1.1.2; Weller, 2020). We obtained the mean value of
270  the abdomen colour for each species as the average of the two predominant colours on

271  the three photos (data available at https: //osf.io/swnu4 /download).

272 We calculated functional dendrograms (Petchey & Gaston 2002) with the hclust
273  function in the R package stats version 4.1.0 (R Core Team 2020) and a Gower’s
274  dissimilarity matrix constructed with the package gawdis version 0.1.3 (de Bello et al,
275  2021). This function is an extension of the classical Gower’s distance that provides a
276  solution to limit unequal traits contribution when different traits are combined in a
277  multi-trait dissimilarity matrix (de Bello et al, 2021) (functional dendrogram:
278  Supplementary material S3). The Gower's distance groups are reported in Table 1.

279

280  6.2. Estimation of the phylogenetic tree

281 We calculated phylogenetic diversity from a tree calculated with sequences
282  available in GenBank for the analysed species. We retained the five molecular markers
283  (16S rRNA gene; 18S rRNA gene; Cytochrome c oxidase subunit I, COl; Histone H3;
284 NADH dehydrogenase subunit 1, NADH) with the highest taxonomic coverage. We
285 aligned each marker separately using the E-INS-i algorithm implemented in MAFFT v.7
286  (Katoh & Standley, 2013). We translated alignments of protein-coding genes into amino
287 acids and checked them for indels and stop codons. When multiple sequences were
288 available for the same species, we chose the one with the greatest quality and length.
289  Our final alignment included a 1996 base pair for the 16S rRNA gene (number of aligned
290 sequences 87), 1772 base pairs for the 18S rRNA gene (37), 658 base pairs for COI
291  (101), 329 base pairs for H3 (17), and 340 base pairs for NADH (31). We concatenated
292  gene fragments with SequenceMatrix (Vaidya et al, 2011) and selected the optimal
293  partition scheme using the Akaike Information Criterion calculated in PartitionFinder
294  (Lanfear et al, 2017). We calculated ultrametric phylogenetic trees using BEAST 2
295  (Bouckaertet al., 2019), setting a relaxed molecular clock model for each partition and a

296  Yule model for the estimation of the topology. Our four Markov Chain Monte Carlo were
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297  allowed to run for 100 000 000 generations and sampled every 10 000 generations. The
298  10% ofinitial trees were discarded. We used Tracer version 1.7.1 (Rambaut et al., 2018)
299  to confirm the correct mixing of all the parameters and TreeAnnotator version 2.6.0
300 (Bouckaertetal, 2019) to calculate the consensus tree (Supplementary material S4).

301

302 6.3 Elaboration of the taxonomic, functional, and phylogenetic diversity maps

303
304 We assembled taxonomic, functional, and phylogenetic diversity maps using

305 modified versions of the functions alpha (temporalAlpha) and beta (temporalBeta) from

306  the package BAT version 2.7.1 (Cardoso et al., 2021). First, we stacked the binary maps
307 obtained from the best-performing SDMs models of each species. Then, we calculate
308 alpha diversity across the three biodiversity facets for present and future stacked maps.
309 We quantified variations in alpha diversity between present and future scenarios by
310 subtracting the alpha diversity values in the future and the present. We calculated beta
311 diversity in the same way, estimating replacement and richness components of beta
312 diversity (Cardoso et al, 2014) for each cell comparing future and present communities.
313 To calculate the alpha/beta functional and phylogenetic diversity, we used the
314  functional or phylogenetic tree as an additional parameter into the functions.

315

316 7 Testing for phylogenetic signal and trait influence on species response to
317 climate change

318

319 We used phylogenetic comparative methods to examine the influence of
320 phylogeny and traits on the responses of Odonata to climate change. We characterised
321 the response to climate change of each species using three response variables: i) the
322 proportional variation in habitat suitability, calculated as the ratio between future and
323 current predicted area; ii) the altitudinal shift in the distribution, estimated as the
324  difference between future and current mean altitude; and iii) the centroid shift in the
325 distribution, measured as the linear distance between the position of future and current
326  centroid. We used the function distGeo from the r package geosphere version 1.5-14 to
327  estimate the centroid position.

328
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329 We investigated whether closely related species experience similar responses to
330 climate change using Pagel's A and Blomberg's K, as implemented in the function
331 phylosig from the R package phytools version 0.7-80 (Revell, 2012). Values close to 0
332 indicate a weak phylogenetic signal, whereas values close to 1 or higher suggest the
333  presence of phylogenetic signal. We then visualised the phylogenetic signal of each trait
334  using ancestral character reconstruction as implemented the function contMap of the R

335  package phytools.

336 Finally, we explored the relationship between traits and the species response to
337 climate change (approximated with the three response variables above) using
338 Phylogenetic Generalized Least Squares (PGLS), using the function pgls from the
339 package caper version 1.0.1 (Orme et al, 2018). We used three functions of branch
340 transformation (lambda, kappa, and delta) to adjust the covariance matrix to the data
341  selecting the best transformation through a maximum likelihood procedure. Prior to
342  model fitting, we performed data exploration, visually inspecting for the presence of
343 outliers in the predictor and response variables with dotcharts and verifying

344  multicollinearity among predictor variables (Zuur et al., 2010).

345 8. Reproducibility

346 In constructing and reporting SDMs, we followed the ODMAP (Overview, Data,
347  Model, Assessment and Prediction) protocol (Zurrell et al., 2020), designed to maximise
348 reproducibility and transparency of distribution modelling exercises. The ODMAP for
349  this study is available as Supplementary material S2.

350 We stored all data, raw predictor variables and detailed model outputs in the
351  OSF repository (https://osf.io/4rjuc/). All code used to perform analyses and produce
352 plotsis available in GitHub (https://github.com/TommasoCanc/Odonata_SDM_2022).
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353 Results

354 1 Species distribution models

355 1.1 Predictor variables and model performance

356 We successfully calculated the habitat suitability for 107 species of European
357 Odonata out of 169 contained in our checklist. We omitted 62 species due to the low
358 number of occurrences available in GBIF. Our models incorporated seven non-collinear
359 predictors: waterbodies, elevation, Emberger’s pluviometric quotient (embergerQ),
360 temperature annual range (bio 7), mean temperature of the wettest quarter (bio 8),
361 mean temperature of the warmest quarter (bio 10), and precipitation seasonality (bio
362 15). Multicollinearity and Variance Inflation Factor analyses are reported in
363  Supplementary material S5. Boosted Regression Trees favoured the AUC in 96 species,
364 the ensemble of models in six species, the Maximum Entropy in four, and the

365  Generalized Additive Model only in one (Supplementary materials S6).
366 1.2 Species distribution model future predictions

367 In accordance with our first hypothesis, climate projections consistently
368 predicted an increase in habitat availability for the majority of species towards northern
369 regions of Europe and at upper elevations (Tab. 2). These shifts were coupled with a
370 contraction of suitable areas in the Mediterranean regions. We found only minor
371 variations among the predictions under different future Global Circulation Models. The
372  increased habitat availability in the northern areas is highlighted from a centroid’s shift
373  towards northern latitudes for the majority of Odonata species (Tab. 2). The model
374  outcomes also revealed a rise of mean elevation occupied by many species of Odonata in
375 the future climate scenarios (Tab. 2). Example model projections for one of the species

376 isavailable in Figure 2 (see Supplementary material S7 for the entire set of species).

377 2 Quantification of change of biodiversity measures

378 We calculated taxonomic, functional, and phylogenetic diversity for 105 of the
379 107 species, since we lack genetic data for Orthetrum taeniolatum (Schneider, 1845) and
380 Sympetrum sinaiticum Dumont, 1977.
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381 2.1 Alpha diversity patterns

382 Alpha diversity revealed congruent patterns across its three facets under the
383 current climate scenario. The highest values of taxonomic diversity concentrated
384  around the Central-Atlantic European region. Compared to taxonomic diversity, higher
385  values for functional and phylogenetic diversity were attained in Italy, Ireland, and the
386  North of the United Kingdom (Fig. 3).

387 Alpha diversity projections towards the future revealed a substantial
388 geographical re-arrangement over time again across the three biodiversity facets, with
389 main increments in taxonomic, functional, and phylogenetic diversity recorded in the
390 northern and eastern regions of Europe, particularly in the Scandinavian Peninsula, the
391  British Isles, and the Black Sea region. In contrast, a decrease in the three facets of alpha
392 diversity was predicted in Central Europe and Mediterranean areas, particularly in
393 France, Germany, and the Baltic countries, as well as the Hellenic, Italian, and Iberian
394  Peninsulas. Furthermore, the shift towards higher altitude predicted for many species
395 was visible as an overall increase of species richness, together with functional and
396 phylogenetic diversity, in the main European mountain range such as the Alps,

397 Cantabrian Mountains, and the Pyrenees (Fig. 3; Supplementary material $8).
398

399 2.2 Beta diversity patterns

400 We observed greater beta diversity in the Iberian Peninsula, Scandinavia, and
401  scattered areas across western Europe. Although with different values, this pattern was
402  congruent across the three biodiversity metrics and future Global Circulation Models,
403 not differing substantially between 2050 and 2070 predictions (Fig. 4). These changes
404  were primarily explained by changes in the richness component of beta diversity, rather
405 than replacement. The highest values of beta richness were predicted for the Iberian
406  Peninsula, Turkey, Scandinavia, and Eastern European countries. The highest values of
407  Dbeta replacements were registered for the Iberian Peninsula, the Balkans, and the Baltic

408  countries (Fig. 4; Supplementary material S8).

409

410 3 Phylogenetic signal and Phylogenetic Generalized Least Squares


https://doi.org/10.1101/2022.04.04.486993
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.04.486993; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

411 We observed a negligible phylogenetic signal in both Pagel's A and Blomberg's K for all
412  predictor variables (proportional variation in habitat suitability; altitudinal shift;
413  centroid shift), climate scenarios (BCC-CSM1; MIROC-ESM-CHEM; NorESM1-M) and
414  time periods (2050; 2070). The only exception was centroid shift (MIROC-ESM-CHEM
415 2050}, for which Pagel's A revealed a significant phylogenetic signal (A= 0.73; p = 0.003;
416  Supplementary material S9). The lack of phylogenetic signals is further confirmed by
417  the ancestral character reconstruction analysis, revealing no clustering pattern nested

418 into the phylogeny (an example in Fig. 5, Supplementary material S10).

419 For most climate scenarios and time periods, the outcomes of PGLS only partly
420 support the effect of traits (body length, flight period, and habitat) on the response of
421  Odonata to climate change. Body size and flight period returned significant effects on
422  the proportional variation in habitat suitability and the centroid shift for different global
423  circulation models and time periods (Tab. 3). No other traits revealed significant effects

424  (Supplementary Material S11).

425 Discussion

426 In this study, we forecasted variations in future habitat availability for 107
427  species of European Odonata. Specifically, we quantified the impact of those changes as
428 regional changes of alpha and beta diversity, and explored the role played by their
429  evolutionary history or specific traits in promoting such changes. Overall, our results
430 predict conspicuous readjustments in the Odonata communities following climate
431 change; these changes permeate through all facets of biodiversity. Conversely, we did
432 not find evidence that closely related species respond in a similar way to climate
433  change, since there was no clear phylogenetic signal associated with the magnitude of
434  range shift across the evolutionary tree of European Odonata. After accounting for
435 phylogenetic effects, one biological (body size) and one ecological (flight period) trait

436  affected the extent of change in distribution range induced by climate change.

437 Foremost, our projections consistently predicted an increase in habitat
438  suitability towards northern latitudes and upper elevations coupled with a contraction
439  of suitable areas in the Mediterranean regions for most species of dragonflies and

440 damselflies. This result was largely expected, since shifts induced by climate change are
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441  well-documented for many freshwater invertebrates (Hickling et al., 2005, 2006; Heino
442 et al, 2009; Mustonen et al, 2018), although their effects on the structure and
443  composition of natural communities are still poorly examined. More precisely, our
444  results hint that biological communities will not reshuffle randomly in the future.
445  Indeed, our predictions show that odonate communities will face a future taxonomic
446 rearrangement, paralleled by a readjustment of provided functional services and of the
447  amount of evolutionary heritage enclosed in their aggregations. This has important
448 implications for species management (Samways et al., 2020) and societal consequences
449  since invertebrates represent irreplaceable nodes into ecological networks providing
450 uncountable ecosystem services to human communities (Eisenhauer et al, 2019;

451  Cardoso et al, 2020).

452 Further gains or losses of biological diversity in its all three facets are
453  challenging to predict using correlative methods, since they will depend on non-linear
454  species-interactions branching throughout the system. For instance, increasing
455  taxonomic, functional, and phylogenetic diversity might import new evolutionary
456 lineages or improve the resilience of natural systems with novel ecosystem functions
457  (Thomas, 2020). Also, the new possibilities of interaction might increase the
458 competitive pressure among the species (Krosby et al, 2015}, and boost the chances of
459  hybridisation of previously isolated taxa (Bybee et al.,, 2016). For example, the rise of
460 hybridisation events between two European damselflies Ischnura elegans (Vander
461 Linden, 1820) and Ischnura graellsii (Rambur, 1842) have been documented and
462  attributed to climate-driven range expansion of I elegans to areas formerly occupied
463  exclusively by L graellsii (Sanchez-Guillén et al, 2011). In contrast, the decrease of
464  Dbiodiversity components could reduce ecosystem' stability and resilience due to
465 narrowing possible species-specific responses to environmental fluctuations leading to
466  functional homogenization (Tobias & Monika, 2012) and reducing genetic diversity
467  (Pauls et al, 2013). A homogenisation of the odonate communities driven by climate
468 change and urbanisation has already been documented for the North American
469 populations. Indeed, Ball-Damerow et al, (2014) demonstrated that changes in
470 environmental conditions led to a homogenization of odonates community favouring
471  the expansion of highly mobile habitat generalists species and a parallel loss of habitat

472  specialist or species with the peculiar physiological state as diapause.
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473 Not without caveats (e.g., abundance patterns or fitness; Lee-Yaw et al, 2021,
474  species coexistence; Pichler & Hartig, 2021), species distribution models are considered
475 robust and reliable correlative approaches to map the species' potential habitat
476  preference across space and time. Despite evaluation metrics suggesting our models
477  being robust, we acknowledge that their outcome is unavoidably coupled with the
478 goodness of the variables selected (Fourcade et al., 2018). Therefore, due to the lack of
479  specific habitat variables (e.g, intermittent freshwater habitats or future water
480 extension) and the main use of climatic variables, our projected ranges must be
481 interpreted as general indications of future trends of biodiversity change, rather than
482  precise descriptions of species range boundaries. Another potential criticism to our
483  approach is the inference of the habitat availability of odonate using species occurrence
484  retrieved from GBIF. We are conscious about the limitations of GBIF data (e.g, samples
485  collected opportunistically and spatially distorted). However, we consider that the
486  occurrences used to perform the model are in line with the actual knowledge about the
487  current distribution of Odonata. Moreover, the availability of high-quality field guides
488 and the facility to recognize the adult stage of these insects (compared to other
489 freshwater insects) allows limiting taxonomical errors. Finally, our models do not
490 consider potential immigration events of non-European species (for example, Trithemis
491  kirbyi Sélys, 1891 is one of the most recent species that arrived in Europe from Africa
492  due to climate changes; Boudot and Kalkman, 2015). Therefore, future estimates of
493  biodiversity facets values might be slightly underestimated. Despite these limitations,
494  we still consider our results of the current alpha taxonomy plausible since they agree

495  with the distribution map proposed by Kalkman et al. (2018).

496 Despite existing evidence that supports the tendency of the species to migrate
497  toward poleward latitudes and upper altitudes in response to climate change (Freeman
498 et al, 2018; Parmesan, 2006; Chen et al, 2011), sometimes the observed movements
499 may follow unexpected directions compared to those predicted by models (Diamond,
500 2018). Therefore, forecasting how the habitat availability might shift across species in
501 the near future, exploring how such change may affect biological communities and
502 uncovering the role played by biological and ecological traits in the organism range
503  shift, is critical to designing effective management and conservation plans (Guisan and

504  Thuiller, 2005). In the present work, we did not find any significant relation between
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505 the predicted range shift and phylogenetic relatedness of European Odonata coupled
506  with the lack of clusterization in the reconstruction of the ancestral character states.
507 These results highlight how the effect of climate change will be pervasive across the
508 entire phylogenetic tree of odonate with responses species-specific to climate variation.
509 Moreover, PGLS models' outcomes did not show a solid and consistent effect of traits on
510 range shifts. These results are in line with those proposed by Grewe et al., 2013, where
511 neither biological (e.g, abdomen length and wing size) nor ecological (e.g,, flight period)
512  traits have returned significant relation with observed range shift.

513

514 Therefore, further research about ecology, physiology, and behaviour can benefit
515 our knowledge about these freshwater insects and favour the design of efficient and
516 effective conservation strategies. Further investigations based on mechanistic models
517  (Chichorro et al., 2022) or high-resolution physiological and dispersal traits (Buckley &
518 Kingsolver, 2012; Mammola et al, 2021b) could be useful to better identify key traits
519 associated with climate-induced species range shifts and potentially even extinction
520 risk. Our results might be substantially improved by including into the models traits
521  directly linked with the dispersal ability (e.g., GPS-tracking, flight muscle mass, wing
522 loading and shape) as well as traits and distribution of the larval stages, since most of
523 the life of these insects is spent underwater [e.g., in Anax imperator (Leach, 1815) the
524  life span is two years in larvae and eight to nine weeks in adults (Corbet, 1957)].
525  Unfortunately, this kind of information is still scarce for most odonate species.
526  Therefore, further basic biological research about ecology, physiology, and behaviour
527  can benefit our knowledge about these freshwater insects and favour the design of

528 efficient and effective conservation strategies.
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855  Fig. 1. Infographic summarising the study workflow. In this work, we first constructed a
856  species distribution model for each species of European Odonata to predict their
857 current and future habitat suitability. Then, we stacked the model projections and used
858 community-level data to quantify the temporal variation of taxonomic, functional, and
859  phylogenetic diversity via estimating alpha and beta diversity. Finally, we used the
860 predicted range shift to assess whether the response of Odonata to climate change is
861 driven mainly by their evolutionary history or by distinctive biological and ecological
862 traits.

863  Fig. 2. Example of summarised species distribution model projections for an individual
864  odonate species. A) Best model prediction map for the current time period. B) Extent of
865 elevation shift across time periods. C) Variation of habitat availability between future
866 and current time periods. Habitat gain and loss are depicted with blue and red colours
867 respectively. Centroid shift is represented by the variation among the orange (present)
868 and yellow point (future). Summarised SDM outcomes for all species are available in
869  Supplementary material S7.

870 Fig. 3. Quantification of alpha diversity per different climate scenarios (BCC-CSM1-1;
871 MIROC-ESM-CHEM; NorESM1-M) and time periods (current; 2050; 2070). For future
872  scenarios, the cold-colour gradient indicates the extent of species loss, whereas the
873  warm-colour gradient indicates the species gain.

874  Fig. 4. Quantification of total-beta diversity (beta-replacement + beta-richness sensu
875 Cardoso et al, 2014) per different climate change scenarios (BCC-CSM1-1; MIROC-ESM-
876  CHEM; NorESM1-M) and time periods (current; 2050; 2070).

877  Fig. 5. Reconstruction of ancestral character states for the variables body size (left) and
878  variation in habitat suitability (right). Pagel's A and Blomberg's K indicate the estimated
879  values for the response variables "Variation of habitat suitability” (see Supplementary
880 material S10 for the other tree of ancestral character reconstructions). "Length” in the
881 legend provides the scale for the branch lengths of the phylogenetic tree. The grey box
882  delimits the Zygoptera clade whereas the brown one the Anisoptera clades.

883

884  Table 1 Traits considered in the analyses with an indication of their expected functional
885 meaning and the number of Gower distance groups (sensu de Bello et al., 2021).

886 Table 2 Magnitude and number of species shifting toward Northward latitudes and
887  upper altitudes.

888 Table 3 Results of PGLS models with significative response variables (in bold). Total
889  table containing PGLS results is in Supplementary material S11.

890

891
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Tablel1
Trait Trait type Expected functional meaning Bibliograph | Gower group
y
Body size | Biological Body size is tightly linked to (1; 2) Group 1
[Continuous] | temperature. Body size of assemblages
of odonates is mainly driven by
temperature.
Abdomen | Biological As for body size. Group 1
length [Continuous]
Wings Biological Proxy for dispersal. 34 Group 1
length [Continuous]
Habitat Ecological Freshwater habitats (lentic/lotic) are (5) Group 2
[Categorical] | among the most threatened ecosystems
by climate change.
Flight Ecological Indirect measure of dispersal potential. | (6) Group 3
season [Continuous]
time
Abdomen | Biological Pigmentation and colour patterns are (1;2;7;8;9) | Group 4
pigmentat | [Continuous] | directly related with thermoregulatory
ion mechanisms. For example, melanism is

linked to greater absorption of solar
radiation heat in cooler regions.

(1) Hassall & Thompson, 2008; (2) Acquah-Lamptey et al., 2020; (3) Outomuro & Johansson, 2019; (4) Rundle
et al., 2007; (5) Finlayson et al., 2019; (6) Grewe et al., 2013; (7) Okude & Futahashi, 2021; (8) Mani, 2013; (9)

SuérezlTovar et al., 2022



https://doi.org/10.1101/2022.04.04.486993
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.04.486993; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

906
907

908
909

Table?2

Average northward shift in centroid latitude

2050

2070

BCC-CSM1-1

0.93+0.11 (91/107)

1.12+0.12 (86/107)

MIROC-ESM-CHEM

0.49+0.11 (73/107)

0.7020.13 (81/107)

NorESM1-M

0.81+0.11 (80/107)

0.37+0.11 (70/107)

Average altitudinal shift in metres

BCC-CSM1-1

37.14+5.10 (81/107)

33.43+6.08 (73/107)

MIROC-ESM-CHEM

61.56+6.28 (88/107)

67.41+6.78 (91/107)

NorESM1-M

44.44:+5.09 (90/107)

56.43+5.47 (93/107)
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Table3
Estimate Std. Error tvalue Pr(>|t]) Res. variable [Scenario Time period

Centroid

(Intercept) 1207228.608 [52990.1971 |3.91069705 |0.00016874 [difference MIROC 2050
Centroid

Body length |[-1828.0532 1606.952165 [-3.0118571 [0.00329576 |difference MIROC 2050
Centroid

Flight Season [2777.48566 |5808.89903 [0.47814321 (0.63360243 |difference MIROC 2050
Centroid

Habitat Lentic|12534.6293 [31484.3892 |(0.39812204 (0.69139748 |[difference MIROC 2050
Centroid

Habitat Lotic |17994.3776 |(34691.3793 [0.51869882 [0.60512828 |[difference MIROC 2050
Centroid

(Intercept) |253527.566 [63388.1236 [3.99960673 [0.00012243 |[difference MIROC 2070
Centroid

Body length [|-1767.575 709.51574 |-2.4912414 |0.01439255 |[difference MIROC 2070
Centroid

Flight Season [1037.68713 |6738.33589 [0.15399754 (0.87792517 |difference MIROC 2070
Centroid

Habitat Lentic|7731.64985 [39206.2133 |0.19720471 ]0.84407166 |[difference MIROC 2070
Centroid

Habitat Lotic |8406.52507 [42340.684 |0.19854486 [0.84302595 |[difference MIROC 2070
Relative area

(Intercept) |1.87163593 [0.32124278 |5.826235 7.23E-08 change BCC 2070
Relative area

Body length ]0.00159414 |[0.00359034 ]0.44400809 |0.6580156 change BCC 2070
Relative area

Flight Season [-0.1305059 ]0.03658227 |[-3.5674636 [0.00055972 |change BCC 2070
Relative area

Habitat Lentic|0.28382835 ]0.18772987 [1.51189769 (0.13377797 |change BCC 2070
Relative area

Habitat Lotic |0.22166274 ]0.20737374 |1.06890458 |0.2877385 change BCC 2070
Relative area

(Intercept) |1.24519775 |(0.33799621 |3.68405838 [0.00037442 [change MIROC 2050
Relative area

Body length [0.00813323 ]0.00379381 (2.14381522 (0.03449684 |change MIROC 2050
Relative area

Flight Season |-0.0631417 [0.03622388 |-1.7430959 [0.08442164 [change MIROC 2050
Relative area

Habitat Lentic|0.26332324 ]0.20705918 [1.27172934 [0.20644872 |change MIROC 2050
Relative area

Habitat Lotic |0.02818103 [0.22588042 [0.12476082 ]0.90096589 |change MIROC 2050
Relative area

(Intercept) |1.67191708 [0.25146401 |6.64873314 |1.63E-09 change NOR 2050
Relative area

Body length [0.00223091 |0.00292457 [0.76281493 (0.44738758 |change NOR 2050
Relative area

Flight Season |-0.0984925 [0.02816582 |-3.4968784 (0.00070638 |change NOR 2050
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Relative area
Habitat Lentic|0.2071339  |0.14418534 [1.43658081 [0.15398984 |change NOR 2050

Relative area
Habitat Lotic |0.23521455 [0.1625593 1.44694616 |0.151071 change NOR 2050
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Alpha Diversity (MIROC-ESM-CHEM)

Taxonomic present Functional present Phylogenetic present
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Beta Diversity total (MIROC-ESM-CHEM)

Taxonomic MIROC-2050 Functional MIROC-2050 Phylogenetic MIROC-2050
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trait value
length=0.205

86

Variation in habitat suitability

0.55 trait value 3.723

—_—
length=0.205

Pagel's A = 0.00006
Blomberg's K =0.02
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