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Abstract: 8 

Bipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is fully 9 

effective in roughly 30% of BD patients. The remaining patients respond partially or do not respond at all. Another drug used to treat 10 

BD patients is valproate (VPA).  Plenty of efforts has been made to understand how these drugs affect the patients’ neurons. We 11 

have performed electrophysiological recordings in patient-derived dentate gyrus (DG) granule neurons for three groups: control 12 

individuals, BD patients who respond to Li treatment (LR), and BD patients who do not respond to Li treatment (NR). The recordings 13 

were analyzed by the statistical tools of modern information theory, which enabled us to recognize new relationships between the 14 

electrophysiological features. These added features included the entropy of several electrophysiological measurements and the 15 

mutual information between different types of electrophysiological measurements. Information theory features provided further 16 

knowledge about the distribution of the electrophysiological entities, which improved basic classification schemes. These newly 17 

added features enabled a significant improvement in our ability to distinguish the BD patients from the control individuals (an 18 

improvement from 60% accuracy to 74% accuracy) and the Li responders from the non-responders in the BD population using 19 

Support Vector Machine (SVM) classification algorithms (an improvement from 81% accuracy to 99% accuracy). These new tools 20 

showed that LR neurons are less distinguishable from control neurons after Li treatment but not after VPA treatment, whereas NR 21 

neurons become more distinguishable from control neurons after Li treatment.  22 

  23 

Introduction: 24 

Bipolar disorder (BD) is a severe psychiatric disorder characterized by abnormal mood episodes, typically mania and depression. 25 

During the mania state, people feel euphoric or irritable, grandiose, with increased energy and decreased need for sleep. In the 26 

depression state, they are sad and may feel empty, with associated changes in energy, cognitive functions, sleep, and appetite1,2. 27 

Early diagnosis and proper long-term treatment are critical since BD illness can lead to suicide3,4 and typically affects education, 28 

occupational status, family connections, social interactions, and quality of life. Different pharmacological and psychosocial therapies 29 

are being used to treat this disorder. However, these have been limited in their influence on the patients5. The popular mood 30 

stabilizer lithium (Li) has shown a therapeutic effect in about one-third of BD patients with prophylactic treatment6–8 ((these patients 31 

will be abbreviated as Li Responsive (LR) patients throughout the text). The remaining patients either respond partially or do not 32 

respond at all9,10. We will denote these patients as Non-responsive (NR) patients throughout this study. Several studies have 33 

examined Li mechanisms of action, but these mechanisms generally remain elusive despite the efforts to understand them.  34 

Many Li response prediction studies have used different clinical variables and features such as patients’ age, family history of BD, or 35 

the severity of symptoms11–14 However, the success of these prediction attempts was only partial. In 2018 Stern et al. used a naïve 36 

Bayes classifier trained on distinct electrophysiological features of LR and NR dentate gyrus (DG) granule neurons differentiated from 37 

iPSCs of BD patients for classification with a 92% success rate15. There have been studies to understand the underlying physiological 38 

and molecular differences between LR and NR neurons to find mechanisms for their different responses to the Li treatment. 39 

Differences in the autosomal neuronal functions of LR and NR neurons were reported in 2020 when Stern et al. showed that KCNC1 40 
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and KCNC2 were overexpressed in CA3 hippocampal pyramidal neurons obtained from LR BD patients (but not NR CA3 neurons). 41 

Specific potassium channel blockers were used to reduce hyperexcitability. Chronic Li therapy reduced the hyperexcitability of CA3 42 

neurons derived from the LR BD patients. The Li treatment increased sodium currents and reduced fast potassium currents16. 43 

Another study revealed that DG and CA3 pyramidal hippocampal neurons obtained from NR BD patients had an inherent 44 

physiological instability, causing rapid changes in excitability states17. In the most recent study, this team discovered that the activity 45 

of the Wnt/ β-catenin signaling pathway was significantly hampered in NR neurons, with a substantial decrease in LEF1 expression. 46 

Li inhibited GSK-3 β and released catenin, which comprises a nuclear composite with TCF/LEF1, triggering the Wnt/ β- catenin 47 

transcription program. As a result, it was hypothesized that downregulation of LEF1 might account for Li resistance in NR neurons18. 48 

Apart from this, several molecular mechanisms have been proposed to explain the cellular mechanism of Li action. Li was shown to 49 

alleviate calcium channel and mitochondrial dysfunction that were linked to various psychiatric conditions. Schlecker et al. showed 50 

overexpression of neuronal calcium sensor-1 (NSC-1) in PC12 cells and increased intracellular calcium release due to the 51 

phosphoinositide signaling pathway activation. It is well established that this family of calcium receptors in neurons regulates Ca2+ 52 

signaling19. Confocal microscopy was used to quantify intracellular calcium in PC12 cells. Li treatment of PC12 cells was found to 53 

inhibit the effects of NSC-120. Chen et al. showed that Li raised the mitochondrial Bcl-2 expression on the outer membrane. Chronic 54 

Li and VPA therapy resulted in elevated Bcl-2 levels in the frontal cortex. Bcl-2 is a protein that acts as a neuroprotective factor21.   55 

 Given a high percentage of patients with low responsiveness to Li therapy, it is essential to identify and diagnose those BD patients 

at an early stage of the disease to avoid prolonged ineffective treatments. A few studies aim to predict the Li response of BD patients 

using various techniques and algorithms. A study conducted in 2002 proposed that epileptiform EEG abnormal behavior should be 

investigated further as a potential marker of Li resistance in BD22. In 2003, Washizuka and his team identified a connection between 

mitochondrial DNA (mtDNA) 5178 and 10398A polymorphisms and BD. A logistic regression analysis indicated that patients with the 

10398A polymorphism responded considerably better to Li (p=0.03)23. In 2007, Li's response was suggested to have multi-genetic 

etiology that relies on other clinical co-diagnoses24. Kafantaris and his team reported that changes in the left cingulum hippocampus 

(CGH) fractional anisotropy (FA) could act as a biological marker of early therapeutic efficacy. Significant differences were found 

when comparing variations in white matter microstructure in the CGH between LR and NR patients. LR patients’ mean CGH FA 

increased by 5% from the baseline at week 4 of Li treatment, while NR patients’ CGH decreased by 0.82 %25. 

Anticonvulsant valproic acid (VPA) also has been found beneficial in some BD patients and is commonly used as an alternative to 56 

Li26,27. VPA was found to enhance the region of growth cones in cultured sensory neurons. After VPA chronic treatment at 0.3-0.6mM 57 

concentration, William et al. reported a decline in the rate of collapse and enlargement of growth cones in sensory neurons generated 58 

from newborn rat dorsal root ganglia28. According to several studies, VPA operates by engaging with the manipulation of voltage- 59 

gated sodium channels. Van den Berg et al. employed cultured hippocampal neurons to record fast spatial modulation of membrane 60 

voltage during whole-cell voltage-clamp measurements of Na+ currents. After applying 1mM VPA, a decrease in the reactivation of 61 

Na+ currents was observed. Furthermore, VPA decreased the peak Na+ conductance in a voltage-dependent manner29. VPA increases 62 

β-catenin transcription in the Wnt signaling pathway. Wang et al. observed that neural stem cells (NSCs) generated from embryonic 63 

Sprague-Dawley rats treated with VPA-containing media exhibited higher Wnt-3α and β-catenin than the control group. They 64 

discovered higher Wnt-3α and β- catenin expression in NSCs handled with 0.7mM VPA relative to media using RT-PCR. These findings 65 

indicated that the Wnt signaling pathway activation triggers VPA-induced neuronal differentiation30. In another study, VPA was 66 

shown to act downstream of GSK-3β. It upregulated LEF1 and Wnt / β-catenin gene targets, increased the complex β- 67 

catenin/TCF/LEF1 transcriptional activity, and decreased excitability in NR neurons18.  68 

In this study, we use Information theory to analyze the electrophysiological recordings of BD DG granule neurons. Adding this analysis 69 

gives us new perspectives on how Li and VPA affect DG neurons of BD patients compared to the control group. Furthermore, using 70 

information theory enhances the prediction of drug response significantly. Information theory incorporates probabilistic reasoning 71 

and representation to comprehend the enriched transmission of information and processing between systems. Information theory 72 

is a handy technique even in the neuroscience field. Researchers used information theory to decode the information from neuronal 73 

populations31,32 previously. In 1981, it was shown using elementary mutual information theory that matching of interneurons' 74 

contrast-response function in the compound eye of flies with the range of contrasts found in nature enables the neurons to encode 75 

contrast fluctuations most efficiently33. Transfer entropy, an information-theoretic quantity that quantifies linear and non-linear 76 

interactions, was previously used to systematically measure the communication between individual neurons at various time scales 77 

in cortical and hippocampal slice cultures to analyze multiplex networks of individual neurons with time scale-dependent 78 
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connections34. Another study demonstrated the transfer entropy (TE) as a metric for efficient connectivity of electrophysiological 79 

measurements in a simple motor task-based on simulations and magnetoencephalographies (MEG)35. There have been other 80 

studies36,37 that used information theory with electroencephalography (EEG), magnetoencephalography (MEG), and functional MRI 81 

(fMRI) data. The advantage of using information methods is their independence of a specific probabilistic model, thus enabling the 82 

quantification of a far wider variety of interactions and events than would be feasible for a parametric model-dependent method. 83 

Information theory can recognize both linear and non-linear relationships between variables.  84 

Here, we used features calculated using information theory to substantially improve the classification algorithms of Li response and 85 

BD state. By adding the entropies of the calculated electrophysiological features and the mutual information between the features, 86 

we improved the prediction accuracy from 81% to 99% when predicting the patient’s response to Li treatment and from 60% to 74% 87 

when classifying a BD state. We also classified the LR and NR neurons from the control neurons after Li and VPA treatment using 88 

these algorithms. We found that Li treatment makes LR neurons more neurotypical and harder to distinguish from the control 89 

neurons. On the other hand, the Li treatment made the NR neurons more distinguishable from the control neurons. 90 

Materials and Methods: 91 

Previous work: 92 

BD Cohorts and reprogrammed iPSCs 93 

BD participants were selected as part of an ongoing genetic research38 while healthy volunteers or married-in relatives of certain 94 

probands served as control subjects. After signing informed consent, all study participants were assessed using a stringent protocol: 95 

pairs of experienced clinician-researchers interviewed them. Following the interviews, a second blind panel of expert clinical 96 

researchers formed a standardized diagnosis (Research Diagnostic Criteria39 and DSM-IV). Lymphocytes obtained from all individuals 97 

were immortalized with Epstein-Barr virus (EBV) and reprogrammed to form iPSCs using the Yamanaka episomal vector defined by 98 

Okita et al.40 These iPSC lines went through validation of quality control management requirements previously described15 before 99 

further differentiation and characterization into neuronal cells. 100 

Neuronal differentiation 101 

The iPSC colonies that met the quality mentioned above were differentiated into primed neural progenitor cells (NPCs) and then into 102 

hippocampal DG granule-cell-like neurons as described previously15,41. More than 48% of differentiated neurons expressed the Prox1 103 

gene, a proxy for dentate granule cells. These differentiated neurons were infected with the Prox1::eGFP lentiviral vector on day 12 104 

of the post differentiation period. Electrophysiological recordings were performed on the neurons (with a high Prox1::eGFP 105 

expression) using the whole-cell patch-clamp technique in 10-45 days post differentiation. 106 

Li and VPA treatment 107 

Neuronal cultures were treated chronically with 1 mM LiCl or 1 mM VPA starting 14 days post differentiation until the patch-clamp 108 

experiments. These Li or VPA -treated cells were recorded electrophysiologically in between 22-30  post differentiation periods. 109 

Electrophysiological recordings 110 

On the 12th day of differentiation, neurons were infected with the Prox1::eGFP lentiviral vector. Neurons were transferred to a 111 

recording chamber using a recording medium solution containing (in mM): 10 HEPES, 4 KCl, 2 CaCl2, 1 MgCl2, 139 NaCl, and 10 D- 112 

glucose (solution adjusted to 310 mOsm, pH 7.4). Whole-cell patch-clamp recordings were made from DG-like neurons expressing 113 

Prox1::eGFP, typically during 22–30 days of differentiation but ranging from 10–45 days. Internal recording solution containing (in 114 

mM): 130 K-gluconate, 6 KCl, 4 NaCl, 10 Na-HEPES, 0.2 K-EGTA, 0.3 GTP, 2 Mg-ATP, 0.2 cAMP, 10 D-glucose, 0.15 % biocytin, and 0.06 115 

% rhodamine were used to fill patch electrodes. Internal solution pH and osmolarity were adjusted to physiological values (pH 7.3, 116 

290–300 mOsm) (pipette tip resistance was usually 10–15 MΩ). Signals were enhanced using a Multiclamp700B amplifier (Sunnyvale, 117 

California, USA) and recorded using Axon 'Instruments' Clampex 10.2 program (Union City, California, USA). The data were collected 118 

at a 20 kHz sampling rate and processed using Clampfit-10 and the MATLAB software kit (release 2014b; The MathWorks, Natick, 119 

MA, USA). All measurements were made at room temperature. 120 
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Electrophysiological analysis 121 

Total evoked action potentials: During patch-clamp recordings, in the current-clamp mode, usually, cells were injected with a holding 122 

current needed to hold at -60 mV. Current injection steps of 3 pA were given to the patched cells with a duration of 400 ms beginning 123 

from ~12 pA below the holding current. Thirty-five steps of current injections were performed. The study discarded the neurons that 124 

required more than 50 pA to retain the membrane potential at −60 mV. The total number of action potentials (spikes) in the 35 steps 125 

were counted, and this number is referred to as the total evoked action potentials (cell excitability). 126 

Sodium/potassium currents: Voltage clamp mode was used to obtain the sodium and potassium currents. Neurons were held at - 127 

60 mV, and periodic voltage steps of 400 ms were given between -90 and 80 mV. In general, these currents were normalized by the 128 

cell capacitance to compensate for cell size and to represent ion channel density on the membrane. However, in some of the analyses, 129 

the non-normalized currents were compared, and these instances are specifically indicated. 130 

Sodium currents: The amplitude of the incoming currents in the voltage-clamp mode in different testing potentials were measured. 131 

A strong capacitive transient occurs immediately after a depolarization phase, interfering with the measurements (the gating 132 

current). The membrane in the voltage clamp can be approximated as a resistor and a capacitor in a parallel electrical setup. The 133 

current in the capacitor operates roughly as the derivative of the change in potential (I=C*dVc/dt) during a voltage step and is much 134 

stronger than the currents in the resistor during fast transients because the derivate is large in fast changes. As a result, we can 135 

assume a capacitive impedance that scales nearly linear with the voltage step for fast transitions in the membrane potential (dVc). 136 

We used this as the reference capacitive current by measuring the current with a -10 mV voltage step from -60 mV to -70 mV, where 137 

almost no voltage-gated channels are open. We then generalized this uniformly with the voltage step (for example, multiplying the 138 

current provided by the -10 mV step by -2 for a 20 mV voltage step) and subtracting this scaled current from the measured almost 139 

wholly removed capacitive transient current. We used the sodium current amplitude at specific test potentials such as -20 mV when 140 

calculating some of the information features. These specific potentials were chosen according to where significant differences 141 

between groups or drug treatment were found and since they represent physiological conditions. 142 

Slow and Fast Potassium currents: Potassium currents were divided into fast potassium currents and slow potassium currents. The 143 

maximum current immediately after a depolarization step, generally within a few milliseconds, was used to measure the fast 144 

potassium current. Slow potassium currents were measured after 400 ms of depolarization. We measured the potassium currents 145 

at specific test potentials such as 0 mV and 20 mV when calculating some of the information features. These specific potentials were 146 

chosen according to where significant differences between groups or drug treatment were found and also because of their 147 

physiological relevance of these specific test potentials. 148 

Input conductance: The input conductance was determined by calculating the current with the cell held in voltage-clamp mode at - 149 

70 mV and then at -50 mV. The measured input conductance is the difference in currents divided by the change in membrane 150 

potential (20 mV). 151 

Capacitance: Capacitance was measured during the recordings by Clampex SW. 152 

Spike shape features: The first spike was evaluated for calculating the spike shape features (with the lowest injected current needed 153 

for eliciting a spike). The spike threshold was the membrane potential that significantly increased the slope of the depolarizing 154 

membrane potential leading to a spike (the first maximum in the second derivative of the voltage vs. time). The 5-ms fast AHP and 155 

1-ms fast AHP were calculated as the difference between the threshold for spiking and the value of the membrane potential 5 ms 156 

and 1ms, respectively after the potential returned to cross the threshold value at the end of the action potential. The spike height 157 

was calculated as the amplitude difference between the maximum membrane potential during a spike and the threshold. Spike width 158 

was calculated as the time it took the membrane potential to change from half the spike height in the rising part to half the spike 159 

height in the descending part of the spike (full-width at half-maximum). The rise time of a spike was calculated as the time taken by 160 

membrane potential to reach the peak value of membrane potential during the spike from the threshold.  161 

Information Theory analysis 162 

Neuronal recordings were categorized into seven groups: control, LR, LR with Li treatment, LR with VPA treatment, NR, NR with Li 163 

treatment, and NR with VPA treatment. Every electrophysiological measurement (cell capacitance, no. of spikes, sodium and 164 
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potassium currents) was uniformly binned into ten bins, and the probability distribution over these bins was calculated assuming 165 

ergodicity. 166 

Throughout the study, we used two information-related quantities: Entropy and Mutual Information;  Entropy can be understood 167 

intuitively as a measure of uncertainty in a given variable. The Entropy of a discrete random variable X is defined as follows42,43: 168 

𝐻(𝑋) =  − ∑ 𝑝(𝑥) log2 𝑝(𝑥)𝑥 ∈ 𝑋 , (1)   169 

where p(x) is the probability distribution of X. Mutual information can be intuitively understood as a reduction in the uncertainty in 170 

one variable by knowing the value of another variable. The mutual information between discrete variables X and Y is defined by43: 171 

𝐈(𝐗, 𝐘) = ∑  𝑝(𝑥, 𝑦) log2(𝑝(𝑥, 𝑦)𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 /𝑝(𝑥)𝑝(𝑦)) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌), (2)The entropy and mutual information 172 

between the electrophysiological features were calculated throughout the neuronal maturation period to follow the developmental 173 

trajectory and understand the strength of interaction between the features of the different groups and the changes that occurred 174 

by the drug treatment. 175 

Correlation and PCA plots: The measured electrophysiological features were normalized by division with the standard 176 

deviation. Next, we calculated the covariance matrix between ten physiological features (see Supplementary Table 1) and performed 177 

Principle Component Analysis (PCA) using the complete set of features. In the PCA space, we plotted an ellipse for each group that 178 

represents the standard deviation of the first PCA component as its width and the standard deviation of the second PCA component 179 

as its height. The ellipse's center was the mean PCA values for the group (“center of mass”).  180 

Classification and Prediction 181 

We trained an SVM and random forest classifiers to distinguish between categories based on a set of normalized features derived 182 

from the electrophysiological recordings. We performed 10X cross-validation by partitioning the data into ten sections, training the 183 

classifier by 90% of the data, and using the remaining data as the test set. Each time, this was done recursively with a different 10% 184 

of the data as the test set. Because the entropy depends on the entire dataset distribution, we calculated the entropy individually 185 

for each training dataset to avoid cross-talk between the test and training datasets. The Area under the Curve (AUC) in the Receiver 186 

Operating Characteristics (ROC) was used to assess the performance of the classification. We calculated the mean accuracy, the 187 

mean AUC, and the standard deviation of the separate AUC scores for each test set. Initially, we trained our classifier with a minimal 188 

feature set (see Supplementary Table 1). Next, we included six additional spike shape features (see Supplementary Table 1) to train 189 

our classifier; lastly, we included 18 additional informational features (see Supplementary Table 1) to further enhance the prediction.  190 

 191 

Results 192 

Only approximately 30% of BD patients were previously shown to respond positively to prophylactic Li treatment6,7. We have 193 

previously found15–17 that BD patients share distinct electrophysiological features, but these divide into subgroups based on the 194 

patients’ Li response. Therefore, it is possible to partition the neurophysiology of BD DG granule neurons into two categories 195 

according to the Li response of the patient. It is then natural to assume that analyzing the information quantities associated with 196 

electrophysiological properties will give further information about the cells and the disorder. The quantities that we chose for this 197 

analysis, the entropy and the mutual information, express variation and correlation, respectively, in the dataset. 198 

Li and VPA differentially affect the entropy of neuronal excitability, depending on the patient's 199 

response to Li 200 

We have previously reported hyperexcitability of BD DG granule neurons15–18. We next calculate the entropy of the excitability of the 201 

cells. Similar to our previous reports, the analysis performed at 20-30 days post-differentiation shows hyperexcitability of both BD 202 

LR and BD NR DG granule neurons compared to controls (Fig. 1a-c presents example traces for control (a), LR (b), and NR (c), and the 203 

average excitability in Fig. 1d). The LR neurons become less excitable when treating the neurons with chronic Li treatment (see 204 

Methods) (Fig. 1e, neurons 22-30 days’ post differentiation, p=0.02). NR neurons do not change their excitability with Lithium 205 
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treatment (Fig.1f, p=0.32). VPA treatment  decreased the cell excitability both in LR neurons (Fig. 1e, p=0.008) and in NR neurons 206 

(Fig. 1f, p=0.04) 207 

We next examined the differences in the entropy of cell excitability values to assess the diversity between cells within each group. 208 

The entropy of cell excitability for BD DG granule neurons was greater than that of the control (2.20 bits for LR, 2.29 bits for NR, and 209 

1.90 bits for the control neurons, Fig. 1g). Notably, the Li treatment decreased the entropy of cell excitability in LR to 1.65 bits (a 25% 210 

decrease) while increasing it to 2.81 bits in NR neurons (a 23% increase). With the VPA treatment, the entropy increased (nearly 211 

12%) to 2.46 bits for LR but decreased by 17.8% to 1.88 bits for NR (Fig. 1g).  212 

Interestingly, although Li and VPA reduced the number of spikes in LR and NR neurons, their influence on LR and NR Entropy was in 213 

the opposite direction. Furthermore, Li brought the entropy of the neuronal excitability for LR neurons in the direction of the control 214 

neurons. At the same time, it had an opposite effect on the NR neurons, increasing the difference of their entropy of excitability from 215 

the control neurons. 216 

On the other hand, VPA changed LR entropy of excitability further away from the control neurons. In contrast, it had the opposite 217 

effect on the NR neurons, bringing the entropy of the excitability of the NR neurons closer to that of the control neurons. We also 218 

calculated the changes that occur in the entropy of excitability during neuronal maturation (Fig. 1h). We noticed that the entropy of 219 

cell excitability kept increasing over the maturation period for control neurons but did not change much for the BD neurons 220 

suggesting earlier maturation of the BD neurons (Fig. 1h). 221 

The cell capacitance is proportional to the cell surface area and is correlated with neuronal maturation and development. To 222 

understand the impact of treatment on the capacitance, we measured the capacitance after Li or VPA treatment. The average cell 223 

capacitance was not significantly larger for BD DG granule neurons (p = 0.61 for control vs. LR, p = 0.12 for control vs. NR, Fig. 1i) 224 

within 20-30 days (significance is achieved over the entire maturation period of 10-45 days15). The Li treatment decreased the 225 

capacitance for LR neurons (p=0.00076), and the VPA treatment also had the same trend of reducing the capacitance value for LR 226 

(but not statistically significant, p=0.13, Fig.1j). In NR neurons, Li treatment reduced the capacitance (p=0.034); however, VPA did 227 

not reduce the capacitance significantly (p = 0.13, Fig. 1k). The entropy of cell capacitance was slightly elevated in NR neurons (2.76 228 

bits) and in LR neurons (2.73 bits) compared to control neurons (2.62 bits). The Li treatment decreased the entropy of cell capacitance 229 

to 2.14 bits for LR neurons (down by 21.5%) and to 2.50 bits (down by 9.4%) for NR neurons. VPA treatment did not change the 230 

entropy of cell capacitance for LR or NR neurons (a decrease of 3.3% for LR neurons and an increase of 6.4% in NR neurons, Fig. 1l). 231 

The entropy of cell capacitance for LR neurons followed the same pattern over post differentiation period as control neurons (Fig. 232 

1m). Still, this entropy started very low in young NR neurons, and, over the maturation period, it grew closer to the entropy of control 233 

and LR neurons. 234 

Li and VPA treatment differentially affects the entropy of the sodium and fast potassium currents 235 

depending on the patient's response to Li 236 

Next, we analyzed the statistics of ionic currents for the three groups (control, LR, and NR) at 20-30 days post-differentiation. Figure 237 

2a-c are example traces of sodium currents at a test potential of -20 mV in control, LR, and NR neurons. Previously, we reported that 238 

the sodium current in NR neurons decreased compared to control and LR neurons15,16. The average normalized sodium currents at 239 

this potential are plotted in Figure 2d, showing a decrease of 36% in NR neurons (p = 0.87 for control vs. LR neurons, p= 0.0087 for 240 

control vs. NR neurons, and p= 0.0045 for LR vs. NR neurons). Li treatment increased the sodium currents in the NR DG granule 241 

neurons (p=0.04, Fig. 2f), bringing them closer to the controls. VPA treatment almost significantly reduced the sodium currents of 242 

the LR neurons (p=0.058, Fig. 2e). The entropy of the sodium current was the highest for the LR neurons (~3 bits). The entropy of the 243 

sodium currents in the control neurons was 2.51 bits, and in the NR neurons, it was only 2.26 bits (Fig. 2g). This indicates a narrow 244 

distribution of the sodium currents in the NR neurons than control neurons and a broader distribution in the LR neurons. 245 

The Li treatment reduced the entropy of the sodium current for the LR neurons to 2.59 bits (down by 13.7%, in the direction towards 246 

the control neurons, Fig. 2g) while increasing the NR entropy of the sodium current to 2.49 bits (up by 9.5%, in the direction towards 247 

the control neurons). After VPA treatment, this entropy decreased to 2.45 bits for LR neurons (~ 18%), and it also decreased to 1.93 248 

bits for NR neurons (14.6%) (Fig. 2g). The entropy of the sodium currents monotonically decreased throughout the differentiation 249 

for control neurons (2.7084 for 10-20 days, 2.5113 for 20-30 days, and 2.3338 for 25-45 days, Fig. 2h) while it monotonically increased 250 
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for NR neurons (2.0839 for 10-20 days, 2.2550 for 20-30 days and 2.5331 for 25-45 days). However, in the LR neurons, the entropy 251 

of the sodium current initially increased and then decreased (Fig. 2h). 252 

We next calculated the fast potassium currents at different test membrane potentials. Figure 2i shows the mean values of the fast 253 

potassium current at a test potential of 0 mV in control, LR, and NR neurons. The fast potassium current did not change between 254 

control and BD neurons (p = 0.96 for control vs. LR neurons, p = 0.72 for control vs. NR neurons). The Li treatment did not cause a 255 

significant increase in the fast potassium currents of NR neurons (p=0.11). In comparison, VPA increased the fast potassium currents 256 

for NR neurons (for NR neurons p=0.002) but did not cause a significant change for LR neurons (p=0.23). Although the fast potassium 257 

current average at 0 mV before treatment was similar between control and BD neurons, the entropy of the fast potassium current 258 

was significantly different between control, LR, and NR neurons. The entropy of the fast potassium current was 2.96 bits for LR 259 

neurons, compared to 2.67 bits in NR neurons, and compared to 2.52 bits in control neurons. Li treatment decreased the entropy of 260 

the fast potassium current in LR neurons to 2.44 bits (a decrease of 17.9%) but increased the entropy of NR sodium current to 2.87 261 

bits (an increase of 7.6%). After VPA treatment, this entropy decreased to 2.66 bits for LR neurons (10.4% reduction) and 1.90 bits 262 

for NR neurons (28.9% reduction) (Fig. 2l). The entropy of the fast potassium current over the differentiation period changed similarly 263 

for control and NR neurons. However, it exhibited a considerable reduction for LR neurons (Fig. 2m). 264 

Effects of Li and VPA on the entropy of the slow and fast potassium current  265 

We next analyzed the fast and slow potassium currents at a test potential of 20 mV for neurons at 20-30 days post-differentiation. 266 

We chose +20 mV as a test potential in our analysis, as numerous potassium channels open at this potential, yet it is physiological. A 267 

representative trace of slow and fast potassium currents at 20 mV is presented in Figure 3a-c for the three groups. The amplitude of 268 

the slow potassium current was not significantly different between the three groups (Fig. 3d). The mean value of the slow potassium 269 

currents in LR neurons was not significantly different with the chronic application of Li and VPA (Fig. 3e, p=0.2925 for LR vs. LR Li 270 

neurons, p = 0.2937 for LR vs. LR VPA neurons). For NR neurons, the slow potassium current also did not significantly change with 271 

the chronic application of Li (p=0.2883) but decreased with VPA treatment (Fig. 3f, p= 0.058, close to being significant for NR vs. NR 272 

with VPA treatment). While calculating the entropies, we report that NR neurons (2.85 bits) had the highest entropy of the slow 273 

potassium current, followed by control neurons (2.64 bits) and LR neurons (2.56 bits)(Fig. 3g). Li treatment increased the entropy of 274 

the slow potassium current for LR neurons to 2.85 bits (an increase of 11.3%) and in NR neurons to 2.97 bits (a rise of 4%). After VPA 275 

treatment, the entropy increased to  2.91 bits for LR neurons (an increase of 13.9 %) while it decreased to 2.51 bits for NR neurons 276 

(a decrease of 12%) (Fig. 3g). The entropy of the slow potassium current for NR and control neurons did not change much over the 277 

post-differentiation period, while for LR neurons, it decreased over time (Fig. 3h). 278 

We found that the mean value of the fast potassium current at 20 mV was not significantly different across control, LR, and NR 279 

neurons. The mean value of this fast potassium current did not change significantly for LR neurons with the application of Li and VPA 280 

(p =0.53 for LR vs. LR Li, p = 0.49 for LR vs. LR VPA Fig. 3j). Similarly,  it did not change significantly with Li or VPA treatment for NR 281 

neurons (p = 0.3 for NR vs. NR Li, p = 0.94 for NR vs. NR VPA Fig. 3k). Calculating the entropy of the fast potassium current across 282 

seven categories revealed that LR (2.89 bits) neurons had higher entropy than control neurons (2.62 bits) and NR neurons (2.80 bits), 283 

which decreased after chronic Li treatment (2.74 bits) and chronic VPA treatment (2.79 bits) (Fig. 3l). Li treatment for NR neurons 284 

increased the entropy of the fast potassium current to 3.08 bits, and interestingly, VPA brought it drastically down to 2.09 bits. The 285 

entropy of the fast potassium current in BD DG granule neurons increased initially and then declined, while for the other two groups, 286 

it did not change much (Fig. 3m) 287 

Treatment efficacy can be speculated by analyzing the mutual information properties between 288 

electrophysiological features 289 

We characterized the relationships between our seven functional features by mutual information. Mutual information (MI) measures 290 

the degree of intrinsically complicated dependencies between the features such as the ionic currents, cell capacitance, and various 291 

phenotypes such as hyperexcitability. Looking to see whether treatment will change the features of the neurons to be more 292 

neurotypical, we analyzed the mutual information between different combinations of physiological features extracted from our 293 

recordings to understand the connections between these values in BD DG neurons. We calculated the mutual information between 294 

cell excitability and cell capacitance (MI exc-cap, Fig. 4a(i)), fast potassium current at 0 mV and cell capacitance (MI Fast K (0)-cap, 295 

Fig. 4b(i)), fast potassium current at 0 mV and cell excitability (MI Fast K (0)-exc, Fig. 4c(i)), fast potassium current at 0 mV and sodium 296 
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current (MI Fast K (0)-Na, Fig. 4d(i)), fast potassium current at 20 mV and sodium current (MI Fast K (20)-Na, Fig. 4e(i)), cell excitability 297 

and sodium current (MI exc-Na , Fig. 4f(i)), slow potassium current at 20 mV and cell excitability (MI Slow K (20)-exc, Fig. 4g(i)), 298 

Sodium current, fast potassium current at 20 mV and cell excitability (MI Na Fast K exc(20), Fig. 4h(i)), Sodium current, slow potassium 299 

current at 20 mV and cell excitability (MI Na Slow K exc(20), Fig. 4i(i)). Interestingly, the BD (LR and NR) has a higher MI value for 300 

most MI pairs than the controls. 301 

 Additionally, Li treatment in the LR neurons decreased the MI of most pairs of features bringing it closer to the control neurons 302 

values, while VPA increased the MI value between most pairs, driving it away from the control neurons and making the neurons less 303 

neurotypical. On the other hand, Li treatment in the NR neurons increased the MI value of the pairs mostly, driving it away from the 304 

control neurons and making the neurons less neurotypical. In contrast, VPA treatment in NR neurons decreased the MI value of most 305 

pairs (refer to supplementary table 2 for percentage difference of individual features value between Control and LR/NR neurons). 306 

The evolution of these MI value over the differentiation time can be observed in Figures 4a(ii),b(ii),c(ii),d(ii),e(ii),f(ii),g(ii) & h(ii) 307 

respectively.  308 

The mutual information calculations give further insights than the covariance matrix 309 

Figure 5 presents the covariance matrix between the different features in each group with or without treatment. The Mutual 310 

information inherits linear and non-linear relationships between the variables, while the covariance only accounts for the same- 311 

direction relationships. Figure 5 (a,b,c) depicts the covariance matrix between different physiological features (cell capacitance, cell 312 

excitability, sodium current at -20 mV, fast potassium current at 20 mV, slow potassium current at 20 mV, the spike threshold, the 313 

spike height, the rise time, the spike width, and the fast AHP (5ms)) for the three groups (control, LR, and NR). Figures 5(d) and 5(e) 314 

present the covariance matrix for LR neurons after Li and VPA treatment, respectively. Similarly, Figures 5(f) and 5(g) present the 315 

covariance matrix for NR neurons after Li and VPA treatment, respectively. The covariance matrices were usually in a qualitative 316 

agreement with the mutual informational values showing similar relationships between the features of the different groups. For 317 

instance, the covariance of the sodium current (as well as for the fast and slow potassium currents) and the cell excitability were 318 

very high for LR neurons after VPA treatment which showed a similar increase in the mutual information values after the VPA 319 

treatment (Fig. 4c(i), 4f(i), and 4g(i)). In NR neurons, the covariance of the fast and slow potassium current with cell excitability 320 

decreased with the use of VPA, similar to mutual information. However, the mutual information performs better than the covariance 321 

analysis in depicting how Li treatment brings the values of the MI of the LR group to be closer to the control groups and how VPA 322 

further distinguished them from the controls. In the NR, the MI analysis shows better than the covariance analysis how Li draws them 323 

further away from the control neurons, while VPA brings them closer.  324 

Principal component analysis (PCA) further supports that Li makes LR more neurotypical 325 

In order to assess if drug treatment makes BD neurons more similar to the control neurons, we next performed PCA, including the 326 

information features for LR and NR neurons after Li or VPA treatment. Figure 6 presents the analysis with the center of mass of the 327 

PCA values for each LR and NR neuron. These are plotted before and after Li/VPA treatment for LR and NR neurons as well as for 328 

control neurons. The ellipse around the center of mass represents the standard deviation of the PCA eigenvectors. Figures 6a and 6b 329 

present the control, LR, and LR after treatment (Li or VPA, respectively). 330 

Similarly, figures 6c and 6d display PCA values for the control, NR, and NR after treatment (Li and VPA, respectively). These plots 331 

show that in the PC1/PC2 space, Li treatment has the effect of changing LR neurons to be more similar to control neurons, while VPA 332 

moves them further away in this space. Both Li and VPA drive NR neurons further away from the control neurons in the PC1/PC2 333 

space. 334 

Adding Information theory  features improves the classification of BD state substantially  335 

We next checked whether the additional information features would help us classify better control vs. BD and Li response of BD 336 

patients using a  random forest or a support vector machine (SVM) classifiers (see Material and Methods for more details). When 337 

using a random forest classifier with a 10X cross-validation for classification, the mean accuracy when predicting BD state (vs. control) 338 

was 62%, with a poor Area Under the Curve (AUC) score (mean AUC (mAUC) = 0.63 ± 0.15) using the Receiver Operating Characteristic 339 

(ROC) (Fig. 7a). After including spike shape features, the mean accuracy was 60%, with a poor AUC score (mAUC = 0.63 ± 0.17) (Fig. 340 
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7b). When additionally including the information theory features (refer to Material and Methods for more details), the mean accuracy 341 

increased to 74% with a good AUC score (mAUC = 0.84 ± 0.05) (Fig. 7c).  342 

Adding Information theory features further leads to better prediction of Li treatment efficacy in the 343 

BD patients 344 

 Figures 7d, 7e, and 7f display the prediction between LR vs. NR neurons results in three training options: with the minimal feature 345 

set, including spike shape features, and the complete set, which also includes all the information theory features, respectively. When 346 

using the minimal feature set, the mean prediction accuracy between LR vs. NR neurons was 79% (mAUC=0.87 ± 0.11). When adding 347 

spike shape features, the accuracy increased to 81% (mAUC=0.89 ± 0.09), and when adding the information theory features, the 348 

accuracy was 99% (mAUC=0.99 ± 0.00). 349 

To understand how treatment affects the neurons, we next used SVM classification (with the complete feature set including 350 

information theory features) to distinguish the patients from the control individuals before and after Li or VPA treatment. Figure 7g 351 

shows the classification between control and LR neurons, and Figures 7h and 7i show the classification between control and LR 352 

neurons after Li and VPA treatment, respectively. The mean accuracy decreased from 92% (mAUC = 0.98 ± 0.02) (LR vs. control) to 353 

73% (mAUC = 0.78 ± 0.16) after the neurons were treated chronically with Li, suggesting that Li treatment makes the neurons more 354 

similar to the control neurons. After treating the LR neurons chronically with VPA, the neurons were still very distinguishable from 355 

the control neurons (mean accuracy of 90% with mAUC=0.98 ± 0.03), suggesting that VPA did not make the LR neurons more 356 

neurotypical.  357 

Figures 7j, 7k, and 7l show classification between control and NR neurons before and after treatment with Li or VPA. Li treatment 358 

increased the classifying accuracy between control and NR neurons from 81% (with mAUC = 0.91 ± 0.09) to 94% (with mAUC = 0.98 359 

± 0.02), suggesting that the Li makes NR neurons less neurotypical, while VPA also did not change the classification accuracy (mean 360 

accuracy of 83% with mAUC = 0.93 ± 0.10), suggesting that it also does not make them more neurotypical.  361 

Discussion 362 

Identifying the responsiveness of BD patients to Li and VPA at an early stage is critical for providing good treatment to the patients. 363 

Furthermore, while drugs are often regarded as effective or not effective by their ability to diminish mood episodes, this may not be 364 

the optimal way to assess them, and we would have liked to have a way to assess if the treatment brings them closer to being 365 

neurotypical. It was previously reported15  that a prediction of BD patients' response to Li treatment based on electrophysiological 366 

features is possible with a low error rate. In the study, a Naïve Bayes Classifier (trained by using characteristics derived from 367 

electrophysiological measurements for both categories) was proposed. The study developed a prediction algorithm for the response 368 

of a new patient (with unknown Li response) to Li treatment with a 92% successful prediction for young neurons. Here we perform 369 

analysis using information theory on electrophysiological measurements of patients’ DG neurons, and the addition of information 370 

theory-derived features increases the prediction success significantly. This new analysis also enables us to assess how neurotypical 371 

the BD patient-derived neurons become after Li or VPA treatment. 372 

We previously have shown that hyperexcitability is an endophenotype of BD neurons15,16. Lithium and VPA reduce excitability, with 373 

Li being specific to LR neurons, and VPA reduces the excitability in both groups. Still, human behavior is complex, and the excitability 374 

measure by itself does not fully describe the neurophysiological state of the neuron and is very far from describing behavior. To 375 

better understand the complexity of the biophysical aspects of neuronal physiology, there are many more aspects of the physiology 376 

that should be measured to understand BD-related mechanisms and the effects of specific treatments such as Li and VPA. The 377 

information regarding the distribution of distinct characteristics of neurons, such as the number of spikes or capacitance, is lost while 378 

calculating the average of these quantities. As we have previously shown when considering the distribution and dynamic changes in 379 

specific parameters, we see, for example, that NR neurons are physiologically unstable17. The entropy describes the diversity within 380 

the distribution, and we have shown here that it gives us more information about the changes from the neurotypical controls. 381 

Furthermore, the interplay of the different cellular features and their impact on each other may also be altered in the patient-derived 382 

neurons. We, therefore, included the mutual information between the electrophysiological measures in our new analysis. This new 383 

angle of approaching the data now shows us a broader view of the neurophysiological features, allowing us to understand the cellular 384 

changes in BD better. 385 
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The covariance matrix of the electrophysiological features (see Supplementary Table 1 in the Methods section) showed some 386 

agreement in the relationships of the different features with the calculated mutual information values (Fig. 5) but not between all 387 

the features. For example, the sodium current and the cell excitability covariance were smaller in NR neurons than in control and LR 388 

neurons, but the mutual information of these features was higher in the  NR neurons. This point may indicate that some of the 389 

features may be strongly affecting each other but do not have a clear linear correlation. However, these relationships may be 390 

important to the cell functionality, although they are not measured by a simple correlation relationship. Another example can be 391 

observed with the effect of Li and VPA treatment when measuring the relationship between cell excitability and the sodium current. 392 

Although both Li and VPA treatment increased the correlation between cell excitability and the sodium current, their effect on the 393 

mutual information was opposite. Our analysis shows that the mutual information may better reflect treatment efficacy and thus is 394 

more informative than the covariance matrix. Performing PCA (Fig. 6) using entropy and mutual information reveals that Li not only 395 

decreases the hyperexcitability in LR neurons but also makes them more neurotypical. It is interesting that VPA reduces the 396 

hyperexcitability of both LR and NR neurons but does not make them more neurotypical. This analysis that takes not only the first 397 

and second moment (the mean and variance) of the distributions into account, but rather complex interactions that are calculated 398 

through information theory, reveals essential connections between electrophysiological features that may be important 399 

determinants of neurotypical behaviors of our brain cells. 400 

Our classification abilities between control and BD patients have drastically improved by including the information theory features 401 

(Fig. 7a-c). The addition of the information theory features also profoundly improves the prediction of the patient’s response to Li 402 

treatment. The information theory features were then added to the classification scheme of the patients’ DG neurons compared to 403 

the control neurons with and without Li and VPA treatments. Similar to the PCA analysis, the prediction analysis also showed that Li 404 

makes LR DG neurons more similar and less distinguishable from control neurons. At the same time, VPA may reduce their excitability 405 

but does not make them less distinguishable from the controls. Both Li and VPA do not make NR neurons more distinguishable than 406 

control neurons.  407 

Overall, this new way of analysis may have important implications when deciding on the possible treatment of the patients. 408 

Furthermore, this new angle of approach may be a suitable method to analyze the effectiveness of treatment and the overall effect 409 

on the patients’ neurons.  410 

 411 

 412 

 413 
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 493 

Figure 1. Entropy of Cell excitability and cell capacitance changes differently after Li/VPA treatment in LR and NR DG granule neurons. (The statistics include 494 
recordings from control n= 95 neurons, LR n= 84 neurons, LR (Li treatment) n=67 neurons, LR (VPA treatment) n=26 neurons, NR n= 63 neurons, NR (Li treatment) 495 
n=47 neurons, NR(VPA treatment) n=75 neurons, all neurons were prox1 positive and therefore are DG granule neurons at 20-30 days post-differentiation unless 496 
otherwise stated). (a-c) Example recordings of evoked potentials for control (a), LR (b), and NR(c). (d) Averages of cell excitability for control, LR, and NR DG granule 497 
neurons. (e) Averages of cell excitability for LR, LR after Li treatment, and LR after VPA treatment (LR n= 59 neurons, LR (Li treatment) n= 67 neurons, LR (VPA 498 
treatment) n=26 neurons for 22-30 days). (f) Averages of cell excitability for NR, NR after Li treatment, and NR after VPA treatment (NR n= 48 neurons, NR (Li 499 
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treatment) n= 47 neurons, NR (VPA treatment) n=75 neurons for 22-33 days). (g) The entropy of cell excitability for all seven categories (control, LR, LR (Li), LR 500 
(VPA), NR, NR(Li), NR(VPA)). (h) The entropy of cell excitability for control, LR, and NR over post differentiation period.(i) Averages of cell capacitance for control, 501 
LR, and NR DG granule neurons. (j) ) Averages of cell capacitance for LR, LR after Li treatment, and LR after VPA treatment. (k) Averages of cell capacitance for NR, 502 
NR after Li treatment, and NR after VPA treatment. (l) The entropy of cell capacitance for all seven categories ( control, LR, LR (Li), LR (VPA), NR, NR(Li), NR(VPA)). 503 
(m) The entropy of cell capacitance for control, LR, and NR DG granule neurons over post differentiation period. In this figure *p < 0.05, **p < 0.01, ***p < 0.001, 504 
****p < 0.0001 and the error bars show standard errors. 505 

506 
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Figure 2. Li treatment showed a contrasting effect on the entropy of sodium and fast potassium currents in LR and NR DG granule neurons. (The statistics 507 
include recordings from control n= 95 neurons, LR n= 84 neurons, LR(Li treatment) n=67 neurons, LR (VPA treatment) n=26 neurons, NR n= 63 neurons, NR(Li 508 
treatment) n=47 neurons, NR(VPA treatment) n=75 neurons, all neurons were prox1 positive and therefore are DG granule neurons at 20-30 days post- 509 
differentiation unless the entire differentiation period is presented).(a-c) Example recordings of Sodium currents at -20 mV for control, LR, and NR. (d) Averages 510 
of Sodium currents at -20 mV for control, LR, and NR. (e) Averages of sodium currents at -20 mV for LR, LR after Li treatment, and LR after VPA treatment. (f) 511 
Averages of sodium currents at -20 mV for NR, NR after Li treatment, and NR after VPA treatment. (g) The entropy of sodium currents at -20 mV for all seven 512 
categories (control, LR, LR (Li), LR (VPA), NR, NR(Li), NR(VPA)). (h) The entropy of sodium currents at -20 mV for control, LR, and NR over the post-differentiation 513 
period. (i) Averages of fast potassium currents at 0 mV for control, LR, and NR DG granule neurons. (j)  Averages of fast potassium currents at 0 mV for LR, LR after 514 
Li treatment, and LR after VPA treatment. (k) Averages of fast potassium currents at 0 mV for NR, NR after Li treatment, and NR after VPA treatment. (l) The 515 
entropy of the fast potassium currents at 0 mV for all seven categories (control, LR, LR (Li), LR (VPA), NR, NR(Li), NR(VPA)). (m) The entropy of the fast potassium 516 
currents at 0 mV for control, LR, and NR neurons over post differentiation period. In this figure *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 and the error 517 
bars show standard errors. 518 

    519 
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Figure 3. The comparison of entropy of slow and fast potassium currents showed different patterns across LR and NR DG granule neurons after treatment. (The 520 
statistics include recordings from control n= 95 neurons, LR n= 84 neurons, LR(Li treatment) n=67 neurons, LR (VPA treatment) n=26 neurons, NR n= 63 neurons, 521 
NR(Li treatment) n=47 neurons, NR(VPA treatment) n=75 neurons, all neurons were prox1 positive and therefore are DG granule neurons at 20-30 days post- 522 
differentiation unless the entire differentiation period is presented). (a-c) Example recordings of slow potassium currents at 20 mV for control, LR, and NR DG 523 
granule neurons. (d) Averages of slow potassium currents at 20 mV for control, LR, and NR granule neurons. (e) Averages of slow potassium currents at 20 mV for 524 
LR, LR after Li treatment, and LR after VPA treatment. (f) Averages of slow potassium currents at 20 mV for NR, NR after Li treatment, and NR after VPA treatment. 525 
(g) The entropy of the slow potassium currents at 20 mV for all seven categories (control, LR, LR (Li), LR (VPA), NR, NR(Li), NR(VPA)). (h) The entropy of slow 526 
potassium currents at 20 mV for control, LR, and NR over the post differentiation period. (i) Averages of fast potassium currents at 20 mV for control, LR, and NR. 527 
(j) Averages of fast potassium currents at 20 mV for LR, LR after Li treatment, and LR after VPA treatment. (k) Averages of fast potassium currents at 20 mV for 528 
NR, NR after Li treatment, and NR after VPA treatment. (l) The entropy of fast potassium currents at 20 mV for all seven categories (control, LR, LR (Li), LR (VPA), 529 
NR, NR(Li), NR(VPA)). (m) The entropy of fast potassium currents at 20 mV for control, LR, and NR over the post differentiation period. This figure  **p < 0.01 and 530 
the error bars show standard errors.   531 
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 532 

Figure 4. Mutual Information (MI) of different electrophysiological features in all seven categories showed drastic differences between categories (control, LR, 533 
NR, with or without Li or VPA treatment). (a) (i) MI of cell excitability and cell capacitance (20-30 days) for all categories and (ii) for control, LR, and NR over the 534 
post-differentiation period. (b)(i) MI between fast potassium currents (at 0 mV) and cell capacitance (20-30 days) for all categories and (ii) for control, LR, and NR 535 
over the post-differentiation period. (c)(i) MI between fast potassium currents (at 0 mV) and cell excitability (20-30 days) for all categories and (ii) for control, LR, 536 
and NR over the post-differentiation period. (d)(i) MI between fast potassium currents (at 0 mV) and sodium currents (at -20 mV) (20-30 days) for all categories 537 
and (ii) for control, LR, and NR over the post-differentiation period. (e)(i) MI between fast potassium currents (at 20 mV) and sodium currents (at -20 mV) (20-30 538 
days) for all categories and (ii) for control, LR, and NR over the post-differentiation period. (f)(i) MI between cell excitability and sodium currents (at -20 mV) (20- 539 
30 days) for all categories and (ii) for control, LR, and NR over the post-differentiation period. (g)(i) MI between slow potassium currents (at 20 mV) and cell 540 
excitability (20-30 days) for all categories and (ii) for control, LR, and NR over the post-differentiation period. (h)(i) MI of sodium currents (at -20 mV), fast potassium 541 
currents (at 20 mV), and cell excitability (20-30 days) for all categories and (ii) for control, LR, and NR over the post-differentiation period. (i)(i) MI of sodium 542 
currents (at -20 mV), slow potassium currents (at 20 mV), and cell excitability (20-30 days) for all categories, and (ii) for control, LR, and NR over the post- 543 
differentiation period. 544 
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Figure 5. The covariance matrix of ten normalized features extracted from electrophysiological recordings of neurons 20-30 days post-differentiation. In this 545 
figure, 'E' marks cell excitability, 'C' marks cell capacitance, 'S K' marks the slow potassium current (at 20 mV), 'F K' marks the fast potassium currents (at 20 mV), 546 
'Na' marks the sodium currents (at -20 mV), 'AHP' marks the fast afterhyperpolarization potential (5 ms), 'RT' marks the rise time, 'SW' marks the spike width, 'Th' 547 
marks the spike threshold, and 'SH' marks the spike height (amplitude) (a) The covariance matrix for control neurons shows that the excitability is highly correlated 548 
with the AHP (negatively), spike width (negatively), and spike height. The excitability is also correlated with the sodium current amplitude (p=0.0073). (b) The 549 
covariance matrix for LR neurons. The correlation between excitability and the fast AHP increased even more compared to control neurons (p=0.21). (c) The 550 
covariance matrix for NR neurons. The correlation between excitability and the fast AHP increased even more than control and LR neurons. The correlation of 551 
excitability with the amplitude of the sodium currents completely diminished (p=0.61). (d) The covariance matrix for LR neurons after Li treatment. The correlations 552 
of LR excitability with the other features after Li treatment are more similar to the control correlations (sum of squares LR-control is 0.082 and sum of squares LR 553 
(Li)-control is 0.072). (e) The covariance matrix for LR neurons after VPA treatment. The correlations of LR excitability with the other features after VPA treatment 554 
are more similar to the control correlations (sum of squares LR-control is 0.082 and sum of squares LR (VPA)-control is 0.59). (f) The covariance matrix for NR 555 
neurons after Li treatment. Li treatment made an increase in covariance value between sodium current and excitability(p=0.20). (G) The covariance matrix for NR 556 
neurons after VPA treatment. The covariance value between both potassium currents and cell excitability decreased after VPA treatment. 557 

  558 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2022. ; https://doi.org/10.1101/2022.04.04.486856doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.04.486856
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 559 

Figure 6. Mean PCA values with standard deviation reflect treatment efficacy in BD neurons. Ellipses centered at mean PC1 and PC2 values and constructed 560 
from the standard deviation of PC1 and PC2 values using a set of all features for three groups: control (Cl), LR, and (a) LR (after Li treatment)(b) LR (after VPA 561 
treatment.  Again ellipses centered at mean PC1 and PC2 values and constructed from the standard deviation of PC1 and PC2 values using a set of all features 562 
for three groups: control (Cl), NR, and (c) NR (after Li treatment) (d) NR (after VPA treatment).  563 
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 564 

Figure 7. Classifier trained, including mutual information features, showed the highest precision and accuracy. ROC plot when classifying between control and 565 
BD neurons after training a random forest classifier with (a) Minimal features set (b) Including spike shape features (c) Including the entropy and mutual 566 
information (see Supplementary Table 1). ROC plot between LR and NR neurons after training a random forest classifier with (d) Minimal features set (e) including 567 
spike shape features (f) Including the entropy and mutual information. Next, we used an SVM classifier (with the entire features set including the entropy and 568 
mutual information) to determine treatment efficacy and plotted the ROC between (g) control and LR neurons (h) control and LR neurons after Li treatment (i) 569 
control and LR neurons after VPA treatment. Similarly, we plotted the ROC between (j) control and NR neurons (k) control and NR neurons after Li treatment (l) 570 
control and NR neurons after VPA treatment. 571 

 572 

 573 

 574 

 575 
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 576 

                                                              Supplementary results  577 

To check whether the minimal feature set or including spike-shape features helps us display the effectiveness of Li/VPA treatment 578 

on LR neurons, we trained the classifier with minimal features and included spike-shape features also (presented in supplementary 579 

figure 1a-e). Using only minimal features, classifying accuracy between control and LR dropped down to 75% (with mAUC = 0.85 ± 580 

0.12, Supp. Figure 1a), which did not improve even after including spike-shape features (accuracy =72% with mAUC = 0.83 ± 0.12, 581 

Supp. Figure 1a). Classifier trained with minimal features showed similar accuracy in classifying control and LR neurons after 582 

administering Li treatment (accuracy =75% with mAUC = 0.81 ± 0.12) which remained almost same even after including spike- 583 

shape features (accuracy =75% with mAUC = 0.82 ± 0.10). Classification of control and LR neurons after VPA treatment using the 584 

SVM classifier trained with minimal features were higher (accuracy =85%) than without treatment case but AUC was very scattered 585 

and low (mAUC = 0.70 ± 0.30). Including spike shape features decreased the accuracy for this classification by 1% (accuracy =84%), 586 

but AUC improved by a significant amount (mAUC = 0.83 ± 0.19) 587 

Yet again, to test whether including minimal features or spike-shape features assists us to discern the Li/VPA treatment efficacy in 588 

the case of NR neurons, we trained the SVM classifier with minimal features as well as including spike-shape features also (presented 589 

in supplementary figure 2a-e). Using only minimal features, classifying accuracy between control and NR dropped down to 73% (with 590 

mAUC = 0.73 ± 0.17) which did not improve even after including spike-shape features (accuracy =69% with mAUC = 0.72 ± 0.22). 591 

Classifier trained with minimal features showed somewhat less accurate classification(which actually improves after including 592 

informational features) in classifying control and NR neurons after Li treatment (accuracy =66% with mAUC = 0.63 ± 0.16) which 593 

actually improved after including spike-shape features (accuracy =77% with mAUC = 0.75 ± 0.08). Classification of control and NR 594 

neurons after VPA treatment using the SVM classifier trained with minimal features were lower (accuracy =69%) than without 595 

treatment case but AUC was a bit improved though more scattered (mAUC = 0.79 ± 0.21). Including spike shape features increased 596 

the accuracy for this classification by 7% (accuracy =76%) along with improved AUC (mAUC = 0.86 ± 0.12). 597 

 598 

 599 

Supplementary Table 1: 600 

Features used in different algorithm  601 

 602 

 603 

Available Features Minimal 
features set 

Additional spike 
shape features 

Additional 
informational 
features 

Covariance 
plots 

cell capacitance    

cell excitability     

Na current    

Fast K current(0 mV)    

Fast K current(20 mV)     

Slow K current (20 mV)    

Spike Height     
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Spike Width    

Spike threshold    

Rise time    

Fast AHP(5 ms)    

Fast AHP (1 ms)    

E cap    

E fast K (20 mV)    

E fast K (0 mV)    

E slow K (20 mV)    

E Na (-20 mV)    

E spikes    

MI Na cap    

MI exc cap    

MI fast K cap (0)    

MI fast K Na (0)    

MI fast K exc (0)    

MI fast K cap (20)    

MI fast K Na (20)    

MI fast K exc (20)    

MI Na exc    

MI Na fast K(20 mV) 
spikes 

   

MI Na fast K(0 mV) 
spikes 

   

MI Na slow K spikes    

 604 
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Supplementary figure 1. Classification based on minimal features and spike shape features does not reflect treatment efficacy in LR neurons. ROC plot after 605 
training an SVM classifier with minimal features set when classifying between (a) control and LR (b) control and LR (after Li treatment) (c) control and LR (after 606 
VPA treatment). ROC plot after training an SVM classifier including spike-shape features when classifying between (a) control and LR (b) control and LR (after Li 607 
treatment) (c) control and LR (after VPA treatment). 608 

 609 

  610 
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 611 

Supplementary figure 2. Classification based on minimal features and spike shape features does not reflect treatment efficacy in NR neurons. ROC plot after 612 
training an SVM classifier with minimal features set when classifying between (a) control and NR (b) control and NR (after Li treatment) (c) control and NR (after 613 
VPA treatment). ROC plot after training an SVM classifier, including spike-shape features when classifying between (a) control and NR (b) control and NR (after Li 614 
treatment) (c) control and NR (after VPA treatment). 615 

 616 

 617 

 618 

 619 
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 627 
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 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 
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 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 Supplementary Table 2 651 

    Percentage difference in BD neurons from control before and after treatment 652 

 653 
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Difference
s between 
NR (After 
VPA) (75 
neurons) 
and 
control(95 
neurons) 

Difference
s in NR ( 
After Li) 
(47 
neurons) 
and 
control(95 
neurons) 

Differences in 
NR(63 neurons)  
and control(95 
neurons) 

Differences in 
LR (After VPA) 
(26 neurons)  
and control(95 
neurons) 

Differences in 
LR (After Li) (67 
neurons)  and 
control(95 
neurons) 

Differences in 
LR(84 neurons) 
and control(95 
neurons) 

Measures 
 

(for 
recordings of 
20-30 days 
Post 
differentiatio
n period) 

 

11.93% -4.70% 5.18% 0.69% -18.30% 4.10% E cap 
 

-20.23% 17.62% 6.81% 6.28% 4.50% 10.08% 
E fast K (20 
mV) 

 

-24.77% 13.85% 5.76% 5.31% -3.44% 17.56% 
E fast K (0 
mV) 

 

-5.03% 12.30% 7.96% 10.14% 7.66% -3.26% 
E slow K (20 
mV) 

 

-23.31% -0.76% -10.21% -2.30% 3.06% 19.42% 
E Na (-20 
mV) 

 

-1.24% 47.60% 20.17% 29.28% -13.51% 15.40% E spikes 
 

52.99% 81.80% 77.86% 223.78% 78.34% 125.96% MI Na cap 
 

56.91% 129.43% 70.63% 225.15% 54.67% 61.13% MI exc cap 
 

38.65% 77.24% 62.58% 239.57% -2.91% 51.79% 
MI fast K cap 
(0) 

 

-19.77% 40.41% -10.78% 80.83% 0.34% 40.78% 
MI fast K Na 
(0) 

 

-32.76% 240.61% 48.56% 188.86% -8.66% 65.27% 
MI fast K exc 
(0) 

 

16.50% 45.08% 62.83% 105.36% 19.06% 5.66% 
MI fast K cap 
(20) 

 

1.85% 67.77% 13.59% 112.14% 21.90% 30.79% 
MI fast K Na 
(20) 

 

-5.96% 200.00% 84.88% 220.21% 24.22% 55.27% 
MI fast K exc 
(20) 

 

64.63% 84.30% 91.70% 174.98% 16.91% -14.96% 
MI slow K 
cap 

 

52.55% 76.36% 14.85% 109.95% 25.43% 14.24% MI slow K Na 

 

41.28% 246.62% 76.43% 291.57% 41.34% 12.62% MI slow K exc 

 

19.78% 151.89% 87.22% 256.22% 48.24% 41.87% MI Na exc 
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 654 

-2.12% 77.06% 25.23% 71.65% -4.04% 25.32% 
MI Na fast 
K(20 mV) 
spikes 

 

-5.74% 102.65% 34.52% 112.48% 5.57% 46.63% 
MI Na fast 
K(0 mV) 
spikes 

 

17.41% 82.38% 25.66% 101.23% 6.67% 17.71% 
MI Na slow K 
spikes 
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