

Gut metabolites in depression and anxiety

1 Word Count: 5055

2 Figures: 6

3 Tables: 1

4

5 Gut microbiome-linked metabolites in the pathobiology of 6 depression and anxiety - a role for bile acids

7

8 Siamak MahmoudianDehkordi^{1†}, Sudeepa Bhattacharyya^{2†}, Christopher R Brydges³, Wei Jia⁴,
9 Oliver Fiehn³, A John Rush^{1,5}, Boadie W Dunlop^{6*}, Rima Kaddurah-Daouk^{1,7,8*} for the Mood
10 Disorders Precision Medicine Consortium

11

12 ¹Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine,
13 Durham, NC, United States.

14 ²Arkansas Biosciences Institute, Department of Biological Sciences, Arkansas State University,
15 AR, United States.

16 ³West Coast Metabolomics Center, University of California, Davis, CA, United States.

17 ⁴ HKBU Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist
18 University, Kowloon Tong, Hong Kong

19 ⁵Department of Psychiatry, Health Sciences Center, Texas Tech University, Permian Basin, TX,
20 United States; Duke-National University of Singapore, Singapore.

21 ⁶Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine,
22 Atlanta, GA, United States

23 ⁷Department of Medicine, Duke University, Durham, NC, United States

24 ⁸Duke Institute of Brain Sciences, Duke University, Durham, NC, United States

25 [†]These authors have contributed equally to this work and share first authorship

26

27 * Corresponding Authors:

28 Rima Kaddurah-Daouk, PhD
29 Email: kaddu001@mc.duke.edu

30

31 Boadie Dunlop, MD
32 Email: bdunlop@emory.edu

33

34 **Running Title:** Gut metabolites in depression and anxiety

35

36 **Key words:** Metabolomics, gut microbiome, bile acids, anxiety, depression, major depressive
37 disorder

38

Gut metabolites in depression and anxiety

39 ABSTRACT

40 **Background:** The gut microbiome may play a role in the pathogenesis of neuropsychiatric
41 diseases including major depressive disorder (MDD). Bile acids (BAs) are steroid acids that are
42 synthesized in the liver from cholesterol and further processed by gut-bacterial enzymes, thus
43 requiring both human and gut microbiome enzymatic processes in their metabolism. BAs
44 participate in a range of important host functions such as lipid transport and metabolism, cellular
45 signaling and regulation of energy homeostasis. BAs have recently been implicated in the
46 pathophysiology of Alzheimer's and several other neuropsychiatric diseases, but the biochemical
47 underpinnings of these gut microbiome-linked metabolites in the pathophysiology of depression
48 and anxiety remains largely unknown.

49
50 **Method:** Using targeted metabolomics, we profiled primary and secondary BAs in the baseline
51 serum samples of 208 untreated outpatients with MDD. We assessed the relationship of BA
52 concentrations and the severity of depressive and anxiety symptoms as defined by the 17-item
53 Hamilton Depression Rating Scale (HRSD₁₇) and the 14-item Hamilton Anxiety Rating Scale
54 (HRSA-Total), respectively. We also evaluated whether the baseline metabolic profile of BA
55 informs about treatment outcomes.

56
57 **Results:** The concentration of the primary BA chenodeoxycholic acid (CDCA) was significantly
58 lower at baseline in both severely depressed (\log_2 fold difference (LFD)= -0.48; $p=0.021$) and
59 highly anxious (LFD= -0.43; $p=0.021$) participants compared to participants with less severe
60 symptoms. The gut bacteria-derived secondary BAs produced from CDCA such as lithocholic
61 acid (LCA) and several of its metabolites, and their ratios to primary BAs, were significantly
62 higher in the more anxious participants (LFD's range=[0.23,1.36]; p 's range=[6.85E-6,1.86E-2]).
63 The interaction analysis of HRSD₁₇ and HRSA-Total suggested that the BA concentration
64 differences were more strongly correlated to the symptoms of anxiety than depression.
65 Significant differences in baseline CDCA (LFD= -0.87, $p=0.0009$), isoLCA (LFD= -1.08,
66 $p=0.016$) and several BA ratios (LFD's range [0.46, 1.66], p 's range [0.0003, 0.049])
67 differentiated treatment failures from remitters.

68
69 **Conclusion:** In patients with MDD, BA profiles representing changes in gut microbiome
70 compositions are associated with higher levels of anxiety and increased probability of first-line
71 treatment failure. If confirmed, these findings suggest the possibility of developing gut
72 microbiome-directed therapies for MDD characterized by gut dysbiosis.

73

Gut metabolites in depression and anxiety

74 1. INTRODUCTION

75 Abnormalities in the gut microbiome and gut-brain axis have emerged as potentially
76 important contributors to the pathophysiology of neuropsychiatric diseases. Several microbe-
77 derived metabolites (e.g., neurotransmitters, short-chain fatty acids, indoles, bile acids [BAs],
78 choline metabolites, lactate, and vitamins) play a significant role in the context of emotional and
79 behavioral changes (Caspani, Kennedy et al. 2019). Both direct and indirect mechanisms have
80 been proposed through which gut microbial metabolites can affect central nervous system (CNS)
81 functions (Yarandi, Peterson et al. 2016, Tognini 2017, Tremlett, Bauer et al. 2017, Caspani,
82 Kennedy et al. 2019). These include activation of afferent vagal nerve fibers, stimulation of the
83 mucosal immune system or circulatory immune cells after translocation from the gut into the
84 circulation, and absorption into the bloodstream followed by uptake and biochemical interaction
85 with a number of distal organs. In the brain, these metabolites may activate receptors on neurons
86 or glia, modulate neuronal excitability, and change gene expression patterns via epigenetic
87 mechanisms (Caspani, Kennedy et al. 2019).

88 A growing body of evidence indicates the various mechanisms related to bidirectional
89 communication between the gut microbiota and the host's CNS with anxiety and depression
90 (Dinan and Cryan 2015, Dinan and Cryan 2017, Rieder, Wisniewski et al. 2017, Simpson, Diaz-
91 Arteche et al. 2021). Certain gut bacteria regulate the production of neurotransmitters and their
92 precursors, such as serotonin, gamma-aminobutyric acid and tryptophan, and they also regulate
93 proteins such as brain-derived neurotrophic factor, a key molecule involved in neuroplastic
94 changes in learning and memory (Bercik, Verdu et al. 2010, O'Sullivan, Barrett et al. 2011,
95 Agus, Planchais et al. 2018, Miranda, Morici et al. 2019). Metabolites such as short-chain fatty
96 acids (Parada Venegas, De la Fuente et al. 2019) are involved in neuropeptide and gut hormone
97 release, and they modulate immune signaling along the gut-brain axis via cytokine production.
98 Gut bacteria are thought to be involved in the development and functioning of the hypothalamic-
99 pituitary-adrenal axis (Sudo, Chida et al. 2004, de Weerth 2017, Foster, Rinaman et al. 2017).
100 Dysregulation of the hypothalamic-pituitary-adrenal axis has been implicated in anxiety and
101 depressive disorders, being associated with higher cortisol levels, increased intestinal
102 permeability, and a sustained proinflammatory state (Keller, Gomez et al. 2017). Gastrointestinal
103 conditions believed to involve gut-microbial dysbiosis and intestinal permeability, such as
104 irritable bowel syndrome, co-occur at remarkably high rates with psychiatric disorders (Simpson,
105 Schwartz et al. 2020). In addition, several animal studies have supported the possibility of gut
106 sysbiosis having a causative role in depression-like behaviors. For example, mice exposed to
107 antibiotics showed gut dysbiosis, depression-like behavior, and altered neuronal hippocampal
108 firing, with reversal of this phenotype following probiotic treatment (Guida, Turco et al. 2018).
109 Transplantation of gut microbiota from humans with major depressive disorder (MDD) to germ-
110 free or microbiota-deficient rodents resulted in a depression-like phenotype, including anhedonia
111 and anxiety-like behaviors (Kelly, Borre et al. 2016, Zheng, Zeng et al. 2016). Despite the
112 literature supporting the involvement of the microbiota-gut-brain axis in mental health disorders,
113 the underlying mechanisms of bidirectional communication and the metabolite mediators by
114 which the gut bacteria regulate the gut-brain connection are not fully understood. Therefore,
115 characterizing the rich array of compounds produced by gut bacteria and defining their protective
116 and cytotoxic effects on the CNS can effectively define targeted interventions.

117 A potential mechanism by which the gut microbiome may alter CNS function is its
118 impact on BAs. BAs are the amphipathic end products of cholesterol metabolism and can
119 contribute significantly to hepatic, intestinal, and metabolic disorders (Li and Chiang 2014).

Gut metabolites in depression and anxiety

120 **Figure 1** shows how BAs are synthesized from cholesterol in the liver via two major pathways,
121 the classical and the alternative; secondary BAs are metabolized by colonic bacteria through
122 multiple and well-characterized enzymatic pathways (Lefebvre, Cariou et al. 2009). Primary BAs
123 are the direct products of cholesterol metabolites in hepatocytes, such as cholic acid (CA) and
124 chenodeoxycholic acid (CDCA). In response to cholecystokinin after feeding, primary BAs are
125 secreted by the liver into the small intestine to ensure absorption of dietary lipids. Accordingly,
126 95% of the BAs are actively absorbed in the terminal ileum and redirected into the portal
127 circulation to reenter the liver. A small proportion pass into the colon where bacteria transform
128 them into secondary BAs—lithocholic acid (LCA), deoxycholic acid (DCA), and
129 ursodeoxycholic acid—via deconjugation and 7 α -dehydroxylation (Hofmann and Hagey 2008,
130 Bajor, Gillberg et al. 2010). Although DCA and LCA are the most abundant secondary BAs,
131 approximately 50 different secondary BAs have been detected in human feces (Devlin and
132 Fischbach 2015).

133 Although primary BAs like CDCA may be synthesized in the brain, no evidence so far
134 supports the synthesis of secondary BAs in the brain (Baloni, Funk et al. 2020). This suggests
135 that the major source of brain BAs is the systemic circulation, which functions as a direct
136 communication bridge between the gut microbiome and the brain (Monteiro-Cardoso, Corliano
137 et al. 2021), thereby playing a vital role in brain health. Circulating BAs generated in the liver
138 and intestine can reach the brain by crossing the blood-brain barrier, either by simple diffusion or
139 through BA transporters (Monteiro-Cardoso, Corliano et al. 2021). Higashi et al. (Higashi,
140 Watanabe et al. 2017) recently found that levels of CA, CDCA, and DCA detected in the brain
141 positively correlated with their serum levels. The liver-gut-brain axis is critical for the
142 maintenance of metabolic homeostasis, yet much remains to be elucidated about how BAs that
143 are synthesized in the liver and modified in the gut mediate the crosstalk between the peripheral
144 and central nervous system and impact neuropsychiatric disorders like depression and anxiety.

145 Several lines of evidence implicate secondary BAs as contributors to CNS dysfunction.
146 Hepatic encephalopathy is associated with elevated levels of ammonia and cytotoxic BAs,
147 including several conjugated primary and secondary BAs (Xie, Wang et al. 2018). Post-mortem
148 brain samples and serum concentrations of living Alzheimer's disease patients (compared to
149 health controls) demonstrated lower levels of the primary bile acid, CA, and higher levels of its
150 bacterially-derived secondary bile acid, DCA and its conjugated forms (MahmoudianDehkordi,
151 Arnold et al. 2019, Nho, Kueider-Paisley et al. 2019, Baloni, Funk et al. 2020). In contrast,
152 ursodeoxycholic acid, the 7 β isomer of CDCA, has antiapoptotic, anti-inflammatory, antioxidant,
153 and neuroprotective effects in various models of neurodegenerative diseases (Daruich, Picard et
154 al. 2019) (Ramalho, Nunes et al. 2013) and Huntington's disease (Rodrigues, Stieers et al. 2000)
155 (Mortiboys, Aasly et al. 2013) (Parry, Rodrigues et al. 2010) (Ackerman and Gerhard 2016).
156 Taken together, these data indicate that BAs affect brain function under both normal and
157 pathological conditions. However, the association of BAs on psychiatric diseases such as MDD
158 has received little study to date.

159 In this study, we profiled baseline serum samples from 208 patients enrolled in a
160 randomized controlled trial of treatment-naïve outpatients with MDD, measuring 36 primary and
161 secondary BAs to address the following questions:

- 162 1. Is there a relationship between BA profiles and depressive and anxiety symptom
163 severity?
- 164 2. Does symptom severity correlate with differential metabolism of BAs through the
165 classical and alternate pathways?

Gut metabolites in depression and anxiety

166 3. Do baseline BA profiles distinguish MDD patients who achieved remission from those
167 who failed to benefit after 12 weeks of treatment?

168

169 2. MATERIALS AND METHODS

170 2.1 Study Design and Participants

171 This study examined serum samples from the Predictors of Remission in Depression to
172 Individual and Combined Treatments (PReDICT) study. The design and clinical outcomes of
173 PReDICT have been detailed previously (Dunlop, Binder et al. 2012, Dunlop, Kelley et al. 2017,
174 Dunlop, LoParo et al. 2019). PReDICT aimed to identify predictors and moderators of response
175 to 12 weeks of randomly assigned treatment with duloxetine (30-60 mg/day), escitalopram (10-
176 20 mg/day) or cognitive behavior therapy (16 one-hour individual sessions). Eligible participants
177 were adults aged 18-65 with nonpsychotic MDD who had never previously been treated for
178 depression. Severity of depression at the randomization visit was assessed with the 17-item
179 Hamilton Depression Rating Scale (HRSD₁₇) (Hamilton 1960). Eligibility required an HRSD₁₇
180 score ≥ 18 at the screening visit and ≥ 15 at the randomization visit, indicative of moderate-to-
181 severe depression. Patients were excluded if they had a history of bipolar disorder,
182 neurocognitive disorder, or anorexia nervosa, or had an active significant suicide risk, current
183 illicit drug use (assessed by history and with urine drug screen) or a history of substance abuse in
184 the three months prior to randomization, pregnancy, lactation, or any uncontrolled general
185 medical condition.

186

187 2.2 Metabolomic Profiling and Ratios and Summations

188 At the randomization visit, antecubital phlebotomy was performed without regard for time
189 of day or fasting status to obtain the serum samples used in the current analysis. Blood samples
190 were allowed to clot for 20 minutes, then centrifuged at 4°C for 10 minutes. The serum was
191 pipetted into Eppendorf tubes and immediately frozen at -80°C until ready for metabolomic
192 analysis. Using targeted metabolomics protocols and profiling protocols established in previous
193 studies (Qiu, Cai et al. 2009, Xie, Wang et al. 2015, Zhao, Ni et al. 2017), BAs were quantified
194 by ultra-performance liquid chromatography triple quadrupole mass spectrometry (Waters
195 XEVO TQ-S, Milford, USA). Measures of primary and secondary BAs, including their
196 conjugated and unconjugated forms, can be found in **Supplementary Table 1**.

197 We examined individual BAs as well as a number of BA summations and ratios that have
198 been previously implicated in several pathophysiological conditions (O'Byrne, Hunt et al. 2003,
199 Shonsey, Sfakianos et al. 2005, Sonne, Hansen et al. 2014, Wahlstrom, Sayin et al. 2016, Chiang
200 2017, Martinot, Sedes et al. 2017, Vaz and Ferdinandusse 2017, Marksteiner, Blasko et al. 2018,
201 MahmoudianDehkordi, Arnold et al. 2019). See **Supplementary Table 2** for these ratios and
202 their associated diseases or metabolic conditions.

203

204 2.3 Depression and Anxiety Symptoms

205 Depression severity was assessed using the clinician-administered HRSD₁₇. Participants
206 with HRSD₁₇ < 20 were labeled as non-severely depressed and those with HRSD₁₇ ≥ 20 as
207 severely depressed (Weitz, Hollon et al. 2015). Anxiety symptom severity was assessed using the
208 clinician-rated 14-item Hamilton Anxiety Rating Scale (HRSA-Total) (Hamilton 1959),
209 comprising two subscales: "psychic anxiety" (items 1-6 and 14) (HRSA-PSY), and "somatic
210 anxiety" (items 7-13) (HRSA-SOM) (Dunlop, Still et al. 2020). Psychic anxiety (HRSA-PSY)
211 consists of the symptoms of anxious mood, tension, fears, depressed mood, insomnia, impaired

Gut metabolites in depression and anxiety

212 concentration, and restlessness. Somatic anxiety (HRSA-SOM) consists of physical symptoms
213 associated with the muscular, sensory, cardiovascular, respiratory, gastrointestinal, genitourinary,
214 and autonomic systems. Participants were divided into those with high (HRSA-Total ≥ 15) and
215 low (HRSA-Total < 15) levels of anxiety (Matza, Morlock et al. 2010). The HRSD₁₇, and HRSA-
216 Total ratings were re-administered after the completion of treatment at week 12. Consistent with
217 other studies evaluating the biological effects of treatments, we compared the participants who
218 achieved remission (remitters) (defined as completing 12 weeks of treatment and reaching
219 HRSD₁₇ ≤ 7) versus those who completed 12 weeks of treatment but whose week 12 HRSD₁₇
220 score was $< 30\%$ lower than their baseline score (treatment failure) (Dunlop, Rajendra et al.
221 2017).

222

223 2.4 Statistical Analysis

224 Differences in demographic variables and depression scores across the response groups
225 were evaluated using ANOVA and the Pearson Chi-squared test (for categorical variables). All
226 analyses were performed in a metabolite-wise manner in two ways. 1) Difference in metabolite
227 concentrations in severe vs. non-severe depression, high vs. low anxiety levels, and remission vs.
228 treatment failure were analyzed using the nonparametric, two-sample Wilcoxon signed-rank test.
229 2) Partial correlations between metabolite levels and the continuous variables HRSD₁₇, HRSA-
230 Total, HRSA-SOM, and HRSA-PSY were conducted using partial Spearman rank correlation
231 and adjusted for age, sex, and body mass index. A p-value < 0.05 was considered significant.
232 Given the exploratory nature of this initial investigation, no correction for multiple comparisons
233 was made.

234 We conducted separate partial least squares regression and partial least squares
235 discriminant analysis to examine the contribution of baseline BA levels to baseline HRSD₁₇,
236 HRSA-Total, and treatment outcome. In all models, we accounted for age, sex and body mass
237 index, and used 5-fold cross-validation with 100 repeats. In partial least squares regression
238 models, baseline BA profiles of all participants were considered as predictor variables, and the
239 HRSD₁₇ and HRSA-Total as continuous dependent variables. Using a partial least squares
240 discriminant analysis model, we examined whether the baseline BA profiles could discriminate
241 participants at the two extremes of the treatment response spectrum, the remitters and those with
242 treatment failure. Significant predictors were identified based on their variable importance on
243 projection scores. Variables with a variable importance on projection score value > 1 were
244 considered important for the models.

245

246 3. RESULTS

247 3.1 Participant Characteristics (Demographic and Clinical):

248 **Table 1** summarizes the demographic and clinical features of the 208 participants in the
249 PReDICT Study. Of these, 38.94% of participants were male, and mean (standard error of mean)
250 age, HRSD₁₇, and HRSA-Total were 38.99(0.81), 19.89(0.26), and 16.40(0.37), respectively.
251 Baseline total HRSD₁₇ scores were highly correlated with HRSA-Total scores (Spearman rank
252 correlation $\rho = 0.64$) and HRSA-PSY scores ($\rho = 0.58$), but less strongly correlated with
253 HRSA-SOM ($\rho = 0.41$). The correlation between HRSA-PSY and HRSA-SOM was only
254 $\rho = 0.35$ (**Supplementary Figure 1**). Results of PLS regression analyses are presented in
255 **Supplementary Methods and Results**.

256

257 3.2 BA Profiles and Disease Severity

Gut metabolites in depression and anxiety

258 3.2.1. BA Profiles Related to Depressive Symptom Severity

259 The concentrations of the conjugated and unconjugated versions of the primary and
260 secondary BAs are reported in **Supplementary Table 1**.

261

262 *3.2.1.1. Primary BAs*

263 As depicted in **Figure 2**, the primary bile acid CDCA, which is produced predominantly
264 from the alternate pathway, was negatively correlated with the baseline total HRSD₁₇ score after
265 adjusting for age, sex, and body mass index (partial correlation ρ = -0.16, p =0.021).
266 Dichotomous analysis showed a significantly lower CDCA in the more compared to the less
267 severely depressed participants (LFD= -0.48, p =0.02). No significant correlation or difference
268 was noted for CA, the primary BA produced through the classical pathway (ρ = -0.01, p =0.88;
269 $p_{\text{Wilcoxon}}=0.41$).

270

271 *3.2.1.2. Secondary BAs*

272 The secondary bacterially-produced BAs, lithocholic acid 3 sulfate (LCA_3S) and
273 isohyodeoxycholic acid (β HDCA) were positively correlated with HRSD₁₇ (ρ =0.158, p =0.022
274 and ρ =0.156, p =0.025, respectively) while dehydro-LCA was negatively correlated (ρ = -
275 0.154, p =0.027). Similar trends were noted in non-severe vs. severe depressed groups for the
276 aforementioned analytes, but the differences did not reach the significance level.

277

278 3.2.2. BA Profiles Related to Anxiety Symptom Severity

279 *3.2.2.1. Primary BAs*

280 CDCA was negatively correlated with HRSA-Total (ρ = -0.149, p =0.032) and HRSA-
281 PSY (ρ = -0.207, p =0.0028), but not HRSA-SOM (ρ = -0.015, p =0.82). CDCA was
282 significantly lower in the highly anxious participants (p =0.021). No significant correlation was
283 noted for the other primary bile acid, CA (classical pathway). However, norcholic acid, which is
284 a non-conjugated C23 homologue of the primary bile acid, CA, exhibited positive correlations
285 with HRSA-Total (ρ = 0.163, p =0.019), and HRSA-SOM (ρ = 0.195, p =0.015).

286

287 *3.2.2.2. Secondary BAs*

288 The bacterially derived 7 β -hydroxy epimer of CA, β -ursodeoxycholic acid and the CDCA-
289 derived hyocholic acid were inversely correlated with HRSA-Total and HRSA-SOM (ρ 's
290 range [-0.22 to -0.13], p 's range [0.001 to 0.046]). LCA, produced by 7-alpha-dehydroxylation of
291 CDCA, and several of its derivatives including 7-keto-LCA, isolLCA, alloLCA, and 12-
292 ketoLCA, were strongly positively correlated with HRSA-Total and HRSA-SOM (ρ 's range
293 [0.18-0.34], p 's range [4.46E-07 to 8.85E-03]). These BAs were also significantly elevated or
294 trended to be elevated in highly anxious compared to less anxious participants (p 's between
295 0.0002-0.01). In contrast to LCA and many of its derivatives that correlated positively with
296 anxiety severity, dehydroLCA (a known anti-inflammatory BA) was negatively correlated with
297 HRSA-Total (ρ = -0.266, p =0.0001), HRSA-SOM (ρ = -0.195, p =0.004) and HRSA-PSY
298 (ρ = -0.266, p =0.0001). In addition, two secondary glycine conjugated BAs were positively
299 correlated with HRSA-Total and HRSA-SOM scores: glycodeoxycholic acid (GDCA) (HRSA-
300 Total: ρ =0.20, p =0.002; HRSA-SOM: ρ =0.18, p =0.006) and glycolithocholic acid 3 sulfate
301 (GLCA_3S) (HRSA-Total: ρ =0.17, p =0.011; HRSA-SOM: ρ =0.187, p =0.007).

302 Overall, greater baseline anxiety was associated with *lower* concentrations of the primary
303 BAs (primarily CDCA) and their conjugated forms, and *higher* levels or concentrations of

Gut metabolites in depression and anxiety

304 secondary BAs, derived from CDCA, such as the hepatotoxic LCA and many of its metabolites.
305 The correlations between the secondary BAs and HRSA-Total score were driven primarily by
306 somatic anxiety symptoms.

307 To investigate whether the differences observed in the BAs reported above were driven
308 by anxiety or depression, we further tested the interaction effect of severity of anxiety and
309 depression on the BAs. As shown in **Figure 3**, several gut-microbe-produced BAs and ratios of
310 secondary to primary BAs (e.g., LCA, 7-ketoLCA, 12-ketoLCA, LCA/CDCA, 7-
311 ketoLCA/CDCA, alloLCA/CDCA, 12-ketoLCA/CDCA) significantly differed between low
312 versus highly anxious MDD participants irrespective of depression severity. For example, LCA
313 levels were significantly higher in both non-severe depression-high anxiety and high depression-
314 high anxiety participants compared to the non-severe depression-low anxiety and severe
315 depression-low anxiety groups respectively ($p=0.012$ and $p=0.016$, respectively). This was also
316 observed with the other CDCA derived BAs or the ratios (**Figure 3**). These data suggest that the
317 differences in these BA profiles are significantly associated with anxiety but not depressive
318 symptom severity.

319

320 **3.3 Altered Metabolism of BAs through Classical and Alternate Pathways in MDD** 321 **participants**

322 To investigate potential shifts in BA synthesis pathways or possible alterations in
323 enzymatic activities, we further examined all possible pairwise BA ratios and selected composite
324 summations and ratios that can inform about changes in classical and alternate pathways of BA
325 metabolism. A list of the BA summations and ratios and their implicated pathophysiology are
326 shown in **Supplementary Table 2**. Partial correlation analysis of depression severity score with
327 composite summations and ratios did not yield strong correlation (**Figure 4A**). However, a few
328 ratios showed significant differences between participants with non-severe versus severe
329 symptoms of anxiety. A higher value of the ratio of “primary BAs to total BAs,” which
330 represents a fraction of primary BAs relative to the BA pool, was correlated to less severe
331 anxiety. Concomitantly, lower values of the “secondary to primary BAs” ratio, which represents
332 a fraction of secondary BAs relative to the BA pool, as well as “Secondary BA Synthesis”,
333 which is the ratio of cytotoxic secondary BAs to primary BAs, were correlated with less severe
334 anxiety symptomatology (HRSA-Total). Both HRSA-PSY and HRSA-SOM were similarly
335 affected (absolute ρ ’s range [0.19 to 0.25], p ’s range [2.14E-4 to 5.11E-3]). Additionally, “sum
336 of unconjugated primary BAs”, a higher level of which may indicate less BA conjugation and
337 less solubility, was negatively correlated with HRSA-PSY ($\rho=-0.22$, $p=9.61E-4$).

338 Ratios of CDCA/CA, which is an indicator of a shift in BA synthesis from classical to
339 alternate pathway, as well as conjugated/unconjugated BA ratio for the taurine or glycine
340 conjugations, did not yield significant correlations.

341 In high anxiety vs. low anxiety participants, the most significant differences in pairwise
342 ratios were observed in the ratios of secondary to the (precursor) primary CDCA such as
343 LCA/CDCA ($p=0.0001$), 7-ketoLCA/CDCA ($p=6.85e-06$), 12-ketoLCA/CDCA ($p=4.87e-05$),
344 alloLCA/CDCA ($p=0.0001$), isoLCA/CDCA ($p=3.57e-05$), LCA-3S/CDCA ($p=0.002$),
345 glycohyocholic acid (GHCA)/CDCA ($p=0.041$), omega monocarboxylic acid (ω MCA)/CDCA
346 ($p=0.021$), all of which were significantly higher in participants with more severe symptoms,
347 particularly HRSA-PSY. This suggests an increased utilization of CDCA for the synthesis of
348 bacterially-derived secondary BA in these participants (**Figure 4B**).

Gut metabolites in depression and anxiety

349 Partial correlation analysis of BA ratios and anxiety scores also showed that the gut-
350 bacteria-produced secondary BAs to their precursor primary BA ratios such as LCA/CDCA, 7-
351 ketoLCA/CDCA, 12-ketoLCA/CDCA, alloLCA/CDCA, isoLCA/CDCA, LCA-3S/CDCA were
352 significantly positively correlated with anxiety symptoms (ρ 's range [0.14 to 0.35], p 's range
353 [2.32e-07 to 4.16e-02]). The ratio of the taurine to glycine conjugated deoxycholic acid,
354 TDCA/GDCA, was significantly negatively correlated to HRSA-SOM (ρ = -0.27; p =7.22e-05).
355 Overall, our ratio data indicated a significant trend towards higher levels of secondary BAs
356 compared to their primary precursors that correlated with more anxiety severity in these MDD
357 participants, which suggests gut microbiome dysbiosis in more anxious patients.
358

359 **3.4. Do Baseline BA Concentrations Distinguish Participants who Reached Symptom 360 Remission from those Who Experienced Treatment Failure from 12 Weeks of Treatment?**

361 We further examined whether any of the metabolites that were associated with depression
362 and/or anxiety symptom severity at baseline were different in participants who responded to
363 treatment (remitters; N=73) versus those who did not respond to treatment (treatment failures;
364 N=25) after 12 weeks of treatment/therapy. The metabolites which showed significantly higher
365 baseline levels (p <0.05) in remitters compared to the treatment failures were the primary bile
366 acid, CDCA (p =0.0009), its bacterial derivative isoLCA (p =0.0162) (**Figures 2 and 5**) and the
367 ratio of the two primary bile acids CDCA/CA (p =0.0495) (**Figures 4B and 5**). Several secondary
368 BA to CDCA ratios such as 7-ketoLCA/CDCA, GHCA/CDCA, ω MCA/CDCA,
369 dehydroLCA/CDCA, LCA-3S/CDCA and the secondary to secondary ratio, GLCA-3S/isoLCA
370 (**Figures 4B and 5**) were significantly lower at baseline in the remitters compared to the
371 treatment failures (p 's range [0.00032-0.0495]). A summary model of secondary BA synthesis
372 from CDCA and their alterations in these participants is presented in **Figure 6**.
373

374 **4. DISCUSSION**

375 Mounting evidence indicates that gut dysbiosis and the bidirectional communication
376 between brain and gut microflora play an important role in the development of neuropsychiatric
377 diseases. Using targeted metabolomics in participants with MDD, we determined that increased
378 levels of cytotoxic secondary BAs, bacterially-derived from the primary bile acid CDCA,
379 correlated with anxiety symptom severity. The classical pathway that, predominantly, produces
380 the primary bile acid CA seemed to be less impacted. Additionally, participants who did not
381 benefit from treatment were found to have higher baseline levels of the cytotoxic secondary BAs
382 derived from CDCA. Our findings suggest that alternate therapies might be needed that target the
383 gut microbiome for patients who have gut dysbiosis.

384 We first addressed whether BA concentrations impacted depression and anxiety symptom
385 severity (**Figure 2 and 6**). Overall, BA concentrations appeared to have a stronger impact on
386 anxiety than on depression. Several secondary BA concentrations, and the ratios of secondary to
387 primary BAs, were significantly different between low versus high-anxious MDD participants
388 irrespective of depression severity (**Figure 3**). These secondary BAs included LCA and its
389 derivatives, 7-keto-LCA, isoLCA, alloLCA and 12-ketoLCA. The 7 α -dehydroxylation reaction
390 that results in the formation of the secondary BAs has been described as the most quantitatively
391 important process performed by colonic bacteria belonging to the genus *Clostridium*, an
392 enzymatic reaction that is impacted in many neurological diseases (Kiriyma and Nuchi 2019).
393 LCA is produced by 7 α -dehydroxylation of CDCA and is known to be cytotoxic in rodents as
394 well as several human cell types.

Gut metabolites in depression and anxiety

Our second question addressed whether there were any associations of symptoms with the classical and alternate pathways of BA synthesis. In Alzheimer's disease, we had observed a significant shift in BA synthesis from classical to the alternative pathways in the Alzheimer's participants compared to healthy controls (MahmoudianDehkordi, Arnold et al. 2019, Nho, Kueider-Paisley et al. 2019, Baloni, Funk et al. 2020). In these MDD participants, we observed that the alternate pathway that favors CDCA synthesis was significantly impacted in the highly-anxious participants. However, no shift from classical to alternate pathway could be observed in these participants since the ratio of CA/CDCA, indicative of such a shift, was not significantly associated with symptom severity (Figure 4). Lower CDCA levels and higher secondary metabolites derived from CDCA (and mostly higher ratios of these secondary BAs to CDCA) characterized the participants with higher symptom severity, which may indicate greater utilization of CDCA by the gut bacteria. We also found no significant impact of glycine and taurine conjugation of BA on symptom severity (Figure 4). Interestingly, dehydrolithocholic acid, a major metabolite of LCA, was strongly negatively correlated to anxiety levels in the MDD participants. It is an agonist of the nuclear receptors GPCR1, the farnesoid X receptor (FXR) and the pregnane X receptor, and has recently been shown to regulate adaptive immunity by inhibiting the differentiation of TH17 cells that are known to contribute autoimmunity and inflammation (Hang, Paik et al. 2019). Our final question examined whether any relationship exists between baseline metabolite levels and response to treatment. Remitters showed higher levels of CDCA and one of its gut microbial metabolites (isoLCA) compared to participants for whom treatment failed.

The enzymatic processes involved in altered BA metabolism in CNS diseases may be informed by the association of BAs with inborn errors of metabolism (IEM), in which reduced intestinal BA concentrations result in serious morbidity or mortality. To date, investigators have identified nine recognized IEMs of BAs that lead to enzyme deficiencies and impaired BA synthesis (Heubi, Setchell et al. 2007, Sundaram, Bove et al. 2008). These diseases are characterized by a failure to produce primary BAs and an accumulation of unusual BAs and BA intermediaries. Administration of BAs for replacement therapy often improves the symptoms of IEM, such as cerebrotendinous xanthomatosis, with CDCA the predominant choice for treating both neurological and non-neurological symptoms (Nie, Chen et al. 2014). We have recently reported on a common link between IEM and depression through acylcarnitines and beta oxidation of fatty acids, in which medium-chain acyl-coenzyme A dehydrogenase, an enzyme involved in the production of medium chain acylcarnitines, was shown to be causally linked to depression and also to IEM. These emerging data linking metabolomic disturbances in CNS disorders and IEM provide novel insights into pathobiological processes that contribute to psychiatric disorders (Milaneschi, Arnold et al. 2021).

BAs influence metabolic processes by acting as signaling molecules via the nuclear receptors FXR, the pregnane X receptor, the vitamin D receptor, Takeda G-protein-coupled bile acid receptor, and sphingosine-1-phosphate receptor 2, initiating a variety of signaling cascades relevant to metabolic and hepatic diseases such as obesity, steatosis and steatohepatitis, as well as liver and colon cancer (Lefebvre, Cariou et al. 2009, Wan and Sheng 2018). FXR plays many important roles in the regulation mechanisms of BA synthesis and transport. FXR activation represses the expression of the main enzymes in BA synthesis, CYP7A1 and CYP27A1 (Pauli-Magnus and Meier 2005). In contrast, FXR activation upregulates UGT2B4, which is involved in the conversion of hydrophobic BAs to their less toxic glucuronide derivatives (Barbier, Torra et al. 2003). CDCA is the most potent activator of FXR. Studies in knockout mice suggest the

Gut metabolites in depression and anxiety

441 involvement of FXR in modulating brain function. Deletion of FXR altered the levels of several
442 neurotransmitters in the hippocampus and cerebellum, and impaired cognitive functioning and
443 motor coordination (Huang, Wang et al. 2015), which suggests that FXR signaling is required for
444 normal brain function. A recent study using a rat-model (Chen, Zheng et al. 2018) found that
445 over-expression of hippocampal FXR mediated chronic unpredictable stress-induced depression-
446 like behaviors and decreased hippocampal brain-derived neurotrophic factor expression, and that
447 knocking out of hippocampal FXR completely prevented depressive behaviors via brain-derived
448 neurotrophic factor expression.

449 LCA is the most potent ligand for Takeda G-protein-coupled BA receptor (Kawamata,
450 Fujii et al. 2003), and BA-dependent Takeda G-protein-coupled BA receptor-mediated signaling
451 has been shown to influence the brain by regulating the production of the gut peptide hormone
452 GLP-1 (Monteiro-Cardoso, Corliano et al. 2021), which potentiates glucose-stimulated insulin
453 secretion. LCA is also a potent activator of pregnane X receptor and vitamin D receptor. Thus,
454 largely through their binding and activation of these receptors, BAs regulate their own synthesis,
455 conjugation, transport and detoxification, as well as lipid, glucose, and energy homeostasis
456 (Hylemon, Zhou et al. 2009, Li and Chiang 2015, Ridlon, Harris et al. 2016, Grant and
457 DeMorrow 2020).

458 The decrease in CDCA with concomitant increase in LCA has particular pathognomonic
459 significance in MDD patients. LCA is formed in humans mainly from the intestinal bacterial 7 α -
460 dehydroxylation of CDCA and comprises less than 5% of the total BA pool in humans but is one
461 of the most hydrophobic naturally occurring BAs (Ceryak, Bouscarel et al. 1998).

462 LCA has been shown to induce double-strand breaks in DNA (Kulkarni, Heidepriem et
463 al. 1980). The mammalian host responds by metabolizing LCA, mainly through sulfation,
464 enabling more efficient excretion and reduced hydrophobicity (Ridlon and Bajaj 2015). BA
465 sulfation is an important detoxification process that converts hydrophobic BAs into excretable
466 metabolites in the liver. Sulfation is catalyzed by a group of enzymes called sulfotransferases
467 (Ridlon and Bajaj 2015). Although, only a small proportion of BAs in bile and serum are
468 sulfated, more than 70% of BAs in urine are sulfated, indicating their efficient elimination in
469 urine (Alnouti 2009). It is estimated that 40–75% of the hydrophobic, hepatotoxic LCA in human
470 bile is present in the sulfated form (Palmer and Bolt 1971). The formation of BA-sulfates
471 increases during cholestatic diseases. Therefore, sulfation may play an important role in
472 maintaining BA homeostasis under pathologic conditions. In our study, we observed elevated
473 levels of the sulfated form of the toxic LCA and GLCA in more severely anxious patients. We
474 have also previously reported increased production of other bacterially-derived sulfates like p-
475 cresol sulfate and indoxyl sulfates (Brydges, Fiehn et al. 2021) in the PReDICT study
476 participants. Together, these findings suggest that alterations in sulfotransferase activities may
477 occur in the liver of some patients.

478 The microbial conversion of CDCA to 7-keto-LCA, present at higher levels in highly-
479 anxious MDD participants, is known to be reduced in the liver by human 11 β -HSDH-1, an
480 enzyme with the primary function of converting cortisone to the active glucocorticoid, cortisol
481 (Odermatt, Da Cunha et al. 2011). Microbial-derived 7-keto-LCA acts as a competitive inhibitor
482 of 11 β -HSDH-1, and thus may influence the ratio of cortisone/cortisol.

483 Among the secondary BAs, dehydrolithocholic acid, a major metabolite of LCA, was
484 interestingly the only metabolite strongly negatively correlated to anxiety levels and depression
485 level as well, in the MDD participants. It is an agonist of the nuclear receptors, GPCR1, FXR,
486 PXR, and has recently been shown to regulate adaptive immunity by inhibiting the

Gut metabolites in depression and anxiety

487 differentiation of TH17 cells that are known to cause autoimmunity and inflammation (Hang,
488 Paik et al. 2019).

489 There are a few limitations to our study. First, we lacked a healthy control group to
490 compare with the participants who had MDD. Second, we did not apply multiple comparison
491 adjustments due to the relatively small sample size and the exploratory nature of this study.
492 Third, these findings will require replication in an independent cohort. Fourth, a number of novel
493 BAs have recently been discovered and were not included in our metabolomic analyses; these
494 compounds should be evaluated in future studies.

495 It has been suggested (Hibbing, Fuqua et al. 2010, Foster, Schluter et al. 2017) that in the
496 highly evolutionary competitive environment of the human gut microbiome, the persistence of
497 these microbial enzyme activities usually indicates that they increase the organism's ability to
498 survive. However, dysbiosis in the gut is also possible. Our data suggest that low levels of
499 CDCA might be a result of increased utilization for production of bacterial products in the
500 intestine which, in turn, suggest gut-microbe composition changes or associated enzymatic
501 changes. The underlying pathophysiological significance of BA pool changes remain to be
502 determined, but a reasonable hypothesis emerging from this work is that increases in circulating
503 BAs result from a more hydrophobic BA pool in the colon consequent to gut microbial dysbiosis.
504 These BAs may then produce enhanced toxicity and pathophysiology to cells in the liver,
505 gastrointestinal tract, and the brain.

506 **CONFLICT OF INTEREST**

507 Dr. Dunlop has received research support from Acadia, Compass, Aptinyx, NIMH, Sage, and
508 Takeda, and has served as a consultant to Greenwich Biosciences, Myriad Neuroscience, Otsuka,
509 Sage, and Sophren Therapeutics. Dr. Rush has received consulting fees from Compass Inc.,
510 Curbstone Consultant LLC, Emmes Corp., Holmusk, Johnson and Johnson (Janssen), Liva-
511 Nova, Neurocrine Biosciences Inc., Otsuka-US, Sunovion; speaking fees from Liva-Nova, and
512 Johnson and Johnson (Janssen); and royalties from Guilford Press and the University of Texas
513 Southwestern Medical Center, Dallas, TX (for the Inventory of Depressive Symptoms and its
514 derivatives). He is also named co-inventor on two patents: U.S. Patent No. 7,795,033: Methods
515 to Predict the Outcome of Treatment with Antidepressant Medication, Inventors: McMahon FJ,
516 Laje G, Manji H, Rush AJ, Paddock S, Wilson AS; and U.S. Patent No. 7,906,283: Methods to
517 Identify Patients at Risk of Developing Adverse Events During Treatment with Antidepressant
518 Medication, Inventors: McMahon FJ, Laje G, Manji H, Rush AJ, Paddock S. Rima Kaddurah-
519 Daouk is an inventor on key patents in the field of Metabolomics and hold equity in Metabolon,
520 a biotech company in North Carolina. In addition, she holds patents licensed to Chymia LLC and
521 PsyProtix with royalties and ownership. All other authors reported no biomedical financial
522 interests or potential conflicts of interest.

523 **AUTHOR CONTRIBUTIONS**

524 SM and SB did analysis of data and helped write the manuscript; CRB did PLS regression
525 analysis. WJ and his team generated biochemical data; RRK, BWD and AJR helped with
526 interpretation of findings and clinical relevance; RKD is PI for project and helped with concept
527 development, study design, data interpretation and connecting biochemical and clinical data, and
528 with the writing of the manuscript.

529 **FUNDING**

Gut metabolites in depression and anxiety

533 This work was funded by grant support to Dr. Rima Kaddurah-Daouk (PI) through NIH grants
534 R01MH108348, R01AG046171 and U01AG061359. Dr. Boadie Dunlop has support from NIH
535 grants P50-MH077083 (PI Mayberg), R01-MH080880 (PI Craighead), UL1-RR025008 (PI
536 Stevens), M01-RR0039 (PI Stevens) and the Fuqua Family Foundations.

537

538 ABBREVIATIONS

539 BA: Bile Acid

540 CA: Cholic Acid

541 CDCA: Chenodeoxycholic Acid

542 CNS: Central Nervous System

543 DCA: Deoxycholic Acid

544 FXR: Farnesoid X Receptor

545 GDCA: Glycodeoxycholic Acid

546 GHCA: Glycohyocholic Acid

547 GLCA: Glycolithocholic Acid

548 HRSA-PSY: Psychic Anxiety subscale of the 14-item Hamilton Anxiety Rating Scale

549 HRSA-SOM: Somatic Anxiety subscale of the 14-item Hamilton Anxiety Rating Scale

550 HRSA-Total: 14-item Hamilton Anxiety Rating Scale

551 HRSD₁₇: 17-item Hamilton Depression Rating Scale

552 IEM: Inborn Errors of Metabolism

553 LCA: Lithocholic Acid

554 MCA: Monocarboxylic Acid

555 MDD: Major Depressive Disorder

556 PReDICT: Predictors of Remission in Depression to Individual and Combined Treatments study

557 TDCA: Taurodeoxycholic Acid

558

559 ACKNOWLEDGEMENTS

560 We acknowledge the editorial services of Mr. Jon Kilner, MS, MA (Pittsburgh) and the
561 assistance of Ms. Lisa Howerton (Duke).

562

563 CONTRIBUTION TO THE FIELD STATEMENT

564 This study contributes to the field of major depressive disorder by mapping the biochemical
565 changes associated with gut-microbiome dysbiosis in depression. Bile acids which are end
566 products of cholesterol metabolism in the liver are modified in the gut to produce secondary bile
567 acids. Our results provide insights into how the gut-microbiota can impact the severity of anxiety
568 distress and depression as well as treatment response through the altered biosynthesis of these
569 secondary metabolites.

Gut metabolites in depression and anxiety

570 **FIGURE LEGENDS**

571 **Figure 1. Bile Acid Metabolism Pathway.**

572 Bile acids are synthesized from cholesterol in the liver mainly by two pathways. The classical
573 pathway is initiated by the rate-limiting enzyme, CYP7A1 that synthesizes the two primary bile
574 acids in humans, CA and CDCA. CYP8B1 is required for CA synthesis along with the
575 mitochondrial CYP27A1 that catalyzes a steroid side-chain oxidation. The alternative pathway is
576 initiated by CYP27A1, followed by CYP7B1. After synthesis, the primary bile acids are
577 conjugated to the amino acids taurine or glycine for biliary secretion. In the distal ileum and
578 colon, gut bacteria deconjugates the conjugated bile acids, and bacterial 7 α -dehydroxylase
579 removes the 7 α -hydroxyl group to convert CA and CDCA to the secondary bile acids DCA and
580 LCA, respectively. The LCA as a high toxic bile acid is mostly excreted by feces. A small
581 amount of LCA, which is recycled back into the liver, is subjected to sulfoconjugation at the 3-
582 hydroxy position of sulfotransferase 2A1 (SULT2A1). Sulfocojugated BAs are almost never
583 reabsorbed by the most important transport proteins, and they are excreted from the body.
584 Several other bacterial modifications are now known that result in the production of a no of
585 different secondary BAs. The classical pathway is the major pathway for daily synthesis of about
586 80% - 90% of the bile acids in humans, whereas the alternative pathway synthesizes about 10-
587 20%. Most bile acids (~95%) are reabsorbed in the ileum and transported via portal blood to the
588 liver to inhibit bile acid synthesis. A small amount of bile acids (~5%) lost in feces is replenished
589 by de novo synthesi

590 *Abbreviations:* ASBT: Apical Sodium-dependent Bile acid Transporters. BA: Bile Acid. BSEP:
591 Bile Salt Export Pump. CA: Cholic Acid. CDCA: Chenodeoxycholic Acid. DCA: Deoxycholic
592 Acid. FXR: Farnesoid X Receptor. GCA: Glycocholic Acid. GCDCA: Glycochenodeoxycholic
593 Acid. GLCA: Glycolithocholic Acid. HCA: Hydroxycitric Acid. HDCA: Hyodeoxycholic Acid.
594 LCA: Lithocholic Acid. MCA: Monocarboxylic Acid. NTCP: Sodium/Taurocholate Co-
595 transporting Polypeptide. SHP: Small heterodimer partner. TCA: Taurocholic Acid. TCDCA:
596 Taurochenodeoxycholic Acid. UDCA: Ursodeoxycholic Acid.

597 **Figure 2: Correlations between Baseline BAs and Depression and Anxiety Scores, and 598 Differences in Baseline BA Profiles between Several Participant Groups**

600 On the left: Heat map of partial Spearman rank correlations between baseline BAs and scores on
601 the HRSD₁₇ and Hamilton Anxiety Rating Scale and subscales, after accounting for age, sex, and
602 body mass index. On the right: Heat map of differences in baseline BA profiles in severe vs.
603 non-severe depressed, high vs. low anxiety and treatment-failure vs. remitter groups. T-values
604 were used for visualization purposes and the Wilcoxon Ranked Sum Test were used to test the
605 significance of differences.

606 *Abbreviations:* BA: Bile Acid. CA: Cholic Acid. CDCA: Chenodeoxycholic Acid. DCA:
607 Deoxycholic Acid. GCA: Glycocholic Acid. GCDCA: Glycochenodeoxycholic Acid. GDCA:
608 Glycodeoxycholic Acid. GHCA: Glycohyocholic Acid. GHDCA: Glycohyodeoxycholic Acid.
609 GLCA: Glycolithocholic Acid. GUDCA: Glycoursodeoxycholic Acid. HCA: Hydroxycitric
610 Acid. HDCA: Hyodeoxycholic Acid. HRSA-PSY: Psychic anxiety subscore of the Hamilton
611 Anxiety Rating Scale. HRSA-SOM: Somatic anxiety subscore of the Hamilton Anxiety Rating
612 Scale. HRSA-Total: 14-item Hamilton Anxiety Rating Scale. HRSD₁₇: 17-item Hamilton
613 Depression Rating Scale. LCA: Lithocholic Acid. MCA: Monocarboxylic Acid. TCA:
614 Taurocholic Acid. TCDCA: Taurochenodeoxycholic Acid. TDCA: Taurodeoxycholic Acid.
615 THCA: Tetrahydrocannabinolic Acid. THDCA: Taurohyodeoxycholic Acid. TUDCA:
616 Tauroursodeoxycholic Acid. UCA: Ursocholic Acid. UDCA: Ursodeoxycholic Acid. _3S: 3

Gut metabolites in depression and anxiety

617 Sulfate. *: uncorrected p-value<0.05. **: uncorrected p-value< 0.01. ***: uncorrected p-value<
618 0.001.
619

620 **Figure 3: Scatter Plots of HRSD₁₇ Scores by HRSA-Total Interaction for Selected Bile 621 Acids and Ratios**

622 Abbreviations: Anx: Anxiety. CA: Cholic Acid. CDCA: Chenodeoxycholic Acid. Dep:
623 Depression. HRSA-Total: 14-item Hamilton Anxiety Rating Scale. HRSD₁₇: 17-item Hamilton
624 Depression Rating Scale. LCA: Lithocholic Acid. *: uncorrected p-value<0.05. **: uncorrected
625 p-value< 0.01. ***: uncorrected p-value< 0.001; ns: not significant
626

627 **Figure 4: Ratios of BAs Reflective of Liver and Gut Microbiome Enzymatic Activities in 628 Depressed Patients**

629 Three types of ratios (pairwise or composite) were calculated to inform about possible enzymatic
630 activity changes in depressed participants. These ratios reflect one of the following: (1) Shift in
631 BA metabolism from primary to alternative pathway. (2) Changes in gut microbiome correlated
632 with production of secondary BAs. (3) Changes in glycine and taurine conjugation of BAs. (A)
633 Composite Ratios and summations. (B) Selected Pairwise Ratios. For each figure, the left panel
634 presents a heat map of partial Spearman rank correlations between BA ratios/summations and
635 scores on the HRSD17 and Hamilton Anxiety scale and subscales, after accounting for age, sex,
636 and body mass index, and the right panel presents a heat map of differences in ratios/summations
637 in severe vs. non-severe depressed, high vs. low anxious and treatment-failure vs. remitter
638 groups.

639 Abbreviations: BA: Bile Acid. CA: Cholic Acid. CDCA: Chenodeoxycholic Acid. DCA:
640 Deoxycholic Acid. GCA: Glycocholic Acid. GCDCA: Glycochenodeoxycholic Acid. GDCA:
641 Glycodeoxycholic Acid. GHCA: Glycohyocholic Acid. GHDCA: Glycohyodeoxycholic Acid.
642 GLCA: Glycolithocholic Acid. GUDCA: Glycoursodeoxycholic Acid. HCA: Hydroxycitric
643 Acid. HDCA: Hyodeoxycholic Acid. HRSA-PSY: Psychic anxiety subscore of the Hamilton
644 Anxiety Rating Scale. HRSA-SOM: Somatic anxiety subscore of the Hamilton Anxiety Rating
645 Scale. HRSA-Total: 14-item Hamilton Anxiety Rating Scale. HRSD₁₇: 17-item Hamilton
646 Depression Rating Scale (HRSD₁₇). LCA: Lithocholic Acid. MCA: Monocarboxylic Acid. TCA:
647 Taurocholic Acid. TCDCA: Taurochenodeoxycholic Acid. TDCA: Taurodeoxycholic Acid.
648 THCA: Tetrahydrocannabinolic Acid. THDCA: Taurohyodeoxycholic Acid. TUDCA:
649 Tauroursodeoxycholic Acid. UDCA: Ursodeoxycholic Acid. *: uncorrected p-value<0.05. **:
650 uncorrected p-value< 0.01. ***: uncorrected p-value< 0.001.
651

652 **Figure 5: Scatter Plot of Baseline Concentration of Selected Bile Acids and Bile Acid Ratios 653 in Treatment Failure versus Remission Groups.**

654 Abbreviations: CA: Cholic Acid. CDCA: Chenodeoxycholic Acid. GHCA: Glycohyocholic
655 Acid. GLCA: Glycolithocholic Acid. LCA: Lithocholic Acid. MCA: Monocarboxylic Acid.
656

657 **Figure 6: Summary of Findings**

658 Abbreviations: CDCA: Chenodeoxycholic Acid. GHCA: Glycohyocholic Acid. GLCA:
659 Glycolithocholic Acid. HCA: Hydroxycitric Acid. HDCA: Hyodeoxycholic Acid. LCA:
660 Lithocholic Acid. MCA: Monocarboxylic Acid. UDCA: Ursodeoxycholic Acid. _3S: 3 Sulfate.
661

662 **Table 1: Participant Demographic and Clinical Characteristics**

Characteristic	Population (N=208)	Depression		Anxiety		Treatment Outcome	
		Non-Severe (N=102)	Severe (N=106)	Low (N=91)	High (N=117)	Remission (N=73)	Treatment Failure (N=25)
Age (yrs)^a	38.99(0.81)	36.93(1.14)	40.97(1.13)	38.77(1.27)	46(50.55)	37.40(1.24)	37.68(2.61)
Sex: Male^b	81(38.94 %)	46(45.10%)	35(33.02%)	46(50.55%)	35(29.91%)	32(43.84%)	10(40%)
Body Mass Index (kg/m²)^a	28.78(0.42)	28.59(0.65)	28.97(0.55)	28.34(0.69)	29.13(0.53)	29.18(0.75)	27.62(1.14)
HRSD₁₇^a	19.89(0.26)	16.82(0.14)	22.84(0.28)	17.69(0.29)	21.60(0.34)	18.56(0.42)	19.20(0.69)
HRSA-Total^a	16.40(0.37)	13.46(0.38)	19.24(0.49)	11.77(0.21)	20.01(0.39)	14.78(0.55)	15.80(1.09)
HRSA-SOM^a	4.04(0.23)	2.77(0.26)	5.25(0.34)	1.64(0.16)	5.91(0.29)	3.21(0.34)	3.88(0.78)
HRSA-PSY^a	10.84(0.19)	9.50(0.21)	12.12(0.25)	8.98(0.19)	12.28(0.22)	10.04(0.26)	10.48(0.52)

663 ^a Mean and standard error of the mean for each group664 ^b Number and percent of males for each group

665 *Abbreviations:* HRSA-SOM: Somatic anxiety subscore of the Hamilton Anxiety Rating Scale. HRSA-PSY: Psychic anxiety subscore of
 666 the Hamilton Anxiety Rating Scale. HRSA-Total: 14-item Hamilton Anxiety Rating Scale. HRSD₁₇: 17-item Hamilton Depression
 667 Rating Scale.

Gut metabolites in depression and anxiety

668 **References**

669 Ackerman, H. D. and G. S. Gerhard (2016). "Bile Acids in Neurodegenerative Disorders." *Front Aging*
670 *Neurosci* **8**: 263.

671 Agus, A., J. Planchais and H. Sokol (2018). "Gut Microbiota Regulation of Tryptophan Metabolism in
672 Health and Disease." *Cell Host Microbe* **23**(6): 716-724.

673 Alnouti, Y. (2009). "Bile Acid sulfation: a pathway of bile acid elimination and detoxification." *Toxicol Sci*
674 **108**(2): 225-246.

675 Bajor, A., P. G. Gillberg and H. Abrahamsson (2010). "Bile acids: short and long term effects in the
676 intestine." *Scand J Gastroenterol* **45**(6): 645-664.

677 Baloni, P., C. C. Funk, J. Yan, J. T. Yurkovich, A. Kueider-Paisley, K. Nho, A. Heinken, W. Jia, S.
678 Mahmoudiandehkordi, G. Louie, A. J. Saykin, M. Arnold, G. Kastenmuller, W. J. Griffiths, I. Thiele, C.
679 Alzheimer's Disease Metabolomics, R. Kaddurah-Daouk and N. D. Price (2020). "Metabolic Network
680 Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer's Disease." *Cell Rep Med* **1**(8):
681 100138.

682 Barbier, O., I. P. Torra, A. Sirvent, T. Claudel, C. Blanquart, D. Duran-Sandoval, F. Kuipers, V. Kosykh, J. C.
683 Fruchart and B. Staels (2003). "FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism
684 of negative feedback control of FXR activity." *Gastroenterology* **124**(7): 1926-1940.

685 Bercik, P., E. F. Verdu, J. A. Foster, J. Macri, M. Potter, X. Huang, P. Malinowski, W. Jackson, P.
686 Blennerhassett, K. A. Neufeld, J. Lu, W. I. Khan, I. Corthesy-Theulaz, C. Cherbut, G. E. Bergonzelli and S.
687 M. Collins (2010). "Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central
688 nervous system biochemistry in mice." *Gastroenterology* **139**(6): 2102-2112 e2101.

689 Brydges, C. R., O. Fiehn, H. S. Mayberg, H. Schreiber, S. M. Dehkordi, S. Bhattacharyya, J. Cha, K. S. Choi,
690 W. E. Craighead, R. R. Krishnan, A. J. Rush, B. W. Dunlop, R. Kaddurah-Daouk and C. Mood Disorders
691 Precision Medicine (2021). "Indoxyl sulfate, a gut microbiome-derived uremic toxin, is associated with
692 psychic anxiety and its functional magnetic resonance imaging-based neurologic signature." *Sci Rep*
693 **11**(1): 21011.

694 Caspani, G., S. Kennedy, J. A. Foster and J. Swann (2019). "Gut microbial metabolites in depression:
695 understanding the biochemical mechanisms." *Microp Cell* **6**(10): 454-481.

696 Ceryak, S., B. Bouscarel, M. Malavolti and H. Fromm (1998). "Extrahepatic deposition and cytotoxicity of
697 lithocholic acid: studies in two hamster models of hepatic failure and in cultured human fibroblasts."
698 *Hepatology* **27**(2): 546-556.

699 Chen, W. G., J. X. Zheng, X. Xu, Y. M. Hu and Y. M. Ma (2018). "Hippocampal FXR plays a role in the
700 pathogenesis of depression: A preliminary study based on lentiviral gene modulation." *Psychiatry Res*
701 **264**: 374-379.

702 Chiang, J. Y. L. (2017). "Linking Sex Differences in Non-Alcoholic Fatty Liver Disease to Bile Acid Signaling,
703 Gut Microbiota, and High Fat Diet." *Am J Pathol* **187**(8): 1658-1659.

704 Daruich, A., E. Picard, J. H. Boatright and F. Behar-Cohen (2019). "Review: The bile acids ursodeoxycholic acid and
705 taurooursodeoxycholic acid as neuroprotective therapies in retinal disease." *Mol Vis* **25**: 610-624.

706 de Weerth, C. (2017). "Do bacteria shape our development? Crosstalk between intestinal microbiota and
707 HPA axis." *Neurosci Biobehav Rev* **83**: 458-471.

708 Devlin, A. S. and M. A. Fischbach (2015). "A biosynthetic pathway for a prominent class of microbiota-
709 derived bile acids." *Nat Chem Biol* **11**(9): 685-690.

710 Dinan, T. G. and J. F. Cryan (2015). "The impact of gut microbiota on brain and behaviour: implications
711 for psychiatry." *Curr Opin Clin Nutr Metab Care* **18**(6): 552-558.

712 Dinan, T. G. and J. F. Cryan (2017). "Brain-Gut-Microbiota Axis and Mental Health." *Psychosom Med*
713 **79**(8): 920-926.

714 Dunlop, B. W., E. B. Binder, J. F. Cubells, M. M. Goodman, M. E. Kelley, B. Kinkead, M. Kutner, C. B.
715 Nemerooff, D. J. Newport, M. J. Owens, T. W. Pace, J. C. Ritchie, V. A. Rivera, D. Westen, W. E. Craighead

Gut metabolites in depression and anxiety

716 and H. S. Mayberg (2012). "Predictors of remission in depression to individual and combined treatments
717 (PReDICT): study protocol for a randomized controlled trial." *Trials* **13**: 106.

718 Dunlop, B. W., M. E. Kelley, V. Aponte-Rivera, T. Mletzko-Crowe, B. Kinkead, J. C. Ritchie, C. B. Nemeroff,
719 W. E. Craighead, H. S. Mayberg and P. R. Team (2017). "Effects of Patient Preferences on Outcomes in
720 the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) Study." *Am
721 J Psychiatry* **174**(6): 546-556.

722 Dunlop, B. W., D. LoParo, B. Kinkead, T. Mletzko-Crowe, S. P. Cole, C. B. Nemeroff, H. S. Mayberg and W.
723 E. Craighead (2019). "Benefits of Sequentially Adding Cognitive-Behavioral Therapy or Antidepressant
724 Medication for Adults With Nonremitting Depression." *Am J Psychiatry* **176**(4): 275-286.

725 Dunlop, B. W., J. K. Rajendra, W. E. Craighead, M. E. Kelley, C. L. McGrath, K. S. Choi, B. Kinkead, C. B.
726 Nemeroff and H. S. Mayberg (2017). "Functional Connectivity of the Subcallosal Cingulate Cortex And
727 Differential Outcomes to Treatment With Cognitive-Behavioral Therapy or Antidepressant Medication
728 for Major Depressive Disorder." *Am J Psychiatry* **174**(6): 533-545.

729 Dunlop, B. W., S. Still, D. LoParo, V. Aponte-Rivera, B. N. Johnson, R. L. Schneider, C. B. Nemeroff, H. S.
730 Mayberg and W. E. Craighead (2020). "Somatic symptoms in treatment-naive Hispanic and non-Hispanic
731 patients with major depression." *Depress Anxiety* **37**(2): 156-165.

732 Foster, J. A., L. Rinaman and J. F. Cryan (2017). "Stress & the gut-brain axis: Regulation by the
733 microbiome." *Neurobiol Stress* **7**: 124-136.

734 Foster, K. R., J. Schluter, K. Z. Coyte and S. Rakoff-Nahoum (2017). "The evolution of the host
735 microbiome as an ecosystem on a leash." *Nature* **548**(7665): 43-51.

736 Grant, S. M. and S. DeMorrow (2020). "Bile Acid Signaling in Neurodegenerative and Neurological
737 Disorders." *Int J Mol Sci* **21**(17).

738 Guida, F., F. Turco, M. Iannotta, D. De Gregorio, I. Palumbo, G. Sarnelli, A. Furiano, F. Napolitano, S.
739 Boccella, L. Luongo, M. Mazzitelli, A. Usiello, F. De Filippis, F. A. Iannotti, F. Piscitelli, D. Ercolini, V. de
740 Novellis, V. Di Marzo, R. Cuomo and S. Maione (2018). "Antibiotic-induced microbiota perturbation
741 causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in
742 mice." *Brain Behav Immun* **67**: 230-245.

743 Hamilton, M. (1959). "The assessment of anxiety states by rating." *Br J Med Psychol* **32**(1): 50-55.

744 Hamilton, M. (1960). "A rating scale for depression." *J Neurol Neurosurg Psychiatry* **23**: 56-62.

745 Hang, S., D. Paik, L. Yao, E. Kim, J. Trinath, J. Lu, S. Ha, B. N. Nelson, S. P. Kelly, L. Wu, Y. Zheng, R. S.
746 Longman, F. Rastinejad, A. S. Devlin, M. R. Krout, M. A. Fischbach, D. R. Littman and J. R. Huh (2019).
747 "Bile acid metabolites control TH17 and Treg cell differentiation." *Nature* **576**(7785): 143-148.

748 Heubi, J. E., K. D. Setchell and K. E. Bove (2007). "Inborn errors of bile acid metabolism." *Semin Liver Dis*
749 **27**(3): 282-294.

750 Hibbing, M. E., C. Fuqua, M. R. Parsek and S. B. Peterson (2010). "Bacterial competition: surviving and
751 thriving in the microbial jungle." *Nat Rev Microbiol* **8**(1): 15-25.

752 Higashi, T., S. Watanabe, K. Tomaru, W. Yamazaki, K. Yoshizawa, S. Ogawa, H. Nagao, K. Minato, M.
753 Maekawa and N. Mano (2017). "Unconjugated bile acids in rat brain: Analytical method based on LC/ESI-
754 MS/MS with chemical derivatization and estimation of their origin by comparison to serum levels."
755 *Steroids* **125**: 107-113.

756 Hofmann, A. F. and L. R. Hagey (2008). "Bile acids: chemistry, pathochemistry, biology, pathobiology,
757 and therapeutics." *Cell Mol Life Sci* **65**(16): 2461-2483.

758 Huang, F., T. Wang, Y. Lan, L. Yang, W. Pan, Y. Zhu, B. Lv, Y. Wei, H. Shi, H. Wu, B. Zhang, J. Wang, X.
759 Duan, Z. Hu and X. Wu (2015). "Deletion of mouse FXR gene disturbs multiple neurotransmitter systems
760 and alters neurobehavior." *Front Behav Neurosci* **9**: 70.

761 Hylemon, P. B., H. Zhou, W. M. Pandak, S. Ren, G. Gil and P. Dent (2009). "Bile acids as regulatory
762 molecules." *J Lipid Res* **50**(8): 1509-1520.

Gut metabolites in depression and anxiety

763 Kawamata, Y., R. Fujii, M. Hosoya, M. Harada, H. Yoshida, M. Miwa, S. Fukusumi, Y. Habata, T. Itoh, Y.
764 Shintani, S. Hinuma, Y. Fujisawa and M. Fujino (2003). "A G protein-coupled receptor responsive to bile
765 acids." *J Biol Chem* **278**(11): 9435-9440.

766 Keller, J., R. Gomez, G. Williams, A. Lembke, L. Lazzaroni, G. M. Murphy, Jr. and A. F. Schatzberg (2017).
767 "HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict
768 cognition." *Mol Psychiatry* **22**(4): 527-536.

769 Kelly, J. R., Y. Borre, O. B. C. E. Patterson, S. El Aidy, J. Deane, P. J. Kennedy, S. Beers, K. Scott, G.
770 Moloney, A. E. Hoban, L. Scott, P. Fitzgerald, P. Ross, C. Stanton, G. Clarke, J. F. Cryan and T. G. Dinan
771 (2016). "Transferring the blues: Depression-associated gut microbiota induces neurobehavioural
772 changes in the rat." *J Psychiatr Res* **82**: 109-118.

773 Kiriyma, Y. and H. Nuchi (2019). "The Biosynthesis, Signaling, and Neurological Functions of Bile Acids."
774 *Biomolecules* **9**(6).

775 Kulkarni, M. S., P. M. Heidepriem and K. L. Yielding (1980). "Production by lithocholic acid of DNA strand
776 breaks in L1210 cells." *Cancer Res* **40**(8 Pt 1): 2666-2669.

777 Lefebvre, P., B. Cariou, F. Lien, F. Kuipers and B. Staels (2009). "Role of bile acids and bile acid receptors
778 in metabolic regulation." *Physiol Rev* **89**(1): 147-191.

779 Li, T. and J. Y. Chiang (2014). "Bile acid signaling in metabolic disease and drug therapy." *Pharmacol Rev*
780 **66**(4): 948-983.

781 Li, T. and J. Y. Chiang (2015). "Bile acids as metabolic regulators." *Curr Opin Gastroenterol* **31**(2): 159-
782 165.

783 MahmoudianDehkordi, S., M. Arnold, K. Nho, S. Ahmad, W. Jia, G. Xie, G. Louie, A. Kueider-Paisley, M. A.
784 Moseley, J. W. Thompson, L. St John Williams, J. D. Tenenbaum, C. Blach, R. Baillie, X. Han, S.
785 Bhattacharyya, J. B. Toledo, S. Schafferer, S. Klein, T. Koal, S. L. Risacher, M. A. Kling, A. Motsinger-Reif,
786 D. M. Rotroff, J. Jack, T. Hankemeier, D. A. Bennett, P. L. De Jager, J. Q. Trojanowski, L. M. Shaw, M. W.
787 Weiner, P. M. Doraiswamy, C. M. van Duijn, A. J. Saykin, G. Kastenmuller, R. Kaddurah-Daouk, I.
788 Alzheimer's Disease Neuroimaging and C. the Alzheimer Disease Metabolomics (2019). "Altered bile acid
789 profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut
790 microbiome." *Alzheimers Dement* **15**(1): 76-92.

791 Marksteiner, J., I. Blasko, G. Kemmler, T. Koal and C. Humpel (2018). "Bile acid quantification of 20
792 plasma metabolites identifies lithocholic acid as a putative biomarker in Alzheimer's disease."
793 *Metabolomics* **14**(1): 1.

794 Martinot, E., L. Sedes, M. Baptissart, J. M. Lobaccaro, F. Caira, C. Beaudoin and D. H. Volle (2017). "Bile
795 acids and their receptors." *Mol Aspects Med* **56**: 2-9.

796 Matza, L. S., R. Morlock, C. Sexton, K. Malley and D. Feltner (2010). "Identifying HAM-A cutoffs for mild,
797 moderate, and severe generalized anxiety disorder." *Int J Methods Psychiatr Res* **19**(4): 223-232.

798 Milaneschi, Y., M. Arnold, G. Kastenmuller, S. M. Dehkordi, R. R. Krishnan, B. W. Dunlop, A. J. Rush, B. W.
799 Penninx and R. Kaddurah-Daouk (2021). "Genomics-based identification of a potential causal role for
800 acylcarnitine metabolism in depression." *medRxiv*.

801 Miranda, M., J. F. Morici, M. B. Zanoni and P. Bekinschtein (2019). "Brain-Derived Neurotrophic Factor: A
802 Key Molecule for Memory in the Healthy and the Pathological Brain." *Front Cell Neurosci* **13**: 363.

803 Monteiro-Cardoso, V. F., M. Corliano and R. R. Singaraja (2021). "Bile Acids: A Communication Channel
804 in the Gut-Brain Axis." *Neuromolecular Med* **23**(1): 99-117.

805 Mortiboys, H., J. Aasly and O. Bandmann (2013). "Ursodeoxycholic acid rescues mitochondrial function in
806 common forms of familial Parkinson's disease." *Brain* **136**(Pt 10): 3038-3050.

807 Nho, K., A. Kueider-Paisley, S. MahmoudianDehkordi, M. Arnold, S. L. Risacher, G. Louie, C. Blach, R.
808 Baillie, X. Han, G. Kastenmuller, W. Jia, G. Xie, S. Ahmad, T. Hankemeier, C. M. van Duijn, J. Q.
809 Trojanowski, L. M. Shaw, M. W. Weiner, P. M. Doraiswamy, A. J. Saykin, R. Kaddurah-Daouk, I.
810 Alzheimer's Disease Neuroimaging and C. the Alzheimer Disease Metabolomics (2019). "Altered bile acid

Gut metabolites in depression and anxiety

811 profile in mild cognitive impairment and Alzheimer's disease: Relationship to neuroimaging and CSF
812 biomarkers." *Alzheimers Dement* **15**(2): 232-244.

813 Nie, S., G. Chen, X. Cao and Y. Zhang (2014). "Cerebrotendinous xanthomatosis: a comprehensive review
814 of pathogenesis, clinical manifestations, diagnosis, and management." *Orphanet J Rare Dis* **9**: 179.

815 O'Byrne, J., M. C. Hunt, D. K. Rai, M. Saeki and S. E. Alexson (2003). "The human bile acid-CoA:amino acid
816 N-acyltransferase functions in the conjugation of fatty acids to glycine." *J Biol Chem* **278**(36): 34237-
817 34244.

818 O'Sullivan, E., E. Barrett, S. Grenham, P. Fitzgerald, C. Stanton, R. P. Ross, E. M. Quigley, J. F. Cryan and T.
819 G. Dinan (2011). "BDNF expression in the hippocampus of maternally separated rats: does
820 *Bifidobacterium breve* 6330 alter BDNF levels?" *Benef Microbes* **2**(3): 199-207.

821 Odermatt, A., T. Da Cunha, C. A. Penno, C. Chandsawangbhuwana, C. Reichert, A. Wolf, M. Dong and M.
822 E. Baker (2011). "Hepatic reduction of the secondary bile acid 7-oxolithocholic acid is mediated by
823 11beta-hydroxysteroid dehydrogenase 1." *Biochem J* **436**(3): 621-629.

824 Palmer, R. H. and M. G. Bolt (1971). "Bile acid sulfates. I. Synthesis of lithocholic acid sulfates and their
825 identification in human bile." *J Lipid Res* **12**(6): 671-679.

826 Parada Venegas, D., M. K. De la Fuente, G. Landskron, M. J. Gonzalez, R. Quera, G. Dijkstra, H. J. M.
827 Harmsen, K. N. Faber and M. A. Hermoso (2019). "Short Chain Fatty Acids (SCFAs)-Mediated Gut
828 Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases." *Front Immunol*
829 **10**: 277.

830 Parry, G. J., C. M. Rodrigues, M. M. Aranha, S. J. Hilbert, C. Davey, P. Kelkar, W. C. Low and C. J. Steer
831 (2010). "Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic Acid in patients with
832 amyotrophic lateral sclerosis." *Clin Neuropharmacol* **33**(1): 17-21.

833 Pauli-Magnus, C. and P. J. Meier (2005). "Hepatocellular transporters and cholestasis." *J Clin
834 Gastroenterol* **39**(4 Suppl 2): S103-110.

835 Qiu, Y., G. Cai, M. Su, T. Chen, X. Zheng, Y. Xu, Y. Ni, A. Zhao, L. X. Xu, S. Cai and W. Jia (2009). "Serum
836 metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS." *J Proteome Res*
837 **8**(10): 4844-4850.

838 Ramalho, R. M., A. F. Nunes, R. B. Dias, J. D. Amaral, A. C. Lo, R. D'Hooge, A. M. Sebastiao and C. M.
839 Rodrigues (2013). "Tauoursodeoxycholic acid suppresses amyloid beta-induced synaptic toxicity in vitro
840 and in APP/PS1 mice." *Neurobiol Aging* **34**(2): 551-561.

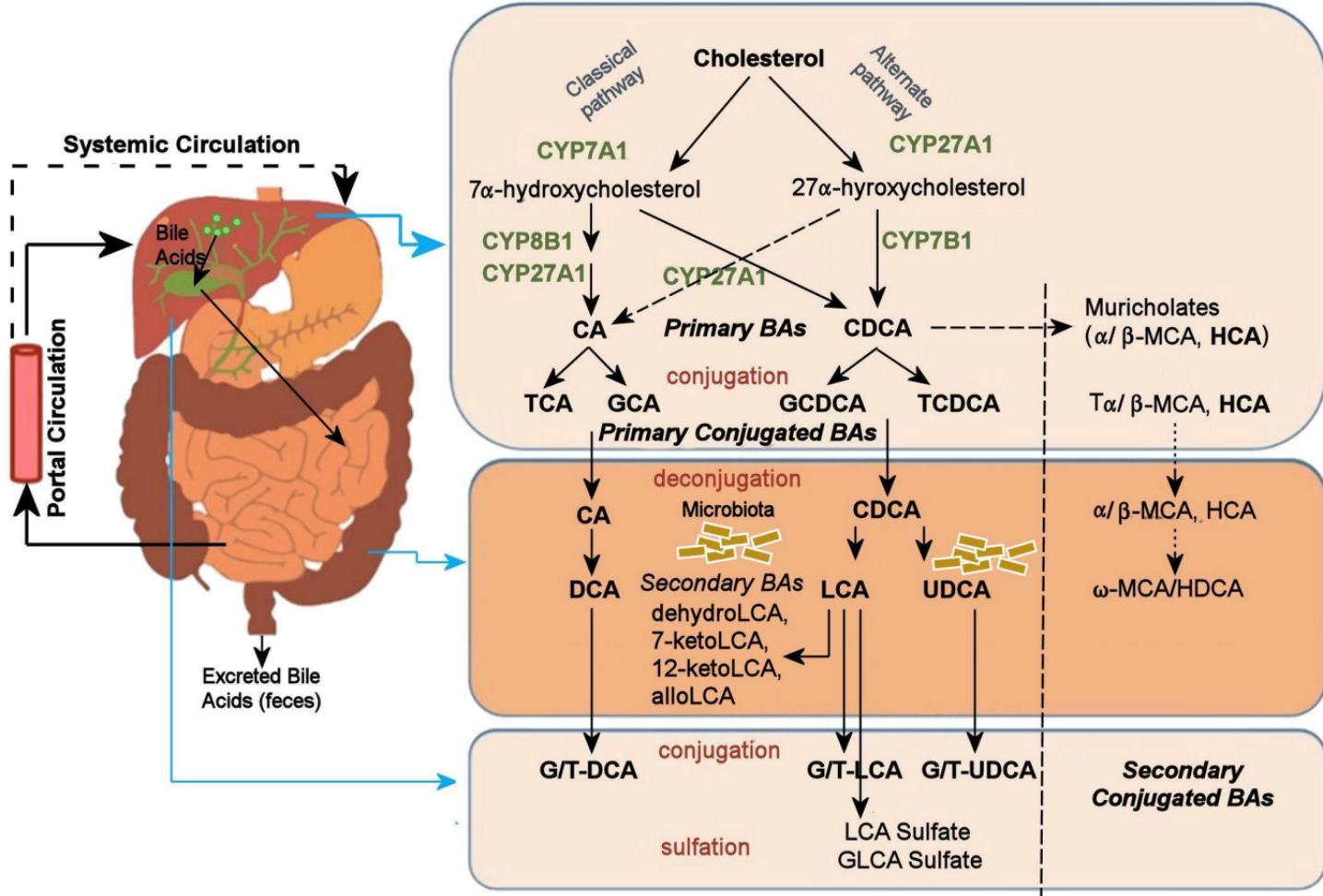
841 Ridlon, J. M. and J. S. Bajaj (2015). "The human gut sterolbiome: bile acid-microbiome endocrine aspects
842 and therapeutics." *Acta Pharm Sin B* **5**(2): 99-105.

843 Ridlon, J. M., S. C. Harris, S. Bhowmik, D. J. Kang and P. B. Hylemon (2016). "Consequences of bile salt
844 biotransformations by intestinal bacteria." *Gut Microbes* **7**(1): 22-39.

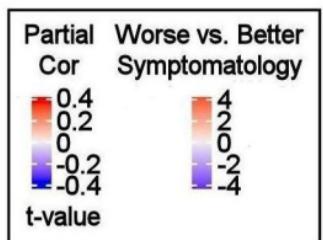
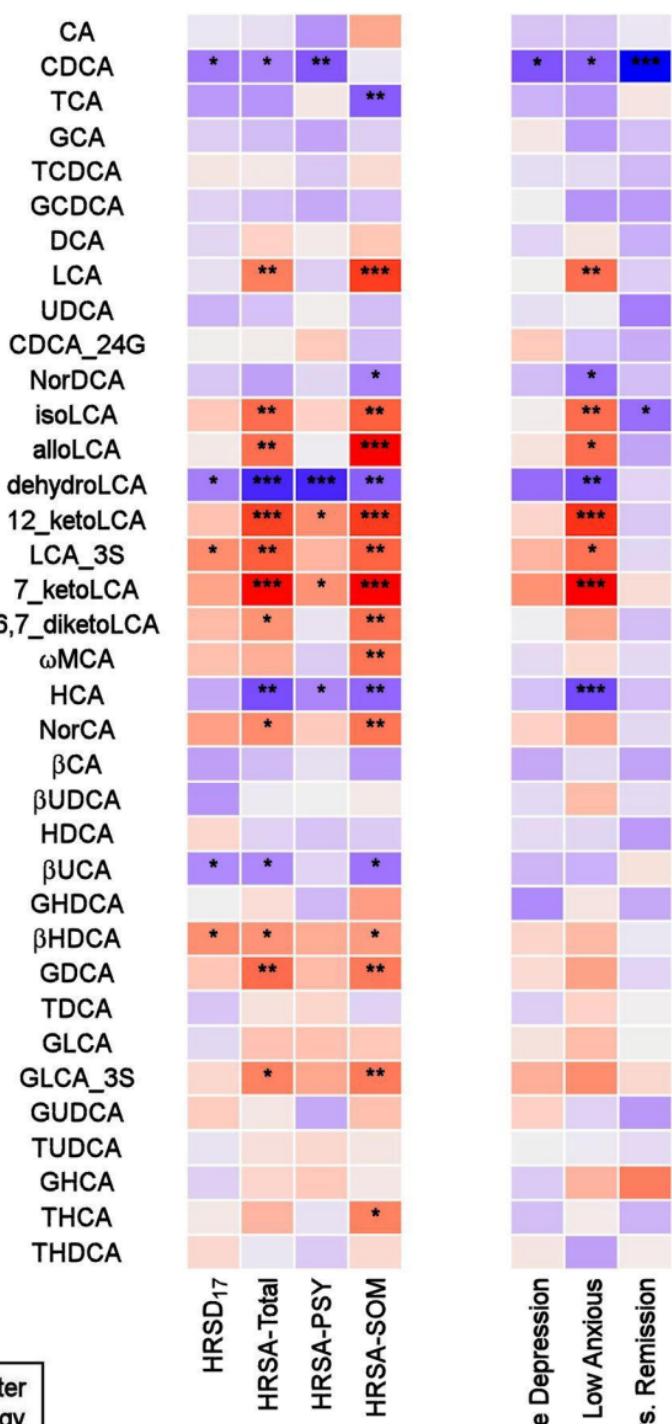
845 Rieder, R., P. J. Wisniewski, B. L. Alderman and S. C. Campbell (2017). "Microbes and mental health: A
846 review." *Brain Behav Immun* **66**: 9-17.

847 Rodrigues, C. M., C. L. Stieers, C. D. Keene, X. Ma, B. T. Kren, W. C. Low and C. J. Steer (2000).
848 "Tauoursodeoxycholic acid partially prevents apoptosis induced by 3-nitropropionic acid: evidence for a
849 mitochondrial pathway independent of the permeability transition." *J Neurochem* **75**(6): 2368-2379.

850 Shonsey, E. M., M. Sfakianos, M. Johnson, D. He, C. N. Falany, J. Falany, D. J. Merkler and S. Barnes
851 (2005). "Bile acid coenzyme A: amino acid N-acyltransferase in the amino acid conjugation of bile acids."
852 *Methods Enzymol* **400**: 374-394.

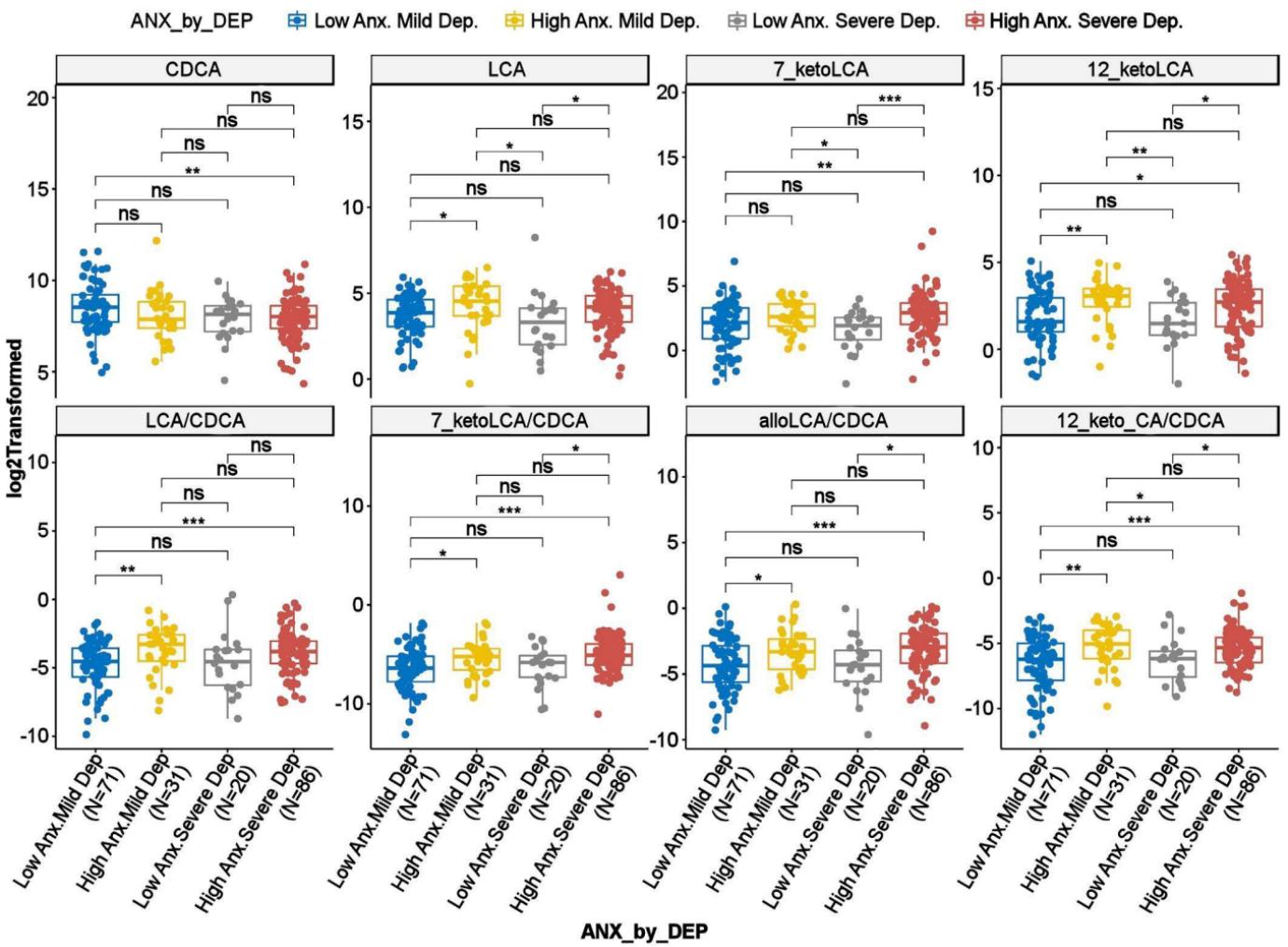

853 Simpson, C. A., C. Diaz-Arteche, D. Eliby, O. S. Schwartz, J. G. Simmons and C. S. M. Cowan (2021). "The
854 gut microbiota in anxiety and depression - A systematic review." *Clin Psychol Rev* **83**: 101943.

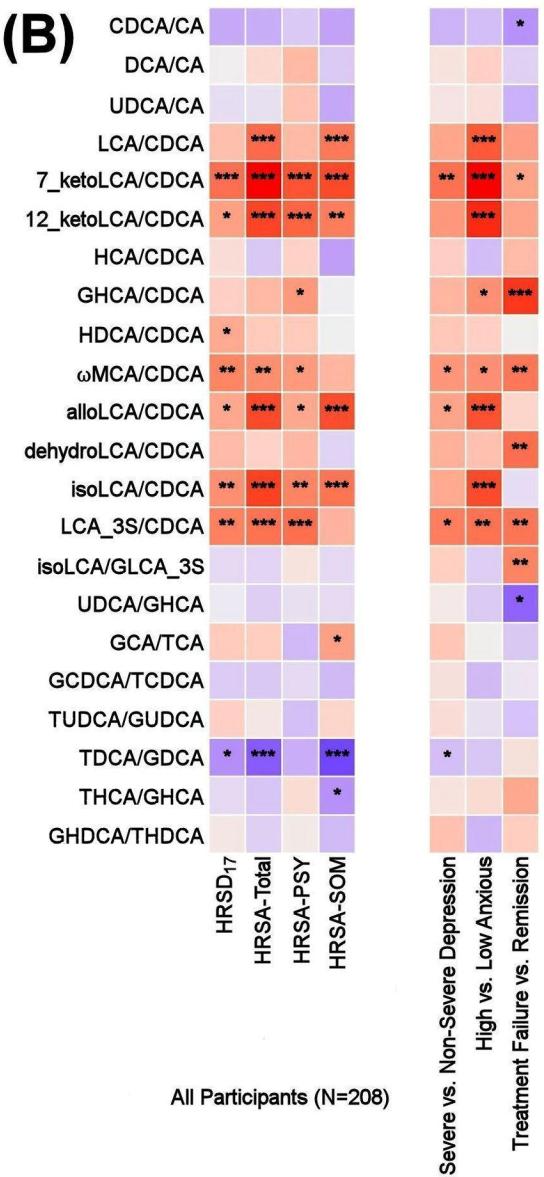
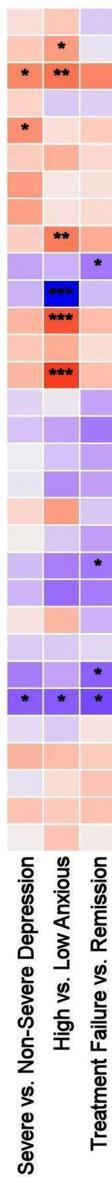
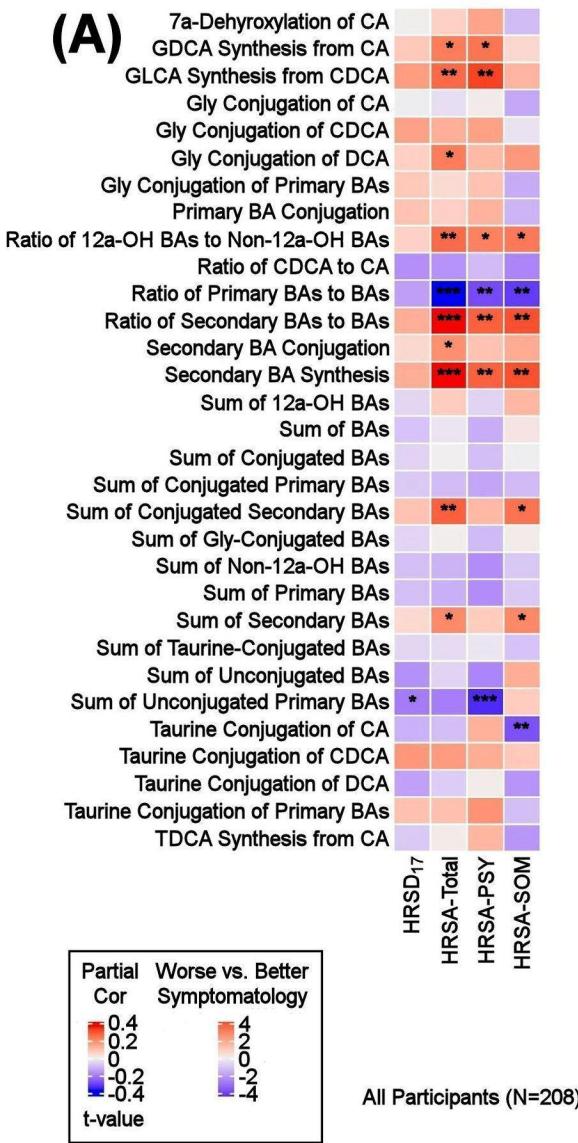
855 Simpson, C. A., O. S. Schwartz and J. G. Simmons (2020). "The human gut microbiota and depression:
856 widely reviewed, yet poorly understood." *J Affect Disord* **274**: 73-75.

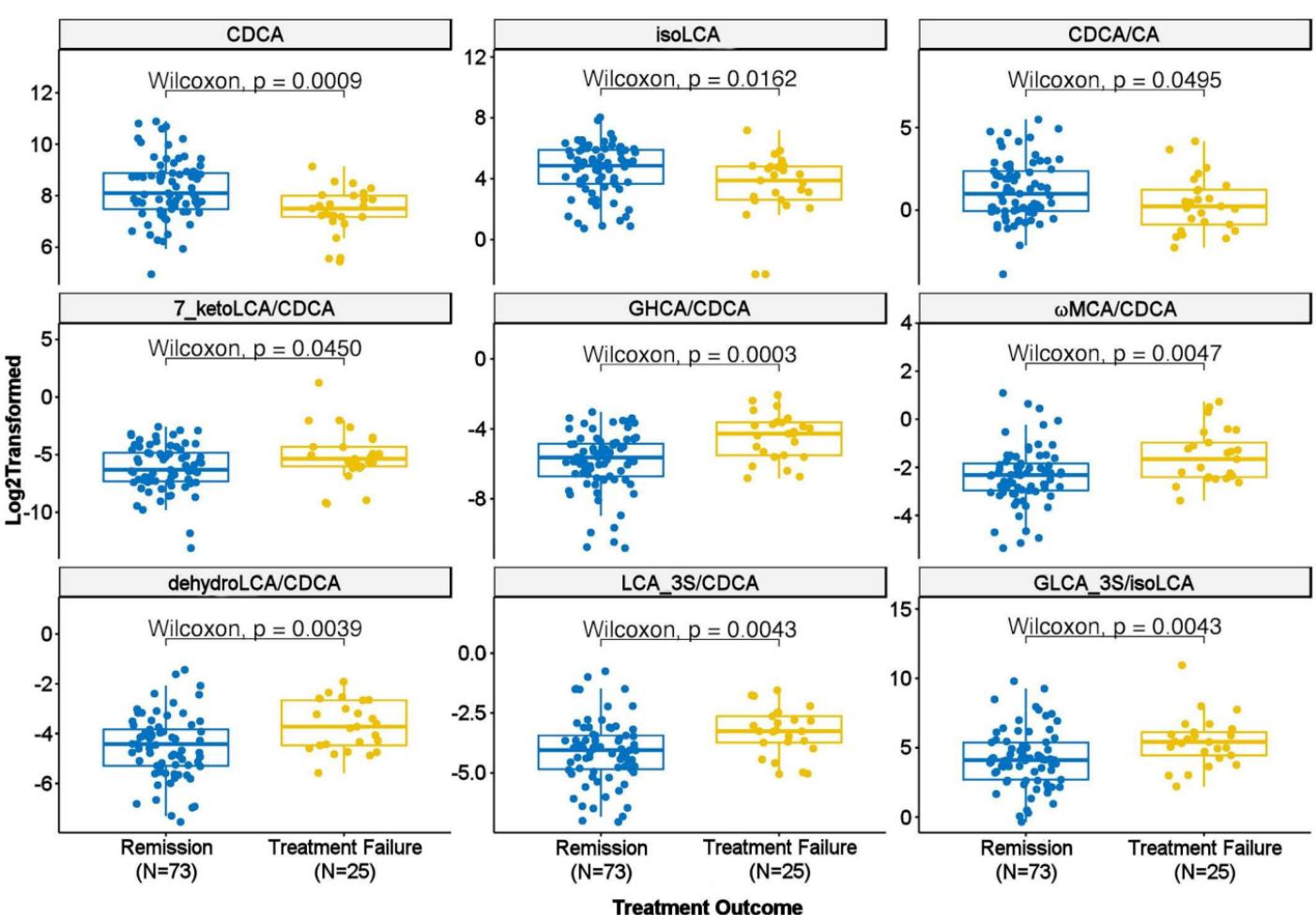


857 Sonne, D. P., M. Hansen and F. K. Knop (2014). "Bile acid sequestrants in type 2 diabetes: potential
858 effects on GLP1 secretion." *Eur J Endocrinol* **171**(2): R47-65.

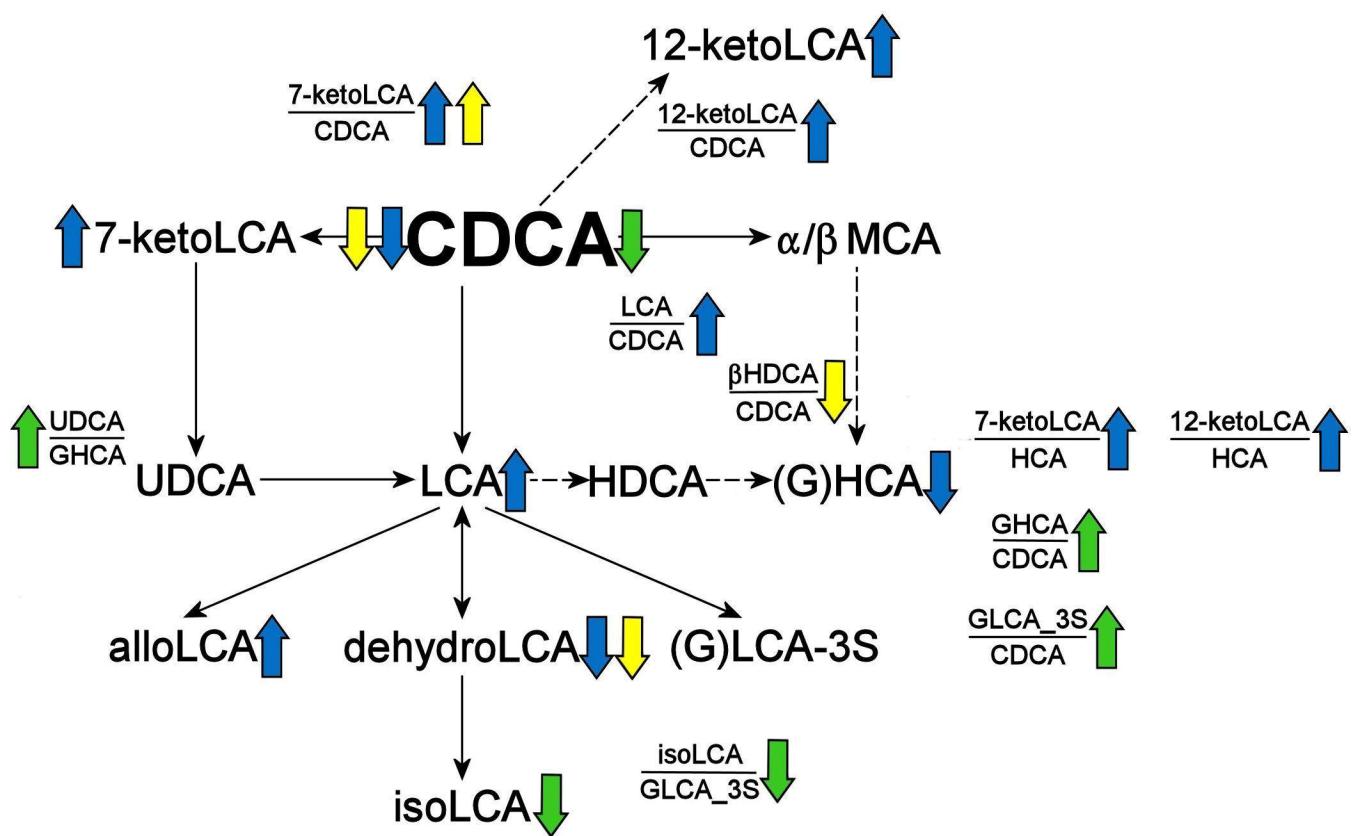
Gut metabolites in depression and anxiety

859 Sudo, N., Y. Chida, Y. Aiba, J. Sonoda, N. Oyama, X. N. Yu, C. Kubo and Y. Koga (2004). "Postnatal
860 microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice." *J Physiol* **558**(Pt 1): 263-275.
861
862 Sundaram, S. S., K. E. Bove, M. A. Lovell and R. J. Sokol (2008). "Mechanisms of disease: Inborn errors of
863 bile acid synthesis." *Nat Clin Pract Gastroenterol Hepatol* **5**(8): 456-468.
864 Tognini, P. (2017). "Gut Microbiota: A Potential Regulator of Neurodevelopment." *Front Cell Neurosci*
865 **11**: 25.
866 Tremlett, H., K. C. Bauer, S. Appel-Cresswell, B. B. Finlay and E. Waubant (2017). "The gut microbiome in
867 human neurological disease: A review." *Ann Neurol* **81**(3): 369-382.
868 Vaz, F. M. and S. Ferdinandusse (2017). "Bile acid analysis in human disorders of bile acid biosynthesis." *Mol Aspects Med* **56**: 10-24.
869
870 Wahlstrom, A., S. I. Sayin, H. U. Marschall and F. Backhed (2016). "Intestinal Crosstalk between Bile Acids
871 and Microbiota and Its Impact on Host Metabolism." *Cell Metab* **24**(1): 41-50.
872 Wan, Y. Y. and L. Sheng (2018). "Regulation of bile acid receptor activity()." *Liver Res* **2**(4): 180-185.
873 Weitz, E. S., S. D. Hollon, J. Twisk, A. van Straten, M. J. Huibers, D. David, R. J. DeRubeis, S. Dimidjian, B.
874 W. Dunlop, I. A. Cristea, M. Faramarzi, U. Hegerl, R. B. Jarrett, F. Kheirkhah, S. H. Kennedy, R. Mergl, J.
875 Miranda, D. C. Mohr, A. J. Rush, Z. V. Segal, J. Siddique, A. D. Simons, J. R. Vittengl and P. Cuijpers (2015).
876 "Baseline Depression Severity as Moderator of Depression Outcomes Between Cognitive Behavioral
877 Therapy vs Pharmacotherapy: An Individual Patient Data Meta-analysis." *JAMA Psychiatry* **72**(11): 1102-
878 1109.
879 Xie, G., X. Wang, R. Jiang, A. Zhao, J. Yan, X. Zheng, F. Huang, X. Liu, J. Panee, C. Rajani, C. Yao, H. Yu, W.
880 Jia, B. Sun, P. Liu and W. Jia (2018). "Dysregulated bile acid signaling contributes to the neurological
881 impairment in murine models of acute and chronic liver failure." *EBioMedicine* **37**: 294-306.
882 Xie, G., Y. Wang, X. Wang, A. Zhao, T. Chen, Y. Ni, L. Wong, H. Zhang, J. Zhang, C. Liu, P. Liu and W. Jia
883 (2015). "Profiling of serum bile acids in a healthy Chinese population using UPLC-MS/MS." *J Proteome*
884 *Res* **14**(2): 850-859.
885 Yarandi, S. S., D. A. Peterson, G. J. Treisman, T. H. Moran and P. J. Pasricha (2016). "Modulatory Effects
886 of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health
887 and Diseases." *J Neurogastroenterol Motil* **22**(2): 201-212.
888 Zhao, L., Y. Ni, M. Su, H. Li, F. Dong, W. Chen, R. Wei, L. Zhang, S. P. Guiraud, F. P. Martin, C. Rajani, G.
889 Xie and W. Jia (2017). "High Throughput and Quantitative Measurement of Microbial Metabolome by
890 Gas Chromatography/Mass Spectrometry Using Automated Alkyl Chloroformate Derivatization." *Anal*
891 *Chem* **89**(10): 5565-5577.
892 Zheng, P., B. Zeng, C. Zhou, M. Liu, Z. Fang, X. Xu, L. Zeng, J. Chen, S. Fan, X. Du, X. Zhang, D. Yang, Y.
893 Yang, H. Meng, W. Li, N. D. Melgiri, J. Licinio, H. Wei and P. Xie (2016). "Gut microbiome remodeling
894 induces depressive-like behaviors through a pathway mediated by the host's metabolism." *Mol*
895 *Psychiatry* **21**(6): 786-796.
896






Primary	Unconjugated
Primary	Unconjugated
Primary	Conjugated
Secondary	Unconjugated
Secondary	Conjugated


All Participants (N=208)


Severe vs. Non-Severe Depression
High vs. Low Anxious
Treatment Failure vs. Remission

Treatment Outcome ■ Remission ■ Treatment Failure

	High in more severe disease		Anxiety at Baseline
	Low in more severe disease		Depression at Baseline
	Pathways suggested but not confirmed		Remission