

1 **The *Bcvic1* and *Bcvic2* vegetative incompatibility genes in *Botrytis***
2 ***cinerea* encode proteins with domain architectures involved in**
3 **allorecognition in other filamentous fungi**

4 Saadiah Arshed^{1,2,3}, Murray P. Cox^{3,4}, Ross E. Beever^{5†}, Stephanie L. Parkes⁵, Michael N.
5 Pearson², Joanna K. Bowen^{1*} and Matthew D. Templeton^{1,2,3,*}

6

7 ¹Bioprotection, New Zealand Institute of Plant and Food Research, Auckland, New Zealand

8 ²School of Biological Sciences, University of Auckland, Auckland New Zealand

9 ³Bioprotection Aotearoa Centre of Research Excellence, New Zealand

10 ⁴School of Natural Sciences, Massey University, Palmerston North, New Zealand

11 ⁵Maanaki Whenua Landcare Research, Auckland, New Zealand

12 *Corresponding authors

13 †posthumous authorship

14 E-mail: joanna.bowen@plantandfood.co.nz (JKB), matt.templeton@plantandfood.co.nz
15 (MDT)

16

17 Short title: *Botrytis cinerea* vegetative incompatibility genes

18 **Abstract**

19

20 Vegetative incompatibility is a fungal allorecognition system characterised by the inability of
21 genetically distinct conspecific fungal strains to form a viable heterokaryon, and is controlled
22 by multiple polymorphic loci termed *vic* (vegetative incompatibility) or *het* (heterokaryon
23 incompatibility). We have genetically identified and characterised the first *vic* locus in the
24 economically important, plant-pathogenic, necrotrophic fungus *Botrytis cinerea*. A bulked
25 segregant approach coupled with whole genome Illumina sequencing in near-isogenic lines of
26 *B. cinerea* was used to map a 60-kb genomic region for a *vic* locus. Within that locus, we
27 identified two adjacent, highly polymorphic open reading frames, *Bcvic1* and *Bcvic2*, which
28 encode predicted proteins that contain domain architectures implicated in vegetative
29 incompatibility in other filamentous fungi. *Bcvic1* encodes a predicted protein containing a
30 putative serine esterase domain, a NACHT family of NTPases domain, and several Ankyrin
31 repeats. *Bcvic2* encodes a putative syntaxin protein containing a SNARE domain; such
32 proteins typically function in vesicular transport. Deletion of *Bcvic1* and *Bcvic2* individually had
33 no effect on vegetative incompatibility. However, deletion of the region containing both *Bcvic1*
34 and *Bcvic2* resulted in mutant lines that were severely restricted in growth and showed loss of
35 vegetative incompatibility. Complementation of these mutants by ectopic expression restored
36 the growth and vegetative incompatibility phenotype, indicating that *Bcvic1* and *Bcvic2* are
37 controlling vegetative incompatibility at this *vic* locus.

38

39 **Author Summary**

40 Fungal colonies are characterised by radiating filaments, termed hyphae, which often
41 fuse to form a highly interconnected individual. This is advantageous since it enables efficient
42 water and nutrient utilisation across a colony network. However, hyphal fusion is not
43 necessarily restricted to within an individual colony, with potential for hyphal fusion between
44 individuals belonging to the same species. There are, however, drawbacks to this. For

45 instance, viruses that detrimentally affect a colony may be transmitted, with their infection
46 leading to a reduction in the virulence of a pathogenic species. Fungi have therefore
47 developed complex systems to prevent fusion between genetically distinct individuals of the
48 same species. This phenomenon is termed vegetative incompatibility and results in the death
49 of fused cells and cessation of transfer of cellular contents from one individual to another. We
50 have identified the first genes in the fungal plant pathogen *Botrytis cinerea* that control this
51 phenomenon. They resemble genes that control vegetative incompatibility in other fungi, and
52 genes involved in immunity in plants and animals. Uncovering further genes involved in
53 vegetative incompatibility in *B. cinerea* may pave the way for the development of a 'super
54 donor' strain capable of overriding vegetative incompatibility to transmit viruses, thus enabling
55 their exploitation as potent control agents against this damaging plant pathogen.

56 Introduction

57 Cell fusion is common to all eukaryotic kingdoms of life. It is perhaps most readily
58 apparent in fungi, where a mycelium is formed by the fusion (anastomosis) of hyphal filaments
59 during vegetative (asexual) growth, giving rise to a syncytium-like complex of interconnected
60 cells operating as a coordinated individual. This allows the flow of organelles and cytoplasm
61 between hyphal compartments, serving a number of functions that are beneficial to the fungal
62 colony. These include the translocation of water and transport of nutrients, thereby regulating
63 overall homeostasis across a wide range of nutrient limiting spatial scales [1], and enabling
64 efficient utilisation of a nutrient source [2, 3]. Cell fusion in fungi can also drive the transition
65 from unicellularity to multicellularity [4], with fusion between identical genotypes improving
66 fitness of the developing colony [2, 3].

67 However, there are downsides to fungal cell fusion, especially between genetically
68 non-identical individuals. Cytoplasmic mixing can enable the transmission of deleterious
69 mitochondrial genotypes, which depress fitness [5, 6], and pathogens (e.g. mycoviruses [7-
70 9]). Allore cognition (the ability to discriminate between self and conspecific non-self) is
71 therefore fundamental for survival, since it can preclude cell fusion between non-identical
72 individuals and potentially deleterious fitness consequences. Most genetically distinct fungal
73 individuals from the same species are unable to anastomose. Indeed, the model fungus
74 *Neurospora crassa* has evolved multiple mechanisms to avoid cell fusion between genetically
75 distinct individuals at all costs [10].

76 The multifaceted *N. crassa* allore cognition system is far from unique; it is becoming
77 increasingly apparent that mechanisms evolved in fungi to avoid cell fusion are complex, often
78 comprising multiple checkpoints. These checkpoints, at which successful fusion can be
79 arrested, operate either pre-fusion (curtailing chemotropism [11] and preventing cell wall
80 fusion [12]) or post-fusion (involving intracellular recognition in germlings and/or mature
81 hyphae [13-16]). Post-fusion mechanisms following allore cognition involve the triggering of
82 programmed cell death (PCD) of the heterokaryotic fusion cell, and subsequent restoration of

83 the two separate fungal entities, a process termed vegetative (VI) or heterokaryon
84 incompatibility (HI) [16-18].

85 VI is initiated in hyphae when genetically distinct individuals from the same species
86 differ at specific loci termed vegetative *incompatibility* (*vic*) or *heterokaryon incompatibility*
87 (*het*) loci [17, 19-21]. Genetic and modelling analyses indicate that filamentous fungi typically
88 have 6–12 *vic* loci [22, 23], but may have as many as 30 [16, 24, 25].

89 Incompatibility systems have been described in numerous divisions of filamentous
90 fungi including ascomycete, basidiomycete and glomeromycete species [21, 26, 27].
91 However, the molecular mechanisms of the VI phenomenon have largely been identified in a
92 small number of well-studied systems, notably *N. crassa*, *Podospora anserina* and
93 *Cryphonectria parasitica*, which all belong to the Sordariomycetes (reviewed in [16]). Loci
94 involved in VI are typically highly polymorphic and found in hypervariable genomic regions
95 [28]. VI can involve allelic genes, for example, the *het-c* incompatibility loci in *N. crassa* [29],
96 or be controlled by a non-allelic system, for example, the *het-c/het-d/het-e* incompatibility loci
97 in *P. anserina* [30-32]. The polypeptides encoded by the three *het-c* alleles in *N. crassa* are
98 similar except for a variable domain of 34–48 amino acids. This polymorphic region is sufficient
99 to confer *het-c* allelic specificity. *het-c* is tightly linked with the *pin-c* (partner for *incompatibility*)
100 locus which encodes a protein with a conserved domain termed HET [29]. In contrast with *het-c*,
101 the three *pin-c* alleles are highly polymorphic (~55% amino acid identity) in the region
102 outside the conserved HET domain. Genetic interactions between different *het-c* and *pin-c*
103 alleles (e.g. *het-c1* and *pin-c2*) result in allorecognition, with allelic interaction between
104 different *het-c* alleles (e.g. *het-c1* and *het-c2*) increasing the severity of the incompatible
105 reaction. The *het-c* locus of *P. anserina* encodes a glycolipid transfer protein [31], which
106 interacts with the encoded proteins of *het-d* and *het-e*. *het-d* and *het-e* are paralogues which
107 belong to a large gene family. The encoded proteins are tri-partite nucleotide oligomerisation
108 domain (NOD)-like receptors (NLRs) [30, 32], which in the case of *het-d* and *het-e* comprise
109 an N-terminal HET domain, a central NACHT domain with a nucleotide-binding site and a C-
110 terminal WD40 repeat domain.

111 In addition to *vic* genes, other loci are involved in the initiation of a programmed cell
112 death (PCD) response following allorecognition post cell fusion, which are not classified as
113 *vic* or *het* loci since they can regulate germling-regulated death (GRD) in addition to hyphal
114 PCD. These have been identified in *N. crassa*: *sec-9/plp-1* [13] and *rcd-1* [14], but are also
115 present in other fungi [13]. The *sec-9/plp-1* system relies on the physical interaction of the
116 PLP-1 patatin-like phospholipase-1 NLR protein, which comprises an N-terminal patatin-like
117 phospholipase domain, a central nucleotide-binding domain and a C-terminal
118 tetratricopeptide repeat (TPR), with a SEC-9 protein, which is characterised by a soluble N-
119 ethylmaleimide-sensitive factor attachment protein receptor (SNARE) domain of different
120 specificity [13]. In contrast, *rcd-1* belongs to a highly polymorphic gene family with
121 coexpression of antagonistic alleles resulting in PCD [14].

122 The allorecognition system in fungi can therefore be viewed as modular, with a
123 recognition module comprised of highly polymorphic protein domains that act as the
124 specificity region required for recognition, and a death effector module that induces the
125 compartmentalisation and cell death process [33]. These modules can either be present
126 within a single protein or on different protein components of the allorecognition system [16].
127 The repeat domains of NLR-like proteins, if involved, are postulated to play a role in
128 recognition of the specificity determinants, whilst the HET domain, which is specific to
129 filamentous fungi and present in most proteins encoded by *vic* genes, is thought to be
130 involved in the initiation of the cell death reaction.

131 How the interactions between alternate incompatibility proteins translate into cell
132 death is not well understood. Identification of the genes involved has, generally, suggested
133 mechanisms for cell death induction [16]. For example, the phospholipase domain of PLP-1
134 may directly alter membrane phospholipids, with the PLP-1 complex acting as a membrane
135 toxin itself [13]. However, clear evidence of mechanism has been demonstrated only for the
136 *het-s/het-S* system in *P. anserina* [34, 35]. *het-s* encodes a prion protein. Depending on the
137 epigenetic state of the strain, the protein is either monomeric and soluble [Het-s*], or
138 assembles into prion aggregates [Het-s]. Het-s consists of two domains: an N-terminal

139 globular domain (HeLo) and a C-terminal prion-forming domain (PFD). Het-S has a similar
140 domain structure but cannot form a prion. Interaction between the prion form of Het-s and
141 Het-S results in a conformational change in the HeLo domain of Het-S, leading to acquisition
142 of pore-forming activity and relocation to the cell membrane where it compromises membrane
143 integrity [36-39].

144 In *P. anserina*, the cell death reaction is characterised downstream by the induction
145 of a specific set of genes (*idi*), followed by the production of numerous degradative enzymes
146 including proteases, laccases and phenoloxidases, increased vacuolisation, increased
147 deposition of septa, accumulation of lipid droplets and the abnormal deposition of cell wall
148 material [33, 40, 41]. Along with these hallmarks of cell death, autophagosomes are observed
149 in the cytoplasm soon after the triggering of cell death by incompatibility. Electron microscopy
150 has confirmed the double plasma membrane present in the autophagosome, and its
151 cytoplasmic content, which are characteristic of a type II programmed cell death pathway. It
152 is hypothesised that the induction of autophagy may function to control PCD by protecting
153 neighbouring cells from cell death [42]. In *C. parasitica*, VI is associated with the accumulation
154 of secondary metabolites and reactive oxygen species (ROS), with pheromone processing
155 hypothesised to be an important component of allore cognition since crypheromonins, which
156 resemble type 'a' mating pheromones, accumulate [43, 44].

157 Whilst having implications for the survival of fungal colonies, VI is also of relevance
158 when formulating biological control strategies involving mycoviruses [45]. The use of
159 hypovirulent mycoviruses as biological control agents (BCAs) requires that they either be
160 mechanically transmissible, which would necessitate multiple applications to control disease,
161 or able to infect the entire population of a fungal phytopathogen, by being readily transmissible
162 from one isolate to another. However, VI can limit the efficacy of the latter class of potential
163 hypovirulence-inducing mycoviruses. For example, transmission of the hypovirulent
164 mycovirus that infects *C. parasitica*, the causal agent of Chestnut blight, has been limited by
165 VI, in turn limiting the use of the virus as a BCA [7].

166 *Botrytis cinerea* Pers. Fr. (teleomorph *Botryotinia fuckeliana* (de Bary) Whetzel) is an
167 economically important plant-pathogenic fungus that causes grey mould disease in over 280
168 mainly dicotyledonous species [46, 47]. *B. cinerea* is a necrotrophic pathogen that first
169 colonises necrotic, senescent or dead tissue, largely as a saprobe. From this base, it is
170 capable of infecting live tissue, often through the production of an infection cushion [48].
171 Mycoviruses which result in a hypovirulent phenotype have been identified in *B. cinerea* [e.g.
172 49, 50, 51]. These could be effective as BCAs although the VI system in *B. cinerea*, as with
173 other fungal systems, may preclude their efficacy. Super donor strains or combinations of
174 strains have been developed in *C. parasitica*, using gene disruption of *vic* loci combined with
175 classical genetics, enabling transmission of a hypovirulent mycovirus independent of *vic*
176 genotype [52, 53]. Thus in addition to being of interest with regard to the ecology of a
177 damaging fungal pathogen and the evolution of fungal fitness, identifying the molecular
178 components of VI in *B. cinerea* may aid the development of effective BCAs for control of this
179 damaging pathogen. Beever and Weeds [54] confirmed the existence of 66 vegetative
180 compatibility groups (vcg) from single ascospores within field isolates of *B. cinerea*.
181 Population genetic analysis of those vcgs indicated the presence of at least seven *vic* loci in
182 New Zealand *B. cinerea* isolates [54]. This paper describes the identification of the first *vic*
183 locus in *B. cinerea*.

184 **Results**

185 **The F₁BC₃ near-isogenic lines segregated 1:1 at the BenA and vic loci**

186 The F₁BC₃ progeny of *B. cinerea* used in this study were generated from three
187 generations of backcrosses to the recurrent parent REB749-8 (S1 Fig.). The backcrossing
188 strategy was deemed to be complete when there was 1:1 segregation of the benomyl (BenA)
189 resistance and *vic* phenotypes. Fifteen out of 32 progeny were found to be sensitive to
190 benomyl and the other 17 resistant (47% B^R; 53% B^S). As expected, all the progeny in the
191 F₁BC₃ generation displayed ultra-low level dicarboximide resistance when plated onto Malt
192 Extract Agar (MEA) + carbendazim (100 mg/L) since both parents carried the same allele for
193 ultra-low level dicarboximide resistance. Following mycelial compatibility testing using nitrate
194 non-utilising mutants, 18 progeny were compatible with REB749-8 and incompatible with
195 REB811-28 and bulked as vcg1, whereas 14 progeny from the REB839 series were
196 incompatible with the recurrent parent REB749-8 and compatible with the non-recurrent F₁BC₂
197 parent REB811-28, and were bulked as vcg2. Two isolates from the REB839- population,
198 REB839-5 and REB839-1, were used as the near-isogenic vegetative incompatibility test
199 strains, vcg1 and vcg2, and for functional characterisation of candidate *vic* genes through
200 transformation (S1 Table).

201

202 **A candidate *vic* locus lies on scaffold 56 of the *B. cinerea* T4 reference genome**

203 Approximately 14 and 18 million read pairs were obtained for the genomes bulked in
204 the vcg1 and vcg2 samples, respectively. When the reads were mapped to the 118 scaffolds
205 of the *B. cinerea* T4 reference sequence there was an average of 43 and 62 reads per
206 nucleotide position for the vcg1 and vcg2 bulks, respectively, and the genome coverage that
207 was shared between both vcg1 and vcg2 was 92.4% (36,497,613 bp) of the T4 genome. Not
208 all the genome was covered owing to the strict read-mapping thresholds used to ensure highly
209 accurate variant calling. The missing regions consisted of repetitive elements such as
210 microsatellites and transposons. Furthermore, a small proportion of reads that had a high

211 divergence in sequence identity with respect to the reference did not align and therefore were
212 excluded from the analysis.

213 The single nucleotide polymorphism (SNP) profiles identified from the vcg1 and vcg2
214 bulks fell into three groups. The most abundant type were those SNPs that were shared
215 between both bulks that were identical in all the progeny within each bulk, reflecting the
216 expected considerable regions of isogeny within the backcrossed offspring with no linkage to
217 the trait of interest. The second category of SNPs were those shared between bulks with some
218 variability within each individual bulk, indicative of the non-isogenic genomic regions in the
219 parents, with random segregation of these SNPs in the progeny, with no linkage to the VI
220 phenotype used to differentiate the bulks. The vcg1 and vcg2 bulks shared 139,759 SNPs that
221 were uniformly distributed throughout the genome relative to the T4 reference.

222 The third and most important class of SNPs were the bulk-specific SNPs that were
223 present in one bulk but absent in the other. Initially 759 vcg1 and 1,478 vcg2 bulk-specific
224 SNPs were identified using the SNP-calling algorithm, revealed by applying a 5000-bp sliding
225 window with a 25-bp lag to the entire genome sequence. These bulk-specific SNPs were
226 tightly clustered within a few scaffolds (Fig. 1). The vast majority of these were discarded from
227 further analysis following manual curation. As expected, most of the SNPs occurred within
228 microsatellites or homopolymer runs, which can cause problems during read mapping. A
229 proportion were miscalled insertions and deletions, whilst others were simple sequencing
230 errors. Miscalled bulk-specific SNPs often occurred because of the strict SNP-calling
231 thresholds that were applied, whereby SNPs needed to be represented by at least eight reads
232 in one bulk and absent in the other. For instance, a SNP that was shared or heterogeneous
233 between vcg1 and vcg2 could be miscalled as a bulk-specific SNP by the SNP-calling
234 algorithm if the alignment for either bulk had a region of low sequence coverage represented
235 by less than eight reads. After the above analysis had removed the probable spurious
236 differential SNP calls, the only T4 reference genome scaffold that had large numbers of
237 accurate bulk-specific SNPs was bt4_SupSuperContig_110r_56_1 (scaffold 56; 449,055 bp
238 long; this corresponds to the B05.10 region 143,339 to 203,859 on scaffold 1.28). There were

239 307 and 369 bulk-specific SNPs in the vcg1 and vcg2 bulks across this scaffold, with over
240 98% of them in close proximity (300 of the 307 with respect to the vcg1 bulk and all of those
241 identified with respect to the vcg2 bulk), with each SNP within at least 5000 bases of another.
242 In certain regions of scaffold 56, there were occurrences of more than 60 bulk-specific SNPs
243 within a 5-kb window (S2 Fig.). A region approximately 60 kb in length on scaffold 56, from
244 position 143,443 to 204,125, had the highest density of bulk-specific SNPs, and was selected
245 as a candidate *vic* gene locus for further interrogation (Fig. 2).

246

247 **Two genes at the candidate *vic* locus share similarities with previously identified fungal
248 *vic* genes**

249 Twenty-four genes were located in the candidate region on scaffold 56 of the T4
250 genome, but only fifteen had orthologous gene predictions on chromosome 1 of the gapless
251 B05.10 genome, casting doubt on the reliability of nine of the T4 gene models. Of the
252 remaining fifteen predicted genes, six had 100% amino acid identity between vcg1 and vcg2
253 bulks and were therefore excluded from further analysis. The remaining nine candidate genes
254 are listed in S2 Table. Three of these genes had no putative predicted function since no
255 domains were identified following analysis with Pfam and Interproscan. Of the remaining
256 genes, Bcin1g01210.1 and Bcin1g01220.1 from the B05.10 genome (equivalent to
257 BofuT4_P145990.1 and BofuT4_P146010.1 in the T4 genome, respectively), encoded
258 proteins with domains consistent with a role in allore cognition. In addition, both had missing
259 sequence alignment coverage when the sequences from both bulks were compared with the
260 T4 genome, and when vcg1 sequences were compared with the B05.10 reference genome,
261 suggesting a high degree of polymorphism (a known trait of *vic* genes). Of note is that the
262 vcg2 bulk shared identical sequences with the gapless B05.10 reference genome for all the
263 predicted genes in the region (Fig. 2B). When the sequence of the genes and predicted
264 proteins were compared following polymerase chain reaction (PCR) amplification, they had a
265 significantly lower sequence identity than the other candidates (S2 Table).

266

267 *Bcin1g01220.1 (BofuT4_P146010.1): Bcvic1*

268 The first candidate gene, *Bcin1g01220.1 (BofuT4_P146010.1)*, henceforth referred to
269 as *Bcvic1*, and thus *Bcvic1-1* in the *vcg1* tester strain 839-5 (with the additional -1 referring to
270 the *vcg*), had a transcript length of 4,215 bp with four exons when confirmed by PCR
271 amplification, cloning and re-sequencing, and a predicted translated protein of 1,404 amino
272 acids. *Bcvic1* in *vcg2* (*Bcvic1-2*) was 100% identical at the nucleotide and predicted amino
273 acid sequence levels with the B05.10 sequence. The *Bcvic1* gene, as confirmed by PCR,
274 cloning and Sanger sequencing, from *vcg2* and B05.10 (*Bcvic1-2*) had a transcript length of
275 4,489 bp with three exons and the predicted translated protein was 1,444 amino acids long.

276 The percentage identity between *Bcvic1-1* and *Bcvic1-2* at the nucleotide level was
277 68.3% over the entire sequence. The 5' end of the gene from nucleotide position 1 to 1,662
278 was more conserved, with a percentage pairwise identity of 99%, than the downstream region
279 from position 1,663 to 4,589, which was variable, with a pairwise identity of only 50.7%. The
280 two predicted protein sequences encoded by *Bcvic1-1* and *Bcvic1-2* contained a putative
281 serine esterase/lipase domain (residues 52-179 in both BCVIC1-1 and BCIVC1-2; Pfam:
282 PF05057, serine esterase; Interproscan: IPR007751: Domain of unknown function found
283 within a group of putative lipases, including the phospholipase B YOR059C (Lpl1) from
284 budding yeast), a NACHT domain (Residues 224-350 in BCVIC1-1 and 363-489 in BCIVC1-
285 2; Pfam: PF05729), and ankyrin repeats (residues 733-805, 813-903, 973-1055, 1103-1189,
286 1201-1285 in BCVIC1-1 and 866-944, 953-1042, 1114-1196, 1207-1231, 1241-1328, 1339-
287 1426 in BCIVC1-2; Pfam: PF00023) (Fig. 3). The proteins had a percentage identity of 60.2%
288 over the entire sequence. The N-terminal region from position 1 to 523, which contains the
289 putative serine esterase and NACHT domains, shares a much higher percentage identity, of
290 98.7%, than the ankyrin repeat containing region downstream of the NACHT domain, which
291 is more variable, with a percentage pairwise identity of 38.7%.

292

293 *Bcin1g01210.1 (BofuT4_P145990.1): Bcvic2*

294 The sequence of the second candidate gene, *Bcin1g01210.1* (*BofuT4_P145990.1*)
295 henceforth referred to as *Bcvic2* in the *vcg1* and *vcg2* tester strains 839-5 and 839-1, was
296 confirmed by PCR amplification, cloning and re-sequencing. The *Bcvic2* gene from *vcg1*
297 (*Bcvic2-1*) had a transcript length of 1,254 bp, with three coding exons. The predicted
298 translated protein was 417 amino acids long. The *Bcvic2* gene from *vcg2* (*Bcvic2-2*) had a
299 transcript length of 1,158 bp, with four coding exons. The predicted translated protein was 385
300 amino acids long. The sequences for *Bcvic2* in *vcg2* and B05.10 were identical.

301 The percentage identity between *Bcvic2-1* and *Bcvic2-2* at the nucleotide level was
302 76.3% over the entire sequence alignment. The 5' end of the gene from nucleotide position 1
303 to 931 was more variable than the 3' end, with a percentage pairwise identity of 65.1%,
304 contrasting with the 97.9% identity of the downstream region, between positions 932 and
305 1416. The two predicted protein sequences encoded by *Bcvic2-1* and *Bcvic2-2* contained a
306 syntaxin domain (residues 155-284 in BCVIC2-1 and 140-251 in BCIVC2-2; Pfam: PF00804)
307 and a SNARE domain (residues 290-337 in BCVIC2-1 and 257-304 in BCIVC2-2; Pfam:
308 PF05739). When the SNARE database was used to analyse the proteins, a SNARE domain
309 was identified (residues 259-312 in BCVIC2-1 with an e-value of 2.8e-11 and 226-279 in
310 BCVIC2-2, with an e value of 3.1e-11) that in both proteins was classified as belonging to the
311 Qa.IV subgroup and therefore putatively involved in exocytosis at the plasma membrane. The
312 *Bcvic2-1*- and 2-2-encoded amino acid sequences shared low identity, with a percentage
313 identity of 65.9% over the entire sequence. The N-terminal regions from nucleotide position 1
314 to 201 only shared a pairwise identity of 33.3% and the sequences downstream towards the
315 C terminus were more conserved, with a pairwise identity of 95.4%.

316

317 **All gene knockout transformants are initially heterokaryotic**

318 Three independent transformation experiments using a combination of circular plasmid
319 and linear split marker PCR fragments targeting *Bcvic1* and *Bcvic2* were required to obtain
320 sufficient hygromycin-resistant transformants for further molecular analysis. For each gene
321 knockout construct, an excess of 50 independent, mitotically stable, hygromycin-resistant

322 transformants, were selected for downstream analysis. There was high efficiency of targeted
323 integration, with only 13% of recombinants displaying ectopic integration of the gene knockout
324 constructs. Diagnostic PCR indicated that there were some transformants with integration of
325 a single flank at the homologous locus. Both these and any ectopic transformants were
326 removed from the downstream analyses. However, all transformants with homologous
327 integration of the knockout construct at both flanks at the desired locus were heterokaryotic,
328 with diagnostic PCR indicating retention of the wild-type allele for the targeted gene (S3 Fig.).
329 In the generation of control strains, the transformation efficiency of the non-targeted
330 hygromycin resistance ectopic expression construct was markedly low in contrast to the
331 targeted gene knockout constructs. Nevertheless, three independent mitotically stable
332 hygromycin-resistant 839-5 and 839-1 nit tester isolates were selected for downstream
333 analyses (S1 Table).

334 To generate homokaryon knockout lines, the heterokaryotic knockout mutants were
335 purified by single-spore isolation. Conidia that germinated and grew robustly on MEA+Hyg100
336 were typically favoured to select against heterokaryotic conidia containing a large proportion
337 of hygromycin-sensitive wild-type nuclei.

338 One round of single-spore isolation was sufficient to purify homokaryotic $\Delta Bcvic1$
339 mutants. The majority of the single-spore isolates were homokaryotic: only 11 out of 75 tested
340 positive for the presence of *Bcvic1*, as indicated by a faint PCR amplification product on an
341 agarose gel. To ensure homokaryosis, a subsequent round of single spore isolations ($n=15$)
342 was conducted and PCR analysis indicated absence of the *Bcvic1* wild-type allele in all the
343 second round single-spore isolates.

344 In contrast to the ease with which homokaryotic $\Delta Bcvic1$ mutants were obtained, the
345 isolation of homokaryotic $\Delta Bcvic2$ and $\Delta\Delta Bcvic1/2$ mutants proved much more elusive. Many
346 of the germinating $\Delta Bcvic2$ and $\Delta\Delta Bcvic1/2$ mutants were slower-growing germlings than the
347 $\Delta Bcvic1$ mutants. Nevertheless, 25–50 of the relatively faster-growing germlings were isolated
348 and molecularly analysed based on the success of this strategy for the isolation of $\Delta Bcvic1$
349 homokaryotic transformants. However, diagnostic PCR analysis of the viable isolates showed

350 that all the $\Delta Bcvic2$ and $\Delta\Delta Bcvic1/2$ single-spore transformants were heterokaryotic since they
351 were positive for the presence of the native gene (data not shown).

352 Despite four rounds of sequential single-spore isolations, no $\Delta Bcvic2$ and $\Delta\Delta Bcvic1/2$
353 homokaryotic transformants were isolated, suggesting that the *Bcvic2* gene might be essential
354 or required for normal growth. If the *Bcvic2* gene was indeed essential or required for normal
355 growth, it was assumed that the homokaryotic hygromycin-resistant mutants would either be
356 nonviable (lethal phenotype) or grow abnormally slower than the heterokaryotic germlings.
357 Based on this assumption, single-spore isolations were made from the heterokaryotic $\Delta Bcvic2$
358 and heterokaryotic $\Delta\Delta Bcvic1/2$ cultures, favouring slow-growing germlings with abnormal
359 morphologies. One round of single sporing resulted in the isolation of homokaryotic $\Delta Bcvic2$
360 or $\Delta\Delta Bcvic1/2$ (confirmed by diagnostic PCR; S4 Fig.).

361

362 **Deletion of *Bcvic1* alone does not affect vegetative compatibility**

363 Vegetative incompatibility tests were performed on three independent homokaryotic
364 $\Delta Bcvic1$ mutants (Fig. 4; S1 Table). $\Delta Bcvic1-i$ and $\Delta Bcvic1-ii$ were knockout mutants in the
365 839-5 *nit1* background, whereas $\Delta Bcvic1-iii$ was created in the 839-5 NitM background. The
366 *nit* mutant complementation tests showed that none of the $\Delta Bcvic1$ mutants displayed any
367 change in VI phenotype compared with the background 839-5 strain. All the mutants displayed
368 vegetative compatibility with 839-5 and incompatibility when paired with 839-1. Three
369 replications of the complementation experiments confirmed that the heterokaryon formation
370 ability of the $\Delta Bcvic1$ mutants was identical to that of the background 839-5 strain, indicating
371 that the deletion of $\Delta Bcvic1$ alone had no effect on vegetative incompatibility.

372

373 ***Bcvic2* is required for normal growth rate and habit**

374 Deletion of the *Bcvic2* gene had a major morphological effect on fungal colony
375 formation. At 30 h post-inoculation, transformants with an intact *Bcvic2* gene had elongated
376 and branching hyphae that had grown ten times the length of hyphae in the $\Delta Bcvic2$ or
377 $\Delta\Delta Bcvic1/2$ transformants, which had an atypical dwarf-like appearance, with engorged,

378 shorter intertwined branches (Fig. 5). At 3 days post-inoculation, severe dysfunction in apical
379 extension of the hyphae was evident, with an increase in apical and lateral branching that
380 gave the colony a shortened fan-like shape of only approximately 1 mm diameter. This was in
381 stark contrast to the typically fine, white mycelium of the heterokaryotic mutant or wild-type,
382 which spread over a third of a 9-cm Petri dish. At 5 days post-inoculation, homokaryotic
383 colonies appeared dark, with the formation of bulging conidiophore-like structures. At 14 days
384 post-inoculation, the heterokaryotic mutant or wild-type isolates had colonised the entire plate
385 with profuse sporulating hyphae, in contrast to the constricted homokaryotic colonies which
386 were restricted to approximately 4 mm diameter, which by 60 d post-inoculation had only
387 extended to a diameter of 35 mm with sclerotial bodies (Fig. 5). There were also long, hairy
388 conidiophore-like structures protruding apically that were fragile and easily dislodged with light
389 manipulation. These abnormal morphological characteristics were conserved in both $\Delta Bcovic2$
390 and $\Delta\Delta Bcovic1/2$ mutants (Fig. 5).

391 Initial problems were encountered during attempts to complement $\Delta Bcovic2$ and
392 $\Delta\Delta Bcovic1/2$ mutants with wild-type alleles of the corresponding genes: the transformants were
393 recalcitrant to protoplast isolation. To circumvent this problem, a secondary incubation step
394 was introduced to generate young mycelial material following maceration of mature melanised
395 hyphae (S5 Fig.). Transformation efficiencies equivalent to wild-type levels were achieved only
396 by extending the incubation period for protoplast regeneration from 16 hours to 30 hours.

397 When the $\Delta Bcovic2$ mutant was transformed with the *Bcovic2-1* ectopic expression
398 construct, the growth phenotype of the $\Delta Bcovic2 + Bcovic2-1$ complementation mutant was
399 similar to that of wild-type 839-5. These complementation results confirm that deletion of
400 *Bcovic2* is indeed the cause of the abnormal growth phenotype in the $\Delta Bcovic2$ mutant. The
401 $\Delta\Delta Bcovic1/2$ mutant was transformed with the *Bcovic1-1*, *Bcovic1-2*, *Bcovic2-1*, *Bcovic1-1/Bcovic2-1*
402 and *Bcovic1-2/Bcovic2-2* complementation constructs (S1 Table). Complementation with
403 *Bcovic1-1* and *Bcovic1-2* did not restore the colony morphology to wild type, whereas
404 transformation with *Bcovic2-1*, *Bcovic1-1/Bcovic2-1* and *Bcovic1-2/Bcovic2-2* resulted in fast-
405 growing colonies similar to the wild type (S6 Fig.). These results further confirm that deletion

406 of *Bcvic2* and not *Bcvic1* results in the abnormal growth phenotype, as complementation with
407 either *Bcvic1-1* or *Bcvic1-2* alone did not restore the colony morphology to the wild type.

408

409 **Deletion of both *Bcvic1* and *Bcvic2* is required to abolish vegetative**
410 **incompatibility**

411 $\Delta Bcvic2$ mutants displayed vegetative compatibility phenotypes identical to that of the
412 wild type; and compatibility with 839-5 and incompatibility when paired with 839-1,
413 demonstrating that the deletion of *Bcvic2* alone does not affect vegetative incompatibility. In
414 contrast, the deletion of both *Bcvic1* and *Bcvic2* resulted in the abolition of vegetative
415 incompatibility, with mutants compatible with both 839-5 and 839-1 (Fig. 4).

416 Complementation of $\Delta\Delta Bcvic1/2$ with *Bcvic1-1/Bcvic2-1* alleles restored vegetative
417 incompatibility with 839-1 (Fig. 6). This result confirms that deletion of both *Bcvic1-1* and
418 *Bcvic2-1* is required for the loss of the incompatibility phenotype. Interestingly,
419 complementation of the $\Delta\Delta Bcvic1/2$ mutant with *Bcvic1-2/Bcvic2-2* alleles from the previously
420 incompatible tester 839-1 resulted in vegetative compatibility with 839-1 and incompatibility
421 with the previously compatible 839-5. This reversal of vegetative compatibility phenotype
422 indicates that interaction with 839-1 and 839-5 is allele-specific and further confirms that
423 deletion of both *Bcvic1* and *Bcvic2* is required for the loss of the incompatibility phenotype in
424 the $\Delta\Delta Bcvic1/2$ mutant.

425

426 **Discussion**

427 The molecular characterisation of allorecognition in filamentous fungi has relied on
428 the dissection of the phenomenon in a limited number of species: *N. crassa*, *P. anserina* and
429 *C. parasitica* [16]. With the characterisation of the first *vic* genes in *B. cinerea*, this report has
430 expanded the number of fungi investigated. The research strategy chosen greatly facilitated
431 the identification of these genes. Genome-wide association studies (GWAS), including bulked
432 segregant analysis (BSA) combined with whole genome/transcriptome sequencing, where

433 the bulks are derived from progeny from a cross, have not been widely utilised in identifying
434 genes of interest in fungi. However, these strategies have proved successful in identifying
435 genes encoding virulence factors and candidate effectors from a number of species (e.g. [55-
436 57], including genes involved in allorecognition in *N. crassa* [13]. In *B. cinerea* NGS-BSA has
437 been used recently to identify a major-effect gene controlling pathogenicity and development
438 [58]. The use of a backcrossed population for BSA significantly strengthens the strategy. The
439 length of time taken to produce near-isogenic lines of *B. cinerea* may be viewed as a limiting
440 factor, as each sexual cycle can take four to six months. However, for the purpose of
441 identifying and testing *vic* genes, the backcrossing procedure was invaluable, since a smaller
442 population sample size could be used for the mapping studies. In addition, the generation of
443 nit mutants as a tool for determining the VI phenotype proved to be beneficial, as barrage
444 tests, reliant on a morphological change (often characterised by pigmented, aerial mycelial
445 growth) where incompatible hyphae meet can give somewhat ambiguous results [59].
446 Furthermore, the use of the nit mutant complementation assay provided a rapid VI phenotype
447 result compared with the barrage test. However, an important consideration when choosing
448 a VI assay is that nit mutant complementation assesses for the ability of two strains to form a
449 heterokaryon, whereas the barrage test is a good measure of cell death after an incompatible
450 reaction.

451 Identification of the two VI genes in *B. cinerea* has revealed both commonalities with,
452 and differences from, genes involved in allorecognition in the other previously well-studied
453 species. The two *B. cinerea* *vic* genes, *Bcvic1* and *Bcvic2*, have alleles which are highly
454 polymorphic. This is a common characteristic of previously identified *vic* genes in other fungi,
455 such as *het-c* in *N. crassa* and *het-D* in *P. anserina* [20, 34]. Furthermore, both the *Bcvic*
456 genes share similarity to allorecognition genes in other fungi.

457 The *Bcvic1* gene encodes an NLR protein with a tri-partite domain structure. NLRs
458 have been identified in numerous allorecognition systems in fungi [13, 30, 34, 60, 61], but
459 whilst the overall NLR architecture of BCVIC1 is typical of members of the receptor family,
460 both common and novel domains are present. The central NACHT domain, which has a

461 nucleotide-binding site, is shared by a number of VI proteins in the three well-studied species
462 [16]. In contrast, C-terminal ankyrin repeat domains have not been previously attributed to VI
463 proteins, but alternatives which putatively share similar functionality (probably driving protein-
464 protein interactions), most notably WD40 repeat (WDR) or tetratricopeptide (TPR) repeat
465 domains, predominate [13, 30, 34, 60, 61]. The N-terminal putative lipase domain is common
466 to a number of genes involved in allorecognition [13, 60]. *Bcvic2* encodes a putative syntaxin
467 protein with a SNARE domain which has a predicted function in vesicular transport; similar
468 proteins are found as components of the VI systems of *N. crassa* and *P. anserina* (sec-9; [13]),
469 as well as *C. parasitica* (*vic2a*; [60]). Thus, the first VI system characterised in *B. cinerea*
470 appears to be analogous to the systems in other fungi that rely on NLR/SNARE proteins.

471 Of these systems that rely on NLR/SNARE proteins, the *Plp-1/sec-9* system of
472 germling-related death (GRD) in *N. crassa* is probably the best characterised [13]. PLP-1 is a
473 typical tri-partite NLR, which physically interacts with SEC-9, a SNARE-domain protein, of
474 differing GRD specificity, to initiate the VI response. The specific recognition interaction is
475 thought to involve the C-terminal TPR domain of PLP-1, with a functional Nucleotide-Binding
476 Domain (NBD), the central NB-ARC domain, required for oligomerisation of PLP-1 following
477 activation. A functional N-terminal patatin-like phospholipase domain is required for translation
478 of recognition into the cell death response, with NB-ARC domain-mediated self-association
479 being insufficient to result in GRD. Owing to the similarity of domain architecture, it is highly
480 likely that the *Bcvic1/2* system in *B. cinerea* operates in a similar manner. In BCVIC1, the
481 ankyrin repeats probably mimic the TPR domain of PLP-1 in their functionality, as both can
482 act as scaffolds to mediate protein–protein interactions [62, 63], with BCVIC1 perhaps
483 physically interacting with BCVIC2, of differing specificity, leading to PCD. The NACHT
484 domain, predicted to have nucleoside-triphosphatase (NTPase) activity, is functionally
485 equivalent to the NB-ARC domain of PLP-1, and potentially required for oligomerisation. The
486 N-terminal putative lipase domain of BCVIC1 is probably required for the cell death response;
487 however, despite advances in identifying the genes and encoded proteins involved in fungal
488 VI, how the PCD response is effected is poorly understood.

489 Deleterious alteration of membranes is a common early event in the initiation of many
490 VI-associated cell death responses [16]. Uncovering the functionality of proteins involved in
491 orchestrating VI has revealed how membrane perturbation is effected during PCD initiation.
492 For example, the *regulator of cell death* (*rcd-1*) gene involved in VI in *N. crassa* resembles the
493 N-terminal domain of gasdermin, which forms pores in mammalian cell membranes that
494 disrupt trans-membrane ion gradients leading to pyroptotic cell death, a key component of
495 mammalian innate immunity. Coexpression of incompatible *rcd-1* and *rcd-2* alleles triggers
496 pyroptotic-like cell death in human 293T cells [14, 64]. The postulated functionality of a number
497 of VI-associated NLR N-terminal domains also suggests how membranes may be
498 compromised to initiate PCD. The enzymatic activity of the patatin-like phospholipase domain
499 of PLP-1 is essential for PCD, with this activity potentially able to compromise membrane
500 phospholipids directly, leading to cell death. This activity could be shared by both the putative
501 lipase domain in BCVIC1 and the patatin domain of VIC2 from *C. parasitica* [60]. In contrast
502 to PLP-1, the predicted PCD-initiating function of the N-terminal domain of BCVIC1 may not
503 rely on enzymatic activity. Fungal NLRs share architecture with NLRs involved in animal and
504 plant immunity [65-67]. Solving the structure of animal and plant NLRs has enabled
505 functionality to be analysed, as exemplified by ZAR1, the first plant NLR to have its structure
506 solved [68, 69]. When ZAR1 recognises its cognate bacterial virulence protein, it forms a
507 pentameric structure on activation, termed a resistosome [68, 69]. The activated ZAR1
508 resistosome acts as a calcium-permeable cation channel, with the influx of Ca^{2+} leading to
509 immunity and cell death, resulting from perturbation of subcellular structures and the
510 generation of ROS [70]. The initiation of PCD by BCVIC-1 following recognition of BCVIC-2
511 may also rely on the formation of a cation channel. Solving the structure of BCVIC1 and
512 BCVIC2 may shed light on this possibility.

513 BCVIC2, because of its conserved syntaxin and SNARE domains, and its putative
514 classification as a Qa.IV SNARE protein, is probably involved in exocytosis at the plasma
515 membrane [71-73], and was shown to be essential for normal vegetative growth. Indeed, in
516 other pathogenic filamentous fungi, SNARE proteins are involved in asexual development,

517 stress tolerance and pathogenicity [74-76]. Heller and colleagues [13] postulated that the SEC-
518 9 SNARE-domain proteins in *N. crassa*, *P. anserina* and *C. parasitica* are targeted by effectors
519 from other microbes that aim to inactivate exocytosis/autophagy, thereby driving intraspecific
520 polymorphism. This has led to their recruitment in innate immunity as the guardees in an NLR-
521 guarded system, with exaptation resulting in this system then being exploited in allorecognition
522 with the repeated recruitment of the PLP-1/SEC-9 pair. Indeed, BCVI2 is predicted to belong
523 to the Qa.IV subset of SNARE proteins involved in secretion, and these proteins are putatively
524 more highly variable than the conserved proteins involved in membrane fusion events at the
525 endoplasmic reticulum and Golgi apparatus [77]. Although BCVIC-1 and 2 only share domains
526 and overall predicted structure/function with PLP-1/SEC-9 of *N. crassa*, *B. cinerea* is the fourth
527 fungus in which an NLR-SNARE domain protein pair has been demonstrated to function in
528 allorecognition. Furthermore, *Botrytis* is the first example from a fungal species that is not a
529 Sordariomycete, lending further support to the generality of these hypotheses. Specific
530 modifications of a guarded SNARE protein that leads to the NLR initiating a cell death
531 response have not been investigated in any of the fungal VI systems characterised to date.
532 However, since BCVIC2 is putatively designated to act at the plasma membrane, its activation,
533 promoted by Sec1/Munc18 (SM) regulatory proteins or posttranslational modifications, to
534 enable it to participate in forming a SNARE complex [78], or its interaction with tethering
535 factors involved in targeting of membrane fusion events [79], may be sufficient to trigger the
536 guarding NLR.

537 In previous VI studies in other fungal systems, rescue of homokaryotic knock-out
538 mutation lines of the gene encoding the SNARE-domain protein proved impossible [13, 52].
539 Similarly, isolating homokaryotic lines of $\Delta Bcvic2$ and $\Delta\Delta Bcvic1/2$ mutants from heterokaryotic
540 cultures initially proved difficult. This suggested that *Bcvic2* may be essential, paralleling the
541 previous results from *C. parasitica*, *P. anserina* and *N. crassa* [13, 52]. However, the $\Delta Bcvic2$
542 and $\Delta\Delta Bcvic1/2$ homokaryon deletion lines were finally obtained after the single-spore
543 isolation strategy was altered to select for abnormal phenotypes, with slow growth. This finding
544 highlights the importance of removing bias when selecting single-spore isolates. Furthermore,

545 it also highlights the importance of retaining isolates that appear non-viable, and using
546 microscope analysis to confirm viability versus non-viability, when phenotype may be
547 equivocal. These considerations are made apparent by Ko and colleagues [80], in which the
548 authors were able to demonstrate the function of a gene essential for cell division and
549 polarised growth, cell division cycle 48 (CDC48), in *C. parasitica*. On initial inspection, no
550 growth of spores from a heterokaryotic transformant on selective media was observable,
551 suggesting that *Cpcdc48* was essential. However, extended incubation combined with
552 microscopic analysis revealed transient, aberrant germination of some conidia prior to
553 autolysis, indicating compromised cell division and polarised growth [80].

554 Identification of the first genes involved in allorecognition in *B. cinerea* will enable
555 further studies on the mechanisms governing PCD in this fungus. An understanding of these
556 intrinsic cell death pathways, the components and the signalling cascades involved will provide
557 targets for manipulation, for example, using spray-induced gene silencing to alter expression
558 of genes encoding key elements [81, 82], so that PCD can be prematurely initiated to prevent
559 disease. Uncovering further genes involved in allorecognition in *B. cinerea* may also pave the
560 way for the development of a super donor strain capable of transmitting hypovirulent
561 mycoviruses that lack a mechanical transmission route [49-51] like that developed for *C.*
562 *parasitica* [52, 53]. Whilst a mechanically transmissible hypovirulent virus has been discovered
563 in *B. cinerea* [83], the necessity of multiple applications for disease control may reduce the
564 practicalities of its use, thus, development of such a donor would enable exploitation of
565 hypovirulent mycoviruses as potent BCAs against *B. cinerea*.

566

567 **Methods**

568 **Fungal strains**

569 *Culturing*

570 *B. cinerea* wild-type strains were routinely cultured on malt extract agar (MEA, Oxoid,
571 Basingstoke, UK) or potato dextrose agar (PDA, Difco™, BD Biosciences, Franklin Lakes, NJ,

572 USA) in darkness. To induce sporulation, 3- to 4-day-old cultures were exposed to near-UV
573 light (350–400 nm) for 16 hours, and were subsequently returned to darkness. Conidia were
574 harvested 4–7 days later. Sporulating cultures were flooded with sterile reverse osmosis water
575 (SW) and spores dislodged to prepare spore suspensions. Following centrifugation at 11,000
576 *g* for 5 minutes spore suspensions were adjusted, if required, to the desired concentration in
577 SW. Isolates and strains used in this study are listed in S1 Table.

578

579 *Mating type*

580 Mating type was established by diagnostic routine PCR (see section below) to enable
581 selection of isolates for subsequent backcrossing. Mating type-specific primers were designed
582 to differentiate between the *MAT1* and *MAT2* loci (S3 Table). *MAT1*-specific primers
583 (*MAT1F/R*) were designed against the 5' portion of the *MAT1-1-1* coding sequence (CDS)
584 retrieved from the B05.10 v1 genome sequence (downloaded from the Broad institute
585 www.broadinstitute.org/annotation/genome/botrytis_cinerea [47], now located on the Joint
586 Genome Institute MycoCosm site (<https://mycocosm.jgi.doe.gov/Botci1/Botci1.home.html>;
587 GenelID: BC1G_15148). *MAT2* specific primers (*MAT2F/R*) were designed against the *MAT1-*
588 2-1 CDS retrieved from the T4 genome sequence
589 ((<https://urgi.versailles.inra.fr/Species/Botrytis>) ([84]; GenelID: BofuT4_P160320.1)).

590

591 *Antibiotic resistance*

592 Strains were tested for benzimidazole fungicide resistance by plating 10 μ L of a dense
593 spore suspension on to MEA + vinclozolin (100 mg/L) and assessing growth at 3 days, with
594 resistant strains producing a compact mycelial mat. For dicarboximide resistance, the spore
595 suspension was plated onto MEA + carbendazim (100 mg/L) and assessed at 2 days, with
596 resistant strains producing spreading colonies.

597

598 *Mycelial compatibility*

599 Generation of nitrate non-utilising mutants to demonstrate mycelial compatibility
600 resulting in heterokaryon formation followed the method of Beever and Parkes [59]. For each
601 strain, 3-mm mycelial plugs from 3-day-old MEA cultures were transferred mycelial side down
602 on Vogel's N- minimal medium [85] amended with potassium chlorate (30 g/L; MM+ ClO₃) and
603 incubated at 20°C in the dark for up to four weeks. Sectors arising at colony margins were
604 purified by transferring mycelial plugs to fresh MM+ ClO₃. Mycelial plugs from the colony
605 margin of the sub-culture were then transferred onto MEA plates for growth and induced to
606 sporulate. Conidia were harvested after 7 days and stored as water cultures for further
607 phenotype testing.

608 Putative *nit1* (able to utilise nitrite, ammonium, hypoxanthine and uric acid) and NitM
609 (able to utilise nitrite, ammonium and uric acid, but not hypoxanthine) mutants were classified
610 by plating mycelial plugs onto MEA amended with four nitrogen sources and uric acid following
611 the procedure of Beever and Parkes (2003). Growth was scored after 6–7 days for either wild
612 type growth (+) or 'minus nitrogen' (-) sparse growth similar to growth on nitrogen-free medium.
613 Complementation assays to test for vegetative compatibility were performed by overlaying
614 spore suspensions of *nit1* and NitM mutants of the isolates being tested on Vogel's N- [85] +
615 NO₃ medium amended with triton X-100 (0.5 mL/L) followed by incubation for 8–14 days at
616 20°C. A dense mycelial pad indicated successful heterokaryon formation, whereas absence
617 of complementation was indicated by sparse growth.

618

619 **Fungal genomic DNA extraction**

620 For preparing genomic DNA for Illumina sequencing and as a template for confirmation
621 of mating type and candidate gene sequences, fungal material was generated by inoculating
622 100 mL of potato dextrose broth (PDB; Difco™, BD Biosciences) with spore suspensions
623 derived from sporulating cultures, which were then incubated statically for 30 hours to reduce
624 polysaccharide production. Germlings were harvested by centrifugation at 8,500 g for 15 min
625 at 4°C (Sorvall™ RC6 Plus, Thermo Fisher Scientific, Waltham, MA, USA), washed once with
626 SW and re-centrifuged prior to being used as the starting fungal material for genomic DNA

627 extractions. Fungal DNA extractions were performed according to the method of Möller et al.
628 [86]. DNA was extracted from 1.2 g of fresh fungal material and finally resuspended in 200 µL
629 of SW.

630 For rapid screening of transformants, genomic DNA was extracted from a small
631 amount of mycelia and conidia (30–60 mg) scraped from a plate of fungal culture. This material
632 was placed into a 1.5-mL safe-lock tube (Eppendorf, Hamburg, Germany) containing three
633 3.2-mm stainless steel beads (Next Advance, Troy, NY, USA) and 500 µL of TES (100 mM
634 Tris, pH 8.0, 10 mM EDTA, 2% SDS). The fungal material was then macerated using a Bullet
635 Blender tissue homogeniser (Next Advance) for three 1 min cycles at speed level 12. After
636 homogenisation, extractions were performed according to a scaled-down version of the
637 protocol of Möller et al. [86], with the purified DNA being finally resuspended in 50 µL of dH₂O.
638 DNA concentrations were quantified using the NanoDrop™ 2000 spectrophotometer (Thermo
639 Fisher Scientific, Waltham, MA USA) and integrity verified by gel electrophoresis.

640

641 **Polymerase chain reaction (PCR)**

642 All PCRs were carried out using a Mastercycler Gradient machine (Eppendorf) and
643 amplification products were visualised by gel electrophoresis. Routine PCR was used to
644 amplify target DNA using platinum *Taq* DNA polymerase (Invitrogen) according to the
645 manufacturer's instructions. PCR fragments that were destined to be cloned or sequenced
646 directly were amplified using the Q5 high-fidelity DNA polymerase (New England Biolabs,
647 Ipswich, MA, USA) according to the manufacturer's instructions.

648

649 **Bulked segregant analysis**

650 *Isolation of near-isogenic lines by backcrossing*

651 Near-isogenic strains of *B. cinerea* were generated by a backcrossing programme (S1
652 Fig.) with crosses performed as previously described [87, 88]. Initial parental strains, SAS405
653 (International Collection of Microorganisms from Plants (ICMP), Manaaki Whenua – Landcare
654 Research, Auckland, New Zealand, ICMP10935) and REB704-1, differing in benzimidazole

655 and dicarboximide sensitivity, were crossed to generate REB749-8 (ICMP15036). The SAS56
656 (ICMP10934) strain was then crossed with REB749-8 to generate the isolate REB800-4. This
657 isolate was then used in the first of three backcrosses against the recurrent parent REB749-
658 8. For the backcrosses, REB749-8 was used as the female sclerotial parent. At each
659 generation, progeny that were incompatible with both parents were selected to fertilise the
660 recurrent parent REB749-8. Five crosses were set up for each generation and only true
661 crosses that had a 1:1 segregation of the fungicide resistance markers were selected for
662 downstream experiments. The final F_1BC_3 population (n=32), was designated the REB839-
663 series. REB839- single ascospore strains were either classified as vegetative compatibility
664 group 1 (vcg1) or vcg2 by incompatibility testing against the recurrent parent (REB749-8) and
665 the non-recurrent parent from F_1BC_2 (REB811-28) using nitrate non-utilising mutants, and
666 bulked accordingly for the sequencing.

667

668 *Illumina sequencing and read mapping*

669 The DNA samples from each of the 32 REB839- series progeny were quantified using
670 a NanoDrop™ 2000 spectrophotometer (Thermo Scientific™, Thermo Fisher Scientific),
671 normalized to 100 ng/mL, and then pooled in equimolar amounts into a vcg1 bulk and a vcg2
672 bulk. Sequencing (100-bp paired end) of the two bulks was carried out in separate lanes on
673 the Illumina Genome Analyzer II by the Australian Genome Research Facility (AGRF)
674 following non-indexed library preparation.

675 The bulked vcg1 and vcg2 sequencing reads were trimmed to their longest contiguous
676 region using the DynamicTrim and LengthSort modules in the SolexaQA package. Reads with
677 Phred quality scores lower than an error probability of 0.05, and longer than 25 bp, but still
678 paired, were retained for downstream analysis [89]. The trimmed vcg1 and vcg2 reads were
679 then separately mapped to the unmasked reference genome of the *B. cinerea* T4 strain and
680 the B05.10 strain (B05.10 v1), consisting of 118 and 588 scaffolds respectively, using the
681 Burrows-Wheeler transform (BWT) algorithm implemented in the Burrows-Wheeler Aligner

682 (BWA) programme v0.5.8 [90]. The resulting vcg1 and vcg2 alignment files were input into the
683 Integrative Genomics Viewer (IGV) software for visualisation of the mapped reads [91].

684

685 *Identification and analysis of single nucleotide polymorphisms (SNPs)*

686 SNPs were identified relative to the T4 reference genome using a combination of tools
687 embedded within the SAMtools package [92, 93]. To increase the fidelity of SNP calling, the
688 polymorphism needed to i) be represented by at least eight reads; ii) occur at a position
689 covered by at least eight reads in the other sequenced bulk; iii) not correspond to missing data
690 in the reference strain; and iv) differ from the reference strain.

691 To identify outlier regions of the genome that contained an increased density of bulk-
692 specific SNPs, a 5000-bp sliding window with a 25-bp lag was applied to the entire T4 genome
693 sequence. The number of vcg1 and vcg2 bulk-specific SNPs was determined within each
694 5000-bp window. The 95th percentile of the distribution was one SNP for both bulks, and
695 therefore any region where both bulks showed more than one bulk-specific SNP within a 5000-
696 bp window was considered a statistical outlier and a candidate location for the *vic* locus.

697

698 *Identification of candidate vic genes*

699 The complete sequence of the candidate *vic* region was obtained from the T4
700 sequence database. The predicted genes (called using the EuGene gene finding software
701 [94]) within the candidate region in the T4 sequence were retrieved from the proprietary
702 GnpGenome database embedded within the INRA website.

703 The candidate region was further analysed using a second gene prediction software,
704 the FGENESH HMM-based gene structure prediction programme (www.softberry.com), using
705 *B. cinerea*-specific gene-finding parameters to add additional evidence for the position of
706 ORFs and intron/exon boundaries [95, 96]. Orthologous genes were identified in the candidate
707 region of the gapless B05.10 genome [97] using BLASTn. The nucleotide and predicted amino
708 acid sequences of the open reading frames shared between the two genomes, within the
709 candidate region, were compared for the vcg1 and vcg2 bulks. The gene predictions were

710 searched for the presence of domains or motifs using the Pfam software [98, 99], Interproscan
711 5 [100] and the SNARE database (<http://bioinformatics.mpibpc.mpg.de/snare/index.jsp> SNARE
712 database [73]).

713

714 **Confirmation of candidate *vic* gene and predicted protein sequences**

715 The sequences of the *Bcvic1* and *Bcvic2* candidate genes in the vcg1 and vcg2 tester
716 strains were confirmed by PCR amplification, cloning and re-sequencing. Primers that
717 spanned the *Bcvic1* and *Bcvic2* candidate genes, including the 5' and 3' UTR regions, were
718 designed by manual inspection (S3 Table). The gene fragments were designed to overlap by
719 4 bp. The *Bcvic1* and *Bcvic2* primers used in the vcg2 tester, 839-1, were designed using the
720 gapless B05.10 genome sequence, as they shared identical sequences. The vcg1 tester 839-
721 5 did not share sequence identity with B05.10 in the candidate region and therefore presented
722 as a gap in the sequence. This sequence gap was cloned and resolved by primer walking by
723 Macrogen Inc. (South Korea). Primers for the *Bcvic1* and *Bcvic2* genes in 839-5 were then
724 designed based on that completed sequence. The coding sequence and predicted amino acid
725 sequence of *Bcvic1* and *Bcvic2* in 839-5 (vcg1) and 839-1 (vcg2) were compared using a
726 pairwise MUSCLE alignment in Geneious 8.1.2 (<https://www.geneious.com>).

727

728 **Functional characterisation of candidate genes by transformation**

729 *Construction of transformation vectors*

730 For construction of fungal transformation vectors, required sequences were PCR-
731 amplified, cloned individually into pCR XL-TOPO according to the manufacturer's instructions,
732 and then combined as required in the pType IIs vector via a Golden Gate strategy [101, 102].

733 To generate final transformation vectors, individual sequences from the pCR-XL-
734 TOPO clones were assembled using the pType IIs vector (Invitrogen) as the backbone,
735 according to the manufacturer's instructions, using the *AarI* type II restriction enzyme for

736 creation of non-palindromic overhangs, with the *AarI* typeIIIS restriction site engineered into all
737 primers (S3 Table).

738 Plasmid DNA was extracted from 2 mL of *E. coli* bacterial overnight culture using the
739 Zippy plasmid miniprep kit (Zymo Research), or 200 mL of culture was processed with the
740 PureLink HiPure pasmid midiprep kit (Invitrogen) according to the manufacturers' instructions.
741 To ensure correct assembly of clones, plasmid DNA was extracted and sequenced
742 (Macrogen, South Korea) using either the M13F and M13R universal or gene-specific primers
743 for pCR-XL-TOPO vectors or primers GGF and GGR for the pType IIs vector (S3 Table).
744 Bioinformatic validation of sequences was conducted using Geneious
745 8.1.2 (<https://www.geneious.com>).

746

747 *Cloning strategy for knockout transformation vectors*

748 For knockout transformations, the hygromycin phosphotransferase resistance (*HPH*)
749 gene was used as selectable marker, utilising a replacement strategy. Knockout vectors were
750 constructed and split marker sequences engineered, composed of three separate fragments:
751 a left flank, the *HPH* cassette, and a right flank. Primer sequences for generating the fragments
752 for the knockout constructs are shown in S3 Table. The *HPH* cassette was PCR-amplified
753 using the pNDH-OGG vector as the template [103] and the gene flanking sequences used
754 839-5 genomic DNA as the template. Whole vectors were used in downstream fungal
755 transformations.

756 Pairs of split marker sequences were engineered with either 5' or 3' gene flank
757 sequence and overlapping truncated fragments of the *HPH* cassette. Primer sequences are
758 presented in S3 Table. The DNA templates for these reactions were the specific classical gene
759 knockout vectors in the pType IIs backbone. The split marker fragments were used in
760 downstream fungal transformations as purified PCR products.

761

762 *Cloning strategy for complementation transformation vectors*

763 Coding sequences of candidate *vic* genes and between 700 and 1000 bp of upstream
764 and downstream sequences were PCR-amplified using genomic DNA from 839-5 and 839-1.
765 The nourseothricin (*NAT*) selectable marker under the control of the *Aspergillus nidulans trpC*
766 promoter was amplified from the pNAN-OCT vector [103]. The *A. nidulans trpC* (T:trpC)
767 terminator was amplified from the pAN7-1 vector [104] and was used as the terminator for the
768 *NAT* selectable marker. Whole vectors or linear PCR fragments encompassing the selectable
769 marker and gene of interest, including the *A. nidulans* promoter and terminator, were used in
770 downstream fungal transformations.

771

772 ***B. cinerea* PEG-mediated protoplast transformation**

773 *Knockout transformations*

774 The *B. cinerea* near isogenic *vcg1* tester isolates, 839-5 *nit1* and 839-5 NitM, were used for
775 PEG-mediated protoplast knockout transformation according to the procedure described by
776 ten Have *et al.* (1998). Spore suspensions were used to inoculate 100 mL of PDB and allowed
777 to germinate for 20 h in static liquid culture at 20°C. After incubation, the fungal material was
778 harvested by centrifugation at 2500 g for 15 min and washed twice with KC buffer (0.6 M KCl
779 and 50 mM CaCl₂). The fungal material was then treated with either 10 mg/mL Glucanex
780 (Sigma-Aldrich, St. Louis, MO, USA, discontinued) or 25 mg/mL lysing enzymes from
781 *Trichoderma* (Sigma-Aldrich) to generate protoplasts which were then transformed with a
782 combination of either 30 µg of circular plasmid DNA or 2.5 µg of split-marker PCR products.
783 Transformed protoplasts were plated onto SH medium (0.6 M sucrose and 5 mM HEPES pH
784 6.5, 0.8% (w/v) agar) and allowed to regenerate for 24 hours. Transformation plates were then
785 overlaid with 0.6% (w/v) water agar amended with 70 µg/mL hygromycin B (Invitrogen).
786 Hygromycin-resistant colonies emerging on the surface of the overlay after 3–5 days were
787 excised and transferred to MEA amended with 100 µg/mL of hygromycin B (Invitrogen)
788 (MEA+Hyg100). To select for transformants that were mitotically stable, hyphal tips were
789 excised and transferred to plates without selection and then subcultured back on to antibiotic
790 selection plates.

791 The *B. cinerea* transformants were screened by PCR analysis. To confirm targeted left
792 flank and right flank integration of the knockout constructs, primers were chosen outside the
793 5' and 3' flanks and within the HPH cassette. To confirm the presence or absence of the wild-
794 type gene, primer pairs SA17/SA18 (384 bp) and SA19/SA20 (830 bp) were used and were
795 specific to *Bcvic1* and *Bcvic2*, respectively. Specific primer sequences are listed in S3 Table.

796

797 *Complementation transformations*

798 The PEG-mediated transformation protocol [105] was amended for complementation
799 transformations because of the slow growth rate and melanised nature of the knockout
800 mutants. To maximize the fungal mass available for generating protoplasts, a loopful of
801 crushed mycelia was spread over 90-mm Petri plates containing MEA+Hyg100 and incubated
802 for 30 days after which melanised aerial structures were removed and crushed using a
803 micropesle. The resulting slurry was used to inoculate 50 mL of PDB+Hyg100 and incubated
804 statically for 5 days at room temperature and monitored daily for new hyphal growth. This
805 fungal material was harvested and used as the starting material for the transformation.

806 Protoplasts were transformed with the complementation constructs, either 30–50 µg of
807 the circular plasmid or 2.5 µg of the purified linear PCR product, and allowed to regenerate on
808 SH media. To account for the slow-growing nature of the $\Delta Bcvic2$ and $\Delta\Delta Bcvic1/2$ mutants,
809 the regeneration period was extended to 30 hours before overlaying with MEA amended with
810 100 µg/mL nourseothricin (MEA+NAT100). Nourseothricin-resistant transformants were
811 excised and subcultured onto MEA+NAT100.

812

813 **Generation of homokaryon transformant lines**

814 To obtain homokaryon lines from the heterokaryotic transformants, single-conidium isolations
815 were performed. Conidia were serially diluted in SW and plated onto 0.6% (w/v) water agar
816 supplemented with 100 µg/mL hygromycin B and incubated overnight at 20°C. Dilution plates
817 that contained a sufficiently low density of conidia, as assessed under the light microscope,
818 were used for isolations. Approximately 25 to 50 antibiotic-resistant germlings were excised

819 and transferred onto MEA plates containing 100 µg/mL hygromycin B and allowed to grow at
820 20°C for 1 week and induced to sporulate. Mature conidia and mycelial fragments were
821 harvested, DNA extracted and PCR used to confirm presence/absence of wild-type alleles
822 (primers in S3 Table). If homokaryons were not purified after a single round of single-spore
823 isolations, further rounds were completed until homogeneity was observed by PCR.

824

825 **Acknowledgments**

826

827 We would like to thank Kim Snowden, Erik Rikkerink (both of The New Zealand Institute for
828 Plant and Food Research Ltd) and Carl Mesarich (Massey University) for critically reviewing
829 this manuscript.

830

831 **Author contributions**

832

833 REB, MDT, MNP, SA and JKB conceived the experiments; SA, SLP and MPC performed the
834 experiments; SA, MDT and JKB analysed the data; JKB, SA and MDT wrote the paper.

835

836 **References**

- 837 1. Boswell GP, Hopkins S. Linking hyphal growth to colony dynamics: spatially explicit models of
838 mycelia. *Fungal Ecology*. 2008;1:143-54.
- 839 2. Richard F, Glass NL, Pringle A. Cooperation among germinating spores facilitates the growth
840 of the fungus, *Neurospora crassa*. *Biology Letters*. 2012;8:419-22.
- 841 3. Bastiaans E, Debets AJM, Aanen DK. Experimental demonstration of the benefits of somatic
842 fusion and the consequences for allorecognition. *Evolution*. 2015;69:1091-9.
- 843 4. Fischer MS, Glass NL. Communicate and fuse: how filamentous fungi establish and maintain
844 an interconnected mycelial network. *Frontiers in Microbiology*. 2019;10:619.
- 845 5. Bastiaans E, Aanen DK, Debets AJ, Hoekstra RF, Lestrade B, Maas MF. Regular bottlenecks and
846 restrictions to somatic fusion prevent the accumulation of mitochondrial defects in
847 *Neurospora*. *Philosophical Transactions of the Royal Society B*. 2014;369:20130448.

848 6. Debets F, Yang X, Griffiths AJ. Vegetative incompatibility in *Neurospora*: its effect on horizontal
849 transfer of mitochondrial plasmids and senescence in natural populations. *Current Genetics*.
850 1994;26:113-9.

851 7. Nuss DL. Hypovirulence: mycoviruses at the fungal-plant interface. *Nature Reviews
852 Microbiology*. 2005;3:632-42.

853 8. Son M, Yu J, Kim K-H. Five questions about mycoviruses. *PLoS Pathogens*. 2015;11:e1005172.

854 9. Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. *Virology*.
855 2015;479-480:356-68.

856 10. Gonçalves AP, Glass NL. Fungal social barriers: to fuse, or not to fuse, that is the question.
857 *Communicative & Integrative Biology*. 2020;13:39-42.

858 11. Heller J, Zhao J, Rosenfield G, Kowbel DJ, Gladieux P, Glass NL. Characterization of greenbeard
859 genes involved in long-distance kind discrimination in a microbial eukaryote. *PLoS Biology*.
860 2016;14:e1002431.

861 12. Gonçalves AP, Heller J, Span EA, Rosenfield G, Do HP, Palma-Guerrero J, et al. Allore cognition
862 upon fungal cell-cell contact determines social cooperation and impacts the acquisition of
863 multicellularity. *Current Biology*. 2019;29:3006-17.e3.

864 13. Heller J, Clavé C, Gladieux P, Saupe SJ, Glass NL. NLR surveillance of essential SEC-9 SNARE
865 proteins induces programmed cell death upon allore cognition in filamentous fungi.
866 *Proceedings of the National Academy of Sciences U S A*. 2018;115:E2292-E301.

867 14. Daskalov A, Gladieux P, Heller J, Glass NL. Programmed cell death in *Neurospora crassa* is
868 controlled by the allore cognition determinant *rcd-1*. *Genetics*. 2019;213:1387-400.

869 15. Dyer PS. Self/non-self recognition: microbes playing hard to get. *Current Biology*.
870 2019;29:R866-R8.

871 16. Paoletti M. Vegetative incompatibility in fungi: From recognition to cell death, whatever does
872 the trick. *Fungal Biology Reviews*. 2016;30:152-62.

873 17. Glass NL, Dementhon K. Non-self recognition and programmed cell death in filamentous fungi.
874 *Current Opinion in Microbiology*. 2006;9:553-8.

875 18. Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated forms of cell death in fungi.
876 *Frontiers in Microbiology*. 2017;8:1837.

877 19. Garnjobst L, Wilson JF. Heterokaryosis and protoplasmic incompatibility in *Neurospora crassa*.
878 *Proceedings of the National Academy of Sciences U S A*. 1956;42:613-8.

879 20. Saupe SJ. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes.
880 *Microbiology and Molecular Biology Reviews*. 2000;64:489-502.

881 21. Leslie JF. Fungal vegetative compatibility. *Annual Review of Phytopathology*. 1993;31:127-50.

882 22. Muirhead CA, Glass NL, Slatkin M. Multilocus self-recognition systems in fungi as a cause of
883 trans-species polymorphism. *Genetics*. 2002;161:633-41.

884 23. Glass NL, Kaneko I. Fatal attraction: nonself recognition and heterokaryon incompatibility in
885 filamentous fungi. *Eukaryotic Cell*. 2003;2:1-8.

886 24. Pál K, van Diepeningen AD, Varga J, Hoekstra RF, Dyer PS, Debets AJM. Sexual and vegetative
887 compatibility genes in the aspergilli. *Studies in Mycology*. 2007;59:19-30.

888 25. Zhao J, Gladieux P, Hutchison E, Bueche J, Hall C, Perraudeau F, et al. Identification of
889 allore cognition loci in *Neurospora crassa* by genomics and evolutionary approaches.
890 *Molecular Biology and Evolution*. 2015;32:2417-32.

891 26. Worrall JJ. Somatic incompatibility in Basidiomycetes. *Mycologia*. 1997;89:24-36.

892 27. Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L. Genetic diversity of isolates
893 of *Glomus mosseae* from different geographic areas detected by vegetative compatibility
894 testing and biochemical and molecular analysis. *Applied and Environmental Microbiology*.
895 2003;69:616-24.

896 28. Daskalov A, Heller J, Herzog S, Fleißner A, Glass NL. Molecular mechanisms regulating cell
897 fusion and heterokaryon formation in filamentous fungi. *Microbiology Spectrum*.
898 2017;5:10.1128/microbiolspec.FUNK-0015-2016

899 29. Kaneko I, Dementhon K, Xiang Q, Glass NL. Nonallelic interactions between *het-c* and a
900 polymorphic locus, *pin-c*, are essential for nonself recognition and programmed cell death in
901 *Neurospora crassa*. *Genetics*. 2006;172:1545-55.

902 30. Espagne E, Balhadère P, Penin ML, Barreau C, Turcq B. HET-E and HET-D belong to a new
903 subfamily of WD40 proteins involved in vegetative incompatibility specificity in the fungus
904 *Podospora anserina*. *Genetics*. 2002;161:71-81.

905 31. Saupe S, Descamps C, Turcq B, Begueret J. Inactivation of the *Podospora anserina* vegetative
906 incompatibility locus *het-c*, whose product resembles a glycolipid transfer protein, drastically
907 impairs ascospore production. *Proceedings of the National Academy of Sciences U S A*.
908 1994;91:5927-31.

909 32. Saupe S, Turcq B, Bégueret J. A gene responsible for vegetative incompatibility in the fungus
910 *Podospora anserina* encodes a protein with a GTP-binding motif and G β homologous domain.
911 *Gene*. 1995;162:135-9.

912 33. Paoletti M, Clavé C. The fungus-specific HET domain mediates programmed cell death in
913 *Podospora anserina*. *Eukaryotic Cell*. 2007;6:2001-8.

914 34. Daskalov A, Habenstein B, Martinez D, Debets AJM, Sabaté R, Loquet A, et al. Signal
915 transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold. *PLoS
916 Biology*. 2015;13:e1002059.

917 35. Turcq B, Deleu C, Denayrolles N, Bégueret J. Two allelic genes responsible for vegetative
918 incompatibility in the fungus *Podospora anserina* are not essential for cell viability. *Molecular
919 and General Genetics*. 1991;228:265-9.

920 36. Balguerie A, Dos Reis S, Ritter C, Chaignepain S, Couly-Salin B, Forge V, et al. Domain
921 organization and structure-function relationship of the HET-s prion protein of *Podospora
922 anserina*. *The EMBO Journal*. 2003;22:2071-81.

923 37. Greenwald J, Buhtz C, Ritter C, Kwiatkowski W, Choe S, Maddelein M-L, et al. The mechanism
924 of prion inhibition by HET-S. *Molecular Cell*. 2010;38:889-99.

925 38. Mathur V, Seuring C, Riek R, Saupe SJ, Liebman SW. Localization of HET-S to the cell periphery,
926 not to [Het-s] aggregates, is associated with [Het-s]-HET-S toxicity. *Molecular and Cell Biology*.
927 2012;32:139-53.

928 39. Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ, Meier BH, et al. The mechanism of
929 toxicity in HET-S/HET-s prion incompatibility. *PLoS Biology*. 2012;10:e1001451.

930 40. Bidard F, Clavé C, Saupe SJ. The transcriptional response to nonself in the fungus *Podospora
931 anserina*. *G3 Genes Genomes Genetics*. 2013;3:1015-30.

932 41. Lamacchia M, Dyrka W, Breton A, Saupe SJ, Paoletti M. Overlapping *Podospora anserina*
933 transcriptional responses to bacterial and fungal non self indicate a multilayered innate
934 immune response. *Frontiers in Microbiology*. 2016;7:471-.

935 42. Pinan-Lucarré B, Paoletti M, Clavé C. Cell death by incompatibility in the fungus *Podospora*.
936 Seminars in Cancer Biology. 2007;17:101-11.

937 43. Belov AA, Witte TE, Overy DP, Smith ML. Transcriptome analysis implicates secondary
938 metabolite production, redox reactions, and programmed cell death during allorecognition in
939 *Cryphonectria parasitica*. G3 Genes Genomes Genetics. 2021;11.

940 44. Witte TE, Shields S, Heberlig GW, Darnowski MG, Belov A, Sproule A, et al. A metabolomic
941 study of vegetative incompatibility in *Cryphonectria parasitica*. Fungal Genetics and Biology.
942 2021;157:103633.

943 45. García-Pedrajas MD, Cañizares MC, Sarmiento-Villamil JL, Jacquat AG, Dambolena JS.
944 Mycoviruses in biological control: from basic research to field implementation.
945 Phytopathology. 2019;109:1828-39.

946 46. Williamson B, Tudzynski B, Tudzynski P, van Kan JA. *Botrytis cinerea*: the cause of grey mould
947 disease. Molecular Plant Pathology. 2007;8:561-80.

948 47. Staats M, Kan JALv. Genome update of *Botrytis cinerea* strains B05.10 and T4. Eukaryotic Cell.
949 2012;11:1413-4.

950 48. Choquer M, Rasclé C, Gonçalves IR, de Vallée A, Ribot C, Loisel E, et al. The infection cushion
951 of *Botrytis cinerea*: a fungal ‘weapon’ of plant-biomass destruction. Environmental
952 Microbiology. 2021;23:2293-314.

953 49. Hao F, Ding T, Wu M, Zhang J, Yang L, Chen W, et al. Two novel hypovirulence-associated
954 mycoviruses in the phytopathogenic fungus *Botrytis cinerea*: molecular characterization and
955 suppression of infection cushion formation. Viruses. 2018;10:254.

956 50. Castro M, Kramer K, Valdivia L, Ortiz S, Castillo A. A double-stranded RNA mycovirus confers
957 hypovirulence-associated traits to *Botrytis cinerea*. FEMS Microbiology Letters. 2003;228:87-
958 91.

959 51. Potgieter CA, Castillo A, Castro M, Cottet L, Morales A. A wild-type *Botrytis cinerea* strain co-
960 infected by double-stranded RNA mycoviruses presents hypovirulence-associated traits.
961 Virology Journal. 2013;10:220.

962 52. Zhang D-X, Nuss DL. Engineering super mycovirus donor strains of chestnut blight fungus by
963 systematic disruption of multilocus *vic* genes. Proceedings of the National Academy of
964 Sciences U S A. 2016;113:2062-7.

965 53. Stauder CM, Nuss DL, Zhang D-X, Double ML, MacDonald WL, Metheny AM, et al. Enhanced
966 hypovirus transmission by engineered super donor strains of the chestnut blight fungus,
967 *Cryphonectria parasitica*, into a natural population of strains exhibiting diverse vegetative
968 compatibility genotypes. Virology. 2019;528:1-6.

969 54. Beever RE, Weeds PL. Taxonomy and genetic variation of *Botrytis* and *Botryotinia*. In: Elad Y,
970 Williamson B, Tudzynski P, Delen N, editors. *Botrytis*: biology, pathology and control.
971 Dordrecht, The Netherlands: Springer; 2007. p. 29-52.

972 55. Liu J-J, Snieszko RA, Zamany A, Williams H, Omendja K, Kegley A, et al. Comparative
973 transcriptomics and RNA-seq-based bulked segregant analysis reveals genomic basis
974 underlying *Cronartium ribicola* *vcr2* virulence. Frontiers in Microbiology. 2021;12.

975 56. Plissonneau C, Benevenuto J, Mohd-Assaad N, Fouché S, Hartmann FE, Croll D. Using
976 population and comparative genomics to understand the genetic basis of effector-driven
977 fungal pathogen evolution. Frontiers in Plant Science. 2017;8:119.

978 57. Wu JQ, Sakthikumar S, Dong C, Zhang P, Cuomo CA, Park RF. Comparative genomics integrated
979 with association analysis identifies candidate effector genes corresponding to *Lr20* in

980 phenotype-paired *Puccinia triticina* isolates from Australia. *Frontiers in Plant Science*.
981 2017;8:148.

982 58. Acosta Morel W, Anta Fernández F, Baroncelli R, Becerra S, Thon MR, van Kan JAL, et al. A
983 major effect gene controlling development and pathogenicity in *Botrytis cinerea* identified
984 through genetic analysis of natural mycelial non-pathogenic isolates. *Frontiers in Plant
985 Science*. 2021;12:663870.

986 59. Beever R, Parkes S. Use of nitrate non-utilising (Nit) mutants to determine vegetative
987 compatibility in *Botryotinia fuckeliana* (*Botrytis cinerea*). *European Journal of Plant Pathology*.
988 2003;109:607-13.

989 60. Choi GH, Dawe AL, Churbanov A, Smith ML, Milgroom MG, Nuss DL. Molecular
990 characterization of vegetative incompatibility genes that restrict hypovirus transmission in the
991 chestnut blight fungus *Cryphonectria parasitica*. *Genetics*. 2012;190:113-27.

992 61. Chevanne D, Bastiaans E, Debets A, Saupe SJ, Clavé C, Paoletti M. Identification of the *het-r*
993 vegetative incompatibility gene of *Podospora anserina* as a member of the fast evolving
994 HNWD gene family. *Current Genetics*. 2009;55:93-102.

995 62. Li J, Mahajan A, Tsai MD. Ankyrin repeat: a unique motif mediating protein-protein
996 interactions. *Biochemistry*. 2006;45:15168-78.

997 63. Zeytuni N, Zarivach R. Structural and functional discussion of the tetra-trico-peptide repeat, a
998 protein interaction module. *Structure*. 2012;20:397-405.

999 64. Daskalov A, Mitchell PS, Sandstrom A, Vance RE, Glass NL. Molecular characterization of a
1000 fungal gasdermin-like protein. *Proceedings of the National Academy of Sciences U S A*.
1001 2020;117:18600-7.

1002 65. Roudaire T, Héloir M-C, Wendehenne D, Zadoroznyj A, Dubrez L, Poinsot B. Cross kingdom
1003 immunity: the role of immune receptors and downstream signaling in animal and plant cell
1004 death. *Frontiers in Immunology*. 2021;11:612452.

1005 66. Burdett H, Bentham AR, Williams SJ, Dodds PN, Anderson PA, Banfield MJ, et al. The plant
1006 “resistosome”: structural insights into immune signaling. *Cell Host & Microbe*. 2019;26:193-
1007 201.

1008 67. Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: toward a better
1009 understanding of complex mechanisms. *Cell Discovery*. 2020;6:36.

1010 68. Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, et al. Reconstitution and structure of a plant NLR
1011 resistosome conferring immunity. *Science*. 2019;364:eaav5870.

1012 69. Wang J, Wang J, Hu M, Wu S, Qi J, Wang G, et al. Ligand-triggered allosteric ADP release primes
1013 a plant NLR complex. *Science*. 2019;364:eaav5868.

1014 70. Bi G, Su M, Li N, Liang Y, Dang S, Xu J, et al. The ZAR1 resistosome is a calcium-permeable
1015 channel triggering plant immune signaling. *Cell*. 2021;184:3528-41.e12.

1016 71. Han J, Pluhackova K, Böckmann RA. The multifaceted role of SNARE proteins in membrane
1017 fusion. *Frontiers in Physiology*. 2017;8:5.

1018 72. Pratelli R, Sutter J-U, Blatt MR. A new catch in the SNARE. *Trends in Plant Science*. 2004;9:187-
1019 95.

1020 73. Kloepfer TH, Kienle CN, Fasshauer D. An elaborate classification of SNARE proteins sheds light
1021 on the conservation of the eukaryotic endomembrane system. *Molecular Biology of the Cell*.
1022 2007;18:3463-71.

1023 74. Qi Z, Liu M, Dong Y, Zhu Q, Li L, Li B, et al. The syntaxin protein (MoSyn8) mediates intracellular
1024 trafficking to regulate conidiogenesis and pathogenicity of rice blast fungus. *New Phytologist*.
1025 2016;209:1655-67.

1026 75. Song W, Dou X, Qi Z, Wang Q, Zhang X, Zhang H, et al. R-SNARE homolog MoSec22 is required
1027 for conidiogenesis, cell wall integrity, and pathogenesis of *Magnaporthe oryzae*. *PLoS ONE*.
1028 2010;5:e13193.

1029 76. Dou X, Wang Q, Qi Z, Song W, Wang W, Guo M, et al. MoVam7, a conserved SNARE involved
1030 in vacuole assembly, is required for growth, endocytosis, ROS accumulation, and pathogenesis
1031 of *Magnaporthe oryzae*. *PLoS ONE*. 2011;6:e16439.

1032 77. Kienle N, Kloepper TH, Fasshauer D. Phylogeny of the SNARE vesicle fusion machinery yields
1033 insights into the conservation of the secretory pathway in fungi. *BMC Evolutionary Biology*.
1034 2009;9:19.

1035 78. Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in
1036 synaptic exocytosis at 2.4 Å resolution. *Nature*. 1998;395:347-53.

1037 79. Koike S, Jahn R. SNARE proteins: zip codes in vesicle targeting? *Biochemistry Journal*.
1038 2022;479:273-88.

1039 80. Ko Y-H, So K-K, Kim J-M, Kim D-H. Heterokaryon analysis of a Cdc48-like gene, *CpCdc48*, from
1040 the chestnut blight fungus *Cryphonectria parasitica* demonstrates it is essential for cell
1041 division and growth. *Fungal Genetics and Biology*. 2016;88:1-12.

1042 81. Wang M, Jin H. Spray-induced gene silencing: a powerful innovative strategy for crop
1043 protection. *Trends in Microbiology*. 2017;25:4-6.

1044 82. Wang M, Weiberg A, Lin F-M, Thomma BPHJ, Huang H-D, Jin H. Bidirectional cross-kingdom
1045 RNAi and fungal uptake of external RNAs confer plant protection. *Nat Plants*. 2016;2:16151.

1046 83. Khalifa ME, MacDiarmid RM. A mechanically transmitted DNA mycovirus is targeted by the
1047 defence machinery of its host, *Botrytis cinerea*. *Viruses*. 2021;13:1315.

1048 84. Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, et al. Genomic analysis of
1049 the necrotrophic fungal pathogens *Sclerotinia sclerotiorum* and *Botrytis cinerea*. *PLoS*
1050 *Genetics*. 2011;7:e1002230.

1051 85. Vogel HJ. A convenient growth medium for *Neurospora crassa*. *Microbial Genetics Bulletin*.
1052 1956;13:42-7.

1053 86. Möller EM, Bahnweg G, Sandermann H, Geiger HH. A simple and efficient protocol for isolation
1054 of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues.
1055 *Nucleic Acids Research*. 1992;20:6115-6.

1056 87. Faretra F, Antonacci E. Production of apothecia of *Botryotinia fuckeliana* (de Bary) Whetzel
1057 under controlled environmental conditions. *Phytopathologia Mediterranea*. 1987;26:29-35.

1058 88. Faretra F, Antonacci E, Pollastro S. Sexual behaviour and mating system of *Botryotinia*
1059 *fuckeliana*, teleomorph of *Botrytis cinerea*. *Journal of General Microbiology*. 1988;134:2543-
1060 50.

1061 89. Cox MP, Peterson DA, Biggs PJ. SolexaQA: At-a-glance quality assessment of Illumina second-
1062 generation sequencing data. *BMC Bioinformatics*. 2010;11:485-.

1063 90. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
1064 *Bioinformatics*. 2010;26:589-95.

1065 91. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative
1066 genomics viewer. *Nature Biotechnology*. 2011;29:24-6.

1067 92. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map
1068 format and SAMtools. *Bioinformatics*. 2009;25:2078-9.

1069 93. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format
1070 and VCFtools. *Bioinformatics*. 2011;27:2156-8.

1071 94. Foissac S, Gouzy J, Rombauts S, Mathe C, Amselem J, Sterck L, et al. Genome annotation in
1072 plants and fungi: EuGene as a model platform. *Bioinformatics*. 2008;3:87-97.

1073 95. Salamov AA, Solovyev VV. Ab initio gene finding in *Drosophila* genomic DNA. *Genome
1074 Research*. 2000;10:516-22.

1075 96. Solovyev V, Kosarev P, Seledsov I, Vorobyev D. Automatic annotation of eukaryotic genes,
1076 pseudogenes and promoters. *Genome Biology*. 2006;7:S10.

1077 97. Van Kan JA, Stassen JH, Mosbach A, Van Der Lee TA, Faino L, Farmer AD, et al. A gapless
1078 genome sequence of the fungus *Botrytis cinerea*. *Molecular Plant Pathology*. 2017;18:75-89.

1079 98. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: The
1080 protein families database in 2021. *Nucleic Acids Research*. 2021;49:D412-D9.

1081 99. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families
1082 database: towards a more sustainable future. *Nucleic Acids Research*. 2016;44:D279-85.

1083 100. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and
1084 sequence analysis tools APIs in 2019. *Nucleic Acids Research*. 2019;47:W636-w41.

1085 101. Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden Gate shuffling: A one-pot DNA
1086 shuffling method based on Type IIs restriction enzymes. *PLoS ONE*. 2009;4:e5553.

1087 102. Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high
1088 throughput capability. *PLoS One*. 2008;3:e3647.

1089 103. Schumacher J. Tools for *Botrytis cinerea*: New expression vectors make the gray mold fungus
1090 more accessible to cell biology approaches. *Fungal Genetics and Biology*. 2012;49:483-97.

1091 104. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CA. Transformation of
1092 *Aspergillus* based on the hygromycin B resistance marker from *Escherichia coli*. *Gene*.
1093 1987;56:117-24.

1094 105. ten Have A, Mulder W, Visser J, van Kan JA. The endopolygalacturonase gene *Bcpg1* is required
1095 for full virulence of *Botrytis cinerea*. *Molecular Plant-Microbe Interactions*. 1998;11:1009-16.

1096

1097 **Figure captions**

1098 **Fig. 1. Distribution of Single Nucleotide Polymorphisms along the *Botrytis cinerea* T4
1099 genome.** The outer black bars show the 118 scaffolds that make up the *B. cinerea* T4
1100 reference genome. The dense, uniformly distributed grey bars represent the large number of
1101 Single Nucleotide Polymorphisms (SNPs) shared between the vcg1 and vcg2 bulks. The outer
1102 blue and inner orange lines represent vcg1 and vcg2 bulk-specific SNPs, respectively, which
1103 are in close proximity to each other, occurring within 5 kb of another bulk-specific SNP. The

1104 black arrow denotes the location of scaffold bt4_SupSuperContig_110r_56_1. Note the
1105 preponderance of bulk-specific SNPs at this location.

1106

1107 **Fig. 2. Mapping of bulked *vcg1* and *vcg2* reads to the T4 and B05.10 *Botrytis cinerea***
1108 **reference genomes at the candidate *vic* locus.** (A, B) Bulked *vcg1* (A) and *vcg2* (B) reads
1109 mapped to B05.10. The region shown includes the scaffold positions 143,339 to 203,859 on
1110 scaffold 1.28. (C, D) Bulked *vcg1* (C) and *vcg2* (D) reads mapped to the T4 reference showing
1111 the scaffold positions 143,443 to 204,125 on scaffold bt4_SupSuperContig_110r_56_1
1112 (scaffold 56). Gene predictions are shown by the blue bars. Sequencing reads are denoted by
1113 the grey bars within each panel. Single nucleotide polymorphisms (SNPs) are indicated by the
1114 different colours in the coverage panel above the sequencing reads.

1115

1116 **Fig. 3. Amino acid alignments of the candidate *vic* proteins BCVIC1 (A) and BCVIC2 (B)**
1117 **in the *Botrytis cinerea* strains 839-5 (*vcg1*), 839-1 (*vcg2*) and B05.10.** The numbers on top
1118 of the figures represent the position of the amino acid residues in the sequence alignment.
1119 The black shading in the alignment indicates that the residue at that position is the same
1120 across both sequences (100% identity); grey represents less than complete identity; and white
1121 represents very low identity for a particular position. (A) The green, pink and orange blocks
1122 denote the positions of the putative serine esterase, NACHT and ankyrin repeat domains in
1123 BCVIC1, respectively. (B) The green and pink blocks denote the positions of the syntaxin and
1124 SNARE domain in BCVIC2, respectively.

1125

1126 **Fig. 4. Nit mutant complementation tests for vegetative compatibility.** (A)
1127 Complementation tests between *Botrytis cinerea* 839-5 and 839-1 *nit1* and NitM mutants. The
1128 overlaid Nit1 and NitM mutants were inoculated as drops of spore suspensions on MM+NO₃
1129 + triton and incubated for 10 days. Sparse growth indicates vegetative incompatibility, whereas
1130 dense growth indicates vegetative compatibility. (B-D) Schematic of nit mutant
1131 complementation vegetative compatibility tests for the $\Delta Bcvic1$ mutants (B), the $\Delta Bcvic2$

1132 mutants (C) and the $\Delta\Delta Bcvic1/2$ double knockout mutants (D). The black and white circles
1133 represent complementation and no complementation, respectively.

1134

1135 **Fig. 5. Abnormal hyphal growth and colony formation of the homokaryotic $\Delta Bcvic2$ and**
1136 **$\Delta\Delta Bcvic1/2$ mutants.** (A, B) *Het* $\Delta\Delta Bcvic1/2$ and $\Delta\Delta Bcvic1/2$, respectively, at 3 days post-
1137 inoculation. (C) $\Delta\Delta Bcvic1/2$, at 5 days post-inoculation. (D, E) Spread plates of *Het* $\Delta\Delta Bcvic1/2$
1138 and $\Delta\Delta Bcvic1/2$, respectively, at 14 days post-inoculation. (F, G) Two separate $\Delta\Delta Bcvic1/2$
1139 mutants at 60 days post-inoculation. (H) $\Delta Bcvic2$ mutant at 60 days post-inoculation.

1140

1141 **Fig. 6. Complementation of $\Delta\Delta Bcvic1/2$ with the *Bcvic1-1-Bcvic2-1* and *Bcvic1-2-***
1142 ***Bcvic2-2* alleles.** Nit mutant complementation to test vegetative compatibility between
1143 *Botrytis cinerea* 839-5 and 839-1 *nit1* and NitM mutants tester strains. The overlaid *nit1* and
1144 NitM mutants were inoculated as drops of spore suspensions on MM+NO₃ + triton and
1145 incubated for 10 days. Sparse growth (white circle) indicates vegetative incompatibility,
1146 whereas dense growth (green circle) indicates vegetative compatibility. (A,B) Image and
1147 schematic of agar plate, respectively.

1148

1149 **Supporting information**

1150 **S1 Table. List of strains used in this study.**

Strain	Description
vcg2 VI tester	
839-1	Near-isogenic tester strain carrying <i>Bcvic1-2</i> and <i>Bcvic2-2</i> <i>vic</i> gene alleles
839-1 <i>nit1</i>	<i>nit1</i> mutant of 839-1
839-1 NitM	NitM mutant of 839-1
vcg1 VI tester	
839-5	Near-isogenic tester strain carrying <i>Bcvic1-1</i> and <i>Bcvic2-1</i> <i>vic</i> gene alleles
839-5 <i>nit1</i>	<i>nit1</i> mutant of 839-5
839-5 NitM	NitM mutant of 839-5
Knockout mutants	
$\Delta Bcvic1-i$	839-5 NitM $\Delta Bcvic1-i$: <i>HPH</i>
$\Delta Bcvic1-ii$	839-5 <i>nit1</i> $\Delta Bcvic1-ii$: <i>HPH</i>

$\Delta Bcvic1-iii$	839-5 <i>nit1</i> $\Delta Bcvic1::HPH$
$\Delta Bcvic2-i$	839-5 <i>NitM</i> $\Delta Bcvic2::HPH$
$\Delta Bcvic2-ii$	839-5 <i>nit1</i> $\Delta Bcvic2::HPH$
$\Delta\Delta Bcvic1/2-i$	839-5 <i>NitM</i> $\Delta Bcvic1-\Delta Bcvic2::HPH$
$\Delta\Delta Bcvic1/2-ii$	839-5 <i>nit1</i> $\Delta Bcvic1-\Delta Bcvic2::HPH$
$\Delta\Delta Bcvic1/2-iii$	839-5 <i>nit1</i> $\Delta Bcvic1-\Delta Bcvic2::HPH$
Ectopic expression mutants (Complementation)	
$\Delta Bcvic2-i+Bcvic2-1$	839-5 <i>NitM</i> $\Delta Bcvic2::HPH$ <i>Bcvic2+NAT</i>
$\Delta\Delta Bcvic1/2-i+Bcvic1-1/Bcvic2-1$	839-5 <i>NitM</i> $\Delta Bcvic1-\Delta Bcvic2::HPH$ <i>Bcvic1-1/Bcvic2-1+NAT</i>
$\Delta\Delta Bcvic1/2-i+Bcvic1-2/Bcvic2-2$	839-5 <i>NitM</i> $\Delta Bcvic1-\Delta Bcvic2::HPH$ <i>Bcvic1-2/Bcvic2-2+NAT</i>
$\Delta\Delta Bcvic1/2-i+Bcvic1-1$	839-5 <i>NitM</i> $\Delta Bcvic1-\Delta Bcvic2::HPH$ <i>Bcvic1-1+NAT</i>
$\Delta\Delta Bcvic1/2-i+Bcvic1-2$	839-5 <i>NitM</i> $\Delta Bcvic1-\Delta Bcvic2::HPH$ <i>Bcvic1-2+NAT</i>
$\Delta\Delta Bcvic1/2-i+Bcvic2-1$	839-5 <i>NitM</i> $\Delta Bcvic1-\Delta Bcvic2::HPH$ <i>Bcvic2-1+NAT</i>
Ectopic expression mutants (Hygromycin control)	
839-5 <i>nit1-HPH</i>	839-5 <i>nit1</i> + <i>HPH</i>
839-5 <i>NitM-HPH</i>	839-5 <i>NitM</i> + <i>HPH</i>
839-1 <i>nit1-HPH</i>	839-1 <i>nit1</i> + <i>HPH</i>
839-1 <i>NitM-HPH</i>	839-1 <i>NitM</i> + <i>HPH</i>

1151

1152 **S2 Table. Similarity of candidate *vic* genes in the two VI bulks, *vcg1* and *vcg2*.**

Candidate T4 gene models	Candidate B05-10 gene models	Putative function of the encoding protein	vcg1 and vcg2 nucleotide sequence identity (%)	vcg1 and vcg2 amino acid sequence identity (%)
BofuT4_P145970 .1	Bcin01g01190. 1	putative aspartyl protease	99.7	99.8
BofuT4_P145980 .1	Bcin01g01200	No known domains	99.3	99.5

BofuT4_P145990 .1	Bcin01g01210	Syntaxin	76.3*	65.9*
BofuT4_P146010 .1	Bcin01g01220	Serine esterase/NACHT/Ankyr in repeats	68.3*	60.2*
BofuT4_P146020 .1	Bcin01g01230	tRNA methyl transferase	99.7	99.7
BofuT4_P146070 .1	Bcin01g01250	No known domains	97.4	97.9
BofuT4_P146100 .1	Bcin01p01290. 1	No known domains	99.4	99.8
BofuT4_P146120 .1	Bcin01p01300. 1	oxidoreductase	99.6	99.6
BofuT4_P146130 .1	Bcin01p01310. 1	carboxypeptidase B	98.4	98

1153 * Sequence comparisons only possible following PCR amplification and sequencing
1154 of genes from *vcg1* since reads at the locus from the *vcg1* bulk did not map to either
1155 the T4 or the B05.10 reference genomes.

1156

1157 **S3 Table. Primers used for PCR amplification.**

PCR product	Template	Primer	Sequence 5' to 3'	PCR product size (bp)	Purpose
<i>MAT1</i>	gDNA from backcross progeny	MAT1F	ACGATGAAGCACACCTACAAGC	225	Confirmation of mating type
		MAT1R	TATATGAATTGACCGAGCGCCG		
<i>MAT2</i>		MAT2F	CTGTTGCAGGTTCGCCAATCT	436	
		MAT2R	TCTTCTTGGACACACGACGCTTC		
<i>cgene1</i>	gDNA from <i>vcg1</i> tester	<i>cgene1F</i>	GAG AGA CAC CTG CAG AGC TGG CAG TCG GTA GTT CAA TGC GAC	1036	

	isolate 839-5	cgene1R	GAG AGA <u>CAC CTG CGC TAC CAT</u> TAG CTT TTC GTT CGG AGA		Confirmation of <i>Bcvic1-1</i> sequence		
cgene2		cgene2F	GAG AGA <u>CAC CTG CTT AGA TGG</u> CGG GAG GAA AAT TTT G	1171			
		cgene2R	GAG AGA <u>CAC CTG CGT TAG GTG</u> TCT TTG TAG GCA TTG TTC				
cgene3			GAG AGA <u>CAC CTG CTG GAC ACC</u>	988			
		cgene3F	TGC AGC TGG ATC TTT CAA AAT C				
cgene4		cgene3R	GAG AGA <u>CAC CTG CAT AAC AAT</u> GCC AAT GCA AAG CGG AG				
		cgene4F	GAG AGA <u>CAC CTG CTA GTA TTG</u> GAT GAA CCG CTT CAA C	1169			
cgene5		cgene4R	GAG AGA <u>CAC CTG CGT TTA CTC</u> AAC AAG TTC AAA GCT GC				
		cgene5F	GAG AGA <u>CAC CTG CCG GCG AGT</u> AAG GAT TCG CAT GAA CC	1198			
cgene6		cgene5R	GAG AGA <u>CAC CTG CGC AGG TCA</u> TGT TTG TTC CCG ACT TG				
			GAG AGA <u>CAC CTG CTA CGT GAC</u>	1056	Confirmation of <i>Bcvic1-2</i> sequence		
		cgene6F	TTG GAA TTA ATG TTG CAG A				
icgene1	gDNA from vcg2 tester isolate 839-1	cgene6R	GAG AGA <u>CAC CTG CTG TAA GGG</u> CCG TTG GTT TGA GGA TGA TTT C				
		icgene1F	GAG AGA <u>CAC CTG CAG AGC TGG</u> CAG TCG GTA GTT CAA TGC GAC	1041			
		icgene1R	GAG AGA <u>CAC CTG CGC TAC CAT</u> TAG CTT TTC GTT CGG AGA				
icgene2		icgene2F	GAG AGA <u>CAC CTG CTT AGA TGG</u> CGG GAG GAA AAT TTT G	1167			
		icgene2R	GAG AGA <u>CAC CTG CGT TAG GTG</u> TCT TTG TAG GCA TTG TTC				
icgene3		icgene3F	GAG AGA <u>CAC CTG CTG GAC ACC</u>	1142			
		icgene3R	TGC AGC TGG ATC TTT CAA AAT C				
icgene4		icgene4F	GAG AGA <u>CAC CTG CTA ATT TCA</u> TCA GAC GGT GGT CGA T	1032			
		icgene4R	GAG AGA <u>CAC CTG CGT TTC TCC</u> TGG TGC ATT TAT CGA TG				
icgene5		icgene5F	GAG AGA <u>CAC CTG CCG GCG GAG</u> GCA GAC ATG GAA GC	1239			
		icgene5R	GAG AGA <u>CAC CTG CGC AGT TAC</u> CCG GCA TTC CCT TTT G				
icgene6		icgene6F	GAG AGA <u>CAC CTG CCC GGG TAA</u> ATG ATA TAT CAT TTC AGC	1020			
		icgene6R	GAG AGA <u>CAC CTG CTG TAA GGG</u> ACG AAG AAC GAA GAG AGC G				
7cgene1	gDNA from vcg1 tester isolate 839-5	7cgene1F	ATA TTA <u>CAC CTG CTC CCC TGG</u> TGT ACA TAA CAG ACC AGA CTC AAA GGC	815	Confirmation of <i>Bcvic2-1</i> sequence		
		7cgene1R	GAG AGA <u>CAC CTG CTC CAG AGT</u> AAT TTT ATT ATT TGG TAT CTG C				
		7cgene2F	GAG AGA <u>CAC CTG CAA TTA CTC</u> TGG AAG CAA TTT ACT AAT AAT C	1645			

		7cgene2R	GAG AGA CAC CTG CCC CCC TCA TTC AGA ATT CAT CTC AC		
7cgene3		7cgene3F	GAG AGA CAC CTG CTG AAT GAG GGG GAA ATG ATG TTT G	839	Confirmation of <i>Bcvic2-2</i> sequence
		7cgene3R	GAG AGA CAC CTG CTG TAA GGG CAG CGC AAT CAA TGA GTT TGC		
		7icgene1F	ATA TTA CAC CTG CTC CCC TGG TGT ACA CTA AGC CAT CGA GTG TCA TCG		
7icgene2	gDNA from vcg2 tester isolate 839-1	7icgene1R	GAG AGA CAC CTG CTC TAG ACC CCT AAA CAC GAC CCA G	764	Confirmation of <i>Bcvic2-2</i> sequence
		7icgene2F	GAG AGA CAC CTG CAT GGG GTC GAA CCG TGT TGG AAA		
		7icgene2R	GAG AGA CAC CTG CCC CCC TCA TTC AGA ATT CAT CTC AC	1486	
7icgene3		7icgene3F	GAG AGA CAC CTG CTG AAT GAG GGG GAA ATG ATG TTT G	780	Generation of KO constructs
		7icgene3R	GAG AGA CAC CTG CTG TAA GGG CTA GAA AGG TGG GAA AGT ATC AGC		
		hph-5	AACCTCCACCTGCTTGGCCCTGAT ATTGAAGGAGCATTTTTGGC	1501	
HPH cassette	pNDH- OGG vector	hph-3	GGACTCCACCTGCAACCTCGCGTT AACGTTAACCTGGTCCCAG		
		SA1 (5.1)	GAGAGACACCTGCTCACCTGGCG CTTTCGTAGGCACAATAC	816	Generation of KO constructs
<i>Bcvic1</i> and <i>Bcvic1-Bcvic2</i> 5' flank	gDNA from vcg1 tester isolate 839-5	SA2 (5.2)	GAGAGACACCTGCTGTAAAGGGTGC AAATTGCAGACAGTTGC		
		SA3 (3.1)	ACTTGGCACCTGCCAATGCGACTTG ATGTTGCAGAAC	921	
<i>Bcvic1</i> 3' flank		SA4 (3.2)	CCCAGCCACCTGCAAGAATGCAAG CTTCGGATAATTGGCTC		
		SA5 (5.1)	ATATTACACCTGCTCCCCTGGTAA CAGACCAGACTCAAAGGC	788	
<i>Bcvic2</i> 5' flank	gDNA from vcg1 tester isolate 839-5	SA6 (5.2)	GAGAGACACCTGCTGTAAAGGGGAT TATTAGTAAATTGCTTCCAGAGT	Confirmation of KO construct sequence	
		SA7 (3.1)	ACTTGGCACCTGCCAATGCGAGTG AGATGAATTCTGAATGAGGGGG		798
<i>Bcvic2</i> and <i>Bcvic1-Bcvic2</i> 3' flank		SA8 (3.2)	GAGAGACACCTGCAAGAATGCCAG CGCAATCAATGA GTTTGC		
		GGF	CAC GGA AAT GTT GAA TAC TCA TAC TC		Variable: for sequencing
	The <i>Bcvic1</i> KO- pType IIs, <i>Bcvic2</i> KO- pType IIs and <i>Bcvic1/2</i> K O-pType IIs plasmids	GGR	GGG TTT CGC CAC CTC TGA CTT GAG C	Variable: for sequencing	Confirmation of KO construct sequence
<i>Bcvic1</i> and <i>Bcvic1/2</i> Left arm split marker	The <i>Bcvic1</i> KO- pType IIs, <i>Bcvic2</i> KO-	SA1 (5.1)	See above		Generation of Split marker fragments
		SA9 (HY-3)	CTCCAGTCAATGACCGCTG		

<i>Bcvic1</i> right arm split marker	pType IIs and <i>Bcvic1/2K</i> O-pType IIs plasmids	SA10 (YG-5)	GGGTAAATAGCTGCGCCGATG			
		SA4 (3.2)	CCCAGCCACCTGCAAGAATGCAAG CTTCGGATAATTGGCTC			
<i>Bcvic2</i> left arm split marker		SA5 (5.1)	ATATTACACCTGCTCCCCTGGTAA CAGACCAGACTCAAAGGC			
		SA9 (HY-3)	CTCCAGTCAATGACCGCTG			
<i>Bcvic2</i> and <i>Bcvic1/2</i> right arm split marker		SA10 (YG-5)	GGGTAAATAGCTGCGCCGATG			
		SA8 (3.2)	GAGAGACACCTGCAAGAATGCCAG CGCAATCAATGAGTTTGC			
$\Delta Bcvic1$ and $\Delta\Delta Bcvic1/2$		SA11	ATA TTA CAC CTG CTC CCC TGG TGT ACA GTC GTT ACT GGT ATT CTC GGG	1489	5' Screening hygromycin-resistant transformants	
		SA15	AGGCAATTCTATTGTTGACCTCC			
$\Delta Bcvic1$	gDNA from $\Delta Bcvic1$	SA16	GTCCGAGGGCAAAGGAATAG	1463	3' Screening hygromycin-resistant transformants	
		SA12	CAG TTC CAC CTG CTG ACA TGC AGA AGT CGC AGA ATG AGA GGT			
$\Delta Bcvic2$	gDNA from $\Delta Bcvic2$	SA13	ACT TGG CAC CTG CCA ATG CGA CTT GGA ATT AAT GTT GCA GAA C	1356	5' Screening hygromycin-resistant transformants	
		SA15	AGGCAATTCTATTGTTGACCTCC			
$\Delta Bcvic2$ and $\Delta\Delta Bcvic1/2$	gDNA from $\Delta Bcvic2$ and $\Delta\Delta Bcvic1/2$	SA16	GTCCGAGGGCAAAGGAATAG	841	3' Screening hygromycin-resistant transformants	
		SA14	GAG AGA CAC CTG CAA GAA TGC CTA GAA AGG TGG GAA AGT ATC AGC			
<i>Bcvic1</i> presence/absence	gDNA from $\Delta Bcvic1$	SA17	GCAAACCAGGTGCAGGTAAAT	384	Screening hygromycin-resistant transformants	
		SA18	AGCATCCTTGCATTATCATCA			
<i>Bcvic2</i> presence/absence	gDNA from $\Delta Bcvic2$	SA19	ATG GCA CAG TAC GGG TTA G	830	Screening hygromycin-resistant transformants	
		SA20	GTC CTT GTC TGT TGC TTG TC			
NAT gene	pNAN-OCT [103]	SA21	AACCTCCACCTGCTTGGCCCTGAT ATTGAAGGAGCATTGGGGC	994	Generation of complementation construct	
		SA22	GAG AGA <u>CAC CTG</u> CAA CCT CGC GAT GCT TTG GTT TAG GGT TAG GG			
<i>Aspergillus nidulans</i> <i>trpC</i> terminator	pAN7-1 [104]	SA23	ACT TGG <u>CAC CTG</u> CCA ATG CGA ACT TAA CGT TAC TGA AAT CAT	720	Generation of complementation construct	
		SA24	GAG AGA <u>CAC CTG</u> CAA GAA TGC TCT AGA AAG AAG GAT TAC CTC			
cgene1-cgene2	Bcvic1-1 complementation construct	cgene1F	GAG AGA <u>CAC CTG</u> CAG AGC TGG CAG TCG GTA GTT CAA TGC GAC	2170	Primers to confirm ligation of the <i>Bcvic1</i>	
		cgene2R	GAG AGA <u>CAC CTG</u> CGT TAG GTG TCT TTG TAG GCA TTG TTC			

cgene2-cgene3		cgene2F	GAG AGA CAC CTG CTT AGA TGG CGG GAG GAA AAT TTT G	2119	complementation constructs		
cgene3-cgene4		cgene3R	GAG AGA CAC CTG CAT AAC AAT GCC AAT GCA AAG CGG AG				
cgene4-cgene5		cgene3F	GAG AGA CAC CTG CTG GAC ACC TGC AGC TGG ATC TTT CAA AAT C	2121			
		cgene4R	GAG AGA CAC CTG CGT TTA CTC AAC AAG TTC AAA GCT GC				
cgene5-cgene6		cgene4F	GAG AGA CAC CTG CTA GTA TTG GAT GAA CCG CTT CAA C	2331			
		cgene5R	GAG AGA CAC CTG CGC AGG TCA TGT TTG TTC CCG ACT TG				
cgene6-NAT		cgene5F	GAG AGA CAC CTG CCG GCG AGT AAG GAT TCG CAT GAA CC	2218			
		cgene6R	GAG AGA CAC CTG CTG TAA GGG CCG TTG GTT TGA GGA TGA TTT C				
icgene1- icgene2	Bcvic1-2 complementation construct	cgene6F	GAG AGA CAC CTG CTA CGT GAC TTG GAA TTA ATG TTG CAG A	2014			
		SA22	GAG AGA CAC CTG CAA CCT CGC GAT GCT TTG GTT TAG GGT TAG GG				
icgene2- icgene3		icgene1F	GAG AGA CAC CTG CAG AGC TGG CAG TCG GTA GTT CAA TGC GAC	2172			
		icgene2R	GAG AGA CAC CTG CGT TAG GTG TCT TTG TAG GCA TTG TTC				
icgene3- icgene4		icgene2F	GAG AGA CAC CTG CTT AGA TGG CGG GAG GAA AAT TTT G	2277			
		icgene3R	GAG AGA CAC CTG CAT AAT GAA TGA ATT GTA CGC GAT ATA ACC				
icgene4- icgene5		icgene3F	GAG AGA CAC CTG CTG GAC ACC TGC AGC TGG ATC TTT CAA AAT C	2142			
		icgene4R	GAG AGA CAC CTG CGT TTC TCC TGG TGC ATT TAT CGA TG				
icgene5- icgene6		icgene4F	GAG AGA CAC CTG CTA ATT TCA TCA GAC GGT GGT CGA T	2235			
		icgene5R	GAG AGA CAC CTG CGC AGT TAC CCG GCA TTC CCT TTT G				
icgene6-NAT		icgene5F	GAG AGA CAC CTG CCG GCG GAG GCA GAC ATG GAA GC	2223			
		icgene6R	GAG AGA CAC CTG CTG TAA GGG ACG AAG AAC GAA GAG AGC G				
		icgene6F	GAG AGA CAC CTG CCC GGG TAA ATG ATA TAT CAT TTC AGC	1978			
		SA22	GAG AGA CAC CTG CAA CCT CGC GAT GCT TTG GTT TAG GGT TAG GG				
Bcvic1-1	Bcvic1-1- pType IIs	cgene1F	GAG AGA CAC CTG CAG AGC TGG CAG TCG GTA GTT CAA TGC GAC	8110	Primers for amplifying linear complementation constructs		
		SA24					
Bcvic1-2	Bcvic1-2- pType IIs	icgene1F	GAG AGA CAC CTG CAG AGC TGG CAG TCG GTA GTT CAA TGC GAC	8139	Primers for amplifying linear complementation constructs		
		SA24	GAG AGA CAC CTG CAA GAA TGC TCT AGA AAG AAG GAT TAC CTC				

Bcvic2-1	Bcvic2-1-pType IIs	7cgene1F	ATA TTA CAC CTG CTC CCC TGG TGT ACA TAA CAG ACC AGA CTC AAA GGC	4634	Primers for amplifying linear complementation constructs
		SA24	GAG AGA CAC CTG CAA GAA TGC TCT AGA AAG AAG GAT TAC CTC		
Bcvic2-2	Bcvic2-2-pType IIs	7icgene1F	ATA TTA CAC CTG CTC CCC TGG TGT ACA CTA AGC CAT CGA GTG TCA TCG	4878	Primers for amplifying linear complementation constructs
		SA24	GAG AGA CAC CTG CAA GAA TGC TCT AGA AAG AAG GAT TAC CTC		
Bcvic1-1/Bcvic2-1	Bcvic1-1/Bcvic2-1-pType IIs	cgene1F	GAG AGA CAC CTG CAG AGC TGG CAG TCG GTA GTT CAA TGC GAC	10542	Primers for amplifying linear complementation constructs
		SA24	GAG AGA CAC CTG CAA GAA TGC TCT AGA AAG AAG GAT TAC CTC		
Bcvic1-2/Bcvic2-2	Bcvic1-2/Bcvic2-2-pType IIs	icgene1F	GAG AGA CAC CTG CAG AGC TGG CAG TCG GTA GTT CAA TGC GAC	10785	Primers for amplifying linear complementation constructs
		SA24	GAG AGA CAC CTG CAA GAA TGC TCT AGA AAG AAG GAT TAC CTC		

1158 ¹The underlined bases represent the *AarI* restriction enzyme recognition site. The unique

1159 Golden Gate adaptor sequences are indicated by the highlighted colours.

1160

1161 Supporting information figure captions

1162

1163 **S1 Fig. Pedigree of near-isogenic *Botrytis cinerea* strains.** Thirty-two F1BC3 single
1164 ascospore isolates were generated from three backcrosses to the recurrent parent REB749-
1165 8. REB839-6, REB839-5, REB839-1 and REB839-2 are presented as four examples of
1166 progeny genotypes. REB839-5 and REB839-1 were used as the *vcg1* (compatible with the
1167 recurrent parent REB749-8) and *vcg2* (incompatible with the REB749-8) tester strains in this
1168 study. BR, benzimidazole-resistant; BS, benzimidazole-sensitive; DS, dicarboximide-
1169 sensitive; DL, low-level dicarboximide-resistant; DUL, ultra-low-level dicarboximide-resistant;
1170 MAT1, mating type 1; MAT2, mating type 2.

1171

1172 **S2 Fig. *vcg1* and *vcg2* bulk specific SNPs within scaffold**
1173 **bt4_SupSuperContig_110r_56_1 of the *Botrytis cinerea* T4 genome.** A 5-kb sliding
1174 window with a 25-bp lag was applied to the entire scaffold, and the density of *vcg1* and *vcg2*
1175 bulk-specific SNPs is shown in blue and orange, respectively. The number of bulk-specific

1176 single nucleotide polymorphisms (SNPs) identified for this scaffold is substantially larger than
1177 for any other scaffold.

1178

1179 **S3 Fig. Polymerase Chain Reaction (PCR) screen of *Botrytis cinerea* gene knockout**
1180 **mutants.** (A-C) Homologous recombination at the 5' and 3' flanks in a subset of independent
1181 *Bcvic2*, *Bcvic1/Bcvic2* and *Bcvic1* recombinants, respectively. (D-F) Detection of the native
1182 *Bcvic2* and *Bcvic1* genes in *Botrytis cinerea* *Bcvic2*, *Bcvic1/Bcvic2* and *Bcvic1* recombinants,
1183 respectively.

1184

1185 **S4 Fig. Growth morphology and Polymerase Chain Reaction (PCR)analysis of fast and**
1186 **slow growing Het Δ Bcvic2 single-spore isolates.** (A, B) Fast-growing isolate. (C, D) Slow-
1187 growing isolate. (E) PCR analysis of slow-growing *Het $\Delta\Delta$ Bcvic1/2* single spore isolate. WT,
1188 wild-type; *HPH*, hygromycin B phosphotransferase.

1189

1190 **S5 Fig. Hyphal regeneration and protoplasting of melanised Δ Bcvic2 and $\Delta\Delta$ Bcvic1/2**
1191 **mutants.** (A, B) Hyphal regeneration 3 d post-inoculation. (A) $\Delta\Delta$ Bcvic1/2 and (B) Δ Bcvic2.
1192 (C, D) Hyphal regeneration 5 days post-inoculation. (C) $\Delta\Delta$ Bcvic1/2 and (D) Δ Bcvic2. (E)
1193 Protoplasts generated from macerated mycelia. Black arrows point towards budding
1194 protoplasts. Scale bar is 100 μ M.

1195

1196 **S6 Fig. Growth phenotype of Δ Bcvic2 and $\Delta\Delta$ Bcvic1/2 knockout and complementation**
1197 **mutants.** Single spore isolates of the various mutants were inoculated on the centre of an
1198 agar plate. Photographs were taken 8 days post-inoculation. (A-H) Δ Bcvic2, Δ Bcvic2+Bcvic2,
1199 $\Delta\Delta$ Bcvic1/2, $\Delta\Delta$ Bcvic1/2+Bcvic1-1, $\Delta\Delta$ Bcvic1/2+Bcvic2-1, $\Delta\Delta$ Bcvic1/2+Bcvic1-1/Bcvic2-1
1200 and $\Delta\Delta$ Bcvic1/2+Bcvic1-2/Bcvic2-2, respectively.

Fig 1

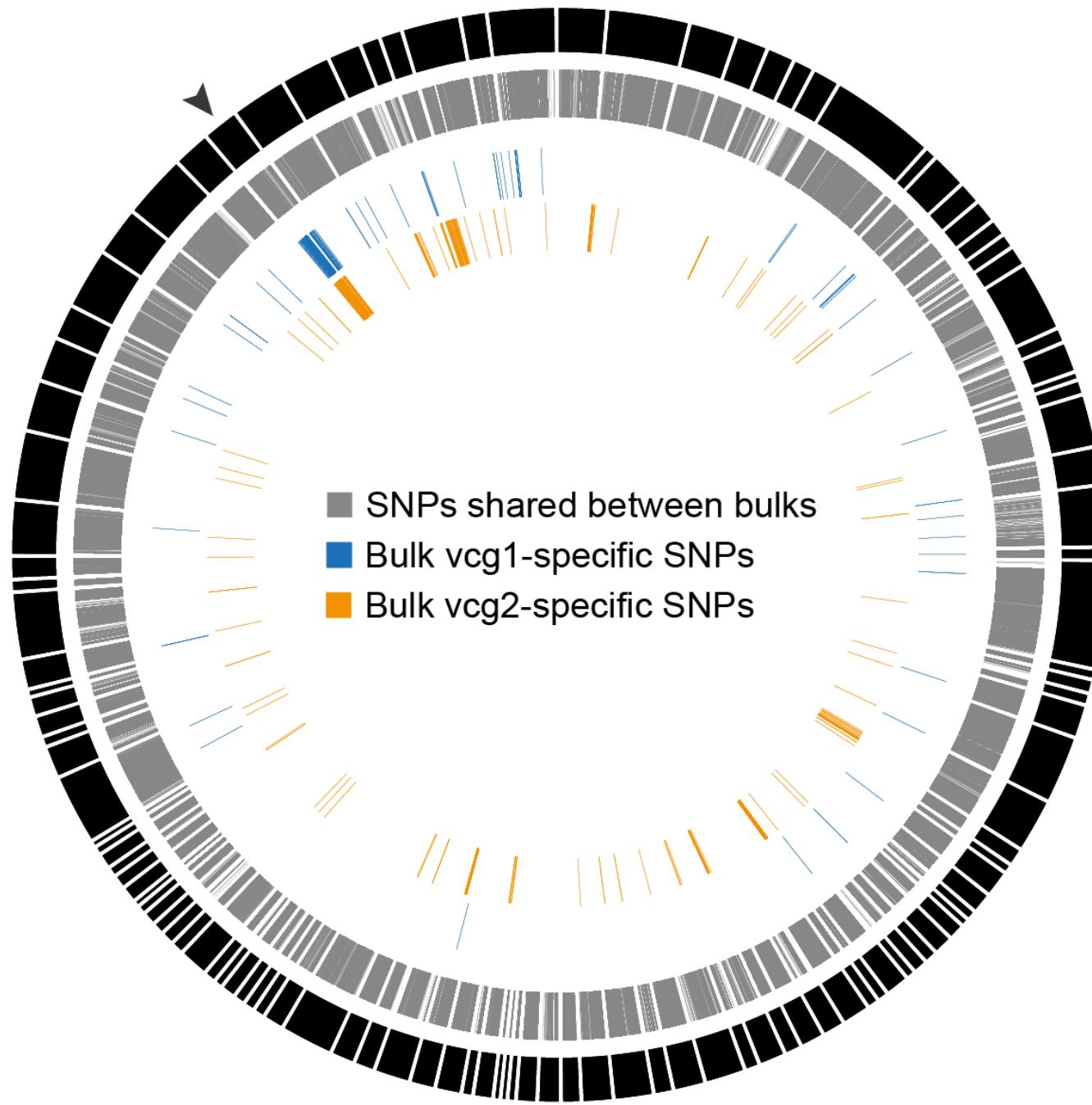
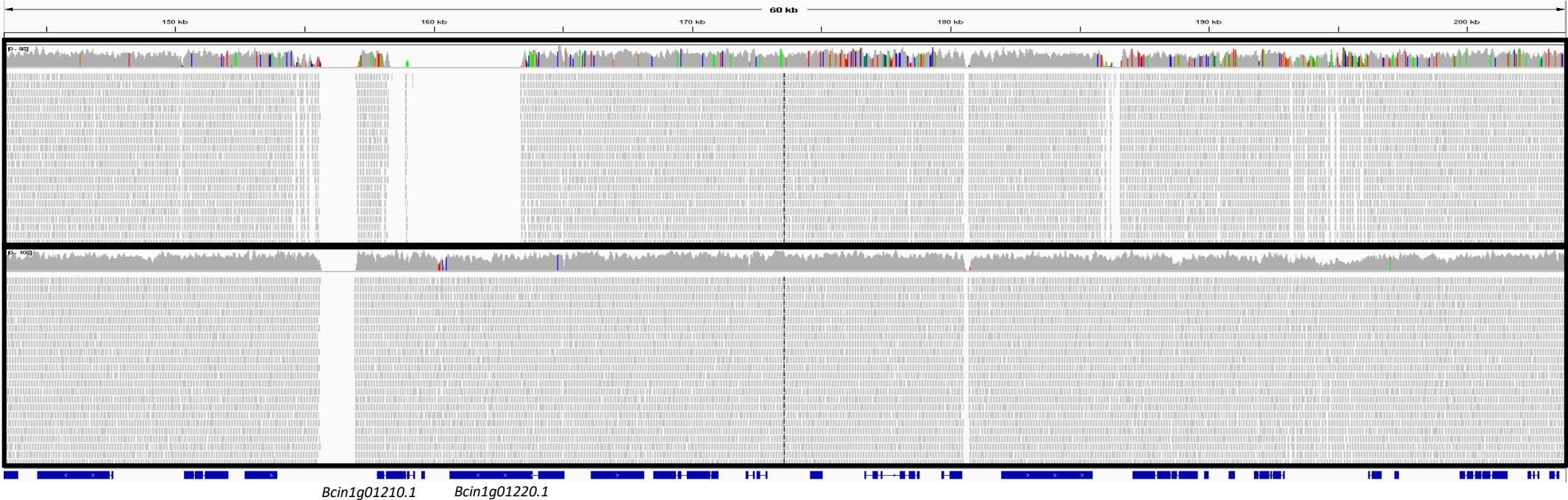



Fig 2

A

B

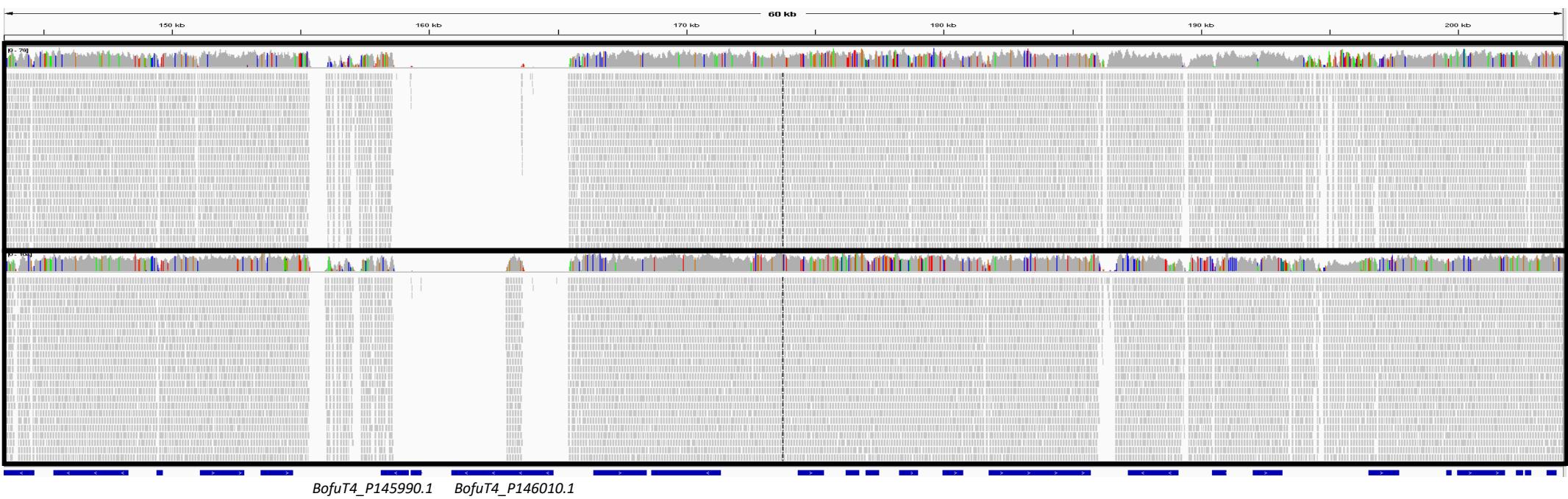
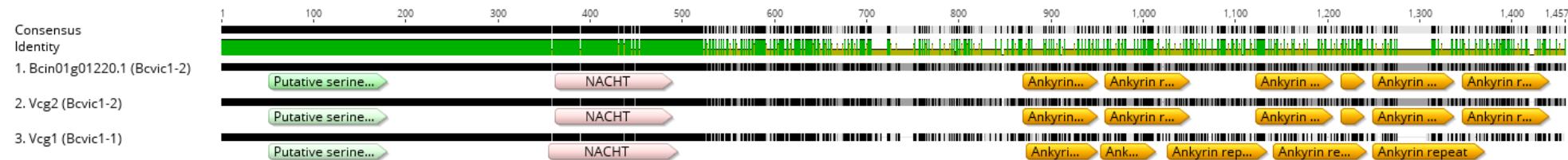
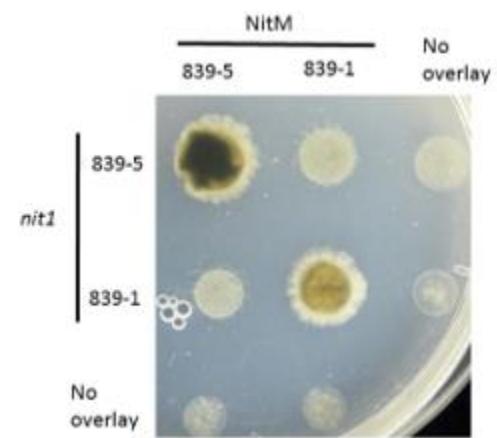
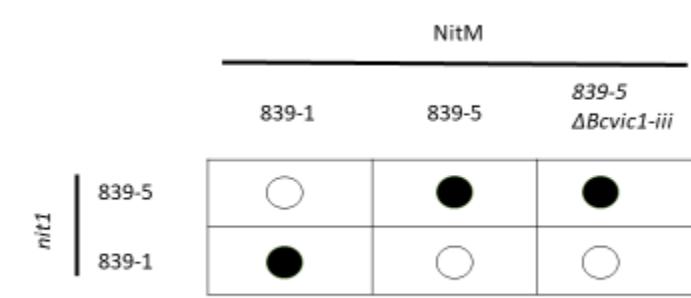
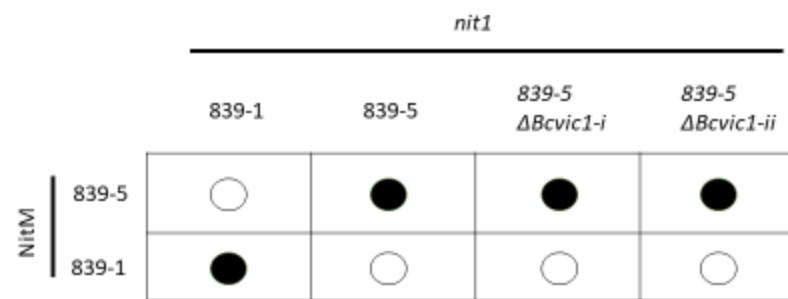
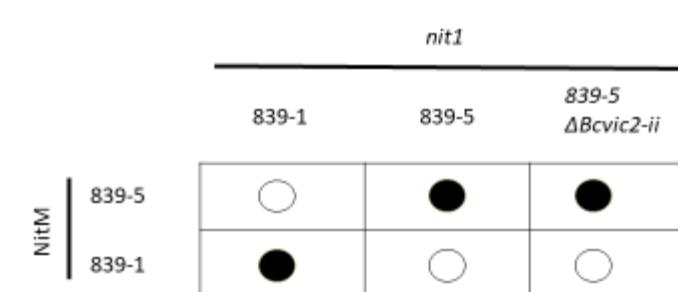
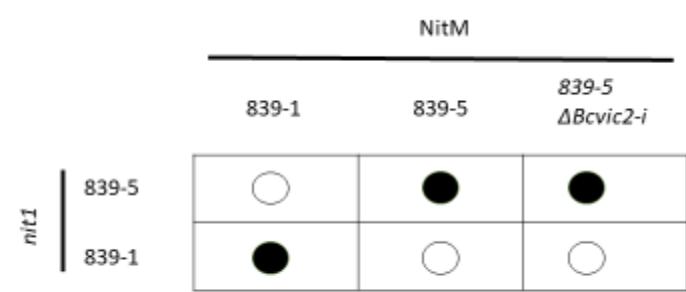



Fig 3


A



B



A

B

C

D

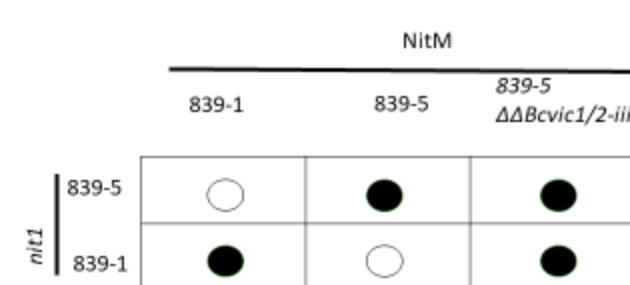
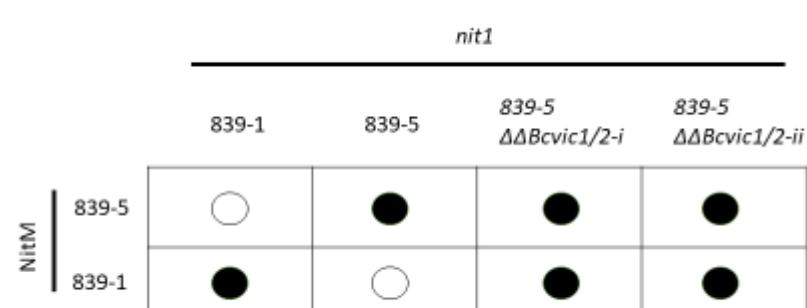



Fig 4

Fig 5

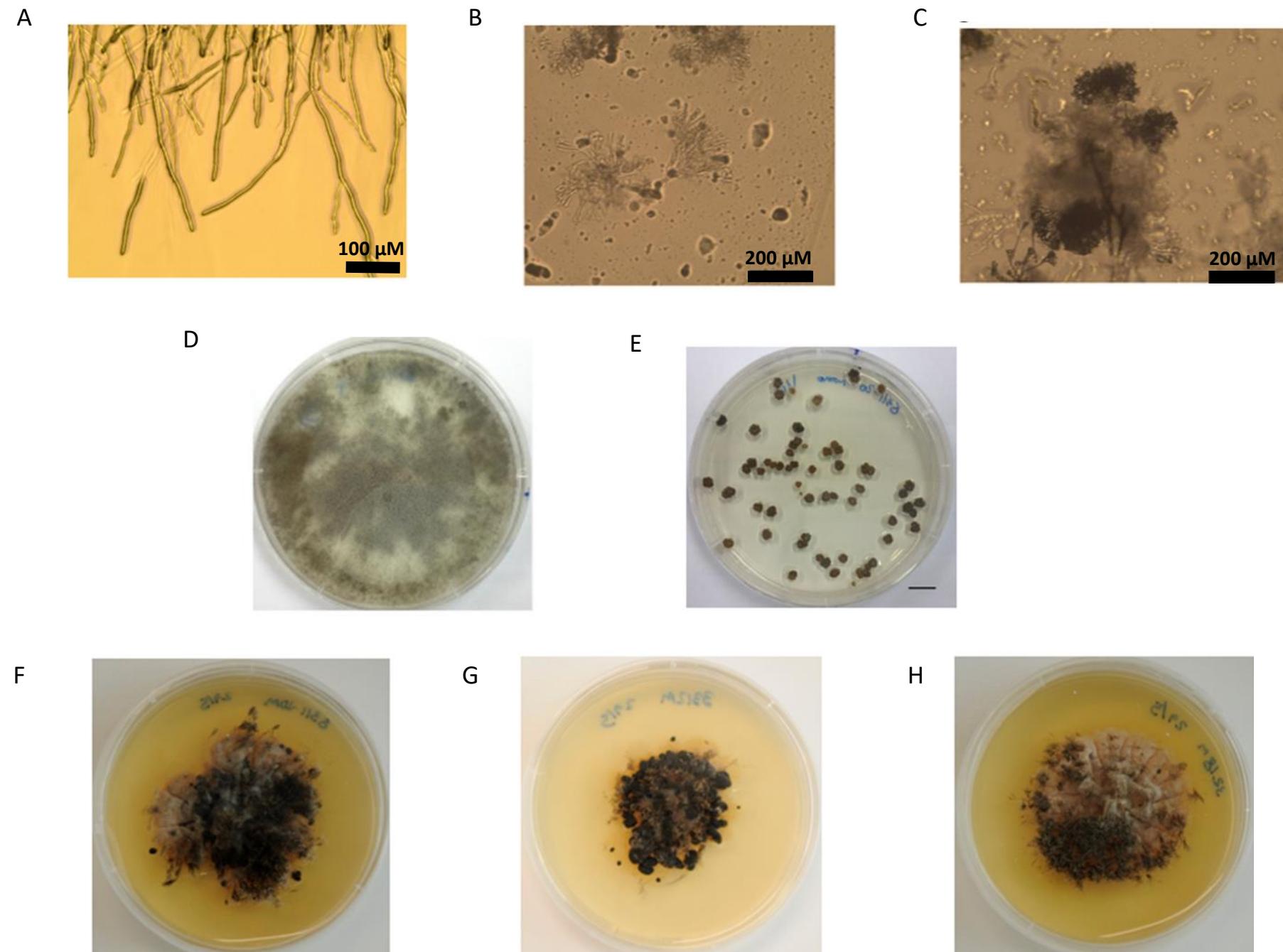
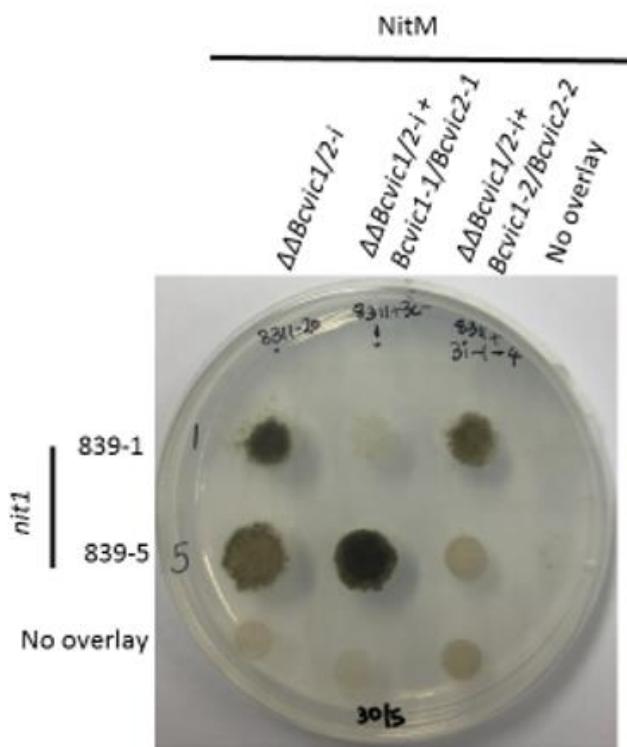
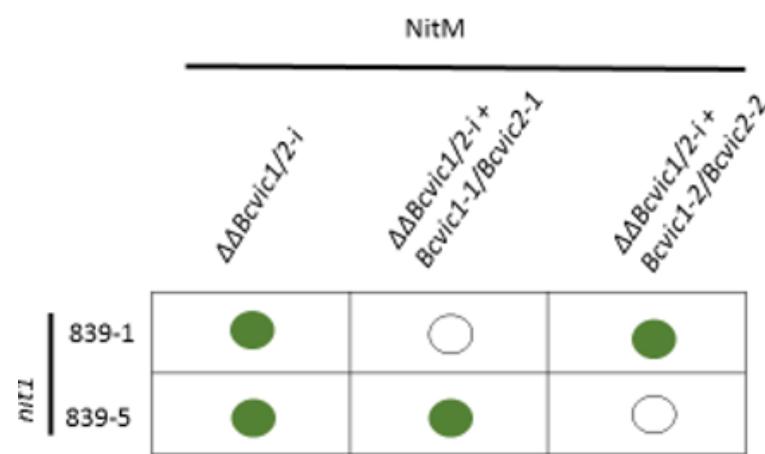
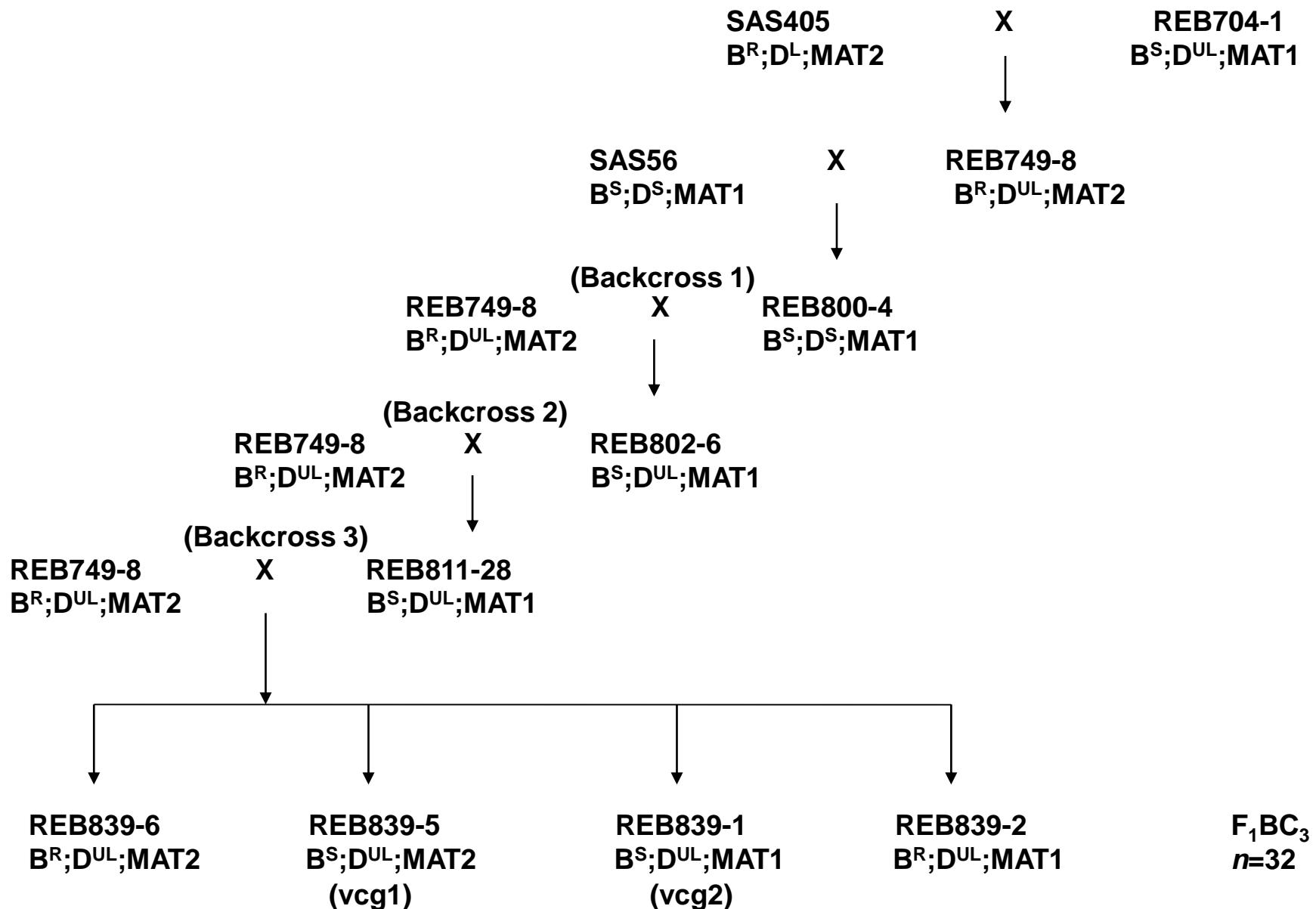
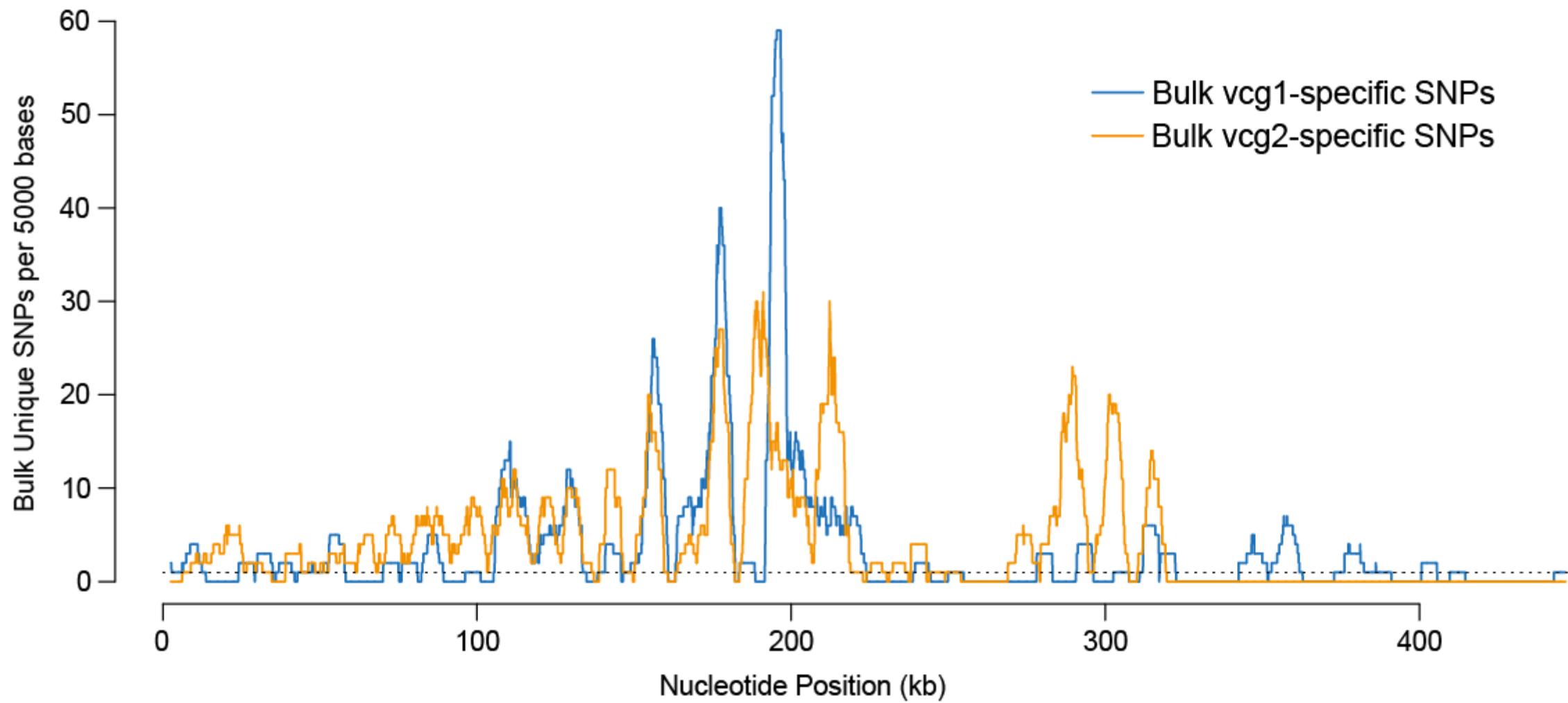
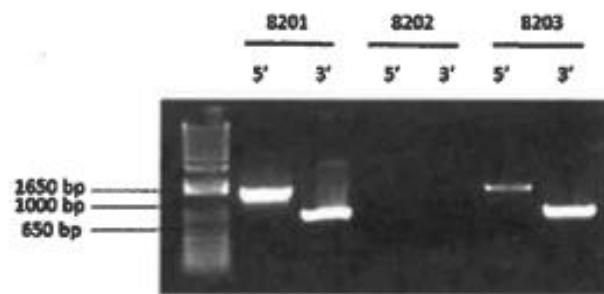




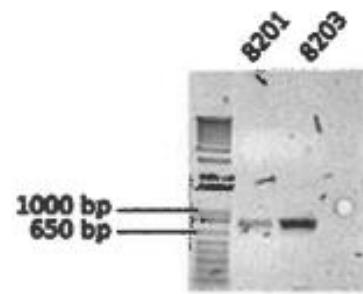
Fig 6


A

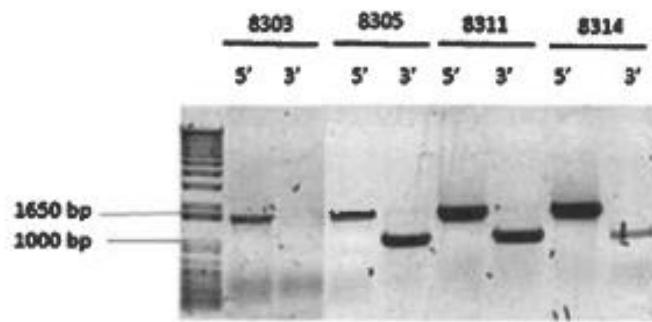


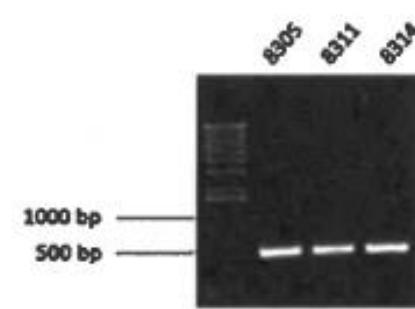
B

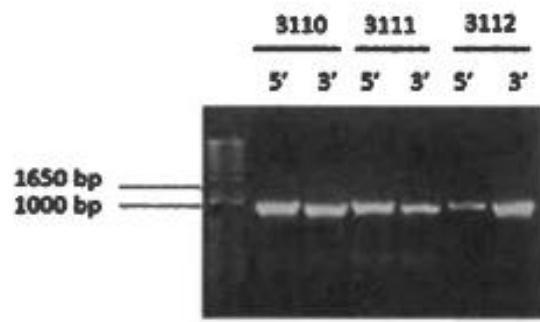

S1 Fig

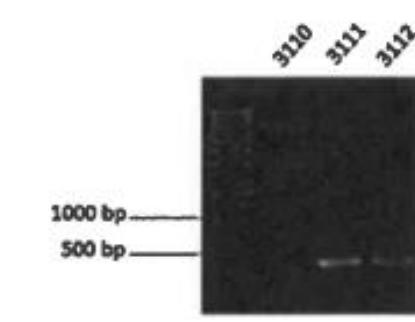


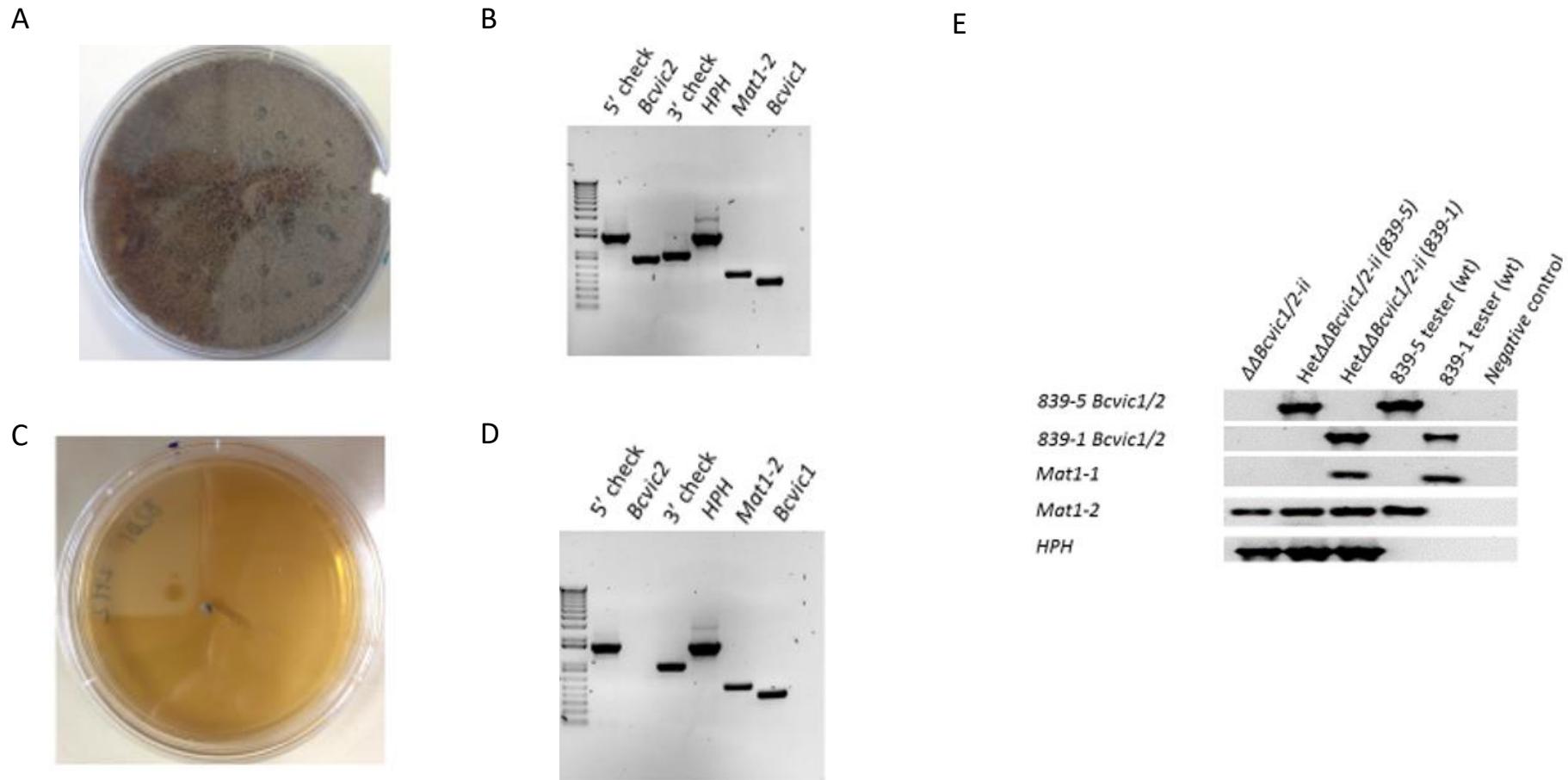
S3 Fig

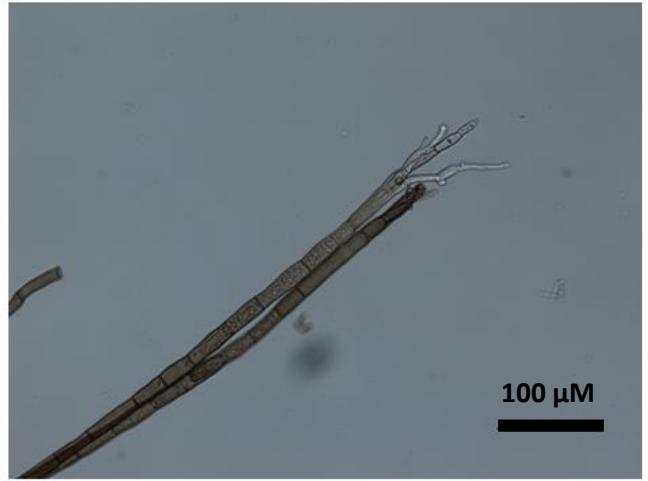

A

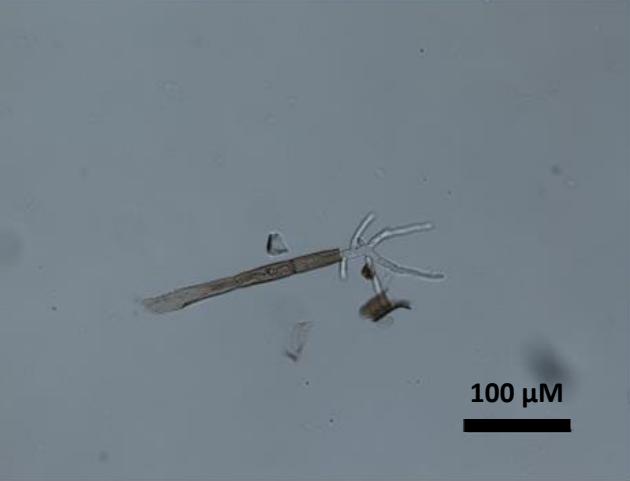

D

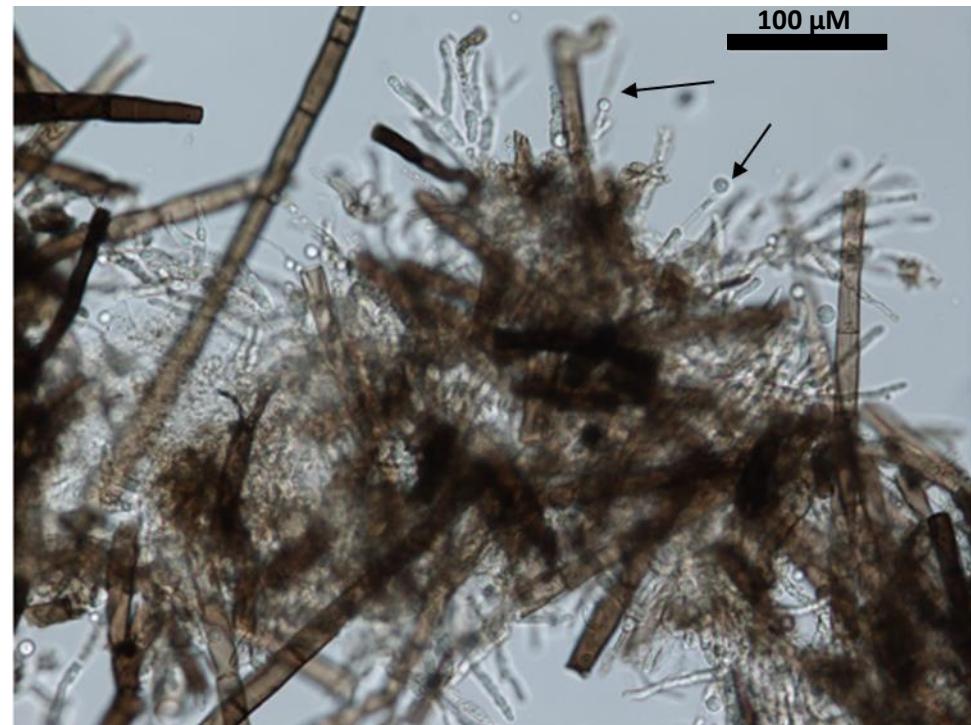

B

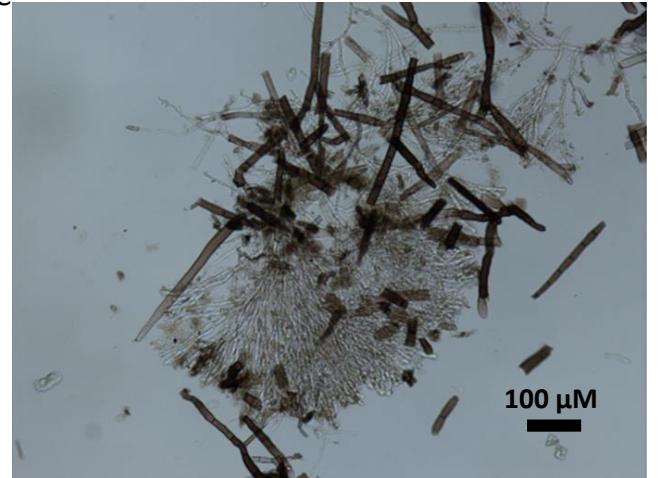

E

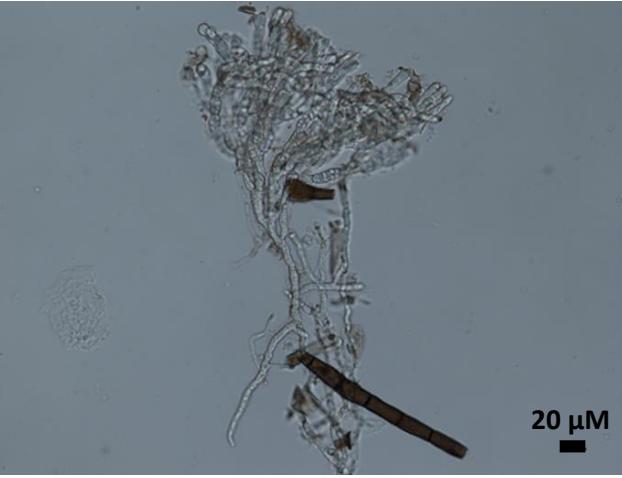

C

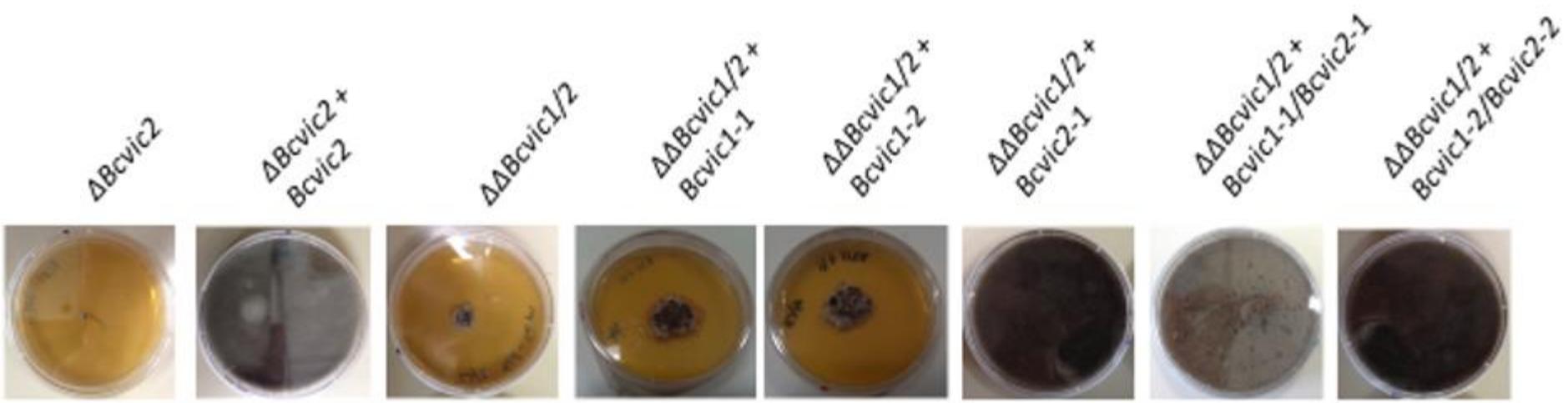

F


S4 Fig


A


B


E



C

D

