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Abstract

Alterations in the myeloid immune compartment have been observed in COVID-19, but the
specific mechanisms underlying these impairments are not completely understood. Here we
examined the functionality of classical CD14" monocytes as a main myeloid cell component in
well-defined cohorts of patients with mild and moderate COVID-19 during the acute phase of
infection and compared them to that of healthy individuals. We found that ex vivo isolated CD14"
monocytes from mild and moderate COVID-19 patients display specific patterns of costimulatory
and inhibitory receptors that clearly distinguish them from healthy monocytes, as well as altered
expression of histone marks and a dysfunctional metabolic profile. Decreased NF«B activation in
COVID-19 monocytes ex vivo is accompanied by an intact type I IFN antiviral response.
Subsequent pathogen sensing ex vivo led to a state of functional unresponsiveness characterized
by a defect in pro-inflammatory cytokine expression, NFkB-driven cytokine responses and
defective type I IFN response in moderate COVID-19 monocytes. Transcriptionally, COVID-19
monocytes switched their gene expression signature from canonical innate immune functions to a
pro-thrombotic phenotype characterized by increased expression of pathways involved in
hemostasis and immunothrombosis. In response to SARS-CoV-2 or other viral or bacterial
components, monocytes displayed defects in the epigenetic remodelling and metabolic
reprogramming that usually occurs upon pathogen sensing in innate immune cells. These results
provide a potential mechanism by which innate immune dysfunction in COVID-19 may contribute
to disease pathology.

Main text

COVID-19 is a respiratory tract infection caused by severe acute respiratory syndrome corona
virus 2 (SARS-CoV-2). In unvaccinated individuals, the majority of infections are mild or
asymptomatic, but 15% of patients develop moderate to severe disease requiring hospitalisation,


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
&9
90
91
92

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486830; this version posted April 3, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and 5% develop critical disease with life-threatening pneumonia, acute respiratory distress
syndrome (ARDs) and septic shock!. During the acute phase of infection, myeloid cells including
monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19
patients and play a major role in the pathogenicity of the disease’*. Moreover, contrasting
observations regarding the development of cytokine storms vs. immunosuppression*> and the
overactive or deficient type I IFN response in the lungs and in peripheral blood®!! have been
described for the role of myeloid cells in COVID-19'2. Despite these apparent contrasting works,
most studies have observed dysregulated innate immune responses and reduced expression of
human leukocyte antigen DR isotype (HLA-DR) by circulating myeloid cells, which is considered
a marker of immune suppression!®!3-17,

Monocytes are blood-circulating, phagocytic, innate immune leukocytes with important functions
in pathogen sensing, and innate and adaptive immune response activation during viral infection!s.
Despite their heterogeneity!®, monocytes are broadly classified into three subsets based on the
expression of CD14 and CD16 into classical (CD14°CD16"), intermediate (CD14"CD16"), and
nonclassical (CD14"°¥CD16") monocytes'®. During viral infection, circulating monocytes infiltrate
affected tissues and differentiate into inflammatory macrophages and dendritic cells (DCs)%,
contributing to pathogen clearance and tissue regeneration.

Here we deeply examined the phenotype and functionality of the main monocyte population in
humans, i.e. classical CD14" monocytes, in patients with COVID-19 and compared them to those
of healthy individuals. We found that ex vivo isolated CD14" monocytes from mild and moderate
COVID-19 patients are phenotypically different from monocytes from healthy individuals,
displaying differential expression of costimulatory receptors and MHC molecules, epigenetic
alterations and a dysfunctional metabolic profile that is accompanied by decreased ex vivo NFkB
activation, while maintaining an intact type I IFN antiviral response. Subsequent pathogen sensing
ex vivo led to a state of functional unresponsiveness that correlated transcriptionally with that of a
endotoxin-induced tolerance signature. Moreover, monocytes switched their gene expression
signature from canonical innate immune functions to a pro-thrombotic phenotype characterized by
increased expression of pathways involved in immunothrombosis. In response to SARS-CoV-2 or
other viral or bacterial components, monocytes displayed decreased expression of type I IFN
responses, decreased pro-inflammatory cytokine production and costimulatory receptor expression
and defects in the epigenetic remodelling and metabolic reprogramming that usually occurs upon
pathogen sensing. These results provide a potential mechanism by which innate immune
dysfunction in COVID-19 contributes to disease progression and identifies potential therapeutic
targets.

Phenotypic and epigenetic alterations in COVID-19 monocytes.

Global alterations in innate immune cell phenotypes have been identified in severe COVID-19!1:2!-
23, As the main human monocyte population, we focused on deeply characterizing the ex vivo
phenotype of classical CD14" monocytes in uninfected healthy individuals and patients with
COVID-19 presenting with mild or moderate symptoms (1-2 or 3-4 WHO ordinal scale for
COVID-19 severity, respectively) during the acute phase of disease. The battery of markers
examined by high dimensional flow cytometry included MHC molecules and costimulatory and
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93  coinhibitory receptors (Figure 1). Dimensionality reduction tools demonstrated that while some
94  overlap in the global phenotypes was observed among the three study groups, monocytes from
95  healthy individuals were clearly distinct from both mild and moderate COVID-19 on a tSNE plot
96  (Figure la). In addition, COVID-19 monocytes could also be distinguished based on disease
97  severity, with main cell clusters for both disease severity groups mapping separately on the tSNE
98  plots. Moderate COVID-19 monocytes expressed decreased levels of HLA-DR, in agreement with
99  previous reports!®!7, but in contrast, they displayed increased expression of HLA-ABC compared
100  to both mild disease and uninfected individuals, suggesting a skewed trend towards class I antigen
101  presentation (Figure 1b). In addition, moderate COVID-19 monocytes expressed increased levels
102 of the c-type lectin CD301. The decreased expression of the costimulatory receptor CD86 and
103 increased expression of the inhibitory receptors TIM-3?* and PD-1%° on moderate COVID-19
104  monocytes suggest an altered activation profile skewed towards an inhibitory phenotype.
105  Furthermore, there were significant differences in the expression of certain markers on mild vs.
106 moderate COVID-19 monocytes. For example, downregulation of HLA-DR and CD86 and
107  upregulation of TIM-3 and HLA-ABC compared to healthy monocytes were only significant in
108  moderate but not on mild COVID-19 monocytes, and the increased expression of CD80 in mild
109  COVID-19 compared to healthy monocytes was not apparent in moderate COVID-19. These
110 results suggest a more profound dysfunction in moderate than in mild COVID-19 monocytes.
111
112 To further define and quantify the phenotypic differences observed between healthy individuals
113 and COVID-19 patients, we applied clustering algorithms using the 12 phenotypic markers
114  previously examined. Cell clustering identified 16 different subpopulations of monocytes that were
115  distinctively distributed in healthy and COVID-19 monocytes (Figure lc, d), with 11 clusters
116  containing more than 88% of the total cells analyzed (Supplementary Figure 1). Interestingly,
117  expansion of specific monocyte subpopulations were different in mild and moderate COVID-19
118  monocytes, and while mild monocytes, in contrast to healthy monocytes, predominantly contained
119  clusters 1, 3 and 4 and did not contain clusters 2 and 5, monocytes from moderate COVID-19
120  patients significantly had reduced frequency of cells from clusters 1, 3 and 4, and contained
121  expanded clusters 6 and 8 (Figure 1d and Supplementary Table 2). As a consequence, the
122 distribution of cells from healthy, mild and moderate COVID-19 monocytes was clearly different
123 in each cluster, and while some cell clusters were composed of cells from all disease groups, such
124 as clusters 10, 11 and 13, other clusters predominantly contained cells from one or two particular
125  disease groups. For example, clusters 1, 3, 4, 12 and 16 were predominantly composed of cells
126  from mild patients, while clusters 6 and 8 predominantly contained moderate COVID-19
127  monocytes and were almost absent in monocytes from healthy individuals (Figure 1e). Normalized
128  expression levels of the markers defining each cluster demonstrated that the phenotype of cluster
129 6 was mostly driven by downregulation of CD86 and HLA-DR, while that of cluster 8 was mostly
130 driven by the increased expression of HLA-ABC (Figure 1f). Collectively, these results reveal that
131  distinct populations of circulating monocytes are enriched in mild and moderate COVID-19
132 patients.
133
134
135  As ameasurement of global differences in the patterns of activation/repression of gene expression
136  we looked at the protein expression of histone marks associated with active gene transcription
137  (H3K27Ac and H3K4Me3%%27, Figure 1g) and gene repression (H3K9Me2 and H3K27Me326-27,
138  Figure 1h) in monocytes from healthy individuals and patients with COVID-19 ex vivo. Significant
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139  differences in the expression of epigenetic marks associated with activation of gene expression
140  were found. Monocytes from mild COVID-19 patients displayed increased levels of both
141  H3K27Ac and H3K4Me3 compared to healthy individuals as expected considering the in vivo
142 pathogen sensing and subsequent activation of innate immunity by an ongoing viral infection?®,
143 However, moderate COVID-19 monocytes failed to increase H3K27Ac and H3K4Me3 expression
144  and displayed similar levels to those of healthy individuals (Figure 1g). Moreover, while no
145  differences were observed in the expression of the repressive mark H3K9Me2, the increased
146  H3K27Me3 observed in mild COVID-19 monocytes was not observed in moderate COVID-19.
147  These results suggest that the epigenetic remodeling associated with virus sensing and subsequent
148 activation of innate immunity is defective in moderate COVID-19 monocytes.

149

150  Exvivo RNA-seq uncovers metabolic dysfunction in moderate COVID-19 monocytes.

151

152  The fundamental differences in the phenotype and epigenetic marks in moderate COVID-19
153  monocytes compared to those of healthy individuals led us to investigate in depth the gene
154  expression profile of ex vivo isolated classical CD14" monocytes from patients with moderate
155 COVID-19 and compare them with those of healthy individuals (Figure 2). Principal component
156  analysis (PCA) applied to examine the global distribution of gene expression profiles from
157 COVID-19 monocytes (n=10) and healthy individuals (n=6) demonstrated a clear separation
158  between groups along PC1 (Figure 2a), with genes encoding a number of soluble factors,
159  chemokines and class II molecules as the main genes contributing to the separation between
160  healthy and COVID-19 monocytes (Supplementary Figure 2). Differential gene expression
161  analysis yielded 422 upregulated and 187 downregulated genes (>1.5-fold change, FDR<0.05) in
162  COVID-19 monocytes compared to healthy controls (Figure 2b). We used these genes to perform
163 a pathway enrichment analysis with XGR? and pathway annotations from Reactome to gain
164  insight on potential pathways differentially expressed in COVID-19 monocytes (Supplementary
165  Figure 3). Interestingly, pathway enrichment identified glycolysis as the most enriched pathway
166  in COVID-19 monocytes together with metabolism of lipids and lipoproteins. Moreover, the
167  presence of interferon signaling and cytokine signaling in the list of enriched pathways was in
168  agreement with previous reports on the role of these two pathways in COVID-19 pathogenesis®!"-23
169  (Supplementary Figure 3 and Supplementary Table 3).

170

171  We subsequently examined the directionality of expression of the enriched pathways by analyzing
172 downregulated genes and upregulated genes separately. Pathway enrichment analysis of genes
173  significantly upregulated (>1.5-fold change, FDR<0.05) in COVID-19 compared to healthy
174  individuals demonstrated a significant increase in the metabolism of a number of lipids, including
175  sphingolipids, phospholipids and lipoproteins. Other upregulated pathways in COVID-19
176  monocytes included interferon signaling, cytokine signaling and transmembrane transport of small
177  molecules. Heatmap showing the top 40 upregulated genes from the enriched pathways
178  demonstrated a somewhat variable expression patterns among COVID-19 monocytes and included
179  a number of type I interferon-stimulated genes (IFI27, IFITM?2, IFI6, I[FITM3, MXI), metabolic
180  enzymes (ASAHI, CYP27A1, SGPP2, SPHKI) and others (Figure 2d). Interestingly, the highest
181  expressed IFN-related gene was /F127, which has been suggested as a biomarker of early SARS-
182  CoV-2 infection®®. The increased type I IFN gene signature in COVID-19 monocytes was
183  confirmed by the increased ex vivo phospho-IRF3 protein expression in moderate COVID-19
184  patients compared to healthy individuals (Figure 2e) and by the increased expression of IFITM?2
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185 as an IFN-stimulated gene, measured by real-time PCR in an expanded cohort of mild and
186  moderate COVID-19 patients (Figure 2f). NFkB activation was examined ex vivo indirectly by
187  IxBa expression and directly by phosphorylation of the p65 NFkB subunit, as a readout for
188  cytokine signaling*!-*2. While mild, unlike moderate COVID-19 monocytes displayed a decrease
189 in the expression of IkBo compared to that of healthy individual monocytes, neither mild or
190  moderate COVID-19 monocytes displayed an increased expression of phospho-p65 NFkB,
191  suggesting that other additional mechanisms may be regulating the activation of NFxB, and that
192  NFxB-driven cytokine responses may be altered in patients with COVID-19, in agreement with
193 the lack of increased pro-inflammatory cytokine expression by COVID-19 monocytes (Figure 2c)
194  and with previous single cell transcriptomic data of acute COVID-19 PBMC?*. Moreover, several
195  of the genes contributing to the “Cytokine signaling” pathway enrichment (Figure 2c¢) were
196  interferon-stimulated genes (Supplementary Table 4).

197

198  We subsequently selected the set of significantly downregulated genes (>1.5 fold decrease,
199  FDR<0.05) in COVID-19 monocytes to perform pathway enrichment. The only pathway that was
200  significantly downregulated in COVID-19 monocytes was glycolysis (Figure 2h, 1 and
201  Supplementary Table 5). This metabolic profile with increased metabolism of lipids (Figure 2c)
202  and decreased glycolysis was unexpected, as glycolysis is an important driver of innate immune
203  cell function during the recognition of pathogens*. We used SCENITH™3 to metabolically
204  profile CD14" monocytes from COVID-19 patients and healthy controls ex vivo. SCENITH™ uses
205  protein synthesis as a measurement of global metabolic activity. Puromycin incorporation is used
206 as a reliable readout of protein synthesis levels (and therefore metabolic activity) in vitro and in
207  vivo. In agreement with the pathway enrichment results, ex vivo puromycin incorporation was
208  significantly decreased in moderate COVID-19 monocytes (Figure 2j) compared to healthy
209  individuals, suggesting decreased metabolic activity. Moreover, the glycolytic capacity of
210  COVID-19 monocytes was significantly decreased in moderate patients and correlated with
211  disease severity (Figure 2k), and this was accompanied by a concomitant increase in metabolic
212 dependency in monocytes from moderate COVID-19 patients. The decreased metabolic activity
213 and glycolytic capacity was further confirmed by Seahorse analysis of extracellular acidification
214  rate and oxygen consumption rate as readouts for glycolysis and oxidative phosphorylation,
215  respectively (Supplementary Figure 4).

216

217  These data suggest that monocytes from COVID-19 patients with moderate disease display
218  epigenetic alterations and a dysfunctional metabolic profile that is accompanied by decreased
219  NFxB activation, while maintaining intact type I IFN antiviral responses.

220

221  COVID-19 monocytes display impaired pathogen sensing and activation mechanisms ex vivo.
222

223 The dysfunctional metabolic profile with a downregulation of glycolysis and the defective
224 activation of NFxB, both pathways heavily involved in the activation of innate immune cells upon
225  virus encounter’??*, led us to examine the functional capacity of monocytes to sense and respond
226  to SARS-CoV2 ex vivo (Figure 3). Stimulation of CD14" monocytes from healthy individuals with
227  SARS-CoV-2 led to a significant increase in both TNF and IL-10 production (Figure 3a).
228  However, COVID-19 monocytes significantly produced less TNF as compared to healthy
229  monocytes, while no differences were observed in IL-10 expression (Figure 3b). Moreover, the
230  defect in TNF production upon stimulation was not SARS-CoV-2-specific, as stimulation with
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231  common cold coronaviruses or bacterial lipopolysaccharide (LPS) also led to significantly reduced
232 TNF production compared to monocytes from healthy individuals (Figure 3¢). In addition, the
233 expression of CD40 (Figure 3d), which is important for monocyte effector function and is
234 upregulated after virus sensing®, was increased in monocytes from healthy individuals but not on
235  COVID-19 monocytes (Figure 3e). This decreased expression was confirmed after stimulation
236  with common cold coronaviruses or LPS (Figure 3f), suggesting that the activation defects in
237  COVID-19 monocytes in response to pathogen sensing were not specific to SARS-CoV-2. In
238  addition to CD40, we also examined the expression of other cell surface receptors involved in
239  antigen presentation and activation of T cells. (Figure 3g) HLA-DR expression levels were not
240  further upregulated upon SARS-CoV-2 stimulation in any of the patient groups, and stimulation
241  still maintained the differences in expression observed ex vivo among groups (Figure 1b).
242 Moreover, while CD80 was significantly upregulated in healthy, mild and moderate COVID-19
243 monocytes after SARS-CoV-2 stimulation, only healthy monocytes increased the expression of
244  CD86 after stimulation (Figure 3g).

245

246  Epigenetic reprogramming underlies innate immune cell activation upon pathogen sensing. In
247  agreement with this, monocytes from healthy individuals significantly increased the expression of
248  H3K27Ac and H3K4Me3, associated with activation of gene expression®®?’, upon SARS-CoV-2
249  stimulation. In contrast, monocytes from moderate COVID-19 patients did not change the
250  expression of these histone marks after SARS-CoV-2 sensing. Monocytes from mild COVID-19
251  patients demonstrated an intermediate pattern of expression, with significant upregulation of
252  H3K27Ac but no change in H3K4Me3 upon SARS-CoV-2 stimulation (Figure 3h). Moreover,
253  mild patient monocytes significantly decreased the expression of repressive H3K27Me3 and
254  H3K9Me2 marks, while neither healthy or moderate COVID-19 monocytes did after stimulation
255  with SARS-CoV-2 (Figure 31).

256

257  The apparent unresponsiveness of COVID-19 monocytes to pathogen sensing was accompanied
258 by altered metabolic reprogramming. Innate immune cells that sense pathogens increase the rate
259  of glycolysis over mitochondrial oxidative phosphorylation to enable fast energy availability 37-°,
260  However, COVID-19 monocyte energetic profile measured by SCENITH™ did not increase upon
261  LPS stimulation, unlike that of healthy monocytes (Figure 3j). Moreover, moderate COVID-19
262  monocytes showed a decreased glycolytic capacity and an increase in fatty acid and amino acid
263  oxidation capacity (Figure 3k) compared to healthy monocytes, that correlated with a slight but
264  significant decrease in glucose dependency and an increase in mitochondrial dependency
265 compared to monocytes from healthy individuals (Supplementary Figure 5). These data are in
266  agreement with the enriched metabolic pathways from RNA-seq data (Figures 2c and 2h).
267  Seahorse experiments confirmed the defect in glycolysis in stimulated monocytes from COVID-
268 19 patients (Supplementary Figure 6). In summary, monocytes from COVID-19 patients display a
269  profound defect in pathogen sensing ex vivo that is more evident in moderate than in mild patients
270  and is characterized by an impairment in pro-inflammatory cytokine production and expression of
271  activation-related receptors, epigenetic reprogramming and metabolic rewiring.

272

273  SARS-CoV-2-stimulated monocytes from COVID-19 patients display a pro-thrombotic gene
274  expression signature.

275
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276  To globally characterize the gene expression signature of activated monocytes in COVID-19, we
277  performed RNA-seq on SARS-CoV-2-stimulated monocytes from healthy individuals and patients
278  with moderate COVID-19 (Figure 4). PCA clearly separated COVID-19 from healthy monocytes,
279  although some healthy monocytes clustered with COVID-19 in the principal component space
280  (Figure 4a, Supplementary Figure 7). Quantification of differentially expressed genes yielded
281 1,437 upregulated and 2,073 downregulated genes in activated COVID-19 compared to activated
282  healthy monocytes (1.5 fold change, FDR<0.05, Figure 4b). Pathway enrichment of differentially
283  expressed genes (=1.5 fold change vs. healthy monocytes, FDR<0.05) using XGR software and
284  the Reactome pathway database demonstrated a number of expected pathways involved in the
285 innate immune response to pathogens, including type I IFN signaling, cytokine signaling,
286 interactions between lymphoid and non-lymphoid cells, NLR sensing, etc (Supplementary Figure
287 8 and Supplementary Table 6). However, when we focused our analysis on pathways enriched in
288  upregulated genes in activated COVID-19 monocytes compared to activated healthy monocytes,
289  the most significantly enriched pathways were involved in hemostasis and coagulation, including
290 integrin signaling, extracellular matrix organization, signaling by PDGF, interactions with
291 activated platelets and general hemostasis (Figure 4c and Supplementary Table 7). Integrin
292  receptors are used by cells to interact with other cells and with the extracellular matrix, by binding
293  numerous matrix proteins including collagen, actin and laminin being also involved in hemostasis
294 and platelet aggregation®”. In addition, monocytes actively bind to platelets forming pro-
295  thrombotic aggregates in inflammatory and vascular pathologies*!*2. Monocytes from COVID-19
296  patients expressed increased levels of various collagen subunits (COLIA1, PLOD2, COL6A3,
297  COLG6AI), enzymes involved in collagen triple helix synthesis (COLGALTI) and a number of
298  matrix metalloproteinases (MMP1, MMP2, MMP14, Figure 4d), which are not only involved in
299  extracellular matrix remodeling, but they have also been implicated in contributing directly to
300 platelet activation and priming for aggregation*>**. These results are in agreement with the clinical
301  observations of hypercoagulability and acquired coagulopathies in patients with COVID-19%-48,
302  and suggest that monocytes from moderate COVID-19 patients upregulate a pro-thrombotic gene
303  expression signature upon further SARS-CoV-2 sensing.

304

305 Interestingly, downregulated pathways in stimulated COVID-19 monocytes included most of the
306  canonical immunological functions expected for innate immune cells upon virus sensing, i.e.
307 interferon signaling, RIG-I/MDAS5-mediated induction of interferons, activation of TCR signaling
308 in T cells, innate immune functions and interactions with non-lymphoid cells (Figure 4e and
309  Supplementary Table 8). The majority of the top 40 genes significantly downregulated in COVID-
310 19 monocytes from these downregulated pathways consisted of different interferons (/FNAI,
311  IFNA2, IFNA14 and IFNBI), interferon-stimulated genes (IFIT3, ISG15, IFIT2, ISG20, IRF7 and
312 MX2) and pathogen-sensing receptors (7LR7, AIM2, Figure 4f). This gene signature was
313  functionally confirmed by examining the activation pattern of IRF3 in response to LPS in
314  monocytes from healthy individuals and patients with mild and moderate COVID-19 (Figure 4g).
315  While healthy and mild COVID-19 monocytes significantly increased the expression of the
316  phosphorylated form of IRF3 upon LPS stimulation compared to baseline levels, monocytes from
317  moderate patients did not. This inability to activate IRF3 correlated with decreased expression of
318  the interferon-stimulated gene /FITM?2, examined in an expanded cohort of healthy, mild and
319  moderate COVID-19 monocytes after stimulation with SARS-CoV-2 (Figure 4h). Of note,
320  examination of NFxB p65 activation, as a main transcription factor involved in cytokine signaling
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321 in innate cells, demonstrated a defective activation in both mild and moderate COVID-19 as
322 compared to healthy individuals (Figure 4i).

323

324  These findings are consistent with an unexpected transcriptional and functional switch of COVID-
325 19 monocytes from canonical innate immune functions to a pro-thrombotic phenotype and
326  potential cross-talk with other cells involved in hemostasis, which suggests that activated
327  monocytes may contribute to COVID-19 severity by actively impacting hemostasis and by a
328  reduction in innate immune functions necessary for efficient virus clearance.

329

330 Endotoxin tolerance signature enriched in activated COVID-19 monocytes.

331

332 A number of works have suggested similarities between the characteristics of the immune response
333  in COVID-19 patients and those of septic individuals, including multiple organ dysfunction,
334  immunosuppression, coagulopathies and acute respiratory failure*. To determine the similarities
335  between the transcriptional signature of COVID-19 monocytes with that of sepsis monocytes, we
336  utilized publicly available microarray gene expression data on sepsis monocytes and healthy
337  controls®® and we tested the estimated fold changes for correlation with those from our ex vivo
338  (Figure 5a) and activated (Figure 5b) COVID-19 and healthy monocytes. No clear correlation was
339  observed in any of the two contrasts, which suggest that the transcriptional signature of CD14"
340  monocytes in moderate COVID-19 is not similar to that of monocytes in sepsis.

341

342 The lack of cytokine expression, activation of costimulatory receptors, impaired antigen
343  presentation potential and metabolic impairments displayed by moderate COVID-19 monocytes
344  resembled the phenotype observed in LPS-induced tolerance®!. We have previously defined an
345  endotoxin tolerance gene expression signature from publicly available microarray data on
346  monocytes stimulated in vitro with LPS>? that comprises 398 genes. Out of these, 318 genes were
347  detected in our RNA-seq dataset. We tested for correlation of the endotoxin tolerance signature
348  with ex vivo (Figure 5c¢) and activated (Figure 5d) COVID-19 monocytes, and while ex vivo
349  COVID-19 monocytes did not display a clear correlation with the tolerance signature, activated
350 COVID-19 monocytes displayed similar directionality of expression in those genes from the
351 tolerance signature that were detected in the dataset. These data were further confirmed in barcode
352 plots (Figure 5e), showing a statistically significant enrichment of the endotoxin tolerance gene
353  signature in the list of differentially expressed genes from stimulated COVID-19 monocytes
354  compared to healthy controls, for both upregulated and downregulated genes.

355

356  Discussion.

357 Here we employed metabolic, transcriptomic and functional assays to identify a number of
358  phenotypic and functional alterations of COVID-19 monocytes that characterize moderate disease
359 and we have provided the functional characteristics of monocyte responses in mild SARS-CoV-2
360 infections as an example of an efficiently and successfully cleared infection without excessive
361  immunopathology. Important alterations in epigenetic marks, metabolism and transcriptional
362  signatures characterize moderate COVID-19 monocytes and are important aspects of a global
363  unresponsiveness phenotype upon pathogen sensing characterized by a transcriptional switch from
364  canonical innate immune functions to a pro-thrombotic signature. Epigenetic and metabolic
365  defects probably underlie the observed dysfunctional phenotype as they modulate innate immune
366  functions including cytokine expression, activation, phagocytic capacity, etc**33-4, Moreover, it
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367  would be plausible that these two mechanisms are interlinked. For example, the defects in histone
368 acetylation could be due to a lack of acetyl groups, which are mostly provided by acetyl-CoA
369  generated as a glycolysis product™, which is inhibited in COVID-19 monocytes (Figures 2 and 3).
370

371 A question that remains to be answered is the driver(s) of the described circulating monocyte
372 dysfunction. Ex vivo, pathogen sensing triggers a switch in COVID-19 monocyte gene expression
373  signature from canonical innate immune functions to pro-thrombotic phenotype. It remains to be
374  determined whether other soluble factors in the microenvironment contribute to this
375  reprogramming, or even the direct infection of monocytes by SARS-CoV-2, which has been
376  previously suggested®®. The phenotype we observed in circulating monocytes is in clear contrast
377  with the functionality of monocyte-derived macrophages in the lung of COVID19 patients'®. In
378  thisregard, our study is limited by the lack of bronchoalveolar lavage fluid (BALF) paired samples
379  to compare the phenotype and function of circulating monocytes with those infiltrating the target
380  tissue. However, some previous publications examining paired airway and blood samples have
381  shown differences in the signatures of circulating and lung innate immune cells, with low HLA-
382 DR expressing, dysfunctional monocytes in the blood and hyperactive airway monocyte and
383  macrophages producing pro-inflammatory cytokines!®**-*’, The underlying mechanisms for these
384  differences remain elusive. During the course of viral infections, circulating monocytes rapidly
385 leave the bloodstream and migrate to target tissues, where after pathogen sensing and/or other
386  microenvironmental stimuli, they differentiate into macrophages and/or dendritic cells. In this
387  study we examined the functionality of monocytes during the acute phase of disease, early after
388  symptom onset. It remains to be determined whether these dysfunctional monocytes have the
389  capacity to migrate to the lungs and contribute to lung inflammation, or whether their dysfunction
390  is such that migration is impaired and monocyte migration only occurred during the very initial
391 phases of infection before monocyte acquired the impairments observed in this study. Of note,
392 some of the defective pathways displayed by COVID-19 monocytes, as for example glycolysis,
393  have been shown to be essential for migration of other cells to target tissue’®>. Finally, the results
394  described in this study beg the question of whether the functional impairments observed in
395  monocytes during the acute phase of infection are COVID-19-specific. While stimulation with
396  other viruses and bacterial products led to similar altered immune phenotypes in COVID-19
397  monocytes (Figure 3), it seems likely that these processes occur with other moderate respiratory
398  viral infections, as is the case during seasonal Influenza vaccination®. Longitudinal studies of
399  monocyte dynamics during SARS-CoV-2 and other respiratory viral infections using both blood
400 and BALF samples are warranted to answer these questions.
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616  Figure legends

617

618  Figure 1. Unique phenotype of COVID-19 monocytes. a. tSNE plots obtained from a
619  concatenated sample consisting of PBMC from n=15 healthy individuals, n=15 mild and n=15
620  moderate COVID-19 patients. b. Box and whiskers plots summarizing the median gMFI of the
621  receptors analyzed. The box extends from the 25" to the 75" percentile and the whiskers are drawn
622  down to the 10" percentile and up to the 90" percentile. Points below and above the whiskers are
623  drawn as individual points (n=25 healthy, n=15 mild and n=17 moderate COVID-19 individuals).
624  c. tSNE plots depicting the cell clusters identified by Phenograph from the concatenated sample in
625  a. d. Pie charts show the fraction of cells within each identified cell cluster in each patient group.
626  e. Bars graph show the distribution (percentage) of cells from each patient group in each identified
627  cell cluster. f. Heatmap of the expression of receptors per cell cluster displayed as modified z-
628  scores using median values. g and h. Summary of expression of activating (g) and repressive (h)
629  histone marks in monocytes from healthy individuals (n=20), mild (n=15) and moderate (n=11)
630  COVID-19 patients. One-way ANOVA with Tukey’s correction for multiple comparisons for b,
631 g, h. *P<0.05, **p<0.005, ***p<0.001, ****p<0.0001.

632

633  Figure 2. Gene expression signature of COVID-19 monocytes ex vivo. a. Principal component
634  analysis (PCA) of the gene expression data computed from all genes from ex vivo healthy
635  individual (white dots) and moderate COVID-19 (blue dots) monocyte samples. PC2 plotted
636  against PCl to explore overall variation across samples. The variance explained by each
637  component is stated in brackets. b. Volcano plot of differentially expressed genes for ex vivo
638 COVID-19 vs healthy monocytes. Red coloring shows genes with fold change >1.5 and
639  FDR<0.05. ¢. Bar plots depict significantly enriched (FDR<0.05) pathways from Reactome for
640  COVID-19 vs. healthy individual monocytes using upregulated genes in COVID-19 vs healthy
641  (=1.5 fold increase, FDR<(0.05), with the fold enrichment plotted on the x axis as log> (FC) and
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642  the bars labelled with the adjusted p value. d. Significantly upregulated genes in the COVID-19
643  vs healthy monocyte contrast that are members of the pathways in ¢, shown in a heatmap. Gene
644  expression values are scaled by row, with red indicating relatively high expression and blue low
645  expression. Both rows and columns are clustered using Euclidean distance and Ward’s method. e.
646  Phospho-IRF3 (Ser 396) expression measured by flow cytometry and plotted as gMFI for healthy
647 (n=14), mild (n=15) and moderate (n=10) COVID19 monocytes. f. IFITM? relative gene
648  expression (to GAPDH) measured by real-time PCR in sorted CD14" monocytes from healthy
649  individuals (n=7), mild (n=7) and moderate (n=13) COVID-19. g. IkBa (left) and phospho-NFxB
650  p65 (right) expression measured by flow cytometry as gMFI in healthy individuals (n=14), mild
651  (n=15) and moderate (n=10) COVID-19 monocytes. h. Bar plots depict significantly enriched
652  (FDR<O0.05) pathways from Reactome for COVID-19 vs. healthy individual monocytes, using
653  downregulated genes in COVID-19 vs. healthy (>1.5 fold decrease, FDR<0.05), with the fold
654  enrichment plotted on the x axis as log> (FC) and the bars labelled with the adjusted p value. i.
655  Significantly downregulated genes in the COVID-19 vs. healthy monocyte contrast that are
656  members of the pathways in h, shown in a heatmap. Gene expression values are scaled by row,
657  with red indicating relatively high expression and blue low expression. Both rows and columns
658 are clustered using Euclidean distance and Ward’s method. j. Representative example of ex vivo
659  expression of puromycin in CD14" monocytes measured by flow cytometry (left) and summary of
660 puromycin gMFI on healthy individuals (n=10), mild (n=8) and moderate (n=10) COVID-19
661  monocytes (right). k. Glycolytic capacity (left) and mitochondrial dependency (right) of
662  monocytes from healthy individuals (n=10), mild (n=8) and moderate (n=10) COVID-19
663  monocytes ex vivo. One-way ANOVA with Tukey’s test for multiple comparisons in e, f, g, j, k.
664  *p<0.05, **p<0.005.

665

666  Figure 3. Impaired ex vivo pathogen sensing by COVID-19 monocytes. a. Representative
667  example of the production of TNF and IL-10 by CD14" monocytes from healthy individuals, mild
668  and moderate COVID-19 patients after ex vivo stimulation with SARS-CoV-2. b. Summary of
669  percentage of TNF- and IL-10-producing CD14" from CD14" monocytes after SARS-CoV-2
670  stimulation in healthy individuals (n=19), mild (n=18) and moderate (n=19) COVID-19 patients.
671  ¢. Summary of percentage of TNF- and IL-10-producing CD14" from CD14" cells after stimulation
672  with a mixture of heat-inactivated common cold coronaviruses (CCCoV, left) or LPS (right) in
673  healthy individuals (n=12 for CCCoV and n=13 for LPS stimulation), mild (n=21 for CCCoV and
674 n=18 for LPS stimulation) and moderate (n=12 for CCCoV and n=19 for LPS stimulation)
675  COVID-19 patients. d. Representative histograms of CD40 expression by healthy individual, mild
676  and moderate COVID-19 monocytes stimulated with vehicle (grey histogram) or SARS-CoV-2
677  (orange histogram). Numbers represent percentage of CD40" monocytes relative to vehicle-
678  stimulated cells. e. Summary of percentage of CD40"CD14" from CD14" cells after SARS-CoV-
679 2 stimulation in healthy individuals (n=20), mild (n=22) and moderate (n=16) COVID-19 patients.
680  f. Summary of percentage of CD40"CD14" from CD14" cells after stimulation with a mixture of
681  heat-inactivated common cold coronaviruses (CCCoV, left) or LPS (right) in healthy individuals
682 (n=17 for CCCoV and n=14 for LPS stimulation), mild (n=18 for CCCoV and n=22 for LPS
683  stimulation) and moderate (n=13 for CCCoV and n=10 for LPS stimulation) COVID-19 patients.
684  g. Summary of HLA-DR (left), CD80 (middle) and CD86 (right) expression measured by flow
685  cytometry and plotted as gMFI of CD14" monocytes from healthy individuals (n=15), mild (n=22)
686  and moderate (n=9) COVID-19 patients stimulated with vehicle (white dots) or SARS-CoV-2
687  (CoV2, orange dots). Lines link paired samples. h. Summary of H3K27Ac (left) and H3K4Me3
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688  (right) expression measured by flow cytometry and plotted as gMFI of CD14" monocytes from
689  healthy individuals (n=20), mild (n=15) and moderate (n=11) COVID-19 patients stimulated with
690  vehicle (white dots) or SARS-CoV-2 (CoV2, orange dots). Lines link paired samples. i. Summary
691  of H3K27Me3 (left) and H3K9Me?2 (right) expression measured by flow cytometry and plotted as
692  gMFI of CD14" monocytes from healthy individuals (n=20), mild (n=15) and moderate (n=11)
693  COVID-19 patients stimulated with vehicle (white dots) or SARS-CoV-2 (CoV2, orange dots).
694  Lines link paired samples. j. Energetic status measured by puromycin expression (gMFI) of
695  monocytes from healthy individuals (n=10), mild (n=8) or moderate (n=10) COVID-19 patients
696  stimulated with vehicle (open bars) or LPS (colored bars). k. Glycolytic capacity (%, left) and fatty
697  acid and amino acid oxidation capacity (%, right) of CD14" monocytes from healthy individuals
698 (n=10), mild (n=8) and moderate (n=10) COVID-19 patients stimulated with LPS. One-way
699  ANOVA with Tukey’s correction for multiples comparisons in b, ¢, e, f and k. Two-way ANOVA
700  with Tukey’s correction for multiple comparisons in g, h, i, j. *p<0.05, **p<0.005, ***p<0.001,
701 ****p<(0.0001.

702

703 Figure 4. Gene expression signature of COVID-19 monocytes upon pathogen sensing. a.
704  Principal component analysis (PCA) of the gene expression data computed from all genes from
705  healthy individual (white dots) and moderate COVID-19 (blue dots) monocyte samples stimulated
706  with SARS-CoV-2. PC2 plotted against PCI1 to explore overall variation across samples. The
707  variance explained by each component is stated in brackets. b. Volcano plots of differentially
708  expressed genes for activated COVID-19 vs. activated healthy monocytes. Red coloring shows
709  genes with fold change >1.5 and FDR<0.05. c. Bar plots depict the top 10 significantly enriched
710  (FDR<O0.05) pathways from Reactome for COVID-19 vs. healthy individual monocytes stimulated
711  with SARS-CoV-2 using upregulated genes in COVID-19 vs healthy (>1.5 fold increase,
712 FDR<0.05), with the fold enrichment plotted on the x axis as log> (FC) and the bars labelled with
713 the adjusted p value. d. Top 40 significantly upregulated genes in the COVID-19 vs healthy
714 monocyte contrast that are members of the pathways in ¢, shown in a heatmap. Gene expression
715  values are scaled by row, with red indicating relatively high expression and blue low expression.
716  Both rows and columns are clustered using Euclidean distance and Ward’s method. e. Bar plots
717  depict the top 10 significantly enriched (FDR<0.05) pathways from Reactome for COVID-19 vs.
718  healthy individual SARS-CoV-2-stimulated monocytes, using downregulated genes in COVID-19
719  vs healthy (>1.5 fold decrease, FDR<0.05), with the fold enrichment plotted on the x axis as logz
720  (FC) and the bars labelled with the adjusted p value. f. Top 40 significantly downregulated genes
721  in the SARS-CoV-2-stimulated COVID-19 vs. healthy individual monocyte contrast that are
722  members of the pathways in e, shown in a heatmap. Gene expression values are scaled by row,
723 with red indicating relatively high expression and blue low expression. Both rows and columns
724 are clustered using Euclidean distance and Ward’s method. g. Phospho-IRF3 (Ser 396) expression
725  measured by flow cytometry and plotted as fold change to baseline (gMFI) for healthy (n=14,
726  white dots), mild (n=15, light blue dots) and moderate (n=10, dark blue dots) COVID-19
727  monocytes stimulated with LPS for 60 minutes. h. IFITM? relative gene expression (to GAPDH)
728  measured by real-time PCR in sorted CD14" monocytes from healthy individuals (n=14), mild
729  (n=7) and moderate (n=23) COVID-19 stimulated with SARS-CoV-2. i. Phospho-NF«B p65 (Ser
730  529) expression measured by flow cytometry and plotted as fold change to baseline (gMFI) for
731  healthy (n=14, white dots), mild (n=15, light blue dots) and moderate (n=10, dark blue dots)
732 COVID-19 monocytes stimulated with LPS for 60 minutes. Mixed model with Tukey’s post-test
733 for multiple comparisons for g and i. One-way ANOVA with Tukey’s test for multiple
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734 comparisons in h. For g and i, statistical significance of only baseline vs. other time points within
735  the same patient groups are shown. *p<0.05, ***p<0.001 for healthy individual comparisons,
736  #p<0.05, ##p<0.005 for mild COVID-19 patient comparisons, $$$p<0.001 for moderate COVID-
737 19 patient comparisons. ****p<(.0001.

738

739  Figure 5. Endotoxin-induced tolerance signature significantly enriched in COVID-19
740  monocytes. a. Correlation plot of sepsis vs. healthy individual gene expression signature and ex
741  vivo COVID-19 vs. healthy individual monocyte gene expression signature. Each point represents
742  agene detected in both the public sepsis dataset and our COVID-19 RNA-seq dataset. The logoFC
743  between sepsis and healthy controls is plotted against the log>FC for ex vivo COVID-19 monocytes
744  vs. healthy control monocytes, and the points are colored according to the significance and
745  direction of effect in the COVID-19 contrast (grey, not significant; red, significantly upregulated,
746  blue, significantly downregulated). b. Correlation plot of sepsis vs. healthy individual gene
747  expression signature and SARS-CoV-2-stimulated COVID-19 vs. healthy individual monocyte
748  gene expression signature. ¢. Correlation plot of endotoxin-induced tolerance gene signature and
749  ex vivo COVID-19 vs. healthy monocyte signature. Each point represents a gene detected in both
750  the endotoxin gene signature and our COVID-19 vs. healthy RNA-seq dataset. The log,FC
751  between endotoxin tolerance and LPS-response is plotted against the logoFC for ex vivo COVID-
752 19 vs. healthy monocytes, and the points colored according to the significance and direction of
753  effect in the COVID-19 contrast. Some of the most differentially expressed genes in the COVID-
754 19 vs. healthy monocyte dataset are identified in the plot. d. Correlation plot of endotoxin-induced
755  tolerance gene signature and SARS-CoV-2-stimulated COVID-19 vs. healthy monocyte signature.
756  Each point represents a gene detected in both the endotoxin gene signature and our COVID-19 vs.
757  healthy RNA-seq dataset. The logoFC between endotoxin tolerance and LPS-response is plotted
758  against the logoFC for SARS-CoV-2-stimulated COVID-19 vs healthy monocytes, and the points
759  colored according to the significance and direction of effect in the COVID-19 contrast. Some of
760  the most differentially expressed genes in the COVID-19 vs. healthy monocyte dataset are
761  identified in the plot. e. Barcode plot showing enrichment of the endotoxin tolerance gene set (ET)
762  in the differential gene expression results for SARS-CoV-2-stimulated COVID-19 vs healthy
763  monocytes. The ranked test statistics from DESeq2 for the SARS-CoV-2-stimulated COVID-19
764  vs. healthy contrast are represented by the central shaded bar, with genes downregulated in
765  COVID-19 on the left and upregulated genes on the right. The ranks of the endotoxin tolerance
766  gene set within the COVID-19 contrast are indicated by the vertical lines in the central bar. The
767  weights of the endotoxin tolerance genes (logz (FC) from the ET differential expression analysis)
768  are indicated by the height of the red and blue lines above and below the central bar. The red and
769  blue lines at the top and bottom indicate relative enrichment of the endotoxin tolerance genes (split
770  into genes with positive and negative FCs in the ET contrast) in each part of the plot.

771

772  Supplementary Figure 1. Number of cells per cluster identified by Phenograph.

773

774  Supplementary Figure 2. PCA gene loadings for RNA-seq of ex vivo isolated CD14*
775 monocytes from healthy individuals and moderate COVID-19 patients. The features
776  contributing most to PC1 and PC2 (both positively and negatively) were identified using gene
777  loadings, and the top 10 features for each PC are indicated, with arrows drawn from the origin
778  illustrating their relative weights.
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779  Supplementary Figure 3. Pathway enrichment of COVID-19 monocyte RNA-seq data.
780  Significantly enriched (FDR <0.05) pathways from Reactome for the ex vivo COVID-19 vs.
781  healthy control monocytes differentially expressed genes are displayed as a bar plot, with the fold
782  enrichment plotted on the x axis (log2(FC)) and the bars labelled with the adjusted p value.

783

784  Supplementary Figure 4. Seahorse analysis of COVID-19 monocytes ex vivo. Basal
785  extracellular acidification rate (ECAR, left) and basal oxygen consumption rate (OCR, right) were
786  measured in sorted CD14+ monocytes from healthy individuals (n=5) and COVID-19 patients
787  (n=5). **p<0.005 by paired t-test.

788

789  Supplementary Figure 5. Ex vivo monocyte glucose metabolism and mitochondrial oxidation
790  dependency. Glucose dependency (left) and mitochondrial oxidation dependency (right)
791  calculated using SCENITH™ in healthy individuals (n=10, white bar), mild (n=8, light blue bar)
792  and moderate (n=10, dark blue bar) COVID-19 monocytes.

793

794  Supplementary Figure 6. Seahorse analysis of activated COVID-19 monocytes. Extracellular
795  acidification rate (ECAR, left) and oxygen consumption rate (OCR, right) were measured in sorted
796  CD14" monocytes from healthy individuals (n=5) and COVID-19 patients (n=5) stimulated or not
797  with 100 ng/ml LPS for 18 hours. ECAR and OCR shown as fold increase relative to unstimulated
798  controls **p<0.005 by paired t-test.

799

800  Supplementary Figure 7. PCA gene loadings for RNA-seq of SARS-CoV-2-stimulated CD14*
801 monocytes from healthy individuals and moderate COVID-19 patients. The features
802  contributing most to PC1 and PC2 (both positively and negatively) were identified using gene
803  loadings, and the top 10 features for each PC are indicated, with arrows drawn from the origin
804 illustrating their relative weights.

805

806  Supplementary Figure 8. Pathway enrichment of SARS-CoV-2-stimulated COVID-19
807 monocyte RNA-seq data. Significantly enriched (FDR <0.05) pathways from Reactome for
808  SARS-CoV-2 COVID-19 vs. healthy control monocytes differentially expressed genes are
809  displayed as a bar plot, with the fold enrichment plotted on the x axis (log2(FC)) and the bars
810 labelled with the adjusted p value.

811

812  Materials and Methods.

813

814  Participants and clinical data collection.

815 Disease severity was categorized based on the WHO ordinal classification of clinical
816  improvement, where 0 (uninfected) describes people with no clinical or virological evidence of
817  infection, 1-2 describe ambulatory patients without (1) or with (2) limitation of activities, and 3-4
818  corresponds to hospitalized patients with no oxygen therapy (3) or oxygen by mask or nasal prongs
819  (4). Peripheral blood was collected from all participants and processed following a common
820  standard operating protocol. For inpatients, clinical data were abstracted from the electronic
821  medical records into summary participant sheets. Participant group characteristics are summarized
822  in Supplementary Table 1.
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823  Healthy donors (WHO 0) were Imperial College staff with no prior diagnosis of or recent
824  symptoms consistent with COVID-19, and where possible, were matched in age and sex
825  distribution with COVID-19 patients.

826

827  Blood samples from the COVID-19 patients examined in this work come from two different
828  studies. COVIDITY study is a prospective observational serial sampling study of whole blood to
829  observe the evolution of SARS-CoV-2 infection to characterize the host response to infection over
830  time in peripheral blood (ethics approval obtained from the Health Research Authority, South
831  Central Oxford C Research Ethics Committee). The population of study were >18 year old patients
832  and/or staff at Imperial College Healthcare NHS Trust/Imperial College London with confirmed
833  COVID-19 from a positive SARS-CoV-2 RT-PCR testing from NHS laboratories or Public Health
834  England. Samples were taken 3-14 days after symptom initiation and were classified as 1 or 2
835  disease severity.

836

837  Samples from patients with moderate COVID-19 admitted to hospitals in London (Hammersmith
838  Hospital, Charing Cross Hospital, Saint Mary’s Hospital) and eligible to participate in the MATIS
839  trial®! provided consent (ethics approval by the Health Research Authority, London-Surrey
840  Borders Research Ethics Committee) and blood was collected 3-14 days after disease onset and 0-
841 2 days after hospitalization and positive PCR, and before study treatment initiation. Moderate
842  patients displayed mild of moderate COVID-19 pneumonia, defined as grade 3 or 4 WHO severity.
843  Samples were collected from March 2020 to February 2021 and none of the participants had
844  received a COVID-19 vaccine.

845

846  Cell Isolation and storage.

847  Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll Hypaque (GE Healthcare)
848  gradient centrifugation <4 hours after blood collection. The PBMC layer was collected, washed
849  with PBS, resuspended at 20 million cells/ml in fetal bovine serum supplemented with 10% DMSO
850  and stored at -150 °C or liquid nitrogen.

851

852  Flow cytometry stainings.

853

854  PBMCs were thawed and rested for 2 hours at 37 °C in RPMI 1640 media supplemented with 2
855 mM L-glutamine, 5% human AB serum, and 1x Penicillin and Streptomycin. For ex vivo
856  phenotypic characterization, 300,000-500,000 PBMC were stained with LIVE/DEAD Fixable
857  Dead Cell Dyes (Thermo Fisher Scientific) according to the manufacturer’s specifications. A Fc
858  receptor (FcR) blocking step was performed using FcR Blocking Reagent Human (Miltenyi
859  Biotec) before cell surface antibody staining. The antibodies used in the stainings were the
860  following: CD14 (61D3, eBioscience), CD3 (UCHTI1, BD), CD19 (HIB19, BD), CDlc (L161,
861  Biolegend), CD40 (5C3, Biolegend), CD141 (M80, Biolegend), CD304 (12C2, Biolegend), CD86
862  (BU63, Biolegend), CD80 (BB1, BD Pharmigen), HLA-DR (L.243, Biolegend), CD301 (H037G3,
863  Biolegend), HLA-ABC (W6/32, Biolegend), TIM-3 (F38-2E2, Invitrogen), PD-1 (EH12.2H7,
864  Biolegend), and CD16 (3G8, BD). Cells were subsequently fixed using the Foxp3 staining buffer
865 kit (Thermo Fisher Scientific) following the manufacturer’s recommendations and resuspended in
866 250 ul of PBS.

867
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868  For intracellular staining, the abovementioned protocol was used and an additional step for
869 intracellular staining was added after fixation. The antibodies used for intracellular staining were
870  the following: H3K27Ac, H3K9Me2, H3K4Me3, H3K27Me3 (all from Cell Signaling
871  Technology), TNF (Mabll, Biolegen) and IL-10 (JES3-907, Thermo Fisher Scientific).
872  Intracellular staining was performed using the the Foxp3 staining buffer kit.

873

874  Samples were run on a Fortessa instrument (BD Biosciences) and analyzed using FlowJo v.10.
875  Dimensionality reduction and tSNE plots were obtained by downsampling each of the 15 samples
876  per group (healthy, mild COVID-19 and moderate COVID-19) to 1,500 events per sample, and
877  the concatenated sample was used to calculate tSNE axes using 1,000 iterations, perplexity of 40
878  and the default learning rate (4734). In order to obtain cell clusters, we used Phenograph® plugin
879  in FlowJo, with k=166 and all compensated parameters.

880

881  Generation of virus stocks.

882

883  SARS-CoV-2 virus (SARS-CoV-2/England/IC19/2020 isolate, kindly provided by Wendy S
884  Barclay) was expanded in Vero-EO6 cells. Briefly, Vero-E6 cells were plated in serum-free medium
885  (OptiPRO SFM containing 2x GlutaMAX) in T75 flasks and infected with SARS-CoV-2 at a
886  multiplicity of infection of 0.1 and a final volume of 5 ml. Cells were incubated for 2 hours at 37
887  °C, 5% CO,, after which the inoculum was removed and complete medium without serum was
888  added to the culture. Cells were incubated for 3-5 days (until cytopathic effects were observed).
889  Subsequently, cell culture supernatant was collected, centrifuged at 1000 xg, 4 °C for 15 minutes
890  and transferred to a new 50 ml tube for a second centrifugation at 1000 xg, 4 °C for 15 minutes.
891  Viral supernatant was collected, filtered through 0.45 pum and an aliquot was taken for titration.
892  The rest of the supernatant was UV-inactivated and concentrated using Retro-X concentrator
893  (Takara Bio), following manufacturer’s recommendations and published protocols®*-4,

894

895  Human coronaviruses (CCCoV) 229E, OC43 and NL63 strains (Public Health England) were
896  expanded in MRC-5 (kindly provided by Dr Rob White, Imperial College London), BSC-1 (Public
897  Health England) and LLCMK2 (Public Health England), respectively. Briefly, cell lines were
898  plated in serum-free medium (DMEM, 1x non-essential amino acids) in T75 flasks and infected
899  with CCCoV (229E, OC43 or NL63) at a multiplicity of infection of 0.1 and a final volume of 5
900 ml. Cells were incubated for 2 hours at 37 °C, 5% CO», after which the inoculum was removed
901 and medium without serum was added to the culture. Cells were incubated for 3-5 days (until
902  cytopathic effects were observed). Subsequently, cell culture supernatant was collected,
903  centrifuged at 1000 xg, 4 °C for 15 minutes and transferred to a new 50 ml tube for a second
904  centrifugation at 1000 xg, 4 °C for 15 minutes. Viral supernatant was collected, filtered through
905  0.45 pm and an aliquot was taken for titration. The rest of the supernatant was heat-inactivated
906 and concentrated using Retro-X concentrator (Takara Bio), following manufacturer’s
907 recommendations and published protocols®*4,

908

909  Titration of virus stocks.

910  For SARS-CoV-2 titration, samples were serially diluted in OptiPRO SFM, 2X GlutaMAX (1:10)
911 and added to Vero cell monolayers for 1 hour at 37 °C, 5% COxz. The inoculum was subsequently
912  removed and cells were overlayed with DMEM containing 0.2% w/v bovine serum albumin,
913  0.16% w/v NaHCOs3, 10 mM HEPES, 2 mM L-Gutamine, 1X P/S and 0.6% w/v agarose. Plates
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914  were incubated at 37 °C, 5% CO: for 3 days. The overlay was then removed and monolayers were
915  stained with crystal violet solution for 1 hour at room temperature. Plates were washed with water,
916  dried and virus plaques were counted.

917

918  For CCCoV titration, viral supernatants were serially diluted in DMEM, non essential amino acids
919  (1:10) and added to MRC-5 (229E strain), BSC-1 (OC43 strain) or LLCMK2 (NL63 strain) cell
920  monolayers for 1 hour at 37 °C, 5% COx. The inoculum was subsequently removed and cells were
921  overlayed with DMEM medium for 4-5 days (until cytopathic effects were observed). An endpoint
922  dilution assay was used to determine viral infectivity titers®.

923

924  Ex vivo stimulation assays.

925  PBMC were thawed and rested for 2 hours at 37 °C in complete media. 250,000 PBMC were plated
926  in polysterene plates (Corning) to prevent unspecific stimulation of monocytes by adherence to the
927  plastic plate®. Cells were stimulated with vehicle, UV-inactivated SARS-CoV-2 (CoV-2), 100
928 ng/ml LPS or a mixture of heat-inactivated common cold coronaviruses consisting of the 229E,
929  OC43 and NL63 strains (CCCoV) at 10° viral particles per 10° cells for 20 hours. For intracellular
930  stainings, GolgiStop™ (BD Biosciences) was added to the cultures 10 hours after stimulation for
931 atotal of 10 hours.

932

933  RNA isolation, RNA quality control, and sample preparation for RNA-seq analysis.

934  Sorted CD14" monocytes from total PBMC either ex vivo or after a 20 hour stimulation with 10°
935  UV-inactivated SARS-CoV-2 viral particles per 10° cells were lysed with RLT Plus buffer
936  (QIAGEN). RNA was isolated using the RNeasy Micro Plus Kit (QIAGEN) following the
937  manufacturer’s guidelines in Appendix D of the QIAGEN RNeasy handbook. RNA quality was
938 quantified using the Agilent RNA 6000 Pico Kit (Agilent Technologies) following the
939  manufacturer’s guidelines. RNA samples were stored at -80 °C until further processing.

940

941  RNA-seq analysis.

942  RNA-sequencing was performed by the Oxford Genomics Centre. PolyA-enriched strand- specific
943  libraries were prepared using NEBNext Ultra I Directional RNA Library Prep Kits (Illumina). All
944  samples were pooled together and 150bp PE reads were sequenced on a Novaseq system, resulting
945  in a median read count of 28M per sample.

946
947  Raw data was processed using the Sanger Nextflow RNA-seq pipeline
948 . Briefly, reads were aligned to the reference genome (GRCh38.99) using

949  STAR v2.7.3% in the two-pass mode (ENCODE recommended parameters) and gene expression
950  was quantified using featureCounts®’. Mapping statistics and quality control metrics from FastQC
951  and RNA-SeQC*®® indicated high data quality for all samples with no outliers detected.

952  RNA-seq data analysis was performed in R v4.1 in Rstudio Server. Features that did not have at
953  least 10 reads in at least 6 samples (the size of the smallest biological subgroup) were filtered out
954  using the genefilter package®, resulting in a processed data set on 16,328 features. Principal
955  component analysis (PCA) with the prcomp function was used to explore the relationship between
956  samples, after the filtered gene counts were transformed using a regularized log transformation
957  from the DESeq27° package.

958
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959  Differential gene expression analysis was carried out using DESeq2, comparing unstimulated
960  monocytes from COVID-19 patients (n=10) to unstimulated monocytes from healthy controls
961 (HC) (n=6), and SARS-CoV-2-stimulated monocytes from COVID-19 patients (n=14) to
962  stimulated monocytes from HC (n=12). Genes with FDR<0.05 and a fold change (FC)>1.5 were
963  deemed significantly differentially expressed. Pathway enrichment analysis was performed using
964  Fisher’s exact test in XGR? with annotations from Reactome, using all genes retained in the
965  processed RNA-seq data as the background, and employing the xEnrichConciser options. An
966  adjusted p-value (BH FDR) threshold of 0.05 was used to identify significantly enriched pathways.
967  Pheatmap package was used to draw heatmaps illustrating variation in gene expression across
968  samples.
969
970  For testing the enrichment of the sepsis signature in our datasets, publicly available microarray
971  gene expression data on sepsis patients and healthy controls were accessed using GEOquery
972 (GSE46955)>°. Gene expression between patients and controls was compared using limma’!, for
973  both the unstimulated and stimulated conditions. Subsequently, the estimated fold changes were
974  tested for correlation with those from the COVID-19 vs HC results. Where multiple probes were
975 available for the same gene in the microarray dataset, the top ranked probe was selected for the
976  comparison.
977
978  For comparison to the endotoxin-induced tolerance signature, we have previously defined an
979  endotoxin tolerance gene signature’? from publicly available microarray data on in vitro LPS-
980  stimulated monocytes. Briefly, two datasets (GSE15219°? and GSE222487%) were accessed
981  through GEO. Genes that were differentially expressed following a single LPS treatment (LPS
982  response genes), and that were also differentially expressed between singly- and doubly-stimulated
983  cells were identified. This resulted in an endotoxin tolerance gene signature comprising 398 genes,
984  of which 318 were detected in the RNA-seq dataset. We tested for enrichment of this gene set in
985  the COVID-19 versus healthy contrasts using the geneSetTest function and barcodeplot functions
986  from limma.
987
988  Quantification of mRNA expression by RT-PCR.
989  Isolated RNA was converted to complementary DNA by reverse transcription (RT) with random
990  hexamers and Multiscribe RT (TagMan Reverse Transcription Reagents; Thermo Fisher
991  Scientific). For IFITM?2 expression assays, the Hs00829485 sH probe was used from Thermo
992  Fisher Scientific. The reactions were set up using the manufacturer’s guidelines and run on a
993  StepOnePlue Real-Time PCR Machine (Thermo Fisher Scientific). Values are represented as the
994  difference in cycle threshold (Ct) values normalised to GAPDH expression (Hs02786624 gl) for
995  each sample as per the following formula: Relative RNA expression = (2-ACt) x 100074,
996
997  Metabolic profiling using SCENITH™.,
998 SCENITH™ s a flow cytometry-based method for profiling energy metabolism with single cell
999  resolution® ex vivo or after in vitro stimulation in sorted cells or complex cell mixtures. It uses
1000  puromycin incorporation to nascent proteins as a measurement for protein translation, which is
1001  tightly coupled to ATP production and therefore can be used as a readout for the energetic status
1002  of the cells at a given time.
1003
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1004  PBMC were plated at 250,000-300,000 cells per well in 96 well plates and rested for 2 hours at 37
1005  °C, 5% CO; for ex vivo stainings, or rested for 2 hours and stimulated for 20 hours with 100 ng/ml
1006  LPS. Subsequently, cells were treated for 45 minutes at 37 °C, 5% CO; with Control (vehicle, Co),
1007 100 mM 2-deoxy-D-glucose (DG, Sigma-Aldrich), 1 uM oligomycin (O, Sigma-Aldrich) or a
1008  combination of both drugs (DGO). 10 pg/ml puromycin was added to all conditions for the same
1009  amount of time. Cells were subsequently washed with room temperature PBS and stained for
1010  wviability, cell surface markers and fixed as described above. Intracellular staining of puromycin
1011  was performed using the anti-puromycin monoclonal antibody (1:600 dilution, clone R4743L-Eg)
1012 for 45 minutes at 4 °C. The anti-puromycin antibody and metabolic inhibitors for SCENITH™
1013 were kindly provided by Dr Argiiello.

1014

1015  For the analysis of the energetic status of cells, puromycin geometric mean fluorescence intensity
1016  was analyzed in each of the four abovementioned conditions (Co, DG, O, DGO). To calculate the
1017  percentage of glucose dependence, the following formula was used: 100*((Co-DG)/(Co-DGO).
1018  Mitochondrial dependence (%) was calculated as 100*((Co-O)/(Co-DGO). Glycolytic capacity
1019 (%) was calculated as 100-Mitochondrial dependence. Fatty acid and amino acid oxidation
1020  capacity (%) was calculated as 100-Glucose dependence.

1021

1022 Metabolic profiling using Seahorse.

1023 Sorted CD14" monocytes from unstimulated or SARS-CoV-2-stimulated (20 hours at 37 °C, 5%
1024  CO;) PBMC were plated at a range of 80,000-120,000 in duplicates for healthy and COVID-19
1025  sample pairs, based on the minimum cell number obtained for each pair of samples in individual
1026  experiments. An XFp real-time ATP rate assay kit (Agilent Technologies) was used following
1027  manufacturer’s recommendations and samples were run in a Seahorse XF HS Mini Analyzer
1028  (Agilent Technologies). For basal oxygen consumption rate (OCR) and extracellular acidification
1029  rate (ECAR) measurements, 10 cycles were run and their average was taken as basal values per
1030  subject tested.

1031

1032 Phosphorylation assays by flow cytometry.

1033 For ex vivo phosphorylation assays, thawed PBMC were plated at 250,000 cells per well in 96 well
1034 polypropylene plates and rested for 2 hours at 37 °C, 5% CO,. PBMC were fixed with pre-warmed
1035 (37 °C) Cytofix (BD Biosciences) for 20 minutes at 37 °C, 5% CO; and permeabilized with Perm
1036  III buffer (BD Biosciences) overnight at -20 °C. Cultures were subsequently stained with CD3
1037 (UCHTI1, BD Biosciences), CD20 (H1, BD Biosciences), CD14 (M5E2, Biolegend), CD16
1038  (B73.1, BD Biosciences), phospho-IRF3 (Ser 396, Bioss), phospho-NFkB p65 (Ser 529, BD
1039  Biosciences) in PBS for 1 hour at room temperature, washed with PBS and resuspended in 250 pl
1040  PBS.

1041

1042 For phosphorylation assays after LPS stimulation, PBMC were plated as above and stimulated
1043 with 100 ng/ml LPS for a total of 1 hour. Samples were fixed at 0, 5, 15, 30, 45 and 60 minutes
1044  after LPS addition for 20 min at 37 °C, 5% CO; and stained as above.

1045

1046  Acknowledgements.

1047  We thank the participants who volunteered for this study and the clinical teams of the COVIDITY
1048  and MATIS studies for patient recruitment and blood collection. We thank Dr Parisa Amjadi and
1049  Ms Radhika Patel for their help with flow cytometry sorting. AKM is a Wellcome Trust PhD

23


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486830; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1050  scholar. KLB and EED are funded by the Wellcome Trust [108413/A/15/D]. For the purpose of
1051  Open Access, the author has applied a CC BY public copyright license to any Author Accepted
1052  Manuscript version arising from this submission. We thank the Wellcome Sanger Institute’s
1053  Human Genetics Informatics (HGI) team for mapping the RNA-sequencing reads. This work was
1054  funded by a Rosetrees Trust grant to MDV (M971).

1055

1056  Author contributions.

1057  AKM performed experiments, analyzed data and wrote the manuscript, KLB analyzed the RNA-
1058  seq data and wrote the manuscript, EJ performed experiments, LB prepared SARS-CoV-2 virus
1059  stocks, CS and NG performed experiments, CES and RQ provided patient samples, RA provided
1060  the SCENITH™ kit reagents and advised on SCENITH™ data analysis and interpretation, WSB
1061  provided SARS-CoV-2 virus stock, NC provided patient samples and advised on the clinical
1062 aspects of COVID-19, GPT provided COVID-19 patient samples and advised on the clinical
1063 aspects of COVID-19, EED supervised RNA-seq data analysis and wrote the manuscript, MDV
1064  designed the study, performed experiments, analyzed data, wrote the manuscript and obtained
1065  funding. All authors revised and contributed to the editing of the manuscript.

1066

1067 Competing interest declaration

1068  The authors declare no competing interests to declare.

1069

1070  Data availability.

1071 RNA-seq data will be available at the European Genome-Phenome Archive (EGA) upon
1072  manuscript acceptance.

1073

1074  Additional information.

1075  Corresponding author: Margarita Dominguez-Villar, m.dominguez-villar@imperial.ac.uk

1076

1077

1078

1079

1080

24


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

a All Healthy Mild Moderate All b HLADR HLA—ABC CD80
* * 1 Healthy
-1 . : ) Healthy = Mild
. . . " Mild 2000 * 1000 B Moderate
N g B B} 4 ., nl B Moderate ok
'-5 . i https://\ rg/10,1191/20 4.03% s version posted Ap i3 20 2 h cop r| or thig pfepfint (which
n . as| not certified by| peer rgview) ig| the authOr/funder, wi s granted bioRxiv a lig e%(? to| diSpja the6 p |nt rpetyity. it is made
B I A A A M ML M R N I M M *availablé under aCC-BY-NC-ND 4.0 Internatjonal
tSNE1
. 0
B 2
Healthy Mild Moderate = CD86 TIM3 CD14
= 4 sokokok
=5
. 6
7 1500 150 400
= 8 .
= ?0 1000 100 %0 . .
| | % i 200 é i
= 12 .
50
- 13
_ - 100 E i [
9] . 15
e 2100 = 16 0 0 0
1 Healthy S PD1 CD301 CD141
= Mild E | * "
Il Moderate @ * 400 % 600
S 501 4009 300
% 400
g | 200 0
5] 200
E 0 T T T | T T T T o % ; 10 * ﬁ
12 3 5678910111213141516 =N . Oé N
Cluster number o
f ] g h
_ 2 H3K27Ac H3K4Me3 1 Healthy H3K9Me2 H3K27Me3 [ Healthy
2 5 Rk = Mild = Mild
€ 6 Il Moderate Bl Moderate
5 ***
c 7 ok ok
- 8 2000 40000 40000 20000
g 8 ’—w—‘ . %
[2]
5 :I]? 1500 30000 30000 * 15000 ’_U_l
12
13 1000 20000 20000 10000
8
16 T 500 ¢ 10000+ o 10000 é E 5000
3 = = =
[a) [a) @ o 0 @ o 0
O O

Figure 1



https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

o Healthy b -~ False c
e COVID-19 Significance . e
1. ] e ] ~ADAMTSZ | ) S_f)hingoli id metabolism - . . FDR=2.3e-2
bioRxiv preprinedoi: https://doi.org/10.1101/2022.04.03/686830; this version posted April 3, 2022. The copyright holder for this preprint (which
25. was not certjfied by, peer review) is the author/funder, who has granted bioRxiv a licensdrterdispiighaingeprint in perpetuity. It is Fhéte.2e-3
— =20- available under aCC-BY-NC-ND 4.0 Internatbohnal thnse. )
X 3 L] ’g ospholipid metabolism - FDR=3.0e-2
© oe =1 e
: 0. ® 'é’ Cytokine Signaling in Immune system - FDR=1.6e-2
8 ) OO ! 10. cLu ’G:‘g)_z;%sjfy Metabolism of lipids and lipoproteins - FDR=4.4e-3
=25, ° IGLV3-10" | Transmembrane transport of small molecules FDR=4.8e-2
° WDRE6-ASS, . OCSTAMP
J 4 ﬁ Niiwi""f‘{" 0.0 05 1.0 1.5 2.0
-60 230 0 30 60 0. | | | Enrichment changes log2(FC)
PC1 (28%) 0 10 20
log2(FC)
d e  pRF3(Serav) i f o Healthy
‘ B Moderate IFITM2  mm Moderate
‘ !—VJ_\—;I—\ ‘ r—‘:‘—r—l?x 5000 * *
LEE‘HB\ 23 507
IFi27 ) 4000 . P
o 2
x
. EE:z 0 g 3000 :12: 304
] P © 2000 e 204
DDX58 -2
[ z
PIK3R4 & 1000+ . X 104
ASAH1 € l
GPD1L
M o e
ANKRD1
Sy kB 65 (Ser 529
it g a PPBS (Ser 529)
- S *k Kk [ Healthy
ELou7 2000 2000 = Mild
L . Bl Moderate
DHCR24
COKg 1500 1500
NUP107
ey T T @
KPNAS = 1000 S 1000
Shk o )
8388888388888 385385333 -
EERERRREE 500 500
0- 0-
h i e
Glycolysis FDR=7.1e-5 GPI !
PFKP = 2
Glucose metabolism FDR=2.4e-4 PFKFB4 = 4
ENO1
0 1 2 3 4 PHKA2 0
Enrichment changes log2(FC) PFKFB2 -1
IIIIOQOIIOQOOQ0QOOQOQO
O000Q000Q0Q000O00Q0QQ 2
< SsSssSss<ss£s = |
j g S983939558979 -
o 8000 * [ Healthy k 100 * S100 * © © e e ooooo©
= Mild = > 1 Health
»] / T 6000 B Moderate . g = Mild y
Al ° 8 60 g 60 B Moderate
| S 4000 g 8
404 \ E g 40 @ 40
2 | < 2000 S E 20
\ 9] 8

Figure 2


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3

a : b = Healh c CCCoV LPs [ Healthy
Vehicle CoV2 = Mild y ok " = Mild
Il Moderate
w111 0.6 | ] 44 " B Moderate ok
1 bioRxiv preprint doj: https://doi.org/10, 1101/2022 04.03.486830%#is vergion posted April 3, 2022. The copylight holder for tl |3kprepr| t (which
iedi by.peer review) is Moﬂfunderg@\mo rantgd bioRxiv a licens e pfeprint in
. able urié;ler aCCsBY-NC-ND 4.0 Internatlonal licg =
1 o 609 ,;,; © 60
k 8 . 8 8 TNF
% 404 ¥ 3 40
o) o Qa o)
(@) (@) (@)
Y 4 20+ L) 0 0
Mild = = #
10° 0
o3 0.4 80— 15 50—
“10.3 0.9 2 604 o 2 ' e 2% .
ER g 10 3 :
10t + ° (1] ° + o + 304 ° . ”_-10
Moderat I 404 o s ¢ o = o
oderate 5 " ° ¢ 3 3 204 .
(8 £ O 54 . ° (8 S e %
w A * 204 [N 5 ° . 5 -
z "1 2.2 = =) 2 104
=S N el i 5 5
IL-10 0- 0- 0-
d =1 Vehicle CCCov LPS
ok f
=1 CoV2 3 Healthy
] -
Health Mild Mod = Mid
. ealthy i o oderate 60— ¥k 60— 25— B Moderate
28 | ™1 5.9 1.9 . .
00 w0 w0 ® ® 3 20+ .
w] I ] w + 40 + 40 + .
‘ ) * ) I 154 o
5 . e 9 3 .
2. | - M T : H 104 °° °
3.4 kD S 20 yo o g9 . - | § |1
A e Y i T I ) : ) e o O 54 %
coa0 : R :
% 0- 0- 0-
-~ Vehicle h
g sokkok - CoV2 -~ Vehicle
|—| -»- CoV2
KKKk sk
5000~ —‘ T 8000~ 3000 Haokx - Aokok 40000+ ’_‘
— * —
i m 0
< 4000 o 400-] ’_‘ ’_‘ T 6000 = < 30000
4 = 6000 © 2000 2z:n
@ 3000 © 300+ o 2 ®
D: % % 40004 ~ %’ 20000
N
é 2000 g 8 200 ﬁ 8 % 10004 O/. § 100004 o—e
1000 % 1004 2000+ T & e e
oL 0 0 . 0 .
Healthy Mild Moderate Healthy Mild Moderate Healthy Mild Moderate Healthy Mild Moderate Healthy Mild Moderate
I J sk k * *
20000+ 20000- < Vehicle 150004 % 03 Vehidle  — 490- c 15 *
_ *okkk o - CoV2 c m LPS s o
Th c =
S 15000+ S 150004 G\_ S Z 807 i
o > £'10000+ @ X 3210+
™ o 5 S 60 g
2 10000 e 10000- 5 8 335
= = 5]
~ ) o o 404 - 8
N X i 5000+ = 2 % 5
X 5000 52} 5000— 5 T O
[52) T = g 20 <
T o > o
0- - O o 0-
Healthy Mild Moderate Healthy Mild Moderate Healthy Mild Moderate \@ ®
2>
¢ N


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

a o Healthy b Significance "E?\ljsee

C

® COVID-19

[e]

L . . .40 . . . . : : .

40 blocl)?xw preprint doi: http8/ doi.org 1Q!1mf2022.04.03.486830; this version posted -nrgea,sgpgge [ﬁ{é@a%?&yg ght holder for higRpregyint (which
oe Was not certified by peer review) is the author/funder, who has granted bioRxiv a'license to disp

° N ) available under aCC-BY-NC-ND 4.0 Internatié)nal licens

SLC38A5

o e}
e O o gSO

S
® o > IFITT,
8 .
1

ADAMTS2 OCSTAMP

40 . BZBTFJ«" PLEKHF2
B STE ToRiB

o BT

. 10 .=y
-50 0 50
PC1 (41%) N

10
log2(FC)

Figure 4

20

30

COL1A1
MMP1

COLGALT1

]
N

)

p130Cas linkage to MAPK signaling for integrins FDR=7.6e-3

Response to elevated platelet cytosolic Ca2+ FDR=7.6e-3

i)
N

Immunoregulatory interactions between a Lymphoid

RIG-1/MDA5 mediated induction of IFN-alpha/beta - FDR=1.4e-4

pIRF3 gMFI (Fold change vs. o)

p-p65 gMFI (Folg change vs. 0)

e Enrichment changes log2(FC)

ay the preprint in perpetuity. It is made

e.
emaphorin interactions FDR=1.4e-3

Extracellular matrix organization FDR=3.5e-3

Developmental Biology FDR=2.8e-8

Cell-Cell communication FDR=9.8e-3

Signaling by NOTCH FDR=7.6e-3
Signaling by PDGF FDR=9.8e-3

Hemostasis FDR=9.8e-3

0.0 0.5 1.0 1.5 2.0 2.5

Interferon alpha/beta signaling - FDR=1.8e-17
Extrinsic Pathway for Apoptosis - FDR=9.5e-4
and a non-lymphoid cell’ AR S

Interferon Signaling - FDR=1.4e-13

TCR signaling - FDR=3.4e-4

Interferon gamma signaling - FDR=1.4e-4

Cytokine Signaling in Immune system - FDR=1.4e-13
Innate Immune System-  FDR=8.9e-6

Immune System-+ FDR=1.4e-13

0.0 0.5 1.0 1.5 2.0
Enrichment changes log2(FC)

IFITM2

2000~
*okokok -O- Healthy
-8~ Mild

1500 -® Moderate

1000

500

mRNA (relative x103)

0.0 T T T T T T 0-
0 5 15 30 45 60 ’b\&@,
Time (minutes) E ¥
2.0 * -O- Healthy

-@- Mild
-® Moderate

00—

T T T T
0 5 15 30 45 60
Time (minutes)


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

o Downregulated
Not significant
® Upregulated

b - Downregulated
Not significant
® Upregulated

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486830; this version posted April 3, 2022. The copyright holder for this preprint (which

was not certified by peer review) is t

Figure 5

St

Hessintetekinder, who has granted bioRxiv a licenséBdRplay the preprint in perpetuity. It is made

IS

avallat?Ie under aCC-BY-NC-NB4,0, International |icen$e.

=
& £
E
e @
o o
5 o 2.5
s =
g >
>0 Z 0o
T ©
3 )
I I -25
»
2.4 >
% ‘% —50
e a
o) o)
n w
-5 0 5 10 -10 -5 0 5

COVID19 vs Healthy (RNA-seq)

o Downregulated
Not significant
® Upregulated

COVID19 vs Healthy (RNA-seq)

o Downregulated
Not significant
d ® Upregulated

Unstimulated Stimulated
4 ; 4 ]
(0]
<t
2 FBP1
5 o
DSDNER
% PFKFB4 2 ; AR‘;EN%I)? e Coze
L CYR2TAT CDBaTMPZ S CYP2TAT
8 S SLC36AOLFML2B o RCBTEA 3},,\%,,, St
2 ALOX5 NT?{NITSNPDA! RBHOTZ
© SPIRE1 ADAMDEGTNZ
R — - - ] S— - - -
o OGFRL SRMPARP12 cpsp  TRIP10 SERPINB2
N ELOVL CD38° ¥ 5.0, % 'i' d
£ ip2 MCQLNZy ot Fiwe { oHTRAT
3 SLAME? OnSL IR - SGPP2
(] SGPP2 SP140 TAP: .
5 LGMN - o YARE2rNg L CIL1e
S -2 TNFRSF4 CFB ;5&5 BATF .
. ° KCNJ2 G0S2
5 PDGFRL PDGFRL G0S2 APOE
i ! ! | |
0.0 25 5.0 -5 0 5

COVID19 vs Healthy (RNA-seq)

©
&
€
153
£
=
Q
=
(=
i
2 %o
2
©
2
>
-
Lo
s
<]
[a]
I
2
5
g
>
>
5 I
w o
-
c
@
£
=
9
=
(=4
i

23

:} "\IFU]\H“ WWHHWHHH\WI \”WH‘HI'H'\H“H\I‘\Hl 'I“ I ‘\HI\HH“‘ \H\ \“ ‘\ [ HW M‘ I

COVID19 vs Healthy (RNA-seq)

} et il M\‘L ‘M\\um ool e

Up

I
s ~
3 &
< @
e i
T

-2.01

-1.19 —
-0.59 —
-0.05
0.51
1.06 —
169 —
261
14.86 —

COVID19 vs Healthy (stimulated) test statistic


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486830; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

10000+

Cell number

4 5 6 7 8 9 10 11 12 13 14 15 16
Cluster number

Supplementary Figure 1


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486830; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MMP1
SERPINB7
AL355916.2 M1 srz, HmaA2
RG24l 12
404 PTGES 5
4 IGHG1
e} ©—IGLV3-25
STC1 O sLCO2B1
X AC009680.4 o O Disease status
2 o0 LIPN KITLG O |FI27| O heatn
~ CRLF2 y
Q SLC2A5 HSD11B1 O COovID-19
EGLN30 ADSS1 CCL1OCSTAMP
DNAH11 - HSPA7 3 !
o
] WDR86
—40
o FABP4
HLA-DQA1 ccLs
FoL2.  NLA-DMB APOL4
HLA-DQB1 ANKRD22 SXCL10
GBP1P1 CXCL9
-60 ~30 0 30 60
PC1 (28%)

Supplementary Figure 2


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486830; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Glycolysis - FDR=1.7e-2
Transport of inorganic cations/anions and amino acids - FDR=2.8e-2
Interferon Signaling - FDR=7.8e-3
Cytokine Signaling in Immune system - FDR=1.1e-2
Metabolism of lipids and lipoproteins - FDR=7.8e-3
Transmembrane transport of small molecules - FDR=2.8e-2

0.0 0.5 1.0 1.5 20 25 3.0
Enrichment changes log2 (FC)

Supplementary Figure 3.


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486830; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Basal ECAR Basal OCR
20+ 8
E Kk E ns
g 15_ g 6_
== 21T
E =3
o - 4
6 10 % 4
e ©
T 5 @ 2
8 m
0
Healthy Moderate Healthy Moderate

Supplementary Figure 4


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486830; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

* —
150 — S 100
< * 9 80 *
> c .
(&) ()
S 1004 | g
g S 60
(0] ()
[oR ©
S T 40-
2 £
S g 207
O o
0 s S oA s
SR SR
¢ RS i RS
Ve J Ve J
\\ A\

Supplementary Figure 5


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486830; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

k%
2.0

1.5+

ECAR

1.0

0.5

(Fold change vs unstimulated)
OCR
(Fold change vs unstimulated)

Healthy COVID-19 Healthy COVID-19

Supplementary Figure 6


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486830; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

°
wmot IFNB1 ,AF127936.) o
40- crre  NEHEE IFITY
® s7ci LIPN\GPR183 /g1 olgg1 SXCL12 IFIT1
°° DEFB1 °®
< cxoL® APGRESy
S ©CCL20 LGALSZ RXFP1 Gy 14
o e ® CSF3 it DI at
A ° cxcLs  TFP2 TNFSF10 Isease status
A i
AC097709.1- 2 CXCL1 NUPRT1
(c_\l) IL24 BCL2L14 e Healthy
o o CXCL10 [ ] COVID'19
[ ]
°
-40. ®
MRC1 DYI\@1I1 c18
ITGB3\VETTL 78 XIRP1
OCSTAMP R2
CHigLr! UCHLT
-50 0 50

PC1 (41%)

Supplementary Figure 7


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.03.486830; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Interferon alpha/beta signaling - FDR=2.3e-11
TRAF6 mediated IRF7 activation - FDR=1.6e-2
Generation of second messenger molecules 4 FDR=8.5e-3
oot
Immunoregulatory interactions between a Lymphoid FDR=7.6e-4
and a non-lymphoid cell
Semaphorin interactions 1 FDR=2.0e-3
Interferon Signaling FDR=1.6e-7
Integrin cell surface interactions - FDR=8.8e-3
TCR signaling FDR=4.6e-2
Antiviral mechanism by IFN-stimulated genes - FDR=4.4e-2
Cytokine Signaling in Immune system - FDR=6.3e-7
Innate Immune System - FDR=1.5e-4
Developmental Biology - FDR=2.1e-5
Immune System - FDR=3.8e-6

0.0 0.5 10 15
Enrichment changes: logx(FC)

Supplementary Figure 8


https://doi.org/10.1101/2022.04.03.486830
http://creativecommons.org/licenses/by-nc-nd/4.0/

