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Abstract

Neurons and glia are the two main cell classesin the nervous systems of most animals. Although
functionally distinct, neurons and glia are both characterized by multiple branching arbors stemming from
the cell bodies. Glia processes are generally known to form smaller trees than neuronal dendrites.
However, the full extent of morphological differences between neurons and gliain multiple species and
brain regions has not yet been characterized, nor isit known whether these cells can be reliably
distinguished based on geometric features alone. Here, we show that multiple supervised learning

algorithms (K-nearest neighbor, random forest, and support vector machine) deployed on alarge database
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of morphological reconstructions can systematically classify neuronal and glia arbors with nearly perfect
accuracy and precision. Moreover, we report multiple morphometric properties, both size-related and
size-independent, that differ substantially between these cell types. In particular, we newly identify an
individual morphometric measurement, Average Branch Euclidean Length (ABEL) that can robustly
separate neurons from glia across multiple animal models, a broad diversity of experimental conditions,
and anatomical areas, with the notable exception of the cerebellum. We discuss the practical utility and

physiological interpretation of this discovery.

Keywords. Cellular Identity, Morphology, NeuroM orpho.Org, Neuroinformatics, Supervised Learning,

Branch Length, Tree Size.

| ntroduction

Neuronal classification is an increasingly important subject because of its ultimate goal of linking cell
types with computation, behavior, and cognition (Armafianzas & Ascoli, 2015). The main experimental
approaches to characterize neurons are biochemistry, physiology, and morphology (Petilla Interneuron
Nomenclature Group, 2008). These techniques have all yielded major breakthroughsin recent years
thanks to rapid progress in genomics and transcriptomics, large-scal e el ectric recordings, and high-
resolution microscopic imaging (Litvina et al., 2019), respectively. Both the European Human Brain
Project and the American BRAIN Initiative identified cell type classification among their first priorities
(Insel et a., 2013; Markram, 2012). Relative to neurons, glial cells have received |ess attention despite
being similarly abundant in most organisms with a nervous system, including humans and all common
anima models. Gliaareinvolved in numerous important functions, such as myelination, anti-
inflammatory protection, maintenance of neurochemical environment, and exchanges between nervous
and vascular systems (Aguzzi et al., 2013; Bronzuoli et a., 2018; Jessen, 2004; Rasband, 2016). Most

glia cells emanate from the cell body complex branching processes that resemble the structural
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architecture of neuronal dendrites. While large numbers of neurons have been morphologically
reconstructed for over three decades, digitally tracing glial trees has only more recently become aroutine

practice as well.

Although it is usually recognized that glial arbors are smaller than dendritic trees (GarciaMarin et al.,
2007; Lu et d., 2015; Veldman et d., 2020; Zisis et a., 2021), a comprehensive morphological
comparison has not yet been carried out. In particular, it is still unknown whether these two main
categories of cells can be reliably distinguished based on geometric features alone. The general problemis
further complicated by severa factors. First, both neurons and gliaare intrinsically diverse, with the
former often distinguished by circuit role (long-range projecting, local interneurons, and sensory
receptors) and the latter typically divided by functional specialization (microglia, astrocytes,
oligodendrocytes, etc.). Second, both neurons and gliatend to differ broadly across animal species
(especialy between vertebrates and invertebrates), anatomical regions (e.g., heocortex, brainstem, spinal
cord, peripheral nervous system), and developmental stage (such as embryo, early postnatal, and adult).
Third, morphological characterization may be affected by the tremendous variability in experimental
methods, including animal care, histological details, labeling protocol, imaging modality, and
reconstruction software. Thus, it remains an open question whether suitable morphometric biomarkers

exist that can robustly and systematically discriminate between neuronal and glial arbors.

Hundreds of |aboratories worldwide continuously contribute their digital reconstructions of neurons and
gliato the public online database NeuroMorpho.Org (Akram et al., 2018). This repository associates
every cell entry with metadata (Bijari et al., 2020) describing the animal subject (species, strain, sex, age,
and weight), anatomy (brain region, sub-region, cell type, and sub-type), experimental details (protocol,
condition, histology, microscopy, and tracing), and provenance (authors, source publication, original
version, and processing logs). Moreover, the detailed 3D representation of arbor geometry is accompanied

by a battery of morphometric parameters extracted with L-Measure (Scorcioni et al., 2008), such as total
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length, number of branches, arbor height, and tortuosity. Glial cells were introduced to NeuroM orpho.Org
inversion 7.1 (2017) and now constitute 11.3% of over 170,000 tracings. The unrestricted availability of
these data provides an unprecedented opportunity for scientific exploration, statistical analysis, and

computational modeling (Ascoli et a., 2017).

Machine learning is a branch of artificial intelligence that aims at enabling the efficient and automatic
detection of data patterns. Machine learning strives to produce the most accurate predictions, adistinct
goa from that of statistical models designed to quantify the relationships variables (Ahaet al., 1991).
Recent advancements in machine learning have not only benefitted healthcare with automatic diagnoses
and treatment planning (Kohli & Arora, 2018), but were also successfully applied in neurobiological data
analysis such as automatic tracing of neurons and glia (Peng et al., 2017) and their quantification (Bijari
et a., 2021). In supervised machine learning, an algorithm is trained with the known class labels and
identifies the most informative combination of features that are associated with those labels (Kotsiantis et
al., 2006). The resultant classifiers can then be applied for predicting the labels of unknown data based on
their feature values. Here we leverage supervised learning algorithms (K-Nearest Neighbor, Random
Forest, and Support Vector Machine) to classify glia and neurons, and to recognize the morphol ogical

structures that distinguish these two main cell types of the nervous system.

Materials and M ethods

Dataset selection and preprocessing. Morphological reconstructions of neurons and gliawere
obtained from NeuroMorpho.Org using the Summary Reporting web-based functionality (Akram et a.,
2022). Thistool collates for every digital tracings the annotation of 35 distinct metadata fields, providing
adetailed qualitative description of the cell (Parekh et al., 2015), aswell as 21 morphometric

measurements which capture the quantitative structural features of the arbor (Scorcioni et al., 2008). First,
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we downloaded all glia cells available at the time we began data analysis (Fall 2020), corresponding to
10 consecutive releases of NeuroMorpho.Org (versions 7.1 to 8.0 inclusive). We then analyzed the
distributions of their metadata with respect to animal species, developmental stage, anatomical region,
and other experimental conditions, and queried the database to identify the same number of neurons with
the most similar metadata characteristics. Since we were interested in comparing glial processes
specifically to neurona dendrites (as opposed to axons), only neurons with dendritic tracings available
were selected. Moreover, we solely included neurons and glia with complete or moderately compl ete
reconstructions, thus excluding those annotated as incomplete dendrites or incomplete glial processes by
the original contributors. The resulting balanced dataset of 22,792 cells was comprised of 11,398 neurons

and 11,394 glia.

Of the 21 morphometrics extracted for each cell from NeuroM orpho.Org, we excluded Soma Surface and
Depth from the analysis. Soma Surface is not an arbor morphometric, and 4.7% of the tracingsin our
dataset did not include soma reconstruction. Depth was similarly not reported for 8.6% of the cells as the
accuracy of thetracing is reduced in certain cases by light diffraction and tissue shrinkage in the direction
perpendicular to the imaging place. The remaining 19 morphometric features were used in the analysis:
number of stems, number of bifurcations, number of branches, overall width, overall height, average
diameter, total length, total surface, total volume, maximum Euclidean distance, maximum path distance,
maximum branch order, average contraction, total fragmentation, partition asymmetry, average Rall’s
ratio, average bifurcation angle local, average bifurcation angle remote, and fractal dimension. The formal
definitions of these metrics are available on the Frequently Asked Questions of NeuroMorpho.Org
(http://neuromorpho.org/myfaq.jsp) and on the online manual of L-Measure

(http://cng.gmu.edu:8080/Lm/hel p/index.htm).

Most reconstructions in NeuroM orpho.Org have coordinates reported in microns. In a subset of

reconstructions, however, the coordinates are expressed in pixels. In these cases, the nominal
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measurements listed in the morphometric tables must be converted by an appropriate scaling factor.
Therefore, we manually calculated the height of at least one cell in each archive from the figures of the
corresponding original publications (and relative scale bar) and compared the resulting value to the height
reported by NeuroM orpho.Org. If the values did not match, we computed a conversion factor and applied
it to size-related morphometric features including width, height, total length, total surface, total volume,
maximum Euclidean distance, and maximum path distance. The specific archives that underwent
rescaling and the calculations for the scale correction are detailed in the Supplementary Material at

https://github.com/Masood-Akram/Classification_Neurons-Glia/tree/main/Supplementary _Material

When we concluded the main analysis for thiswork (Fall 2021), a new version of NeuroM orpho.Org had
been released (v.8.1). We thus identified an additional balanced dataset of 4292 neurons and 4286 glia, up
to version 8.1.90 (December 2021), allowing us to test the robustness of our main results on a completely
independent dataset. The scale correction details and the compl ete metadata breakdown for this additional
dataset are also included in the Supplementary Materials at https://github.com/Masood-

Akram/Classification_Neurons-Glialtree/main/Supplementary_Material

Dimensionality reduction. We computed the coefficient of determination (R?) to quantify the pairwise
correlation (Di Bucchianico, 2008) among the 19 morphometric parameters across neurons and gliausing
the rcorr function in the R package Hmisc (Harrel & Dupont, 2021). We then used Principal Component
Analysis (PCA) to reduce the feature redundancy. PCA transforms the data into a set of new orthogonal
variables by identifying the directions (principal components) along which the variation in the datais
maximal (Abdi & Williams, 2010). By discarding the |east informative components, each sample can be
represented by fewer, linearly independent features instead of more, mutually dependent variables
(Ringnér, 2008). Thus, PCA reduces the dimensionality while retaining most of the variation of the data.

PCA was performed with the R package stats (Core Team, 2021) by using the function prcomp() and
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setting scale = TRUE. Along with PCA, all parameters were standardized by first subtracting the mean of

the entire feature vector from each element and then dividing by the standard deviation.

Supervised lear ning. Training data consisted of the normalized principal components of the
morphometric features as input, and the known class labels (the cell identity ‘neuron’ or ‘glia’) as output.
We used three distinct classification algorithms implemented in the R programming language (Core
Team, 2021) v.4.1.1 for Windows. In al cases we calculated sensitivity, specificity, and accuracy,
respectively defined as the fractions of true positives, true negatives, and correctly classified (true

positives plus true negatives) cells, using the caret (Kuhn, 2021) packagein R (Core Team, 2021).

K-Nearest Neighbor (KNN) is a supervised learning algorithm that can be used both for classification
(discrete value output), as applied here, and regression (continuous value output) problems. In KNN, the
training instances are stored with their labels and each new instance is compared with the labeled ones
using asimilarity matrix. The vote for each new instance’s label by comparing to existing instances is
taken from the value of k. For example, if kissetto 5,5 nearest neighbors are identified from the
training instances and the class label with the highest frequency is assigned to the new instance (Aha et
al., 1991). The default Euclidean distance was used here to compute similarity between two data points.
The built-in caret package (Kuhn, 2021) was utilized for the KNN implementation by using the train()

function and setting method = “ knn” with tuneLength = 10 and k = 5.

Support Vector M achine (SVYM) isabinary classification algorithm based on finding the maximum
margin hyperplane that gives the greatest separation between the data points of different classesin
multidimensional space. Those data points closest to the hyperplane are called the support vectors. If the
data are not linearly separable, different kernels can be selected for nonlinear classification. This classifier
isrobust to large number of variables and small sample sizes (Cortes & Vapnik, 1995). We implemented

SVM using the caret package (Kuhn, 2021) using the train() function with tuneLength = 10, and method
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= “radial” kernel, which gave the best classification accuracy and is aso a common choice for

classification tasks (Luts et a ., 2010).

Random Forest (RF) consists of alarge number of individual decision trees. Each individual treein the
forest splits out a class prediction and the most frequent class becomes the model prediction. Thisis one
of the most popular machine learning algorithms and is capable of both classification (as used here) and
regression (Breiman, 2001; Saricaet d., 2017). We applied the randomForest package (Liaw & Wiener,
2002) using function train(), method = “ rf”, and ntree = 500. The rationale for this choiceisthat a
relatively high number of decision trees ensures that every input row is predicted multiple times.
Parameter mtry determines the number of variables randomly sampled as candidates at each split and was

set to the default value of 5.

K-fold Cross Validation (K-fold CV). It is customary in supervised learning to train the model on the
majority of the data, leaving the remaining for testing. To rigorously examine the classification
performance on our data, we performed K-fold cross validation. This process divides the dataset into k
equal parts. A classifier isfirst trained on k-1 parts for each fold. The accuracy of the trained model is
then assessed by using the part of data excluded from the k-1 partsin training (Bouckaert, 2003). We
performed 10-fold CV repeated 10 times using the caret (Kuhn, 2021) package by using the function

trainControl(), method = “ repeatedcv” , number = 10, and repeats = 10.

PSwarm isaglobal optimization solver for bound and linearly constrained problems (Vaz & Vicente,
2009). This algorithm is based on a pattern search and particle swarm method, which guarantees the
convergence to stationary points from arbitrary starting points. We used the PSwarm Solver (v.1.5, June
2020, norg.uminho.pt/aivaz/pswarm/) implementation in R to find the linear discriminant of neurons and
glia based on two morphometric parameters. We set the lower and upper bounds to 75 and 175,

respectively, for intercept and to -10 and 75 for slope, and the number of iterations (maxit) to 2-10°.
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All analyses were carried out on a 64-bit machine equipped with an Intel Core i7-8565U and 16 GB of
RAM running Windows 10. The R scripts utilized in this work are released open source at

https://github.com/Masood-Akram/Classification_Neurons-Glia/tree/main/R_Code.

Aver age Branch Euclidean Length (ABEL) isthe average over al branchesin acell of the straight-
line distance between the beginning and ending points of each branch. This quantity was calculated from
three of the morphometric parameters provided for each cell by NeuroMorpho.Org: branch path
(geodesic) length, the number of branches, and contraction, which is the ratio between Euclidean branch
length and branch path length (its inverse is tortuosity). Specifically, ABEL was derived by summing the
product of contraction by branch path (geodesic) length and then dividing the result by the total number

of branchesin each cell:

(Contraction X Branch Path Length)
NB

NB
ABEL = =2

where NB is the total number of branches. We also calculated ABEL of the terminal branches (from a
bifurcating point to the tip) and of internal branches (between two consecutive bifurcation points) of both
gliaand neurons from the .swc reconstruction files provided by NeuroMorpho.Org using L-Measure. In
particular, for every cell we first extracted path length and contraction values for each branch while
setting “ Terminal_Degree=1" under Specificity for terminal branches and “Termina_Degree>1" for
internal branches. We then multiplied the path length and contraction values and took the average within
each group (terminal, internal). Lastly, we were aso interested to determine the classification power of
ABEL when only a small sample of branches was used to estimate the ABEL value. To thisaim, we first
extracted for every cell path length and contraction values of all branches with L-Measure without setting
any Specificity (thus including both internal and terminal branches) and multiplied each pair of valuesto
obtain the Euclidean lengths of all branches. We then utilized the random library (Van Rossum, 2020) in

Python 3 (Van Rossum & Fred L., 2009) to stochastically select 100 sets of N values without
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replacement, where N varied from 1 to 15. The N values were used to compute ABEL within each set,
and the average and standard deviation were then computed over the 100 sets. Finally, classification was
carried out using the mean ABEL value. The code for this analysisis released open source at:

https://github.com/Masood-Akram/Classification Neurons-Glialtree/main/Python_Code.

Average Branch Euclidean Length (ABEL). All morphological reconstructions utilized in this
work are available at NeuroMorpho.Org. Theindividual archive listing, the metadata, and the
scaling adjustments are al included in the Supplementary Materials. The source code for all

analysisis publicly available on github.com

Results

The morphological reconstructions of glial processes and neuronal dendrites utilized in thiswork were
contributed to NeuroM orpho.Org by over 250 independent laboratories (listed in Supplementary
Materials) and reflect the distribution of published arbor tracings in neuroscience (Fig. 1). Consistent with
this multifarious provenance, the dataset spans a broad diversity of experimental methodol ogies,

including over 20 different staining methods (e.g., genetic green fluorescent protein labeling, intracellular
biocytin injection, immunostaining, and rapid Golgi), 15 digital reconstruction software (Neurolucida,
Imaris, Amira, NeuronJ, Simple Neurite Tracer, Vaa3D, Knossos, NeuTube, etc.), and a continuum of
ages across the devel opmental, from embryo through juvenile to old adults. Moreover, the data came from
both mammalian and non-mammalian species and alarge variety of anatomical regions but were balanced
between neurons and glia across these dimensions (Fig. 2). The full breakdown of all metadata categories

annotated in NeuroMorpho.Org is provided in Supplementary Materials.

The morphometric quantification of neural trees supplied by NeuroMorpho.Org provides a detailed 3D
representation of branch geometry (Fig. 3). The extracted features include parameters characterizing both
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the overall size of the arborization and the scale-invariant properties. The formers include total cable
length and surface area, spanning height and width, maximum Euclidean and path (geodesic) distance
from the root (soma), and average branch diameter among others. The latter measurements capture bush
complexity (e.g., number of branches and tree stems), branch angles (local and remote bifurcation
amplitude), topological imbalance (partition asymmetry and maximum branch order), and spatial
meandering (contraction and fractal dimension), among others. Altogether, this set of morphometric
parametersiswaell suited to characterize the structure of neuronal dendrites and glial processes alike, and

thus to quantify their similarities and differences.

Although the above-described parameters are intuitively interpretable, they may not be completely
independent of each other. For example, total tree length, surface area, and average branch diameter are
expected to be interrelated. This information redundancy can unduly bias the objective characterization of
the structural differences between glia and neurons, complicating subsequent interpretations. The pairwise
coefficients of determination (R?) for glial (Fig. 4A) and neuronal (Fig. 4B) morphometrics confirm the
substantial correlation between specific features. For example, surfaceis highly correlated to volume, the
number of bifurcations to the number of branches, length, fragmentation, and branch order (and the latter
four to one another), path distance to Euclidean distance, and contraction to fractal dimension. Although
the coefficients of determination tended to be higher in neurons than in glia, most visibly between
maximum path distance and total surface area, and between overall height and maximum Euclidean
distance, the mgjority of correlations were highly consistent between the two cell types. In order to

remove the interdependency among features, we performed PCA jointly on the full dataset to
orthogonalize the morphometric parameters (Fig. 4C). The first 11 principal components captured 95.70%
of the variance and we thus decided to exclude the last 8 components from machine learning. The 11
principal components considered in subsequent analysis constitute a combined transformation of all 19

morphometric parameters described above but are guaranteed by PCA to be independent.
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The first two components (PC1 and PC2) alone capture more than 50% of the overall morphological
variancein neural cells. A striking separation between cell classes is apparent on the PC1-PC2 projection
plane, with neurons more abundant towards positive coordinates and glia towards negative in both
dimensions (Fig 5A). Data points that are close to each other in this projected space represent structurally
similar cells, whereas morphol ogically different cells occupy distant positions. The first two principal
components consist of distinct linear combinations of morphometrics: PC1 (Fig. 5B) has strongly positive
loading on size (e.g., total cable length, overall arbor height, maximum path distance), while PC2 (Fig.
5C) has strongly negative loadings on tree complexity and other scale-invariant measures, such as number
of bifurcations, maximum branch order, and fractal dimension. These results therefore confirm that
neurons have greater overall arbor size than glia, as quantifiable by multiple alternative metrics.
Furthermore, this analysis reveal s that, compared to neuronal dendrites, glial processes tend to form

bushier trees, with more symmetric branching distributions and wider bifurcations angles.

The above analysis suggests that neurons and gliamay be reliably recognized based on morphological
features alone independent of numerous confounds such as species, anatomical region, and experimental
methods. To test this hypothesis, we used the 11 principal components explaining >95% of the variance
for classification with three supervised learning algorithms: Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), and Random Forest (RF). In al cases we performed 10-fold cross validation: the
dataset was randomly split into 10 folds without replacement, with 90% of the data used to train the
classifier and the remaining 10% used for testing. The process was repeated 10 times for more reliable
assessment. Thetotal runtime for 10 repeats of 10-fold cross vaidation was 15 minutes for KNN with 5
nearest neighbors (k=5), 2.2 hours for SVM, and 5 hours for RF. All three classifiers performed
remarkably well in separating gliafrom neurons (Fig. 6). SVM dlightly outperformed KNN in terms of
sensitivity, specificity, and accuracy, with RF displaying intermediate performance metrics. However, all
classification measurements fell within 1% difference for the three algorithms, and the area under curve
(AUC), arobust measure of predictive modeling accuracy, was >99.5% for each of them.
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The supervised classification results clearly demonstrate that a variety of automated methods can reliably
distinguish glia from neurons by using morphological features alone. Given that the principal components
utilized to train the machine learning a gorithms represent an extensive battery of morphometric
measurements, the question remains whether individual geometric features can be identified that achieve
similarly robust performance. Based on the PC1 and PC2 loadings described above, measures of arbor
size such as overall height and total length and measures of arbor complexity such as number of branches
could constitute viable candidates. Although the corresponding silhouette profiles (Fig. 7) corroborated
the expected statistical differences, it also revealed extensive overlap in the corresponding data
distributions. For example, the optimal height threshold to discriminate neurons from glia (76.15 pm)
resulted in a suboptimal classification accuracy of <0.95, with >6% of neurons misclassified, and even
worse performance for total length, number of branches, and any other individual parameter. We
reasoned, however, that since neurons have longer cable and glia have more branches, an appropriately
combined feature could achieve a multiplicative improvement in discrimination. Specifically, dividing
length by number of branches, which defines average branch path length, should yield parameter values
with an even larger ratio between neurons and glia than length alone. Moreover, since neurons have
dlightly less tortuous branches than glia, asindicated by larger (if only marginally) contraction values,
multiplying branch length by contraction and averaging over all branches, which defines average branch
Euclidean length (ABEL), should further increase corresponding parameter value between neurons and
glia Silhouette analysis confirms the considerably better separation between neurons and glia based on

ABEL when compared to al other individual morphometrics (Fig. 7).

The optimal ABEL threshold of 14.33 pum resultsin overall classification accuracy of 97.6%, with fewer
than 2.4% of gliaand 2.5% of neurons misclassified. Notably, the misclassification rate dropped steeply

around the threshold ABEL value, with >90% of the misclassified cells found in anarrow ABEL range of
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7 (12-19) pm (Fig. 8A). These results were robust across multiple species, strains, developmental stages,
anatomical regions, types of glia and neuronal cells, labeling techniques, and experimental methods, as
detailed in the Supplementary Materials. For example, when dividing all data by contributing labs, for
more than three-quarters of cases the misclassification rate was less than 1%. The rare exceptions
consisted of specific phenotypes as discussed at the end of the Results. Furthermore, even an incomplete
sampling of neural branchesis sufficient for reliable classification based on ABEL : the accuracy is
essentially unaltered when using 15 randomly chosen branches (97.3%) and remains above 95% when
reducing the ABEL sample sizeto 5 branches (Fig. 8B). To determine if the classification could be
improved further by considering arbor height together with ABEL, we combined the two measures (Fig.
8C). The optimal linear boundary separating neurons and glia followed the equation A=-0.1352H+23.04
pm, where A and H stand for ABEL and height, respectively. This combination increased the
classification accuracy of gliaand neurons only marginally compared to using ABEL alone, from 97.6%
to 98.5%. Altogether, these results indicate that ABEL is an effective, novel morphological biomarker for

identifying the main neural cell class.

Multiple studies reported that certain neuron types have longer terminal branches than internal
(bifurcating) branches (Duan et al., 2002; Kawaguchi et a., 2006; Li et a., 2005), but it is unknown
whether the same may be true for glia. Since neurons have greater ABEL valuesthan glia, if glia
processes have similar length for their terminal and internal processes, then terminal ABEL might be even
more effective than overall ABEL to distinguish neurons from glia. To test this possibility, we extracted
termina and internal ABEL for all cells. The distribution of the ratios between terminal and internal
ABEL values had an average of approximately 2 for neurons (Fig. 9A), confirming earlier reports that
dendrites tend to have longer terminal than internal branches. In contrast, the distribution of the
terminal/internal ABEL ratios had an average close to unity for glia, indicating that this phenomenon is

limited to neurons. Thiswas also confirmed by linear regression analysis, where the relationship between
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terminal ABEL and overall ABEL was essentially described by the identity line for glia, but had a slope
above unity for neurons (Fig. 9B). Nevertheless, terminal ABEL did not improve the classification
accuracy of glia and neurons compared to overall ABEL : in fact, it was slightly decreased to 97.1%, with
an optimal separation threshold of 16.20 um. To investigate why restricting ABEL measurements to
terminal branches failed to improve classification performance, we examined the terminal/internal ABEL
ratio specifically for the misclassified cells (Fig. 9C). Interestingly, those outlying neurons with
exceptionally low ABEL values aso displayed similar length between terminal and internal branches.
Conversely, outlying glia with exceptionally high ABEL values had longer terminal than internal
branches. Linear regression of terminal ABEL versus overall ABEL for the misclassified cellsaso
confirmed that most cells misclassified using overall ABEL are aso misclassified using terminal ABEL

(Fig. 9D).

Next, we tested the robustness of ABEL as amorphological biomarker of neurons and glia and how well
the optimized classification thresholds generalize to new cell datasets. To this aim, we extended the
analysisto the additional glial cells released at NeuroM orpho.Org since the beginning of this study and
through the time of thiswriting (v.8.1.90; N=4,286), balancing the dataset with an equivalent number of
neurons (N=4,292) from similar species, anatomical regions, and other metadata (as detailed in
Supplementary Materials). The ABEL classification accuracy for this new dataset was the same at 97.6%
(using the unaltered 14.33 um threshold). We then tried to assess whether the few outliers were dueto
systematic patterns or random noise. Classification accuracy was largely consistent across almost all of
the metadata investigated, with only notable exceptions when portioned by brain region (Fig. 10A).
Specifically, the high misclassification rate in the cerebellum prompted a deeper evaluation of cells from
that region. The misclassified glia consisted of 70 transitional oligodendrocytes and only 1 Ibal-positive
microglia, whereas all 78 oligodendrocyte precursor cells, and the rest of cerebellar microglia were

correctly classified (Fig. 10B). The 62 misclassified neurons include 8 out of 11 granule cells, and al 54
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Purkinje cells, whereas cerebellar basket, stellate, Golgi, Lugaro, and glutamatergic cells were all
correctly classified (Fig. 10C). The results indicate that certain cerebellar neurons, specifically Purkinje
and granule cells, share similar ABEL with glia. The second, less extreme, exception consisted of the
peripheral nervous system (PNS). Here we found that the single culprit was a specific subtype of
invertebrate sensory neuron: dendritic arborization (da) Class I11 cells from the fly larva (46 out of 47
misclassified). In contrast, 104 out of 108 Class | and Class IV sensory neurons, and the quasi totality

(98.5%) of PNSglial cells, were correctly classified.

Discussion

Open sharing of digitally reconstructed neuronal morphology from labs across the world has made it
possible for researchers to carry out statistical analysis, classification, and computational modeling of
their interest (Bota & Swanson, 2007; Halavi et al., 2012; Parekh & Ascoli, 2015). Far fewer
morphological classification studies have also included glia, and they typically did not focus on directly
comparing neuronsto glia. For example, Leyh et al. (2021) classified different types of microgliain
healthy and diseased mouse model, while Zhang et al. (2021) added glia as a separate phenotype in a
multiclass neuron type categorization task using convolutional neural networks. Recognizing the

morphological signatures that distinguish glia from neuronsis an important yet unfulfilled step.

This study sought to determine whether neuronal dendrites and glial processes can be reliably separated
solely based on their arbor geometries and independent of animal species, anatomical region,
developmental stage, and experimental condition. To thisaim, we harnessed all publicly available
reconstructions of glia and balanced them with an equivalent number of neurons with as closely matching
metadata as possible. The resulting dataset of over 30,000 cells spanned the very broad methodol ogical

diversity in the field. We then produced a compact, orthogonalized quantification of those morphologies
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by applying principal component analysis to an extensive battery of extracted morphometrics.
Deployment of three traditional supervised learning algorithms yielded exceptionally high (>99%)
classification accuracy. We thus set out to determine which specific differences could explain such
striking separation. While neurons were confirmed to have larger arbors than glia, we a so discovered that
glial trees tend to bifurcate more than neurons, and that glial branches are slightly more tortuous than their
neuronal counterparts. These features have already proved useful in the separate investigation of neurons
(Kawaguchi et al., 2006; Polavaram et al., 2014), and glia (Khakh & Deneen, 2019; Verkhratsky et al.,
2019), but to our best knowledge never in their comparison. Combining these measurements, we defined
anovel morphometric parameter, the average branch Euclidean length or ABEL, and demonstrated that it
constitutes a powerful and robust morphological biomarker of cell type. Throughout the whole dataset,
gliahad smaller ABEL vaues than neurons, and fewer than 2.5% of cells were misclassified based on a
simple ABEL threshold of ~14 um. Standard measures of arbor size, such as height, yielded a more than

double misclassification rate relative to ABEL.

Molecular expression remains a prominent approach for the consistent identification of cell typesin the
nervous system. For example, glia fibrillar acidic protein (GFAP), nerve/glial antigen 2 (NG2), and
ionized calcium binding adapter molecule 1 (Ibal) are commonly utilized to identify distinct classes of
glia. Similarly, neurons are often distinguished by their main neurotransmitter based on presence of
vesicular glutamate transporters, glutamic acid decarboxylase, choline acetyl transferase or tyrosine
hydrolase. In situ hybridization of the corresponding genesis useful to study the somatic distribution of
these neurons and glia but does not reveal their dendrites and processes. Immunolabeling can in some
cases visualize cell type-specific neural arbors, and multi-color combinations of antibodies may allow co-
labeling of distinct cell typesin the same preparation. In contrast, relatively simpler but non-selective
staining such as Golgi (Ghosh, 2020) impregnates a broad spectrum of neurons and glia. In these cases,
ABEL can provide a practical way to quickly recognize neurons from glia. It isimportant to note in this
regard that measuring ABEL does not necessarily require the detailed tracing of the full arbors. Euclidean
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length is simply defined as the straight-line distance between the start and end points of a branch, which
can be computed directly from the microscopic image in any common software. Moreover, we showed
that as few as five branches are sufficient to provide an ABEL approximation that distinguishes gliafrom
neurons with >95% accuracy. Even for complex arbors with hundreds of bifurcations and terminations, it

isthus possible to estimate ABEL with minimum effort.

Besides the practical utility, it istempting to speculate about the possible scientific interpretation of our
main finding. The systematically small ABEL values of glia suggest atendency to optimize spatial
occupancy, consistent with extensively reported tiling properties for these cells (Barber et al., 2021;
Pogodallaet a., 2022). In contrast, the larger ABEL values of neurons are indicative of pressure to
maximize spatial exploration, in line with the role of dendrites to integrate converging synaptic signals
from multiple neura pathways (Anton-Sanchez et al., 2018; Stepanyants & Chklovskii, 2005). It is
especially intriguing to consider the rare exceptions that emerged from our analysis. Since the only glial
outliersin terms of ABEL were transitional oligodendrocytes, it is possible that the compact arbor is an
acquired property of mature gliarather than an innate feature, and that seeking myelination targets
requires a degree of spatial exploration. The main neuronal exceptions were cerebellar granule and
Purkinje cells. It may not be a coincidence that these two neuron types together form one of the most
peculiar circuitsin any neural system: the parallel fibers of the cerebellum, which ascend from granule
cell axons and contact the Purkinje dendrites on up to 100,000 spines. Purkinje cells are the output cells
of the cerebellar cortex, and their dense, planar dendrites are fan-shaped and branch extensively to cover
the field of their respective territories without overlapping (Fujishimaet al., 2018). These features, which
push Purkinje dendrites towards the compact spatial occupancy typica of glia, are dictated by the need to
sample the exceptionally large number of synaptic signals from the parallel fibers (Hirano, 2018).
Cerebellar granule cells are the single most abundant neuron type in the mammalian brain (Herculano-
Houzel, 2010) as well as the most densely packed (Badura & De Zeeuw, 2017), leading to considerably
small dendritic fields (Houston et al., 2017). These characteristics, again determined by the unique
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connectivity profile of the cerebellar parallel fibers, are more akin to those of glial processes than of
typical neuronal dendrites. Of note, the other cerebellar neurons (basket, Lugaro, Golgi, and stellate cells)
aredl correctly classified by ABEL. These exceptions point to a clearly different cell organization in the

cerebellum compared to other brain regions.

Aside from the sparse exceptions, the robustness of the results reported in this study is underscored by the
very large dataset, distributed provenance of the reconstructions, and broad diversity of metadata. At the
sametime, it is also essential to recognize that this study isintrinsically limited by the data availability.
For example, although the included species span primates, rodents, fish, and invertebrates, the majority of
reconstructions for both neurons and glia come from rats and mice. Furthermore, while many anatomical
regions are represented in the study, thelist is far from complete. And albeit several classes of gliaand of
neurons were analyzed, their distribution was far from uniform. These factors reflect the state of the
research in this field rather than a flawed analysis design. Nevertheless, the conclusions must be

considered tentative until further validated as more data continue to accumul ate.

Thiswork aso illustrates the usefulness of subjecting very large datasets to exploratory analysisvia
machine learning, followed by atargeted investigation of the most promising phenomena or patterns
revealed. This“breadth-then-depth” approach may help shed light on otherwise elusive mechanisms. In
particular, tracing glial morphology has become progressively more common and, thanks to increased
awareness of data sharing, ever larger amounts of glia reconstructions are being deposited to
NeuroMorpho.Org. Thisincrement in data availability in a public repository opens new doors for
scientific discovery, especially when applying different analysis and modeling techniques for glia that

have been productively applied to neurons since the early days of computational neuroscience.
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Supplementary Materials

Thefollowing files are available at https.//github.com/Masood-Akram/Classification Neurons-
Glialtree/main/Supplementary Materia

Scale Correction Main Dataset: calculations of the correction factors for the archives of the main
dataset reporting reconstruction coordinatesin pixels rather than microns.

Scale Correction Additional Dataset: cal culations of the correction factors for the archives of the
additional dataset reporting reconstruction coordinates in pixels rather than microns.

Metadata Dimensions Main Analysis: detailed breakdown of the metadata for all archives of the
main dataset.

Metadata Dimensions Additional Analysis. detailed breakdown of the metadata for all archives of

the additional dataset.
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Figure Legends

Figure 1. Representative diversity of morphological reconstructions of gliaand neurons from
NeuroM orpho.Org with labels indicating animal species, anatomical region, and cell type. Blue: glia

processes; green: neuronal dendrites; red: cell bodies.

Figure 2. Balanced distribution of (A) animal speciesand (B) brain regions for the analyzed glia and

neuron datasets.

Figure 3. Schematic of selected morphometric features. (A) Illustration of width, depth, and maximum
Euclidean distance (left) in amonkey neocortical pyramidal cell (NMO_00002) from the Wearne Hof
archive (Duan et al., 2002); and of height and fragmentation (right) in a hippocampal granule cell
(NMO_73103) from the Diaz archive (Sebastian-Serrano et a., 2016). (B) Diameter and local or remote
bifurcation amplitude (lft) in arat neocortical microglia (NMO_95641) from the Roysam archive
(Megjhani et al., 2015); and maximum path distance, length, and number of branches, bifurcations, and
stemsin arat cortical oligodendrocyte (NMO_131081) from the Sato_Bigbee archive (Mohamed et d.,

2020).

Figure 4. Orthogonalization of morphometric features. (A) Correlation matrix quantifying the
interdependence among 19 morphometric features of gliaand of (B) neurons. The coefficient of
determination (R®) is shown on adark intensity scale. (C) Scree plot of the variance contributed by each
sequential principal component (blue bars, left axis) and the corresponding cumulative distribution (red

line, right axis).
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Figure5. (A) PCA biplot of the 2-dimensional distribution of neurons and gliarelative to the first two
principal components (PC1 and PC2). Morphological tracings of severa cells (glia: blue; neurons: green)
are also shown to illustrate their structural variability and similarity in this space. (B) Linear contributions
of all morphometric parametersto PC1 and (C) PC2. Negative |oadings indicate a high weight of the
scale low-end for aparameter: for instance, cells with large positive PC2 valuestend to have very few

branches, whereas cells with many branches tend to have large negative PC2 values.

Figure 6. Classification performance for Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
and Random Forest (RF), including the area under the curve (AUC) of the Receiver Operating

Characteristic plot.

Figure 7. Silhouette profiles of length, height, contraction, number of branches, and average branch
Euclidean length (ABEL) of glia and neurons, and examples of branch Euclidean |ength measurements

from arat basal ganglia GABAergic cell (NMO_68194) from the Smith archive (Smith et al., 2015).

Figure 8. Classification performance of average branch Euclidean length (ABEL). (A) ABEL
distributions of neurons (green), glia (blue), and cells that are misclassified (red, secondary axis) based on
optimal separation threshold of 14.33 um (vertical dashed line). (B) Misclassification rate as a function of
the number of branches sampled to estimate ABEL. (C) Linear separation (black dashed line) between

neurons (green) and glia (blue) on the plane defined by arbor height and ABEL.

Figure 9. Relationship between the average branch Euclidean length (ABEL) of terminal branches and
internal (bifurcating) branches for glia (blue) and neurons (green). (A) Distribution of the ratio between
terminal and internal ABEL, with medians (vertical dotted lines) and means (vertical dashed lines)
indicated. (B) 2D scatter and linear regression between terminal ABEL and all-branch ABEL, with
respective classification thresholds indicated by horizontal and vertical dashed lines. (C) Same as A

29


https://doi.org/10.1101/2022.04.02.486839
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.02.486839; this version posted April 5, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

except limited to cells that are misclassified based on all-branch ABEL. (D) Same as B except limited to
cellsthat are misclassified based on all-branch ABEL. Thefilled circles represent the subset of neurons
and gliathat are misclassified based on all-branch ABEL but correctly classified based on terminal
ABEL. An even larger number of cells (not shown) are correctly classified based on al-branch ABEL but

misclassified based on terminal ABEL.

Figure 10. Classification of gliaand neurons across anatomical regions. (A) Number of cells analyzed
(stacked blue bars, right axis: main dataset, solid; and additional dataset, striped) and classification
accuracy (black line and red triangle, left axis). (B) ABEL distribution of cerebellar glia. Cellsto the right
of the threshold (vertical dashed line) are misclassified. (C) ABEL distribution of cerebellar neurons.

Cellsto the |eft of the threshold (vertical dashed line) are misclassified.
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