

Robustness of the ferret model for influenza risk assessment studies: a cross-laboratory exercise

Jessica A Belser#*¹, Eric HY Lau#*², Wendy Barclay³, Ian G. Barr⁴, Hualan Chen⁵, Ron AM Fouchier⁶, Masato Hatta⁷, Sander Herfst⁶, Yoshihiro Kawaoka⁷, Seema S Lakdawala⁸, Leo Yi Yang Lee⁴, Gabriele Neumann⁷, Malik Peiris², Daniel R Perez⁹, Charles Russell¹⁰, Kanta Subbarao^{4,11}, Troy C Sutton¹², Richard J Webby¹⁰, Huanliang Yang⁵, Hui-Ling Yen*², Working group on the standardization of the ferret model for influenza risk assessment

¹Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA; ²School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; ³Imperial College, London, UK; ⁴WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Doherty Institute, Melbourne, Australia; ⁵State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; ⁶Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands; ⁷University of Wisconsin, Madison, WI, USA; ⁸University of Pittsburgh, Pittsburgh, PA, USA; ⁹University of Georgia, Athens, GA, USA; ¹⁰Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA; ¹¹Department of Microbiology and Immunology, University of Melbourne, Doherty Institute, Melbourne, Australia; ¹²Pennsylvania State University, University Park, PA, USA

*Correspondence: JAB (jbelser@cdc.gov), EHYL (ehylau@hku.hk), HLY (hyen@hku.hk)

These authors contributed equally to the study

Working group on the standardization of the ferret model for influenza risk assessment:

Theo Bestebroer⁶, Amar Bhagwat⁸, Elisabeth Blanchard¹, C Joaquin Caceres⁹, Silvia Carnaccini⁹, Shiho Chiba⁷, Ka-Tim Choy², Jennifer L. DeBeauchamp¹⁰, Dennis de Meulder⁶, Lucas M. Ferreri⁹, Rebecca Frise³, Ginger Geiger⁹, Meng Hu¹⁰, Aeron C Hurt⁴, Trushar Jeevan¹⁰, Jennifer E Jones⁸, Lisa A Kercher¹⁰, Karen A Kormuth⁸, Valarie Le Sage⁸, Pascal Lexmond⁶, Chengjun Li⁵, Taronna R Maines¹, Devanshi R Patel¹², Kayla M Septer¹², Sin Fun Sia², Derek G Sim¹², Wen Su², Jie Zhou³

1 Abstract

2 Ferrets represent the preferred animal model for assessing the transmission potential of newly
3 emerged zoonotic influenza viruses. However, heterogeneity among established experimental
4 protocols and facilities across different laboratories may lead to variable results, complicating
5 interpretation of transmission experimental data. Between 2018-2020, a global exercise was
6 conducted by 11 participating laboratories to assess the range of variation in ferret transmission
7 experiments using two common stock H1N1 influenza viruses that possess different transmission
8 characteristics in ferrets. Inoculation route, dose, and volume were standardized, and all
9 participating laboratories followed the same experimental conditions for respiratory droplet
10 transmission, including a strict 1:1 donor:contact ratio. Additional host and environmental
11 parameters likely to affect influenza transmission kinetics were monitored throughout. Overall
12 transmission outcomes for both viruses across 11 laboratories were concordant, suggesting the
13 robustness of the ferret model for zoonotic influenza risk assessment. To attain high confidence in
14 identifying zoonotic influenza viruses with moderate-to-high or low transmissibility, our analyses
15 support that as few as three but as many as five laboratories, respectively, would need to
16 independently perform viral transmission experiments with concordant results. This exercise
17 facilitates the development of a more homogenous protocol for ferret transmission experiments
18 that are employed for the purposes of risk assessment.

19 **Introduction**

20 Pandemic influenza viruses may arise through interspecies transmission events of animal
21 influenza viruses. Assessing the human-to-human transmission potential of animal influenza
22 viruses that cause spillover infections in humans is essential for pandemic risk assessment. Ferrets
23 have been used as a surrogate model for investigating the transmission potential of influenza
24 viruses in humans, as they are naturally susceptible to infection with human and zoonotic influenza
25 viruses, exhibit clinical signs during infection which closely resemble those of humans, and
26 support influenza virus transmission via similar modes as humans. In particular, the respiratory
27 droplet transmissibility of a specific influenza strain among ferrets often correlates with its
28 transmission potential in humans (1). As such, ferrets are commonly used for assessing the
29 pandemic potential of newly emerged zoonotic influenza viruses, and data from these experiments
30 inform formal risk assessment rubrics established by the WHO and CDC (2, 3).

31 The transmission potential of influenza viruses is determined by multiple viral, host, and
32 environmental parameters. As the ferret model becomes commonly employed in laboratories
33 worldwide, there is an underappreciated heterogeneity among established experimental protocols
34 and facility setups across different laboratories, which may lead to variable results between
35 transmission experiments performed (4). Some of these variables, such as the dose, volume, and
36 route of inoculation and animal age, have been confirmed to affect the kinetics of virus infection,
37 replication, and transmission in the ferret model (5-7). However, the impact of other parameters,
38 such as virus propagation procedures, caging designs, airflow directionality and number of air
39 exchanges, and environmental conditions such as relative humidity, is largely unknown.
40 Consequently, interpretation of results from ferret transmission experiments can represent a
41 challenge when comparing data generated from multiple laboratories, even when the same virus

42 strain or subtype is being investigated (8). Considering the statistical limitations on small sample
43 sizes in ferret experiments, and high potential for strain-specific variability, investigators often
44 assess the pandemic potential of emerging virus subtypes as an aggregate of multiple viruses tested
45 (9-11). As many public health efforts require cross-laboratory risk assessment studies for newly
46 emerged zoonotic influenza viruses (12) and antiviral efficacy studies aiming to block influenza
47 transmission between ferrets (13), a greater understanding of variability in transmission results
48 obtained between independent groups is critical.

49 To assess the variability of ferret transmission results across laboratories under established
50 protocols, we performed a global exercise using two common stock influenza viruses that possess
51 different transmission characteristics in ferrets. Eleven independent laboratories inoculated ferrets
52 with these stock viruses under uniform conditions; parameters known to affect influenza
53 transmission kinetics were controlled in the experimental protocols while other potential
54 parameters were carefully monitored and recorded, both prior to and during the transmission
55 experiments. All aggregated data from these experiments were blinded and analyzed by an
56 independent statistician. To inform future risk assessment activities, the confidence of drawing
57 conclusions on virus transmissibility with concordant or discordant outcomes from multiple
58 laboratories was also investigated. By assessing the range of variation present among ferret
59 transmission experiments performed under established experimental protocols, this global exercise
60 provides helpful guidance for data interpretation when cross-laboratory results are to be compared.
61 The relatively concordant transmission results across 11 laboratories suggest that the ferret model
62 is highly robust for influenza pandemic risk assessment studies under the semi-standardized
63 conditions employed here. Furthermore, analyses investigating the role of host and environmental
64 parameters as they contribute to virus transmission kinetics and outcomes is valuable for both

65 current risk assessment activities and for evaluation of countermeasures to block influenza
66 transmission.

67

68 **Results**

69 **Transmissibility of human A(H1N1)pdm09 virus.** To evaluate potential heterogeneity in the
70 transmission results between 11 laboratories, we first compared the transmissibility of a cell-grown
71 isolate of the A(H1N1)pdm09 virus A/California/7/2009 (Cal/09), representative of early 2009
72 pandemic isolates and anticipated to exhibit moderate to high respiratory droplet transmissibility
73 (14-17). Transmissibility was evaluated with 4 donor:contact pairs at a 1:1 ratio in each laboratory.
74 Transmission to exposed respiratory droplet contact ferrets was defined by detection of infectious
75 virus or seroconversion to the homologous virus in post-exposure sera. Following establishment
76 of contact with donor ferrets 24 hours post-inoculation, detection of infectious virus and
77 seroconversion in contacts was observed in 10/11 and 11/11 laboratories, respectively, with the
78 reported transmission frequency ranging from 50-100% (Table 1). One out of 11 laboratories
79 determined viral loads in nasal swabs and throat swabs (Group F, with throat swab viral loads used
80 for subsequent analysis), while the other laboratories determined viral loads in nasal washes.
81 Employing both virological and serological results, by Fisher's exact test of homogeneity, there
82 was no significant difference in the transmission outcomes across labs with this virus ($p=0.797$).
83 Collectively, infectious virus was detected from the nasal wash or throat swabs of 72.7% (32/44)
84 exposed contacts, and seroconversion of contact ferrets to homologous virus was detected from
85 79.5% (35/44) of exposed contacts.

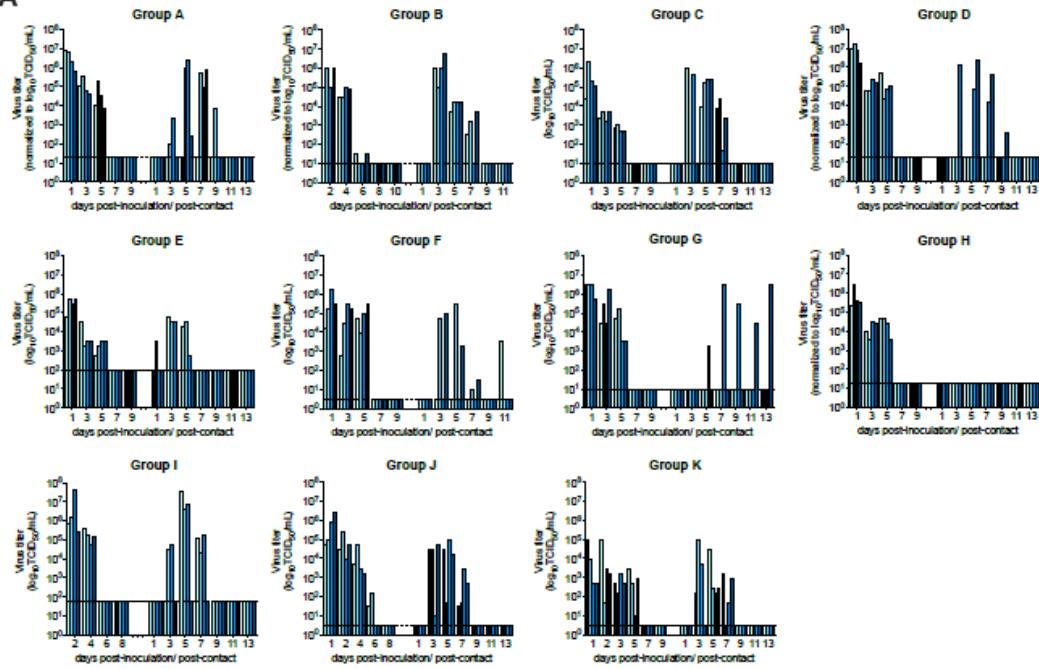
86

87

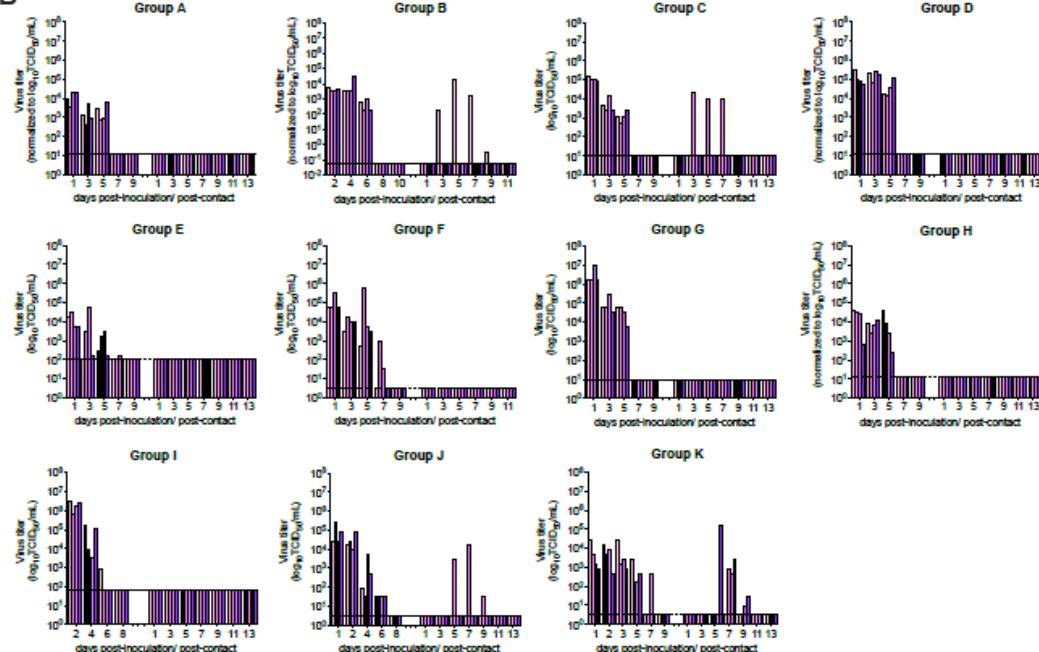
88 **Table 1. Summary of virus transmissibility results from all laboratories.**

Group	A(H1N1)pdm09 virus, A/California/7/2009			A(H1N1) avian influenza virus, A/ruddy turnstone/Delaware/300/20/2009		
	Viral load of inoculated donors (area under the curve) ^a	Transmission to aerosol contacts		Viral load of inoculated donors (area under the curve) ^a	Transmission to aerosol contacts	
		Virus detection ^b	Sero- conversion ^c		Virus detection ^b	Sero- conversion ^c
A	6.51±0.49	3/4	3/4	4.28±0.35	0/4	0/4
B	5.70±0.42	4/4	4/4	4.25±0.39	1/4	1/4
C	5.30±0.78	4/4	4/4	5.10±0.11	1/4	1/4
D	6.86±0.40	2/4	2/4	5.73±0.21	0/4	0/4
E	5.53±0.32	3/4	3/4	4.43±0.56	0/4	0/4
F	5.77±0.60	3/4	3/4	5.34±0.60	0/4	0/3
G	6.57±0.06	2/4	2/4	6.48±0.37	0/4	0/4
H	5.82±0.43	0/4	3/4	4.72±0.31	0/4	0/4
I	6.48±0.80	3/4	3/4	6.24±0.31	0/4	0/4
J	5.62±0.54	4/4	4/4	4.92±0.39	1/4	1/4
K	4.07±0.72	4/4	4/4	4.15±0.57	3/4	3/4

89 ^aArea under the curve (AUC) of viral titers from inoculated ferrets (following normalization of
90 infectious units to TCID₅₀), expressed as log₁₀ mean ± standard deviation. ^bNumber of contact
91 ferrets with infectious virus detected in respiratory specimens between 1-13 days post-contact
92 (p.c.). ^cNumber of contact ferrets that seroconverted to the exposed virus at the end of the study
93 using hemagglutination inhibition assay.


94

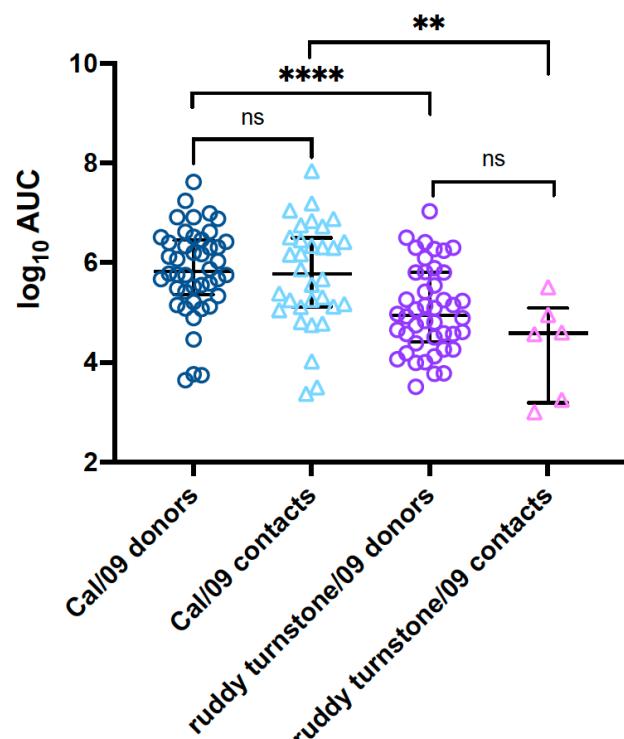
95


96 To allow comparison of the effect of viral load on transmissibility, viral titer units from
97 nasal wash/throat swab samples (inclusive of TCID₅₀, PFU, and EID₅₀ units, Supplemental Figures
98 1-2) were normalized to TCID₅₀ units (Figure 1), employing strain-specific conversions prior to
99 analyses (Supplemental Table 1). From the inoculated donor ferrets, the peak viral titers detected
100 in the nasal washes or throat swabs were at 5.72 ± 0.95, mean ± SD log₁₀ TCID₅₀/mL after
101 normalization, with the peak titers detected from 95.5% (42/44) of donors on the first sampling
102 time point on 1 or 2 days post-inoculation (dpi), followed by a decline of infectious titer over time
103 (Figure 1A). Area under the curve (AUC) after normalization was calculated to approximate total
viral load shed by the Cal/09-inoculated donors, with a mean ± SD log₁₀ AUC of 5.84 ± 0.89.

104 **Figure 1. Transmission kinetics of A(H1N1) viruses in ferrets.** **A**, normalized viral loads of
105 donors (left bars) and aerosol contact ferrets (right bars) after inoculation or exposure to
106 A(H1N1)pdm09 virus Cal/09. **B**, normalized viral loads of donors (left bars) and aerosol contact
107 ferrets (right bars) after inoculation or exposure to avian H1N1 virus ruddy turnstone/09. Nasal
108 washes (all groups except Group F) or throat swabs (Group F) were sampled to determine
109 infectious viral loads which were normalized to \log_{10} TCID₅₀/mL. Each bar represents individual
110 ferrets. Limit of detection is indicated with a dashed line.

A

B



111

112 Next, to evaluate the transmission efficiency, the serial interval (first detection of viral
113 shedding in contacts post-exposure from specimens collected every-other-day) was calculated for
114 each infected contact ferret. The serial interval was 1 day for 3.1% (1/32) of the Cal/09 infected
115 contact ferrets, followed by 3 days for 68.8% (22/32), 5 days for 21.9% (7/32), and 11 days for
116 6.3% (2/32), with a median serial interval of 3 days post-contact. Peak viral titers detected in the
117 contact nasal washes or throat swabs were at 5.41 ± 1.06 mean \pm SD \log_{10} TCID₅₀/mL after
118 normalization, with peak titers detected from 50% (16/32) and 34.4% (11/32) infected contacts on
119 3 dpi and 5 dpi, respectively. Altogether, the AUC for Cal/09 infected contact ferrets was $5.75 \pm$
120 1.05, comparable to the Cal/09 virus-inoculated donors (Mann-Whitney test, $p=0.6547$) (Figure
121 2).

122

123 **Figure 2. Area under the curve of infectious viral loads detected from inoculated donors or**
124 **infected contacts.** Data points represent AUC values from individual ferrets from which
125 infectious virus was detected. **, $p < 0.01$, ****, $p < 0.0001$, Mann-Whitney test.
126

127

128

129 **Transmissibility of avian A(H1N1) influenza virus.** We further evaluated the range of
130 heterogeneity present in transmission results when using the A(H1N1) avian influenza virus
131 A/ruddy turnstone/Delaware/300/2009 (ruddy turnstone/09) (18, 19), which has been reported to
132 transmit in ferrets via respiratory droplets under the experimental setting of donor: direct contact:
133 respiratory droplet contact at a 1:1:1 ratio, but not at a 1:1 donor:respiratory droplet contact ratio
134 (R Fouchier, unpublished data) (18, 19). Here, the experimental setup and conditions were
135 identical to those assessing Cal/09 virus transmissibility including a donor: respiratory droplet
136 contact 1:1 ratio with no direct contact ferret. Transmission of an egg-derived isolate of ruddy
137 turnstone/09 virus to exposed respiratory droplet contacts was only observed in 4 out of the 11
138 laboratories, with the transmission frequencies ranging from 25-75% across these four laboratories
139 (Table 1). Compared to Cal/09 virus, there were greater differences in the ruddy turnstone/09 virus
140 transmission outcomes across 11 laboratories, but the difference did not reach statistical
141 significance by Fisher's exact test of homogeneity ($p=0.068$). Viral shedding and seroconversion
142 to ruddy turnstone/09 virus were detected from 6/43 exposed contact ferrets across all laboratories,
143 resulting in a transmission efficiency of 14.0%, which was significantly lower compared to that of
144 Cal/09 virus (72.3%, paired t-test, $p < 0.001$).

145 From the inoculated donor ferrets, the peak viral titers detected in the nasal washes or throat
146 swabs were at 4.85 ± 0.94 , mean \pm SD \log_{10} TCID₅₀/mL after normalization, which was
147 significantly lower than those detected in the Cal/09 inoculated donors (Mann-Whitney test, p
148 <0.0001). Peak titers were detected from 88.6% (39/44) donors on the first sampling time point (1
149 or 2 dpi) followed by a decline of infectious titer over time (Figure 1B). Compared with Cal/09
150 virus inoculated donors, the mean \pm SD \log_{10} AUC of ruddy turnstone/09 virus-inoculated ferrets

151 was 5.06 ± 1.86 , significantly lower than those inoculated with the Cal/09 virus (Mann-Whitney
152 test, $p < 0.0001$) (Figure 2). Overall, ruddy turnstone/09 virus-inoculated donor ferrets shed lower
153 titers of infectious virus than the Cal/09 virus-inoculated donors.

154 In contrast to the transmission efficiency of Cal/09 virus with a median serial interval of 3
155 days, for the ruddy turnstone/09 transmission experiments, the serial interval was 3 days, 5 days,
156 or 7 days for 33.3% (2/6), 33.3% (2/6), and 33.3% (2/6) of the infected contact ferrets, respectively,
157 with the median serial interval at 5 days. Peak viral loads (3.94 ± 0.94 mean \pm SD \log_{10}
158 TCID₅₀/mL) detected from the six infected contact ferrets were lower when compared to the Cal/09
159 infected contact ferrets (Mann-Whitney test, $p=0.0022$). Peak titers were detected from 16.7%
160 (1/6), 33.3% (2/6), and 50% (3/6) infected contacts on 3 dpi, 5 dpi, and 7 dpi, respectively.
161 Furthermore, ruddy turnstone/09 virus-infected contact ferrets shed significantly less infectious
162 virus (4.31 ± 0.98 , mean \pm SD \log_{10} AUC) when compared to those animals directly inoculated
163 with Cal/09 virus (Mann-Whitney test, $p=0.0033$) (Figure 2). Taken together, there was a longer
164 serial interval and lower infectious virus shed by ruddy turnstone/09 virus-exposed contact ferrets
165 when compared to those exposed to Cal/09 virus.

166
167 **Contributing factors to ruddy turnstone/09 virus transmissibility.** By standardizing the source
168 stock virus, dose and volume of inoculation, and donor-to-contact ratio, we show that while
169 infrequent discordant results were documented, the transmission outcomes of Cal/09 and ruddy
170 turnstone/09 viruses independently performed by 11 laboratories were in general concordant,
171 despite variabilities in the laboratory settings that were not standardized in the experiments
172 (Supplemental Tables 2-4). As the transmission outcomes for the highly transmissible Cal/09 virus
173 were more concordant than the less transmissible ruddy turnstone/09 virus, we attempted to

174 examine if any variable, including those not standardized between laboratories, may have been
175 associated with differences in ruddy turnstone/09 virus transmissibility results.

176 Univariable logistic regression was performed to first evaluate if donor viral shedding
177 kinetics were linked to ruddy turnstone/09 virus transmission efficiency. However, examination
178 of several parameters, including AUC ($p=0.193$), peak viral titer ($p=0.197$), and days to peak titer
179 ($p=0.473$), were not statistically associated with different transmission outcomes observed
180 between laboratories (Supplemental Table 5), indicating that differences observed between
181 laboratories were not attributable to virological measurements.

182 Numerous studies have indicated a role for environmental parameters in virus
183 transmissibility (20, 21). Room temperature was generally consistent across all groups, with means
184 of daily recordings within 3°C for all experiments performed (20.5-23.2°C, Supplemental Table
185 4). In contrast, the relative humidity reported varied widely, with regard to both the range of daily
186 readings reported during 14-day individual experiments (varying 1-60% between low and high
187 readings) and the mean recordings over the entirety of each experiment (32.7% to 77.0%). Despite
188 this variability, there was no statistically significant association between transmission of ruddy
189 turnstone/09 virus and temperature, relative humidity, or absolute humidity (all $p>0.3$,
190 Supplemental Table 5).

191 Experimental cage setups varied widely between different groups, with extensive
192 heterogeneity present with regard to cage dimensions, airflow directionality and air changes per
193 hour, distance between cages, and other parameters (Supplemental Table 3). Groups employing
194 caging with airflow directionality from inoculated to contact cages more frequently reported
195 moderate to high transmissibility ($\geq 50\%$) of both viruses compared with groups lacking this
196 airflow directionality (6/6 vs 3/5 groups for Cal/09 virus, 3/6 vs 1/5 groups for ruddy turnstone/09

197 virus), however these findings did not reach statistical significance (both $p>0.3$, Supplemental
198 Table 5). Other specific features of cage setups, including distance between inoculated and contact
199 cages and air changes per hour (ACH) were also not statistically linked to the ruddy turnstone/09
200 transmission outcomes (both $p>0.4$, Supplemental Table 5). Taken together, despite substantial
201 heterogeneity in numerous non-standardized parameters in experimental setups employed between
202 groups, no one feature was identified as modulating transmission outcomes to a significant degree.
203

204 **Contributing factors to virus pathogenicity.** All ferrets inoculated with either Cal/09 or ruddy
205 turnstone/09 were productively infected, however measurements of morbidity varied between
206 groups for both viruses. Among Cal/09 virus-inoculated ferrets, mean maximum weight loss and
207 peak rise in body temperature between groups ranged from <1.0-15.6% and 0.6-2.1°C,
208 respectively (Supplemental Table 6, Supplemental Figure 3). Following ruddy turnstone/09 virus
209 inoculation, infected ferrets generally exhibited greater mean maximum weight loss (up to 19.6%)
210 and transient fevers (up to 3°C) (Supplemental Table 7, Supplemental Figure 4) compared to
211 ferrets with Cal/09 virus infections; ruddy turnstone/09-inoculated ferrets reached humane
212 experimental endpoints in 2/11 groups. The coefficient of variation between mean maximum
213 weight loss reported between groups was generally similar (56% and 52% for Cal/09 and ruddy
214 turnstone/09 viruses, respectively). No commonality with increased morbidity and ferret vendor,
215 gender, or pre-inoculation body weight was identified. Furthermore, no association was found
216 between morbidity and viral load (peak titer or AUC) or other environmental parameters, with the
217 exception of room temperature (with higher mean room temperatures associated with greater mean
218 weight loss) (Supplemental Table 8).

219

220 **Confidence in virus transmission results generated from multiple laboratories.** Collectively,
221 the results from this exercise demonstrate a capacity for groups possessing differences in facilities
222 designs and experimental protocols to report varying levels of relative transmissibility and
223 pathogenicity following inoculation of ferrets with the same virus. To illustrate how confidence in
224 risk assessments of virus transmissibility can increase as results from multiple groups are
225 combined, we evaluated the hypothetical risk of a virus capable of moderate to high transmission
226 (defined as $p \geq 50\%$ transmission events per total pairs of ferrets as defined in Table 2) or non-
227 transmissible (defined as $p \leq 25\%$ transmission events). In these analyses, concordant results are
228 defined as multiple groups identifying a virus exhibiting the same transmission capacity, and
229 discordant results are defined as multiple groups identifying a virus with different transmission
230 capacities, as defined above. By assuming concordant results across laboratories which permits
231 pooling of all transmission outcomes, as few as three groups (12 pairs of ferrets) will yield a
232 probability of over 80% to conclude moderate to high transmissibility when transmission was
233 observed in at least half of all experiments, and a probability of over 85% to conclude low
234 transmissibility when at most one transmission event was observed over all experiments.

235

236 **Table 2. Confidence in conclusions derived from pooled samples from multiple**
237 **laboratories.**

No. labs ^a	No. transmission pairs tested	No. pairs with transmission ^b	Probability of moderate to high transmissibility ^c	No. pairs without transmission	Probability of low transmissibility ^d
1	4	4	99%	0	76%
		3	88%	1	37%
2	8	≥7	>99%	0	92%
		6	99%	1	70%
		5	92%	2	40%
		4	68%		
3	12	≥8	>99%	0	98%
		7	95%	1	87%
		6	82%	2	67%
				3	42%
4	16	≥10	>99%	0	99%
		9	97%	1	95%
		8	90%	2	84%
		7	73%	3	65%
				4	43%

238 ^aNumber of laboratories providing results (assumes 4 pairs of donor:contact at 1:1 ratio per
239 laboratory; transmission in each pair is an independent event). ^bNumber of transmission events
240 among total number of ferrets from all groups specified (defined as detection of infectious virus
241 and seroconversion to homologous virus in contact ferrets). ^cModerate to high transmissibility is
242 defined as $p \geq 50\%$ (eg. ≥ 2 infected out of 4 ferrets). ^dLow transmissibility is defined as $p \leq 25\%$ (eg.
243 0 or 1 infected out of 4 ferrets).

244

245 Alternatively, a voting system can be considered by first drawing a conclusion on
246 transmissibility in each laboratory, with an overall conclusion drawn based on these ‘votes’ from
247 multiple labs. When testing for moderate to high transmissibility, and assuming n=4 ferrets per
248 laboratory, 3 laboratories are needed to conclude moderate to high transmissibility with confidence
249 >90% if concordant results are obtained. In agreement with probabilities shown in Table 3, a
250 greater number of laboratories contributing results are needed to demonstrate statistically
251 significant results when testing for low transmissibility; to conclude low transmissibility with

252 >90% confidence, this would necessitate 5 contributing laboratories if concordant results are
253 obtained. In this scenario, a greater number of contributing laboratories (or a greater number of
254 donor:contact pairs per laboratory) would be required if the true transmission probability was
255 higher for confirming low transmissibility, or when the true transmission probability was lower
256 for confirming moderate to high transmissibility.

257

258 **Table 3. Confidence in conclusions derived from multiple laboratories considering a voting**
259 **system.**

No. labs ^a	No. labs with concordant result ^b	Probability of moderate to high transmissibility ^c	Probability of low transmissibility ^d
1	1	76%	56%
2	2	87%	72%
	1 (discordant)	31%	18%
3	3	92%	81%
	2 (discordant)	48%	32%
4	4	95%	87%
	3 (discordant)	62%	45%
	2 (discordant)	23%	12%
5	5	97%	95%
	4 (discordant)	72%	56%
	3 (discordant)	35%	21%
6	6	98%	94%
	5 (discordant)	80%	65%
	4 (discordant)	47%	30%

260 ^aNumber of laboratories providing votes on the transmissibility of the tested virus. Each
261 laboratory will vote if the tested virus possess moderate to high transmissibility ($p \geq 50\%$, eg. ≥ 2
262 infected out of 4 ferrets) or low transmissibility ($p \leq 25\%$, eg. 0 or 1 infected out of 4 ferrets)
263 based on the experimental result. ^bNumber of laboratories with concordant results on viral
264 transmissibility, or the number of laboratories reaching concordant results when discordant
265 results are included. ^cModerate to high transmissibility is defined as $p \geq 50\%$ (eg. ≥ 2 infected out
266 of 4 ferrets). ^dLow transmissibility is defined as $p \leq 25\%$ (eg. 0 or 1 infected out of 4 ferrets).

267

268 Despite generally consistent results between all groups in this exercise, discordant results
269 are possible (Table 1), highlighting the need to better understand how to responsibly interpret and

270 account for these findings. As such, we also considered the scenario when discordant results
271 between laboratories are recorded. To demonstrate moderate to high transmissibility, we found
272 that 6 laboratories with 1 discordant result could still provide 80% confidence in the conclusion,
273 while any discordant result significantly reduced confidence for concluding low transmissibility
274 (Table 3). In both scenarios, if the results from different laboratories were more heterogeneous,
275 the uncertainty around the conclusion from each lab increases and the overall confidence would
276 decrease. This exercise is an illustration of the possible scenarios and confidence in drawing
277 conclusions on transmissibility but would be affected by how moderate to high or low
278 transmissibility were defined.

279

280 **Discussion**

281 The importance of the ferret model for influenza virus risk assessment studies cannot be
282 understated (4, 22). Recent advances in molecular biology, aerobiology, genomics, and other areas
283 highlight the ways the ferret model in general, and studies evaluating virus transmissibility by the
284 airborne route specifically, continue to contribute towards our understanding of influenza viruses
285 and the threat they pose to human health (23-25). However, as this model becomes more
286 commonly employed in laboratories worldwide, there is a pressing need to capture the level of
287 variability and heterogeneity intrinsic to this research. Cross-laboratory exercises have been
288 employed in the past to evaluate the reproducibility of assays employed for influenza virus public
289 health efforts (26), but no such exercise has been performed to date evaluating influenza virus
290 transmissibility in the ferret. In this exercise, 11 laboratories across different continents
291 independently evaluated the transmission potential of Cal/09 and ruddy turnstone/09 viruses with
292 distinct transmission potential. With only a few experimental parameters (common virus stock,

293 standardized inoculation dose, route, volume, and the 1:1 donor:contact ratio) being controlled
294 across the participating laboratories, we observed homogenous transmission outcomes (that is,
295 outcomes did not differ statistically) across laboratories. Our results demonstrate the robustness of
296 the ferret model in influenza risk assessment studies.

297 Risk assessment rubrics have thoroughly evaluated a wide scope of influenza A viruses,
298 from viruses associated with poultry outbreaks in the absence of confirmed human infections, to
299 viruses such as A(H5N1) and A(H7N9) influenza viruses that have caused substantial human
300 disease and death (3, 27). As such, there is a need to evaluate heterogeneity of ferret transmission
301 models employing viruses possessing a similar scope of transmissibility phenotypes. While the
302 variability in transmission results for either the Cal/09 or ruddy turnstone/09 viruses tested in this
303 study were not statistically significant, the range of results obtained, especially with the ruddy
304 turnstone/09 virus, nonetheless illustrates a level of variability that can be present in transmission
305 readouts of viruses exhibiting both low to high transmission efficiency (Table 1). This variability
306 was present despite a high degree of standardization of virus stock, inoculation procedures, and
307 uniformity of donor:contact ratio.

308 As shown in the Supplemental Methods and Supplemental Tables 1-6, this exercise
309 captured the extensive heterogeneity in laboratory protocols and setups present between different
310 groups. Documented variation was present in every parameter examined, inclusive of ferrets, cage
311 setups, titration methods, and environmental conditions, among other features. Caging and airflow
312 considerations were especially variable (Supplemental Table 2). It is impossible to standardize all
313 contributing variables to these experiments, as institutional, animal welfare, and governmental
314 guidelines and requirements vary worldwide, as do cost implications. That said, this exercise
315 supports the capacity to harmonize results generated between disparate groups when a small

316 number of procedural parameters are fixed. Interestingly, the four groups that detected infectious
317 virus in contact nasal wash specimens in ruddy turnstone/09 transmission experiments all found
318 4/4 virus transmission in the Cal/09 experiment; transmission percentages between the two viruses
319 were highly correlated between laboratories (Spearman correlation = 0.86, $p < 0.001$).
320 Furthermore, while directional airflow (OR=4) did not reach statistical significance, it is
321 nonetheless of note that 3/4 laboratories for which ruddy turnstone/09 virus transmission was
322 detected possessed directional airflow, versus 3/7 of the laboratories for which transmission with
323 this virus was not detected; directional airflow from inoculated to contact animals was a feature in
324 6/11 laboratories in this exercise (Supplemental Table 3). While our results did not conclusively
325 identify any one experimental parameter statistically associated with enhanced transmissibility
326 outcomes, it is possible that a confluence of parameters is nonetheless capable of creating a more
327 permissive environment for virus transmission to occur.

328 To improve interpretation of results from this standardization exercise, we concurrently
329 investigated the hypothetical confidence in concluding low transmissibility ($\leq 25\%$ or ≤ 1 ferret
330 infected out of 4 ferrets) or moderate to high transmissibility ($\geq 50\%$ or ≥ 2 ferrets infected out of 4
331 ferrets) from multiple contributing laboratories. These analyses assumed both a uniform prior
332 distribution for the transmission probability for a novel pathogen, and independent transmission
333 outcomes from the laboratories. We considered two scenarios: one scenario where strong
334 homogeneity across laboratories could be assumed so the samples were pooled from multiple
335 laboratories, and another scenario where each laboratory drew their own conclusion on
336 transmissibility such that an overall conclusion was drawn as a voting system. As influenza viruses
337 of notable public health importance are frequently assessed across multiple independent
338 laboratories, these analyses provide a framework to rigorously interpret independently generated

339 findings, especially when discordant results between laboratories are reported. This is most critical
340 in the event of a novel virus believed to possess moderate-to-high transmissibility; our analyses
341 support that 4 independent laboratories with concordant results supporting an enhanced
342 transmissibility phenotype yields a 95% probability of this finding, with additional independent
343 groups or a greater number of total ferret donor:contact pairs necessary when discordant results
344 are present.

345 Collectively, the findings of this exercise support the potential benefit of increased
346 uniformity, or standardization, of some parameters when conducting risk assessment-specific
347 activities on the same viruses. Specifically, the donor:contact ratio represents such a parameter.
348 For a virus with moderate to high transmissibility, such as Cal/09 virus, modulation of this ratio
349 (e.g., conducting experiments with a 2:1 donor:contact ratio, as is the case when transmission
350 evaluations in a direct contact setting and via respiratory droplets employ a common donor) would
351 not substantially alter conclusions drawn. However, for a virus with reduced transmissibility at a
352 1:1 ratio, such as the ruddy turnstone/09 virus evaluated here, it is likely that an increased
353 donor:contact ratio (eg., 2:1) may enhance transmissibility by increasing virus-laden aerosols
354 exhaled from infected ferrets. Previous studies on ruddy turnstone/09 virus demonstrated airborne
355 transmission potential when employing a donor: direct contact: aerosol contact at 1:1:1 ratio;
356 efficient transmission by direct contact will subsequently affect the quantity and kinetics of virus-
357 laden aerosols that mediate transmission by air (18, 19). There is a need to better understand how
358 modulation of this ratio contributes to assessments of virus transmissibility. However, this does
359 underscore the potential complications posed by harmonizing data generated for risk assessment
360 purposes for which the donor:contact ratio diverges. With increased heterogeneity in results
361 between labs, uncertainty around the conclusions increases, and there is a corresponding decrease

362 in confidence in the results (Table 3), showing the utility in increasing homogeneity across findings
363 from different labs in order to reduce the total number of labs required to yield statistically
364 meaningful results in this sort of analysis.

365 The emergence of SARS-CoV-2 further corroborates the pandemic potential of viruses of
366 zoonotic origin. Early identification and risk assessments of novel viruses are essential for
367 preventing the next pandemic. Continued optimization and refinement of risk assessment protocols
368 will facilitate data interpretation in response to emerging pandemic threats. Collectively, a greater
369 appreciation of this heterogeneity, and understanding of the scope of variability present in risk
370 assessment settings, will permit more robust conclusions to be drawn from these efforts in the
371 future.

372

373 **Materials and methods**

374 **Viruses.** The A(H1N1)pdm09 virus A/California/07/2009 (Cal/09) was propagated in MDCK
375 cells (passage C3) at the US CDC as described previously (28). The low pathogenic avian influenza
376 A(H1N1) virus A/ruddy turnstone/Delaware/300/2009 (ruddy turnstone/09) was propagated in
377 eggs (passage E3) by St. Jude Children's Research Hospital as described previously (19). Stocks
378 were fully sequenced and tested for exclusivity to rule out the presence of other influenza virus
379 subtypes prior to distribution.

380 **Animal and experimental variability.** Groups obtained ferrets from multiple vendors and
381 independent breeders from North America, Europe and Asia, and animals varied in their age,
382 gender, health status, and other parameters (Supplemental Table 1). There was substantial
383 differences between laboratories in the specific caging employed for transmission experiments,
384 distance between cages, airflow directionality between cages, and air changes per hour

385 (Supplemental Table 2). Anesthesia protocols, sample collection methods, and decontamination
386 procedures to prevent cross-contamination between contact and donor animals varied between
387 groups and are reported in Supplemental Methods. All experiments were performed under country-
388 specific legal guidelines and approved institutional-specific animal protocols as specified in the
389 Supplemental Methods.

390 **Standardized procedures.** All laboratories received common stock viruses prepared by CDC and
391 St. Jude Children's Research Hospital with the shipping temperature recorded. Stock viruses were
392 diluted to 10^6 plaque forming units (PFU) in 500 μ l PBS based on predetermined viral titers, and
393 donor ferrets were inoculated intranasally under in-house protocols for anesthesia (Supplemental
394 Methods). On day 1 post-inoculation, one respiratory droplet contact ferret was introduced and
395 exposed to each donor by housing in an adjacent cage, employing a strict 1:1 donor:contact ratio,
396 with 4 transmission pairs tested for each virus. Ferret temperatures, weights, and nasal
397 washes/swabs were collected every 24-48 hours. Daily room temperature and relative humidity
398 readings were collected and are reported in Supplemental Table 3 employing pre-validated
399 thermohygrometers with comparable readings (Testo Inc., 608-H1). Sera was collected at the end
400 of each experiment for determination of seroconversion to homologous virus by hemagglutinin
401 inhibition assay using established in-house serology protocols.

402 **Sample titration and normalization.** Infectious virus titers were determined by plaque assay,
403 50% tissue culture infectious dose (TCID₅₀) assay, or 50% egg infectious doses (EID₅₀) assay at
404 each laboratory with varying limits of detection (Supplemental Table 4). To facilitate subsequent
405 statistical assessments across laboratories, reported titers from each laboratory were normalized to
406 TCID₅₀/mL for each virus based on PFU, TCID₅₀, and EID₅₀ values pre-determined by a single
407 laboratory to minimize titration methodology-specific variation.

408 **Data blinding and analyses.** Data blinding, aggregation and all statistical analyses were
409 performed by an independent statistician. Transmission outcomes were compared across
410 laboratories by each virus, using Fisher's exact test of homogeneity. Viral load between viruses
411 were compared by testing difference in area under the curve (AUC) using t-test. Factors associated
412 with transmissibility and morbidity were assessed by using logistic regression and linear regression
413 models. We also investigated the confidence in concluding low transmissibility ($\leq 25\%$, or ≤ 1 ferret
414 infected out of 4 ferrets) or moderate to high transmissibility ($\geq 50\%$ or ≥ 2 ferrets infected out of 4
415 ferrets) from multiple contributing laboratories. We assumed a uniform prior distribution for the
416 transmission probability for a novel pathogen was assumed, and independent transmission
417 outcomes from the laboratories. The confidence of drawing conclusion on transmissibility with
418 concordant or discordant outcomes from the laboratories is presented. We considered a scenario
419 where strong homogeneity across laboratory can be assumed so the samples were pooled from
420 multiple laboratories, and another scenario that each laboratory draw their own conclusion on
421 transmissibility and the overall conclusion was drawn as voting system. All analyses were
422 conducted in R version 4.0.4 (R Development Core Team).

423

424 **Acknowledgements**

425 This study was supported by Contract HHSN272201400006C from NIAID, NIH, USA. The
426 findings and conclusions in this report are those of the authors and do not necessarily reflect the
427 views of the Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease
428 Registry.

429

430

431

432 References

- 433 1. Buhnerkempe MG, Gostic K, Park M, Ahsan P, Belser JA, Lloyd-Smith JO. 2015.
434 Mapping influenza transmission in the ferret model to transmission in humans. *Elife* 4.
- 435 2. Cox NJ, Trock SC, Burke SA. 2014. Pandemic preparedness and the Influenza Risk
436 Assessment Tool (IRAT). *Curr Top Microbiol Immunol* 385:119-36.
- 437 3. WHO. 2016. Tool for Influenza Pandemic Risk Assessment (TIPRA).
- 438 4. Belser JA, Barclay W, Barr I, Fouchier RAM, Matsuyama R, Nishiura H, Peiris M,
439 Russell CJ, Subbarao K, Zhu H, Yen HL. 2018. Ferrets as Models for Influenza Virus
440 Transmission Studies and Pandemic Risk Assessments. *Emerg Infect Dis* 24:965-971.
- 441 5. Moore IN, Lamirande EW, Paskel M, Donahue D, Kenney H, Qin J, Subbarao K. 2014.
442 Severity of clinical disease and pathology in ferrets experimentally infected with
443 influenza viruses is influenced by inoculum volume. *J Virol* 88:13879-91.
- 444 6. Gustin KM, Belser JA, Wadford DA, Pearce MB, Katz JM, Tumpey TM, Maines TR.
445 2011. Influenza virus aerosol exposure and analytical system for ferrets. *Proc Natl Acad
446 Sci U S A* 108:8432-7.
- 447 7. Bodewes R, Kreijtz JH, van Amerongen G, Fouchier RA, Osterhaus AD, Rimmelzwaan
448 GF, Kuiken T. 2011. Pathogenesis of Influenza A/H5N1 virus infection in ferrets differs
449 between intranasal and intratracheal routes of inoculation. *Am J Pathol* 179:30-6.
- 450 8. Belser JA, Eckert AM, Tumpey TM, Maines TR. 2016. Complexities in Ferret Influenza
451 Virus Pathogenesis and Transmission Models. *Microbiol Mol Biol Rev* 80:733-44.
- 452 9. Belser JA, Maines TR, Katz JM, Tumpey TM. 2013. Considerations regarding
453 appropriate sample size for conducting ferret transmission experiments. *Future Microbiol*
454 8:961-5.
- 455 10. Nishiura H, Yen HL, Cowling BJ. 2013. Sample size considerations for one-to-one
456 animal transmission studies of the influenza A viruses. *PLoS One* 8:e55358.
- 457 11. Linster M, van Boheemen S, de Graaf M, Schrauwen EJA, Lexmond P, Manz B,
458 Bestebroer TM, Baumann J, van Riel D, Rimmelzwaan GF, Osterhaus A, Matrosovich
459 M, Fouchier RAM, Herfst S. 2014. Identification, characterization, and natural selection
460 of mutations driving airborne transmission of A/H5N1 virus. *Cell* 157:329-339.
- 461 12. Martinez-Sobrido L, Blanco-Lobo P, Rodriguez L, Fitzgerald T, Zhang H, Nguyen P,
462 Anderson CS, Holden-Wiltse J, Bandyopadhyay S, Nogales A, DeDiego ML, Wasik BR,
463 Miller BL, Henry C, Wilson PC, Sangster MY, Treanor JJ, Topham DJ, Byrd-Leotis L,
464 Steinhauer DA, Cummings RD, Luczo JM, Tompkins SM, Sakamoto K, Jones CA, Steel
465 J, Lowen AC, Danzy S, Tao H, Fink AL, Klein SL, Wohlgemuth N, Fenstermacher KJ,
466 El Najjar F, Pekosz A, Sauer L, Lewis MK, Shaw-Saliba K, Rothman RE, Liu ZY, Chen
467 KF, Parrish CR, Voorhees IEH, Kawaoka Y, Neumann G, Chiba S, Fan S, Hatta M,
468 Kong H, Zhong G, et al. 2020. Characterizing Emerging Canine H3 Influenza Viruses.
469 *PLoS Pathog* 16:e1008409.

470 13. Lee LYY, Zhou J, Frise R, Goldhill DH, Koszalka P, Mifsud EJ, Baba K, Noda T, Ando
471 Y, Sato K, Yuki AI, Shishido T, Uehara T, Wildum S, Zwanziger E, Collinson N,
472 Kuhlbusch K, Clinch B, Hurt AC, Barclay WS. 2020. Baloxavir treatment of ferrets
473 infected with influenza A(H1N1)pdm09 virus reduces onward transmission. PLoS Pathog
474 16:e1008395.

475 14. Pulit-Penaloza JA, Jones J, Sun X, Jang Y, Thor S, Belser JA, Zanders N, Creager HM,
476 Ridenour C, Wang L, Stark TJ, Garten R, Chen LM, Barnes J, Tumpey TM, Wentworth
477 DE, Maines TR, Davis CT. 2018. Antigenically Diverse Swine Origin H1N1 Variant
478 Influenza Viruses Exhibit Differential Ferret Pathogenesis and Transmission Phenotypes.
479 J Virol 92.

480 15. Baz M, Boonnak K, Paskel M, Santos C, Powell T, Townsend A, Subbarao K. 2015.
481 Nonreplicating influenza A virus vaccines confer broad protection against lethal
482 challenge. MBio 6:e01487-15.

483 16. Lakdawala SS, Lamirande EW, Sugitan AL, Jr., Wang W, Santos CP, Vogel L,
484 Matsuoka Y, Lindsley WG, Jin H, Subbarao K. 2011. Eurasian-origin gene segments
485 contribute to the transmissibility, aerosol release, and morphology of the 2009 pandemic
486 H1N1 influenza virus. PLoS Pathog 7:e1002443.

487 17. Munster VJ, de Wit E, van den Brand JM, Herfst S, Schrauwen EJ, Bestebroer TM, van
488 de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD,
489 Fouchier RA. 2009. Pathogenesis and transmission of swine-origin 2009 A(H1N1)
490 influenza virus in ferrets. Science 325:481-3.

491 18. Kocer ZA, Krauss S, Stallknecht DE, Rehg JE, Webster RG. 2012. The potential of avian
492 H1N1 influenza A viruses to replicate and cause disease in mammalian models. PLoS
493 One 7:e41609.

494 19. Zanin M, Wong SS, Barman S, Kaewborisuth C, Vogel P, Rubrum A, Darnell D,
495 Marinova-Petkova A, Krauss S, Webby RJ, Webster RG. 2017. Molecular basis of
496 mammalian transmissibility of avian H1N1 influenza viruses and their pandemic
497 potential. Proc Natl Acad Sci U S A 114:11217-11222.

498 20. Marr LC, Tang JW, Van Mullekom J, Lakdawala SS. 2019. Mechanistic insights into the
499 effect of humidity on airborne influenza virus survival, transmission and incidence. J R
500 Soc Interface 16:20180298.

501 21. Gustin KM, Belser JA, Veguilla V, Zeng H, Katz JM, Tumpey TM, Maines TR. 2015.
502 Environmental Conditions Affect Exhalation of H3N2 Seasonal and Variant Influenza
503 Viruses and Respiratory Droplet Transmission in Ferrets. PLoS One 10:e0125874.

504 22. Albrecht RA, Liu WC, Sant AJ, Tompkins SM, Pekosz A, Meliopoulos V, Cherry S,
505 Thomas PG, Schultz-Cherry S. 2018. Moving Forward: Recent Developments for the
506 Ferret Biomedical Research Model. mBio 9.

507 23. Karlsson EA, Meliopoulos VA, Savage C, Livingston B, Mehle A, Schultz-Cherry S.
508 2015. Visualizing real-time influenza virus infection, transmission and protection in
509 ferrets. Nat Commun 6:6378.

510 24. Yen HL, Liang CH, Wu CY, Forrest HL, Ferguson A, Choy KT, Jones J, Wong DD,
511 Cheung PP, Hsu CH, Li OT, Yuen KM, Chan RW, Poon LL, Chan MC, Nicholls JM,
512 Krauss S, Wong CH, Guan Y, Webster RG, Webby RJ, Peiris M. 2011. Hemagglutinin-
513 neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1
514 influenza virus in ferrets. *Proc Natl Acad Sci U S A* 108:14264-9.

515 25. Varble A, Albrecht RA, Backes S, Crumiller M, Bouvier NM, Sachs D, Garcia-Sastre A,
516 tenOever BR. 2014. Influenza A virus transmission bottlenecks are defined by infection
517 route and recipient host. *Cell Host Microbe* 16:691-700.

518 26. Stephenson I, Heath A, Major D, Newman RW, Hoschler K, Junzi W, Katz JM, Weir JP,
519 Zambon MC, Wood JM. 2009. Reproducibility of serologic assays for influenza virus A
520 (H5N1). *Emerg Infect Dis* 15:1252-9.

521 27. CDC. 2021. Summary of Influenza Risk Assessment Tool (IRAT) Results.
<https://www.cdc.gov/flu/pandemic-resources/monitoring/irat-virus-summaries.htm>.
522 Accessed Feb 10 2021.

523 28. Maines TR, Jayaraman A, Belser JA, Wadford DA, Pappas C, Zeng H, Gustin KM,
524 Pearce MB, Viswanathan K, Shriver ZH, Raman R, Cox NJ, Sasisekharan R, Katz JM,
525 Tumpey TM. 2009. Transmission and pathogenesis of swine-origin 2009 A(H1N1)
526 influenza viruses in ferrets and mice. *Science* 325:484-7.

527
528