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Summary 

Introducing heterologous pathways into host cells constitutes a promising strategy for 

synthesizing nonstandard amino acids (nsAAs) to enable the production of proteins with 

expanded chemistries. However, this strategy has proven challenging as the expression of 

heterologous pathways can disrupt cellular homeostasis of the host cell. Here, we sought to 

optimize the heterologous production of the nsAA para-aminophenylalanine (pAF) in Escherichia 

coli. First, we incorporated a heterologous pAF biosynthesis pathway into a genome-scale model 

of E. coli metabolism, and computationally identified metabolic interventions in the host’s native 

metabolism to improve pAF production. Next, we explored different ways of imposing these flux 

interventions experimentally and found that the upregulation of flux in chorismate biosynthesis 

pathway through the elimination of feedback inhibition mechanisms could significantly raise pAF 

titers (~20 fold) while maintaining a reasonable pAF yield-growth rate trade-off. Overall, this 

study provides a promising strategy for the biosynthesis of nsAAs in engineered cells.  
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Introduction 

Engineering microbes with diverse natural and non-naturally occurring functions is a major 

endeavor in synthetic biology, important for multiple goals. One goal is the microbial production 

of industrial and therapeutic small molecules through metabolic engineering. Another goal 

involves the ribosomal production of proteins containing nonstandard amino acids (nsAAs), 

which expand the chemistry of the canonical set of 20 amino acids that organisms in all kingdoms 

of life use for protein biosynthesis [1, 2]. Proteins that incorporate nsAAs enable diverse 

biochemistries not typically found in nature, such as hydrocarbon-based secondary structure 

stabilization [3], site-specific antibody-drug conjugation [4], and covalent linkage of proteins to 

form functional biopolymers [5, 6]. Although short nsAA-bearing proteins, such as stapled 

peptides, have traditionally been generated via asymmetric synthesis methods [7] and while cell-

free translation techniques exist for the production of larger proteins [8], the ribosomal 

incorporation of nsAAs into the proteins of living cells greatly expands the scope and utility of 

nsAA-containing proteins. For instance, ribosomally-synthesized nsAA-containing proteins can be 

incorporated into biocontainment strategies that limit the survival and propagation of 

engineered microbes to specified environments [9, 10], fluorescent proteins that serve as in vivo 

probes for enzymatic activities [11], and sequence-defined synthetic biomaterials containing 

multiple instances of nsAAs [12-14]. 

 

In order to synthesize proteins that contain ribosomally-synthesized nsAAs, engineered 

organisms require a pool of nsAAs from which to draw during translation. To date, the problem 

of provisioning organisms with nsAAs has been predominantly tackled by exogenously 

supplementing the desired amino acids [12]. Additionally, there are only a few reports of in vivo 

production for genetic code expansion by manipulating endogenous amino acid biosynthetic 

pathways to favor the intracellular accumulation of intermediates that are used as nsAAs [15-17]. 

Both strategies are subject to limitations. In the case of exogenous supplementation, some nsAAs 

may have low cell membrane permeability, compromising their transport into the cell for 

ribosomal incorporation. In the case of native pathway production, the set of nsAAs that can be 

synthesized is limited to the biosynthetic capabilities of the host organism. 
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Incorporating and optimizing heterologous biosynthetic pathways into a host cell’s metabolism 

constitutes a third possible strategy for provisioning organisms with nsAAs. This circumvents the 

need for exogenous nsAA supplementation and enables the biosynthesis of a vast range of nsAAs 

beyond the host organism’s native metabolic capabilities. Heterologous pathways for 

synthesizing nsAAs can be obtained from bacteria, fungi, and plants that produce a wide variety 

of amino acids with nonstandard functional groups as intermediates when synthesizing 

antibiotics, toxins, and other bioactive small molecules [18]. For example, the gram-positive 

bacterium Streptomyces cattleya is capable of synthesizing a terminal-alkyne amino acid [19] and 

4-fluorothreonine [20]. Importing naturally occurring biosynthetic pathways for nsAAs into 

model organisms with a high capacity for ribosomal nsAA incorporation, such as genomically 

recoded E. coli [1], could be an effective way to synthesize proteins using nsAAs. Despite this 

promise, the efficient biosynthesis of nsAAs and other small molecules via expression of 

heterologous pathways in laboratory host strains has proven challenging because it requires 

laborious efforts to mine, characterize, and optimize heterologous biosynthetic pathways in 

hosts, given that such pathways can disrupt cellular homeostasis by co-opting native metabolic 

resources for small molecules production [21, 22]. While a previous study aimed to address this 

challenge by engineering the native metabolism of an E. coli strain for producing an nsAA [23], 

systems-level studies of nsAA overproduction, which take into account the entire scope of 

cellular metabolism, are still lacking.  

 

Genome-scale models (GEMs) of metabolism can help address this gap  [24, 25]. These models 

consist of the full inventory of metabolic reactions encoded by the genome of an organism and 

can be computationally simulated to systematically explore metabolic tradeoffs in engineered 

organisms. A wide spectrum of computational approaches has been developed to design 

overproducing microbial strains by using GEMs as a basis (see [24, 25] for a review of these 

approaches). These tools computationally identify candidate flux changes in the network, such 

as knockouts, up-regulations or down-regulations that lead to the enhanced production of a 

biochemical of interest. The identified flux changes are then mapped to genetic manipulations 
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that can be implemented experimentally. Several studies have reported on the successful 

utilization of these computational pipelines to guide the design of engineered microbial strains 

overproducing commodity chemicals, biofuel precursors, and a variety of other chemicals [26-

30]. 

 

We hypothesized that the efficient synthesis of nsAAs using heterologous pathways also requires 

systematic engineering of the host’s native metabolites to proportionately allocate metabolic 

resources to cellular growth and the bioengineering objective, i.e., nsAA production. In this study, 

we tackle this by combining computational systems biology approaches based on GEMs of 

metabolism and synthetic biology techniques to explore the feasibility of engineering highly 

efficient nsAA producer microbes. We focus our efforts on optimizing the biosynthesis of para-

aminophenylalanine (pAF) in E. coli, generated from intracellular chorismate using a 

heterologously expressed gene cluster from Pseudomonas fluorescens [23]. Motivated by the 

observation that a trade-off exists between pAF production and growth rate in this engineered 

E. coli cultured in carbon-limited environments, we sought to explore opportunities for 

modulating this trade-off by using computational modeling. To this end, we used a GEM of E. coli 

metabolism and a computational strain design pipeline to better understand how the 

introduction of the heterologous pAF-producing pathway co-opts native metabolic resources, 

and to computationally identify rational ways of rewiring the host metabolism to improve pAF 

production. We then used the predicted metabolic flux interventions as a starting point to apply 

multiplex genome engineering technologies [31-33] to experimentally construct and test 

engineered strains for pAF production. We found that upregulation of metabolic flux in the 

chorismate biosynthesis pathway through the elimination of feedback inhibition mechanisms is 

the most promising strategy to increase pAF production. However, the optimized strains 

continued to exhibit a trade-off between growth rate and pAF production. Our study provides a 

basis for the systematic exploration of host cell metabolism to optimize the biosynthesis of 

natural products via heterologous expression. The strategy presented here may be applied to 

diverse biosynthetic pathways in a wide range of host organisms.  
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Results 

A trade-off between nsAA production and growth in carbon-limited environments 

To enable pAF production by E. coli, we engineered the E. coli strain EcNR2 [34] to synthesize pAF 

using the papBAC gene cluster derived from Pseudomonas fluorescens strain SBW25. The 

enzymes PapA, PapB, and PapC convert chorismate into para-aminophenylpyruvate, which is 

then converted to pAF by native cellular aminotransferases [23] (Figure 1A). We constructed a 

pAF production circuit by placing the papBAC genes downstream of the PLtetO 

anhydrotetracycline (aTc) inducible promoter (Figure 1B) and cloned the gene cluster into a 

plasmid with a p15A origin of replication [35]. The aTc-inducible promoter enables titratable 

expression of the genes under its control, a characteristic we confirmed by examining an 

analogous circuit with green fluorescent protein (GFP) in the place of papBAC [36] 

(Supplementary Figure S1). 

 

We induced papBAC expression at a range of aTc concentrations in M9 minimal medium 

supplemented with 0.4% glucose and measured extracellular pAF concentrations after 24 hours 

of incubation using tandem mass spectrometry. We observed low levels of pAF production even 

in the absence of aTc, a consequence of both leaky expression under PLtetO and of peak overlap 

in MS spectra. Concentrations of aTc above 8 ng/ml yielded pAF titers above baseline, with pAF 

yield plateauing at ~20 µM (0.001 g pAF per g of glucose) beyond aTc concentrations of 32 ng/ml 

(Figure 1C). However, strains grown in aTc concentrations of 2 ng/ml and higher exhibited 

substantial increases in doubling time relative to the uninduced control (Figure 1D). Notably, the 

growth impairment of the strain increases concomitantly with higher papBAC expression, which 

suggests a trade-off between pAF production and growth rate. We did not observe a similar 

trade-off between protein expression and doubling time when we expressed non-enzymatic GFP 

under an analogous circuit, indicating that the trade-off observed is not due to increased 

translational load. We hypothesized that the trade-off is a consequence of rerouting chorismate 

flux toward pAF production and away from native downstream pathways, which presumably 

attenuate the production of metabolites essential for growth in minimal medium (Figure 1A). 
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Construction of in silico pAF-producing E. coli  

Our observation that pAF production trades off with growth in E. coli illustrates the disruption of 

cellular homeostasis caused by the expression of heterologous enzymatic pathways, a 

phenomenon observed in other related studies [21, 37-39]. This motivates the need to engineer 

the host cell’s native metabolism in order to optimize nsAA production in dynamic environments. 

To address this, we leveraged computational systems biology methods to systematically study 

nsAA production in E. coli. To construct the corresponding pAF-producing E. coli in silico, 

metabolic reactions encoded by the papBAC gene cluster were extracted and consolidated from 

several online databases including MetaCyc [40], KEGG [41] and Model SEED [42] and were 

incorporated into the iJO1266 GEM of metabolism of E. coli [43] (Figure 2). We next used this 

engineered metabolic model to examine the production capacity of pAF by the engineered E. coli 

strain in silico. This analysis revealed that this strain is able to produce a maximum of 0.54 mmoles 

of pAF per mmole of glucose (0.54 g pAF per g glucose) under the aerobic minimal M9 medium 

(equivalent of 2.16 g/L or 120 mM of pAF in an M9 medium with 4% glucose). However, this 

maximum is achieved at the expense of zero growth, implying that pAF production is in direct 

competition with growth, which was further confirmed by plotting the predicted maximum pAF 

production level by the model as a function of maximum growth rate (Figure 2A). This is due to 

the fact that glutamine and chorismate, which are the main precursors for the pAF biosynthesis 

in the network, also serve as a precursor for biomass production (i.e., growth), or for the 

biosynthesis of a number of other essential amino acids such as phenylalanine, tyrosine, and 

tryptophan (Figure 2B). These results suggest that further engineering of native metabolism of 

the host E. coli strain is required to enhance pAF production.  

 

Computational design of metabolic interventions for the native metabolism of the host E. 

coli strain 

We used the computational strain design pipeline OptForce [44] (Methods) to identify metabolic 

interventions leading to the improved production of pAF in the E. coli strain harboring the 

papBAC gene cluster under the aerobic minimal M9 medium using glucose as the carbon source. 

The first set of interventions that we identified consists of the upregulation of reactions encoded 
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by the papBAC gene cluster that results in a minimum pAF production of ~80% of theoretical 

maximum when the growth is set to be at least 20% of maximum. These reaction flux increases  

draw the metabolic flow toward pAF and can be also readily inferred intuitively. However, pull 

strategies alone may not always be sufficient to provide a desired production level for a target 

biochemical due to the presence of bottlenecks in other parts of the metabolic network, which 

cannot be directly captured by GEMs of metabolism. Therefore, in the next step, we sought to 

identify metabolic interventions in other parts of the host’s native metabolism that push 

metabolic flow toward pAF. This was done by re-running OptForce while preventing the 

upregulation of reactions encoded by the papBAC gene cluster. This analysis identified a set of 

reaction manipulations that collectively lead to an increased pool of chorismate (Figure 2B). Here, 

we found that at least three simultaneous reaction manipulations are required to enable a 

minimum pAF production based on the model. These reaction manipulations result in a minimum 

pAF production level of 34.97% of theoretical maximum (Figure 2C) and include (i) the increasing 

flux in any of the reactions in the shikimate pathway that directly lead to the biosynthesis of 

chorismate (encoded by aro family genes or ydiB) (Figure 2B); (ii) decreasing flux in any of the 

reactions that convert chorismite to aromatic amino acids namely L-tryptophan (encoded by trpC, 

D and E), and to phenylalanine and tyrosine (chorimsate mutase “CHORM”, encoded by pheA or 

tyrA) (Figure 2B). In addition, we found that a fourth intervention, i.e., the deletion of any of the 

reactions encoded by entA, entB, entE and entF to prevent the conversion of chorismate to 

enterochelin, will increase the minimum pAF production more than twofold (from 34.97% to 

79.77% of theoretical maximum) (Figure 2C). Although the deletion of aromatic amino acid genes 

to improve pAF production has been explored before [23], such modifications would lead to 

auxotrophies and other interventions identified in this study have not been reported, thus 

highlighting the importance of taking into account the entire scope of metabolism (afforded 

GEMs) to infer potentially promising metabolic interventions while minimizing impact on growth 

and fitness.  

 

It is worth noting that the analysis of epistatic interactions among our identified flux 

manipulations with respect to pAF production as the phenotype of interest revealed that 
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(Supplementary Figure S1) no single or pair combinations of the four reaction manipulations 

noted above (Figure 2B) is enough to enable a non-zero minimum pAF production in the network. 

Of note, an epistatic interaction between two genes means that the phenotype of a double-gene 

mutant strain cannot be easily inferred from phenotypes of single-gene mutant strains [45]). 

However, with simultaneous implementation of these four reaction manipulations, a high 

metabolic flux is pushed toward chorismate while all metabolic sinks of chorismate (except those 

that are essential for the synthesis of growth precursors) are blocked, thereby funneling a high 

carbon flux toward pAF. This high nonlinearity highlights the importance of computational 

analyses to identify interventions that may need to be applied concurrently in order to have a 

significant effect. 

 

Construction and characterization of computationally designed overproducing strains 

Computational modeling identified numerous opportunities for metabolic flux manipulations to 

enhance pAF production in E. coli, including the downregulation of metabolic flux downstream 

of chorismate biosynthesis and the upregulation of flux upstream of chorismate biosynthesis. 

These predictions serve as a starting point to experimentally design an engineered E. coli strain 

with an enhanced pAF production capacity. Although we can implicitly infer genetic 

manipulations corresponding to predicted flux interventions using gene-reaction associations in 

GEMs (Figure 2C), there can be different ways of imposing these flux changes experimentally, not 

all of which could be directly captured by GEMs. For example, increasing metabolic flux in the 

shikimate pathway (toward chorismite) can be achieved experimentally by either upregulating 

the aro family genes or by removing feedback inhibitions in this pathway (even though the latter 

is not directly captured by stoichiometric models used in this study) (Figure 2B). In particular, the 

redundant 3-deoxy-7-phosphoheptlonate synthases AroF, AroG, and AroH are allosterically 

inhibited by tyrosine, phenylalanine, and tryptophan, respectively [46-48], and the 

transcriptional repressor TyrR reduces the expression of numerous aro family genes under 

conditions of tyrosine abundance [49]. Thus, we hypothesized that these feedback mechanisms 

could play a strong role in enhancing or attenuating metabolic flux toward chorismate  synthesis. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2022. ; https://doi.org/10.1101/2022.04.02.486821doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.02.486821
http://creativecommons.org/licenses/by/4.0/


 10 

Therefore, we sought to eliminate these inhibition loops in our engineered strains as a way of 

increasing metabolic flux toward chorismate predicted by computational studies.  

 

We implemented model-guided metabolic flux downregulations by knocking out genes 

downstream of chorismate biosynthesis (pheA, trpDE, tyrA, and entA), and flux upregulations by 

cloning an additional copy of the penultimate gene upstream of chorismate biosynthesis (aroC) 

into episomal expression vectors. We used multiplex genome engineering and recombineering 

[50] to construct E. coli strains with combinatorial knockouts of pheA, trpDE, tyrA, and entA, 

genes downstream of chorismate biosynthesis. The knockout of aromatic amino acid 

biosynthesis genes generates auxotrophies for the respective amino acids. To compensate for 

these auxotrophies, we grew engineered strains in minimal medium supplemented with 

phenylalanine, tryptophan, and tyrosine. We also cloned aroC and placed it under the control of 

a vanillic acid-inducible promoter (PvanR) [51] to enable titratable overexpression. To verify 

whether genes under the control of the two synthetic promoters PLtetO and PvanR could be induced 

independently of one another, we also constructed a circuit analogous to the one used for 

papBAC and aroC expression with GFP under the control of PtetO and RFP under the control of 

PvanR (Supplementary Figure S2). We observed that GFP expression was unaffected by vanillic 

acid concentrations of up to 4 µM and that RFP expression was unaffected by aTc concentrations 

of up to 32 ng/ml (Supplementary Figure S3). Finally, we used MAGE [31] to introduce 

nonsynonymous point mutations that render AroF and AroG allosterically insensitive to tyrosine 

and phenylalanine, respectively [46, 47]. Because AroF and AroG together account for >99% of 

3-deoxy-7-phosphoheptlonate synthase activity within metabolically active E. coli [52], we did 

not introduce analogous feedback-inactivating mutations to AroH. 

 

We investigated the effects of these interventions, alone and in combination, on pAF production 

after 24 hours of induction in minimal media supplemented with tyrosine, phenylalanine, and 

tryptophan (Figure 3A). Titration of vanillic acid to overexpress aroC led to modest increases in 

pAF production, while no combination of downstream gene knockouts increased pAF yields 

contrary to our expectation. Feedback-inhibitory mutations did not lead to increases in pAF 
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production on their own, but we observed a > 4-fold increase in pAF production in strains with 

both AroFG feedback inhibition mutations (aroFG-FIM) and a tyrR knockout (∆tyrR). This suggests 

the existence of redundant feedback control mechanisms within the shikimate pathway that 

regulate flux toward chorismate, leading to the observed epistatic pattern on pAF production.  

 

We hypothesized that other epistatic patterns may exist among the genomic interventions 

targeted, and we reassessed the effects of gene overexpression and knockout in the context of a 

feedback-insensitive strain. Tuning the expression of the papBAC genes through aTc titration had 

a strong effect on pAF yield in ECNR2.aroFG-FIM.∆tyrR, up to a maximal pAF yield of 85 µM after 

40 hours of induction (0.004 g pAF per g of glucose) (Figure 3B, top panel). aroC overexpression 

via titration of vanillic acid led to no increases in pAF yield when paired with any level of papBAC 

induction. The expression of aroC was in fact detrimental to pAF yield at high aTc concentrations, 

possibly because of the high translational load placed on cells expressing both AroC and PapB/A/C 

in abundance. These same patterns—of pAF production driven predominantly by papBAC gene 

overexpression and of detrimental effects of aroC expression on pAF yield—were also observed 

in feedback-insensitive strains with additional knockouts in tyrA, pheA, and trpDE (Figure 3B, 

bottom panel).  

 

Relationship between pAF production and growth in engineered strains 

Given our initial observation of a trade-off between pAF production and growth rate (Figure 1D), 

we sought to determine how the model-guided genomic interventions (Figure 3A) influence the 

balance between cellular growth and pAF production in E. coli. Our efforts to culture engineered 

strains with tyrA, pheA, and trpDE knockouts in 96-well plate readers under conditions of papBAC 

induction were unsuccessful, presumably because suboptimal agitation and aeration conditions 

in such instruments inhibits the growth of strains with fitness-reducing gene knockouts. We thus 

measured the growth rates of all strains in the absence of papBAC expression (aTc = 0) and 

compared these rates against pAF yields obtained from the same strains in conditions optimal 

for pAF production (see Methods) (Figure 3C, Supplementary Table S1). Most engineered strains 

exhibited longer doubling times than EcNR2 without improving pAF yields. EcNR2.aroFG-FIM 
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showed a modestly lower doubling time (0.91 ± 0.04 relative to EcNR2) and modestly higher pAF 

yields (6.4 ± 2.2 µM), while EcNR2.∆tyrR showed a longer doubling time (1.14 ± 0.03 relative to 

EcNR2) and no detectable pAF yield. 

 

EcNR2.aroFG-FIM.∆tyrR was nonetheless capable of growing in a plate reader under papBAC 

induction conditions. Compared to EcNR2, the strain showed a 18% slower growth rate (161 ± 5 

min for EcNR2.aroFG-FIM.∆tyrR versus 137 ± 1 min for EcNR2) in the absence of papBAC 

expression (Figure 3D, top panel). However, both EcNR2 and EcNR2.aroFG-FIM.∆tyrR exhibited 

profound lag phases at low levels of papBAC expression ([aTc] = 2 ng/ml; Figure 3D, bottom 

panel). This suggests that feedback inhibition mutations can increase pAF yields but do not 

resolve the trade-off between pAF production and growth rate in carbon-limited media. 

Discussion 

The optimization of heterologous pathways for nsAA production is a promising strategy for 

engineering microbes with diverse biochemical capabilities. Heterologous expression often 

places significant metabolic burdens on engineered strains, which may hinder their utility in 

diverse industrial, biomedical, and environmental contexts. In this study, we leveraged GEMs of 

metabolism to guide the design of E. coli strains capable of producing the nsAA pAF from a 

heterologous pathway with minimal disruptions to cellular homeostasis. Previous studies have 

successfully engineered native E. coli metabolism to maximize pAF production in fermentation 

settings [23], wherein the active growth of cells is of minimal concern, and did not take into 

account the entire metabolism of the host. We build on this prior work by simultaneously 

accounting for growth and pAF production in our strain engineering efforts and by considering 

the entire scope of the host’s native metabolism using GEMs. This enables us to systematically 

pinpoint and test the effects of metabolic interventions that span the entire E. coli metabolome. 

 

Our initial efforts for pAF production in non-engineered E. coli hosts were hindered by a 

conspicuous trade-off between pAF production titers and growth rate (Figure 1D), presumably 

because expression of the pAF-producing papBAC genes disrupts cellular homeostasis by 
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shunting essential metabolites away from central metabolism. Computational modeling using 

GEMs identified numerous metabolic flux interventions that were predicted to improve the 

production of pAF for a given minimal growth rate. These interventions included decreasing 

metabolic flow downstream of chorismate biosynthesis through the downregulation (or 

knockout) of genes tyrA, pheA, trpDE, and entA and increasing metabolic flux upstream of 

chorismate biosynthesis through the upregulation of genes in the aro family (such as aroC). GEMs 

of metabolism, which are based on a stoichiometric representation, do not account for the 

nonlinear effects of regulatory interactions. Therefore, we also decided to consider the 

elimination of feedback inhibition mechanisms within the shikimate pathway as an alternative to 

implement flux upregulations to increase metabolic flow towards chorismite as predicted by 

using GEMs of metabolism. Although the removal of genes involved in the aromatic amino acids 

biosynthesis (more specifically pheA) has been implemented before to increase pAF production 

[23], their combination with other interventions we identified in this study has not previously 

been explored.  

 

Interestingly, we found that increased metabolic flow in the shikimate pathway through aroC 

upregulation, either alone or in combination with other predicted metabolic interventions, did 

not lead to increased pAF production compared to the non-engineered host (Figure 3A). This 

could be due to the presence of other rate limiting enzymatic reactions upstream of AroC in the 

shikimate pathway, implying that additional gene upregulations in that pathway are needed to 

impose the desired effect. However, we observed that imposing an increased metabolic flow 

toward chorismite through the elimination of feedback inhibition loops (via the elimination of 

allosteric feedback on AroF and AroG and deletion of the tyrosine-sensitive transcriptional 

repressor TyrR) led to a measurable increase in pAF production. Contrary to our expectation, 

combining these feedback elimination interventions with other computationally predicted 

interventions did not improve pAF production any further. These observations suggest that 

specific genetic interventions inferred directly from gene-reaction associations in the GEMs of 

metabolism may not always behave as expected due to regulatory/allosteric effects that are not 

captured by these models. This alludes to the need to consider additional regulatory interactions 
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in these pathways in future engineering efforts, e.g., by using large-scale kinetic models of 

metabolism [53, 54] (instead of stoichiometric models used in this study), which can take into 

account such regulatory and allosteric interactions.  

 

The interventions that did increase pAF production in our engineered strain, AroFG-FIM and 

∆tyrR, showed an epistatic effect on pAF production. Neither AroFG feedback elimination nor 

tyrR knockout raised pAF titers when implemented in isolation but installing both interventions 

within the same strain led to substantial increases in pAF titer (Figure 3A). This epistatic pattern 

could be due to redundant regulatory mechanisms within the shikimate pathway that control 

chorismate production. Both AroF and TyrR respond to high tyrosine conditions by reducing flux 

through the shikimate pathway, and the elimination of feedback nodes on both genes is thus 

needed to restore chorismate production in the tyrosine-supplemented minimal media used in 

this study. We observed substantial (~20-fold) increases in pAF production in strains with 

engineered chorismate pathway regulation compared to unmodified strains (Figure 3B). In future 

studies, we propose that it is possible to achieve further increases in pAF production through 

more extensive metabolic feedback loop modulation, but that these interventions do not 

necessarily alter the trade-off between pAF production and growth (Figure 3D). 

 

Sourcing nonstandard amino acids through biosynthesis in vivo holds promise for more efficient 

and cost-effective production of synthetic proteins and biomaterials. It could also serve as 

mediators of cellular signaling or the establishment of synthetic cross-feeding channels between 

members of engineered microbial communities. More specifically, we envision the exchange of 

nsAAs between organisms capable of producing them and organisms dependent upon them for 

survival as a promising approach to constructing stable microbial consortia that are minimally 

affected by surrounding inter-species metabolite exchanges. Engineered cross-feeding channels 

may also be resilient to invasion by natural strains through the exchange of metabolites that are 

not a component of natural cellular milieu. Crucially, organisms participating in such cross-

feeding channels would need to both produce nsAAs and grow robustly in dynamic environments. 
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Engineering microbial consortia thus requires the simultaneous optimization of two 

phenotypes—growth and metabolite production.  

Limitations of this study 

Our study identified three classes of genomic interventions that could influence pAF production 

in E. coli: (1) the knockout of genes downstream of chorismate biosynthesis, (2) the upregulation 

of genes upstream of chorismate biosynthesis, and (3) the elimination of regulatory and allosteric 

feedback mechanisms that reduce chorismate biosynthesis in conditions of high aromatic amino 

acid abundance. While in this study we aimed to explore all these interventions both individually 

and in combination, we only explored one intervention of the second class—the overexpression 

of aroC, which encodes the final enzyme in chorismate biosynthesis. We did not observe higher 

pAF titers with aroC overexpression, which highlights the possibly that there may exist other rate-

limiting reactions upstream of aroC that limit flux through the shikimate pathway not explored 

in our studies. The systematic overexpression of genes upstream of chorismate biosynthesis 

could reveal these rate-limiting reactions and lead to increased pAF production. 

 

As noted earlier, stoichiometric GEMs of metabolism do not capture interventions of the third 

class—regulatory and allosteric feedback mechanisms. This limits their capability for predicting 

promising metabolic intervention strategies. We did observe increases pAF production with the 

inactivation of these feedback mechanisms, namely by eliminating allosteric regulation of 

AroF/G/H and knockout of the transcriptional repressor tyrR (Figure 3A). However, feedback 

mechanisms are difficult to model computationally and to tune experimentally—for instance, 

tuning the allosteric response of AroF/G/H would require protein sequence alterations, whose 

effects are more difficult to predict than genetic up- or downregulations. Although our study 

highlights feedback modulation as a promising strategy for the biosynthesis of nsAAs in 

heterologous hosts, the generalizability of this approach is limited in the absence of synthetic 

biology tools to control these feedback mechanisms. 
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Conclusions 

In this study, we integrated computational systems biology modeling using GEMs of metabolism 

and synthetic biology techniques to construct an E. coli strain with enhanced pAF production. We 

found that the elimination of feedback inhibition loops in the chorismate biosynthesis pathway 

has the highest impact on enhancing pAF production while minimizing the disruption of cellular 

homeostasis and growth. Imposing other interventions in pathways downstream of chorismate, 

which was predicted by our computational models and seemed promising, did not lead to a 

further increase in pAF production contrary to our expectation. However, these observations 

warrant future studies that consider tunable regulatory circuits in this part of the metabolism to 

design a more efficient pAF-producing strain. Overall, our study sets a basis for the engineering 

of overproducing strains, which can be used in synthetic microbial consortia that meet the dual 

objectives of high-level product formation and sustained growth. We anticipate that this 

approach could be applied to heterologous pathways beyond pAF production such as other 

nsAAs or biochemicals.  

Methods 

Computational methods 

OptForce algorithm: In brief, OptForce [44], first characterizes the phenotypic space of a 

reference (wild-type) strain using any available metabolic flux data by minimizing and maximizing 

the flux of each reaction in the network subject to these experimental flux data. It next identifies 

the phenotypic space of an overproducing strain in a similar fashion by imposing a constraint on 

the minimum required biomass production (growth) in the network as well as a desired 

production level for the target product. By super-imposing the flux ranges in the wild-type and 

overproducing strains for each reaction, the list of reactions whose fluxes must increase, 

decrease, or shrink to zero in order to achieve the target production level of the desired product 

is identified. This list of reactions is then used to identify a minimal set of direct metabolic flux 

interventions (upregulations, downregulations, or knockouts) to achieve a specific production 

level for the biochemical of interest. In doing so, OptForce simulates a worst-case scenario where 
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the network fights against imposed interventions by maximizing the minimum product formation. 

OptForce has been previously used successfully to design overproducing strains [28, 29].  

 

Details of OptForce implementation: To characterize the phenotypic space of the wild-type strain, 

we used experimental flux data for 35 reactions in the central metabolism of E. coli from a 

previous study [29]. We performed the OptForce simulations by requiring a biomass production 

of at least 20% of theoretical maximum, for which the maximum achievable pAF production is 

predicted to be 44.27 (~80% of theoretical maximum). Therefore, we set 80% of theoretical 

maximum as our desired pAF production level. In our analyses, reactions with no gene association 

in the metabolic model were prevented from any type of manipulation. Furthermore, reactions 

associated with in silico or in vivo essential genes in the minimal M9 medium were prevented 

from being removed. Re-running the OptForce with different thresholds for growth and pAF 

production did not affect the set of identified metabolic interventions. All simulations were 

performed in Python using customized scripts (Supplementary Software S1). The OptForce 

optimization problem was solved using the Gurobi solver (https://www.gurobi.com) in Pyomo, 

an optimization modeling environment in Python [55].   

 

Experimental methods 

Materials, strains, and media: All strains in this study are derived from Escherichia coli EcNR2 [31]. 

LB min media from AmericanBio (Canton, MA) was used for routine strain growth and cloning. 

Growth and pAF production assays were performed in M9 minimal medium supplemented with 

0.25 µg/L betaine and vitamin and trace mineral mixes from Neidhardt EZ rich defined medium 

[56] (see Supplementary Table S2 for media components). Where indicated, M9 medium was 

also supplemented with 0.2 mM tyrosine, 0.4 mM phenylalanine, and 0.1 mM tryptophan to 

support the growth of strains with knockouts in aromatic amino acid biosynthesis genes. 0.4% 

(w/v) glucose was used as a carbon source for all M9 media formulations. 50 µg/ml carbenicillin 

was used for the growth of EcNR2 and derivatives in all conditions. Strains harboring papBAC, 

aroC, and GFP expression plasmids were cultured in carbenicillin and 95 µg/ml spectinomycin. 
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Cloning and strain engineering: Synthetic DNA fragments encoding codon-optimized papA, papB, 

and papC genes from Pseudomonas fluorescens were synthesized by GenScript (Piscataway, NJ). 

Primers and single-stranded oligonucleotides used for cloning and MAGE were synthesized by 

Integrated DNA Technologies (Coralville, IA) (Supplementary Table S3). Synthetic inducible 

circuits were generated by cloning DNA fragments into linearized plasmids with a p15A origin of 

replication and a spectinomycin resistance cassette. Linear DNA fragments were amplified using 

high-fidelity PCR kits from Kapa Biosystems sourced from Millipore Sigma (Burlington, MA). 

Gibson assembly (New England Biolabs; Boston, MA) was used for plasmid assembly. 

 

MAGE [31] and recombineering [50] were used to implement all genomic perturbations 

described in the study. Small genomic interventions (i.e., aroF and aroG feedback inhibition 

mutations) were implemented by performing 3 rounds of MAGE using 90-mer single-stranded 

DNA oligonucleotides encoding the desired mutation. Cultures were then plated on LB agar to 

isolate individual clones, which were then screened for the desired mutation(s) using multiplex 

allele-specific colony PCR [57]. For scarless gene-scale deletions, we first recombineered the 

counter-selectable marker tolC [58] into the locus to be deleted and selected for recombinants 

by plating on LB + 0.1% sodium dodecyl sulfate. We then used MAGE to delete tolC and selected 

for scarless mutants by growing cultures for 8 hours in LB containing colicin E1. Cultures passing 

the liquid selection were then plated on LB agar to isolate individual clones. All genomic 

interventions were then confirmed via Sanger sequencing. 

 

Growth assays: Cells were plated for single colonies on LB agar containing the appropriate 

antibiotics and grown overnight. Replicate (n = 3) single colonies were picked and inoculated into 

3 ml LB min broth with the appropriate antibiotics. Once cell cultures reached mid-log phase 

(OD600 0.4-0.5), they were diluted 1:100 into 3 ml M9 media without inducers. Cells were again 

grown to mid-log, OD-normalized to 0.4, and washed 1x via centrifugation with M9 medium to 

remove residual LB medium. 3 µl of OD-normalized culture was then inoculated into 147 µl M9 

with appropriate inducers in a 96-well bioassay plate. Cultures were grown with shaking at 34 ˚C 

in a Biotek Synergy HT microplate reader and OD600 was measured every 10 minutes. Growth 
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curves were analyzed using MATLAB scripts written to calculate doubling times (Supplementary 

Software S2). 

 

pAF production assays: Cells were plated for single colonies on LB agar containing the appropriate 

antibiotics and grown overnight. Single colonies were picked and inoculated into 3 ml LB min 

broth with the appropriate antibiotics. Upon reaching mid-log phase, cultures were OD-

normalized to 0.4 and washed 1x via centrifugation with M9 medium to remove residual LB 

medium. OD-normalized cultures were diluted 1:100 into 3 ml of fresh M9 medium with 

supplements (see “Materials, strains, and media”). Cells were grown at 34 ˚C with shaking for 5 

hours, and papBAC and aroC were induced with the addition of aTc and vanillic acid, respectively, 

to the cultures. Cells were incubated at 34 ˚C with shaking for 24 or 40 hours. After the induction 

period, cultures were centrifugated and supernatant was collected for analysis via LC/MS. 

 

Sample Preparation and Liquid Chromatography/ Mass Spectrometer analysis (LC/MS analysis) 

Supernatant from bacterial cell cultures was collected. To precipitate protein, the supernatant 

was treated with a 1:10 volume of 100% (w/v) ice-cold TCA, incubated on ice for 20 minutes, then 

centrifuged at 17,000 x g for 10 mins. This supernatant contained the compounds of interest. 

Samples were injected onto an Agilent Eclipse Plus C18 RRHD column (2.1x50mm, 1.8um particle 

size) and run over a gradient of 8 minutes. The mobile phase consisted of a linear gradient of (A) 

0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile using LCMS grade solvents 

(Optima, Fisher Chemical). The gradient parameters were as follows: 0-1 min, 10% B (isocratic 

wash); 1-8 min, 10-95% B;8-10 min, 95-10% B. The flow rate throughout the procedure was 0.5 

ml/min. Injection volume was 12ul. The source gas temperature was set at 280 C at 11L/min, 

sheath gas was set to 350 C at 11 L/min. Nebulizer was set at 40 psig. Positive ion mode capillary 

voltage was 5.5 kV, and the nozzle voltage set at 2.0 kV. Separation and analysis were performed 

using an Agilent 1290 Infinity UPLC system coupled to an Agilent 6550 QToF iFunnel mass 

spectrometer in ESI+ mode. Data was collected in ms mode, scan range of 110 -1700, at 3 

spectra/sec Lock mass spray was employed for all analysis. pAF concentration was quantified 

using standards consisting of known concentrations of pAF dissolved in supernatant of EcNR2 
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grown in M9 minimal medium (Supplementary Figure S4). Reference standards were generated 

in technical triplicate for each LC/MS experiment. A standard curve was generated from 

extracted ion chromatograms using the mean of the area under the curve of reference standards 

to interpolate pAF concentration in biological samples (Supplementary Figure S5). 
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Figures 

 
Figure 1. Trade-off between pAF production and growth in non-engineered strains. (A) 
Overview of pAF production via heterologous expression of papBAC. Chorismate, the end-
product of the shikimate pathway, is converted to p-aminophenylpyruvate by the PapBAC 
enzymes, which is then converted to pAF by host cell deaminases. (B) Diagram of aTc-inducible 
papBAC overexpression circuit used in this study. (C) pAF production as a function of aTc 
concentration in E. coli strain EcNR2 bearing the aTc-inducible papBAC overexpression cassette 
and grown in M9 minimal medium. (D) pAF production and doubling time (relative to growth 
without aTc) for EcNR2 bearing the aTc-inducible papBAC overexpression cassette. (E) GFP 
fluorescence and doubling time (relative to growth without aTc) for EcNR2 bearing GFP in the 
place of papBAC under an aTc-inducible expression cassette. 
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Figure 2. Computational design of a pAF-producing E. coli strain using a heterologous pathway. 
(A) The predicted pAF production levels as a function of the biomass production flux (i.e., growth). 
(B) Identified metabolic interventions to enhance pAF production. (C) The impact of predicted 
metabolic flux interventions (left panel) on the minimum (i.e., guaranteed) pAF production in the 
metabolic network and the corresponding gene-level interventions inferred from gene-reaction 
associations in the model (right panel). A minimum of three reaction (or gene) interventions are 
needed to achieve a non-zero minimum pAF production yield.  
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Figure 3. pAF production and growth rate trade-offs in engineered strains. (A) pAF production 
in strains with modulations in aTc-induced papBAC overexpression, vanillic acid-induced aroC 
overexpression, aromatic amino acid biosynthesis gene knockouts, and shikimate pathway 
feedback inhibitions. “GFP” condition denotes a strain bearing an aTc-inducible GFP 
overexpression cassette. All strains were grown in M9 minimal medium supplemented with 
phenylalanine, tryptophan, and tyrosine. (B) pAF production in strains with shikimate pathway 
feedback inhibition mutations (aroFG-FIM and ∆tyrR) and modulated papBAC and aroC 
overexpression. The strain in the top panel bears feedback inhibition mutations only, and the 
strain in the bottom panel bears knockouts in pheA, trpDE, and tyrA in addition to feedback 
inhibition mutations. (C) pAF production and doubling time (relative to the growth of EcNR2) for 
strains with different combinations of genomic interventions. Strains in which pAF production 
was not detected are not included. (D) Representative growth curves of EcNR2 and EcNR2.aroFG-
FIM.∆tyrR bearing aTc-inducible papBAC overexpression cassettes at 0 aTc (top panel) and 2 
ng/µl aTc (bottom panel).  
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