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Summary

Introducing heterologous pathways into host cells constitutes a promising strategy for
synthesizing nonstandard amino acids (nsAAs) to enable the production of proteins with
expanded chemistries. However, this strategy has proven challenging as the expression of
heterologous pathways can disrupt cellular homeostasis of the host cell. Here, we sought to
optimize the heterologous production of the nsAA para-aminophenylalanine (pAF) in Escherichia
coli. First, we incorporated a heterologous pAF biosynthesis pathway into a genome-scale model
of E. coli metabolism, and computationally identified metabolic interventions in the host’s native
metabolism to improve pAF production. Next, we explored different ways of imposing these flux
interventions experimentally and found that the upregulation of flux in chorismate biosynthesis
pathway through the elimination of feedback inhibition mechanisms could significantly raise pAF
titers (~20 fold) while maintaining a reasonable pAF yield-growth rate trade-off. Overall, this

study provides a promising strategy for the biosynthesis of nsAAs in engineered cells.
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Introduction

Engineering microbes with diverse natural and non-naturally occurring functions is a major
endeavor in synthetic biology, important for multiple goals. One goal is the microbial production
of industrial and therapeutic small molecules through metabolic engineering. Another goal
involves the ribosomal production of proteins containing nonstandard amino acids (nsAAs),
which expand the chemistry of the canonical set of 20 amino acids that organisms in all kingdoms
of life use for protein biosynthesis [1, 2]. Proteins that incorporate nsAAs enable diverse
biochemistries not typically found in nature, such as hydrocarbon-based secondary structure
stabilization [3], site-specific antibody-drug conjugation [4], and covalent linkage of proteins to
form functional biopolymers [5, 6]. Although short nsAA-bearing proteins, such as stapled
peptides, have traditionally been generated via asymmetric synthesis methods [7] and while cell-
free translation techniques exist for the production of larger proteins [8], the ribosomal
incorporation of nsAAs into the proteins of living cells greatly expands the scope and utility of
nsAA-containing proteins. For instance, ribosomally-synthesized nsAA-containing proteins can be
incorporated into biocontainment strategies that limit the survival and propagation of
engineered microbes to specified environments [9, 10], fluorescent proteins that serve as in vivo
probes for enzymatic activities [11], and sequence-defined synthetic biomaterials containing

multiple instances of nsAAs [12-14].

In order to synthesize proteins that contain ribosomally-synthesized nsAAs, engineered
organisms require a pool of nsAAs from which to draw during translation. To date, the problem
of provisioning organisms with nsAAs has been predominantly tackled by exogenously
supplementing the desired amino acids [12]. Additionally, there are only a few reports of in vivo
production for genetic code expansion by manipulating endogenous amino acid biosynthetic
pathways to favor the intracellular accumulation of intermediates that are used as nsAAs [15-17].
Both strategies are subject to limitations. In the case of exogenous supplementation, some nsAAs
may have low cell membrane permeability, compromising their transport into the cell for
ribosomal incorporation. In the case of native pathway production, the set of nsAAs that can be

synthesized is limited to the biosynthetic capabilities of the host organism.
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Incorporating and optimizing heterologous biosynthetic pathways into a host cell’s metabolism
constitutes a third possible strategy for provisioning organisms with nsAAs. This circumvents the
need for exogenous nsAA supplementation and enables the biosynthesis of a vast range of nsAAs
beyond the host organism’s native metabolic capabilities. Heterologous pathways for
synthesizing nsAAs can be obtained from bacteria, fungi, and plants that produce a wide variety
of amino acids with nonstandard functional groups as intermediates when synthesizing
antibiotics, toxins, and other bioactive small molecules [18]. For example, the gram-positive
bacterium Streptomyces cattleya is capable of synthesizing a terminal-alkyne amino acid [19] and
4-fluorothreonine [20]. Importing naturally occurring biosynthetic pathways for nsAAs into
model organisms with a high capacity for ribosomal nsAA incorporation, such as genomically
recoded E. coli [1], could be an effective way to synthesize proteins using nsAAs. Despite this
promise, the efficient biosynthesis of nsAAs and other small molecules via expression of
heterologous pathways in laboratory host strains has proven challenging because it requires
laborious efforts to mine, characterize, and optimize heterologous biosynthetic pathways in
hosts, given that such pathways can disrupt cellular homeostasis by co-opting native metabolic
resources for small molecules production [21, 22]. While a previous study aimed to address this
challenge by engineering the native metabolism of an E. coli strain for producing an nsAA [23],
systems-level studies of nsAA overproduction, which take into account the entire scope of

cellular metabolism, are still lacking.

Genome-scale models (GEMs) of metabolism can help address this gap [24, 25]. These models
consist of the full inventory of metabolic reactions encoded by the genome of an organism and
can be computationally simulated to systematically explore metabolic tradeoffs in engineered
organisms. A wide spectrum of computational approaches has been developed to design
overproducing microbial strains by using GEMs as a basis (see [24, 25] for a review of these
approaches). These tools computationally identify candidate flux changes in the network, such
as knockouts, up-regulations or down-regulations that lead to the enhanced production of a

biochemical of interest. The identified flux changes are then mapped to genetic manipulations
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that can be implemented experimentally. Several studies have reported on the successful
utilization of these computational pipelines to guide the design of engineered microbial strains
overproducing commodity chemicals, biofuel precursors, and a variety of other chemicals [26-

30].

We hypothesized that the efficient synthesis of nsAAs using heterologous pathways also requires
systematic engineering of the host’s native metabolites to proportionately allocate metabolic
resources to cellular growth and the bioengineering objective, i.e., nsAA production. In this study,
we tackle this by combining computational systems biology approaches based on GEMs of
metabolism and synthetic biology techniques to explore the feasibility of engineering highly
efficient nsAA producer microbes. We focus our efforts on optimizing the biosynthesis of para-
aminophenylalanine (pAF) in E. coli, generated from intracellular chorismate using a
heterologously expressed gene cluster from Pseudomonas fluorescens [23]. Motivated by the
observation that a trade-off exists between pAF production and growth rate in this engineered
E. coli cultured in carbon-limited environments, we sought to explore opportunities for
modulating this trade-off by using computational modeling. To this end, we used a GEM of E. coli
metabolism and a computational strain design pipeline to better understand how the
introduction of the heterologous pAF-producing pathway co-opts native metabolic resources,
and to computationally identify rational ways of rewiring the host metabolism to improve pAF
production. We then used the predicted metabolic flux interventions as a starting point to apply
multiplex genome engineering technologies [31-33] to experimentally construct and test
engineered strains for pAF production. We found that upregulation of metabolic flux in the
chorismate biosynthesis pathway through the elimination of feedback inhibition mechanisms is
the most promising strategy to increase pAF production. However, the optimized strains
continued to exhibit a trade-off between growth rate and pAF production. Our study provides a
basis for the systematic exploration of host cell metabolism to optimize the biosynthesis of
natural products via heterologous expression. The strategy presented here may be applied to

diverse biosynthetic pathways in a wide range of host organisms.
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Results

A trade-off between nsAA production and growth in carbon-limited environments

To enable pAF production by E. coli, we engineered the E. coli strain ECNR2 [34] to synthesize pAF
using the papBAC gene cluster derived from Pseudomonas fluorescens strain SBW25. The
enzymes PapA, PapB, and PapC convert chorismate into para-aminophenylpyruvate, which is
then converted to pAF by native cellular aminotransferases [23] (Figure 1A). We constructed a
pAF production circuit by placing the papBAC genes downstream of the Plietwo
anhydrotetracycline (aTc) inducible promoter (Figure 1B) and cloned the gene cluster into a
plasmid with a p15A origin of replication [35]. The aTc-inducible promoter enables titratable
expression of the genes under its control, a characteristic we confirmed by examining an
analogous circuit with green fluorescent protein (GFP) in the place of papBAC [36]

(Supplementary Figure S1).

We induced papBAC expression at a range of aTc concentrations in M9 minimal medium
supplemented with 0.4% glucose and measured extracellular pAF concentrations after 24 hours
of incubation using tandem mass spectrometry. We observed low levels of pAF production even
in the absence of aTc, a consequence of both leaky expression under PL:wto and of peak overlap
in MS spectra. Concentrations of aTc above 8 ng/ml yielded pAF titers above baseline, with pAF
yield plateauing at ~20 uM (0.001 g pAF per g of glucose) beyond aTc concentrations of 32 ng/ml
(Figure 1C). However, strains grown in aTc concentrations of 2 ng/ml and higher exhibited
substantial increases in doubling time relative to the uninduced control (Figure 1D). Notably, the
growth impairment of the strain increases concomitantly with higher papBAC expression, which
suggests a trade-off between pAF production and growth rate. We did not observe a similar
trade-off between protein expression and doubling time when we expressed non-enzymatic GFP
under an analogous circuit, indicating that the trade-off observed is not due to increased
translational load. We hypothesized that the trade-off is a consequence of rerouting chorismate
flux toward pAF production and away from native downstream pathways, which presumably

attenuate the production of metabolites essential for growth in minimal medium (Figure 1A).
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Construction of in silico pAF-producing E. coli

Our observation that pAF production trades off with growth in E. coli illustrates the disruption of
cellular homeostasis caused by the expression of heterologous enzymatic pathways, a
phenomenon observed in other related studies [21, 37-39]. This motivates the need to engineer
the host cell’s native metabolism in order to optimize nsAA production in dynamic environments.
To address this, we leveraged computational systems biology methods to systematically study
nsAA production in E. coli. To construct the corresponding pAF-producing E. coli in silico,
metabolic reactions encoded by the papBAC gene cluster were extracted and consolidated from
several online databases including MetaCyc [40], KEGG [41] and Model SEED [42] and were
incorporated into the iJ01266 GEM of metabolism of E. coli [43] (Figure 2). We next used this
engineered metabolic model to examine the production capacity of pAF by the engineered E. coli
strain in silico. This analysis revealed that this strain is able to produce a maximum of 0.54 mmoles
of pAF per mmole of glucose (0.54 g pAF per g glucose) under the aerobic minimal M9 medium
(equivalent of 2.16 g/L or 120 mM of pAF in an M9 medium with 4% glucose). However, this
maximum is achieved at the expense of zero growth, implying that pAF production is in direct
competition with growth, which was further confirmed by plotting the predicted maximum pAF
production level by the model as a function of maximum growth rate (Figure 2A). This is due to
the fact that glutamine and chorismate, which are the main precursors for the pAF biosynthesis
in the network, also serve as a precursor for biomass production (i.e., growth), or for the
biosynthesis of a number of other essential amino acids such as phenylalanine, tyrosine, and
tryptophan (Figure 2B). These results suggest that further engineering of native metabolism of

the host E. coli strain is required to enhance pAF production.

Computational design of metabolic interventions for the native metabolism of the host E.
coli strain

We used the computational strain design pipeline OptForce [44] (Methods) to identify metabolic
interventions leading to the improved production of pAF in the E. coli strain harboring the
papBAC gene cluster under the aerobic minimal M9 medium using glucose as the carbon source.

The first set of interventions that we identified consists of the upregulation of reactions encoded
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by the papBAC gene cluster that results in a minimum pAF production of ~¥80% of theoretical
maximum when the growth is set to be at least 20% of maximum. These reaction flux increases
draw the metabolic flow toward pAF and can be also readily inferred intuitively. However, pull
strategies alone may not always be sufficient to provide a desired production level for a target
biochemical due to the presence of bottlenecks in other parts of the metabolic network, which
cannot be directly captured by GEMs of metabolism. Therefore, in the next step, we sought to
identify metabolic interventions in other parts of the host’s native metabolism that push
metabolic flow toward pAF. This was done by re-running OptForce while preventing the
upregulation of reactions encoded by the papBAC gene cluster. This analysis identified a set of
reaction manipulations that collectively lead to an increased pool of chorismate (Figure 2B). Here,
we found that at least three simultaneous reaction manipulations are required to enable a
minimum pAF production based on the model. These reaction manipulations result in a minimum
pAF production level of 34.97% of theoretical maximum (Figure 2C) and include (i) the increasing
flux in any of the reactions in the shikimate pathway that directly lead to the biosynthesis of
chorismate (encoded by aro family genes or ydiB) (Figure 2B); (ii) decreasing flux in any of the
reactions that convert chorismite to aromatic amino acids namely L-tryptophan (encoded by trpC,
D and E), and to phenylalanine and tyrosine (chorimsate mutase “CHORM”, encoded by pheA or
tyrA) (Figure 2B). In addition, we found that a fourth intervention, i.e., the deletion of any of the
reactions encoded by entA, entB, entE and entF to prevent the conversion of chorismate to
enterochelin, will increase the minimum pAF production more than twofold (from 34.97% to
79.77% of theoretical maximum) (Figure 2C). Although the deletion of aromatic amino acid genes
to improve pAF production has been explored before [23], such modifications would lead to
auxotrophies and other interventions identified in this study have not been reported, thus
highlighting the importance of taking into account the entire scope of metabolism (afforded
GEMs) to infer potentially promising metabolic interventions while minimizing impact on growth

and fitness.

It is worth noting that the analysis of epistatic interactions among our identified flux

manipulations with respect to pAF production as the phenotype of interest revealed that
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(Supplementary Figure S1) no single or pair combinations of the four reaction manipulations
noted above (Figure 2B) is enough to enable a non-zero minimum pAF production in the network.
Of note, an epistatic interaction between two genes means that the phenotype of a double-gene
mutant strain cannot be easily inferred from phenotypes of single-gene mutant strains [45]).
However, with simultaneous implementation of these four reaction manipulations, a high
metabolic flux is pushed toward chorismate while all metabolic sinks of chorismate (except those
that are essential for the synthesis of growth precursors) are blocked, thereby funneling a high
carbon flux toward pAF. This high nonlinearity highlights the importance of computational
analyses to identify interventions that may need to be applied concurrently in order to have a

significant effect.

Construction and characterization of computationally designed overproducing strains

Computational modeling identified numerous opportunities for metabolic flux manipulations to
enhance pAF production in E. coli, including the downregulation of metabolic flux downstream
of chorismate biosynthesis and the upregulation of flux upstream of chorismate biosynthesis.
These predictions serve as a starting point to experimentally design an engineered E. coli strain
with an enhanced pAF production capacity. Although we can implicitly infer genetic
manipulations corresponding to predicted flux interventions using gene-reaction associations in
GEMs (Figure 2C), there can be different ways of imposing these flux changes experimentally, not
all of which could be directly captured by GEMs. For example, increasing metabolic flux in the
shikimate pathway (toward chorismite) can be achieved experimentally by either upregulating
the aro family genes or by removing feedback inhibitions in this pathway (even though the latter
is not directly captured by stoichiometric models used in this study) (Figure 2B). In particular, the
redundant 3-deoxy-7-phosphoheptlonate synthases AroF, AroG, and AroH are allosterically
inhibited by tyrosine, phenylalanine, and tryptophan, respectively [46-48], and the
transcriptional repressor TyrR reduces the expression of numerous aro family genes under
conditions of tyrosine abundance [49]. Thus, we hypothesized that these feedback mechanisms

could play a strong role in enhancing or attenuating metabolic flux toward chorismate synthesis.
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Therefore, we sought to eliminate these inhibition loops in our engineered strains as a way of

increasing metabolic flux toward chorismate predicted by computational studies.

We implemented model-guided metabolic flux downregulations by knocking out genes
downstream of chorismate biosynthesis (pheA, trpDE, tyrA, and entA), and flux upregulations by
cloning an additional copy of the penultimate gene upstream of chorismate biosynthesis (aroC)
into episomal expression vectors. We used multiplex genome engineering and recombineering
[50] to construct E. coli strains with combinatorial knockouts of pheA, trpDE, tyrA, and entA,
genes downstream of chorismate biosynthesis. The knockout of aromatic amino acid
biosynthesis genes generates auxotrophies for the respective amino acids. To compensate for
these auxotrophies, we grew engineered strains in minimal medium supplemented with
phenylalanine, tryptophan, and tyrosine. We also cloned aroC and placed it under the control of
a vanillic acid-inducible promoter (Pvsnr) [51] to enable titratable overexpression. To verify
whether genes under the control of the two synthetic promoters PLteto and Pyang could be induced
independently of one another, we also constructed a circuit analogous to the one used for
papBAC and aroC expression with GFP under the control of Piwto and RFP under the control of
Pvanr (Supplementary Figure S2). We observed that GFP expression was unaffected by vanillic
acid concentrations of up to 4 uM and that RFP expression was unaffected by aTc concentrations
of up to 32 ng/ml (Supplementary Figure S3). Finally, we used MAGE [31] to introduce
nonsynonymous point mutations that render AroF and AroG allosterically insensitive to tyrosine
and phenylalanine, respectively [46, 47]. Because AroF and AroG together account for >99% of
3-deoxy-7-phosphoheptlonate synthase activity within metabolically active E. coli [52], we did

not introduce analogous feedback-inactivating mutations to AroH.

We investigated the effects of these interventions, alone and in combination, on pAF production
after 24 hours of induction in minimal media supplemented with tyrosine, phenylalanine, and
tryptophan (Figure 3A). Titration of vanillic acid to overexpress aroC led to modest increases in
pAF production, while no combination of downstream gene knockouts increased pAF vyields

contrary to our expectation. Feedback-inhibitory mutations did not lead to increases in pAF
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production on their own, but we observed a > 4-fold increase in pAF production in strains with
both AroFG feedback inhibition mutations (aroFG-FIM) and a tyrR knockout (AtyrR). This suggests
the existence of redundant feedback control mechanisms within the shikimate pathway that

regulate flux toward chorismate, leading to the observed epistatic pattern on pAF production.

We hypothesized that other epistatic patterns may exist among the genomic interventions
targeted, and we reassessed the effects of gene overexpression and knockout in the context of a
feedback-insensitive strain. Tuning the expression of the papBAC genes through aTc titration had
a strong effect on pAF yield in ECNR2.aroFG-FIM.AtyrR, up to a maximal pAF yield of 85 uM after
40 hours of induction (0.004 g pAF per g of glucose) (Figure 3B, top panel). aroC overexpression
via titration of vanillic acid led to no increases in pAF yield when paired with any level of papBAC
induction. The expression of aroC was in fact detrimental to pAF yield at high aTc concentrations,
possibly because of the high translational load placed on cells expressing both AroC and PapB/A/C
in abundance. These same patterns—of pAF production driven predominantly by papBAC gene
overexpression and of detrimental effects of aroC expression on pAF yield—were also observed
in feedback-insensitive strains with additional knockouts in tyrA, pheA, and trpDE (Figure 3B,

bottom panel).

Relationship between pAF production and growth in engineered strains

Given our initial observation of a trade-off between pAF production and growth rate (Figure 1D),
we sought to determine how the model-guided genomic interventions (Figure 3A) influence the
balance between cellular growth and pAF production in E. coli. Our efforts to culture engineered
strains with tyrA, pheA, and trpDE knockouts in 96-well plate readers under conditions of papBAC
induction were unsuccessful, presumably because suboptimal agitation and aeration conditions
in such instruments inhibits the growth of strains with fitness-reducing gene knockouts. We thus
measured the growth rates of all strains in the absence of papBAC expression (aTc = 0) and
compared these rates against pAF yields obtained from the same strains in conditions optimal
for pAF production (see Methods) (Figure 3C, Supplementary Table S1). Most engineered strains

exhibited longer doubling times than EcNR2 without improving pAF yields. ECNR2.aroFG-FIM
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showed a modestly lower doubling time (0.91 £ 0.04 relative to ECNR2) and modestly higher pAF
yields (6.4 £ 2.2 uM), while ECNR2.AtyrR showed a longer doubling time (1.14 + 0.03 relative to
EcNR2) and no detectable pAF yield.

EcNR2.aroFG-FIM.AtyrR was nonetheless capable of growing in a plate reader under papBAC
induction conditions. Compared to EcNR2, the strain showed a 18% slower growth rate (161 +5
min for ECNR2.aroFG-FIM.AtyrR versus 137 = 1 min for EcNR2) in the absence of papBAC
expression (Figure 3D, top panel). However, both ECNR2 and EcNR2.aroFG-FIM.AtyrR exhibited
profound lag phases at low levels of papBAC expression ([aTc] = 2 ng/ml; Figure 3D, bottom
panel). This suggests that feedback inhibition mutations can increase pAF yields but do not

resolve the trade-off between pAF production and growth rate in carbon-limited media.

Discussion

The optimization of heterologous pathways for nsAA production is a promising strategy for
engineering microbes with diverse biochemical capabilities. Heterologous expression often
places significant metabolic burdens on engineered strains, which may hinder their utility in
diverse industrial, biomedical, and environmental contexts. In this study, we leveraged GEMs of
metabolism to guide the design of E. coli strains capable of producing the nsAA pAF from a
heterologous pathway with minimal disruptions to cellular homeostasis. Previous studies have
successfully engineered native E. coli metabolism to maximize pAF production in fermentation
settings [23], wherein the active growth of cells is of minimal concern, and did not take into
account the entire metabolism of the host. We build on this prior work by simultaneously
accounting for growth and pAF production in our strain engineering efforts and by considering
the entire scope of the host’s native metabolism using GEMs. This enables us to systematically

pinpoint and test the effects of metabolic interventions that span the entire E. coli metabolome.
Our initial efforts for pAF production in non-engineered E. coli hosts were hindered by a

conspicuous trade-off between pAF production titers and growth rate (Figure 1D), presumably

because expression of the pAF-producing papBAC genes disrupts cellular homeostasis by
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shunting essential metabolites away from central metabolism. Computational modeling using
GEMs identified numerous metabolic flux interventions that were predicted to improve the
production of pAF for a given minimal growth rate. These interventions included decreasing
metabolic flow downstream of chorismate biosynthesis through the downregulation (or
knockout) of genes tyrA, pheA, trpDE, and entA and increasing metabolic flux upstream of
chorismate biosynthesis through the upregulation of genes in the aro family (such as aroC). GEMs
of metabolism, which are based on a stoichiometric representation, do not account for the
nonlinear effects of regulatory interactions. Therefore, we also decided to consider the
elimination of feedback inhibition mechanisms within the shikimate pathway as an alternative to
implement flux upregulations to increase metabolic flow towards chorismite as predicted by
using GEMs of metabolism. Although the removal of genes involved in the aromatic amino acids
biosynthesis (more specifically pheA) has been implemented before to increase pAF production
[23], their combination with other interventions we identified in this study has not previously

been explored.

Interestingly, we found that increased metabolic flow in the shikimate pathway through aroC
upregulation, either alone or in combination with other predicted metabolic interventions, did
not lead to increased pAF production compared to the non-engineered host (Figure 3A). This
could be due to the presence of other rate limiting enzymatic reactions upstream of AroC in the
shikimate pathway, implying that additional gene upregulations in that pathway are needed to
impose the desired effect. However, we observed that imposing an increased metabolic flow
toward chorismite through the elimination of feedback inhibition loops (via the elimination of
allosteric feedback on AroF and AroG and deletion of the tyrosine-sensitive transcriptional
repressor TyrR) led to a measurable increase in pAF production. Contrary to our expectation,
combining these feedback elimination interventions with other computationally predicted
interventions did not improve pAF production any further. These observations suggest that
specific genetic interventions inferred directly from gene-reaction associations in the GEMs of
metabolism may not always behave as expected due to regulatory/allosteric effects that are not

captured by these models. This alludes to the need to consider additional regulatory interactions
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in these pathways in future engineering efforts, e.g., by using large-scale kinetic models of
metabolism [53, 54] (instead of stoichiometric models used in this study), which can take into

account such regulatory and allosteric interactions.

The interventions that did increase pAF production in our engineered strain, AroFG-FIM and
AtyrR, showed an epistatic effect on pAF production. Neither AroFG feedback elimination nor
tyrR knockout raised pAF titers when implemented in isolation but installing both interventions
within the same strain led to substantial increases in pAF titer (Figure 3A). This epistatic pattern
could be due to redundant regulatory mechanisms within the shikimate pathway that control
chorismate production. Both AroF and TyrR respond to high tyrosine conditions by reducing flux
through the shikimate pathway, and the elimination of feedback nodes on both genes is thus
needed to restore chorismate production in the tyrosine-supplemented minimal media used in
this study. We observed substantial (~20-fold) increases in pAF production in strains with
engineered chorismate pathway regulation compared to unmodified strains (Figure 3B). In future
studies, we propose that it is possible to achieve further increases in pAF production through
more extensive metabolic feedback loop modulation, but that these interventions do not

necessarily alter the trade-off between pAF production and growth (Figure 3D).

Sourcing nonstandard amino acids through biosynthesis in vivo holds promise for more efficient
and cost-effective production of synthetic proteins and biomaterials. It could also serve as
mediators of cellular signaling or the establishment of synthetic cross-feeding channels between
members of engineered microbial communities. More specifically, we envision the exchange of
nsAAs between organisms capable of producing them and organisms dependent upon them for
survival as a promising approach to constructing stable microbial consortia that are minimally
affected by surrounding inter-species metabolite exchanges. Engineered cross-feeding channels
may also be resilient to invasion by natural strains through the exchange of metabolites that are
not a component of natural cellular milieu. Crucially, organisms participating in such cross-

feeding channels would need to both produce nsAAs and grow robustly in dynamic environments.
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Engineering microbial consortia thus requires the simultaneous optimization of two

phenotypes—growth and metabolite production.

Limitations of this study

Our study identified three classes of genomic interventions that could influence pAF production
in E. coli: (1) the knockout of genes downstream of chorismate biosynthesis, (2) the upregulation
of genes upstream of chorismate biosynthesis, and (3) the elimination of regulatory and allosteric
feedback mechanisms that reduce chorismate biosynthesis in conditions of high aromatic amino
acid abundance. While in this study we aimed to explore all these interventions both individually
and in combination, we only explored one intervention of the second class—the overexpression
of aroC, which encodes the final enzyme in chorismate biosynthesis. We did not observe higher
pAF titers with aroC overexpression, which highlights the possibly that there may exist other rate-
limiting reactions upstream of aroC that limit flux through the shikimate pathway not explored
in our studies. The systematic overexpression of genes upstream of chorismate biosynthesis

could reveal these rate-limiting reactions and lead to increased pAF production.

As noted earlier, stoichiometric GEMs of metabolism do not capture interventions of the third
class—regulatory and allosteric feedback mechanisms. This limits their capability for predicting
promising metabolic intervention strategies. We did observe increases pAF production with the
inactivation of these feedback mechanisms, namely by eliminating allosteric regulation of
AroF/G/H and knockout of the transcriptional repressor tyrR (Figure 3A). However, feedback
mechanisms are difficult to model computationally and to tune experimentally—for instance,
tuning the allosteric response of AroF/G/H would require protein sequence alterations, whose
effects are more difficult to predict than genetic up- or downregulations. Although our study
highlights feedback modulation as a promising strategy for the biosynthesis of nsAAs in
heterologous hosts, the generalizability of this approach is limited in the absence of synthetic

biology tools to control these feedback mechanisms.
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Conclusions

In this study, we integrated computational systems biology modeling using GEMs of metabolism
and synthetic biology techniques to construct an E. coli strain with enhanced pAF production. We
found that the elimination of feedback inhibition loops in the chorismate biosynthesis pathway
has the highest impact on enhancing pAF production while minimizing the disruption of cellular
homeostasis and growth. Imposing other interventions in pathways downstream of chorismate,
which was predicted by our computational models and seemed promising, did not lead to a
further increase in pAF production contrary to our expectation. However, these observations
warrant future studies that consider tunable regulatory circuits in this part of the metabolism to
design a more efficient pAF-producing strain. Overall, our study sets a basis for the engineering
of overproducing strains, which can be used in synthetic microbial consortia that meet the dual
objectives of high-level product formation and sustained growth. We anticipate that this
approach could be applied to heterologous pathways beyond pAF production such as other

nsAAs or biochemicals.

Methods

Computational methods

OptForce algorithm: In brief, OptForce [44], first characterizes the phenotypic space of a
reference (wild-type) strain using any available metabolic flux data by minimizing and maximizing
the flux of each reaction in the network subject to these experimental flux data. It next identifies
the phenotypic space of an overproducing strain in a similar fashion by imposing a constraint on
the minimum required biomass production (growth) in the network as well as a desired
production level for the target product. By super-imposing the flux ranges in the wild-type and
overproducing strains for each reaction, the list of reactions whose fluxes must increase,
decrease, or shrink to zero in order to achieve the target production level of the desired product
is identified. This list of reactions is then used to identify a minimal set of direct metabolic flux
interventions (upregulations, downregulations, or knockouts) to achieve a specific production

level for the biochemical of interest. In doing so, OptForce simulates a worst-case scenario where
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the network fights against imposed interventions by maximizing the minimum product formation.

OptForce has been previously used successfully to design overproducing strains [28, 29].

Details of OptForce implementation: To characterize the phenotypic space of the wild-type strain,
we used experimental flux data for 35 reactions in the central metabolism of E. coli from a
previous study [29]. We performed the OptForce simulations by requiring a biomass production
of at least 20% of theoretical maximum, for which the maximum achievable pAF production is
predicted to be 44.27 (~80% of theoretical maximum). Therefore, we set 80% of theoretical
maximum as our desired pAF production level. In our analyses, reactions with no gene association
in the metabolic model were prevented from any type of manipulation. Furthermore, reactions
associated with in silico or in vivo essential genes in the minimal M9 medium were prevented
from being removed. Re-running the OptForce with different thresholds for growth and pAF
production did not affect the set of identified metabolic interventions. All simulations were
performed in Python using customized scripts (Supplementary Software S1). The OptForce

optimization problem was solved using the Gurobi solver (https://www.gurobi.com) in Pyomo,

an optimization modeling environment in Python [55].

Experimental methods

Materials, strains, and media: All strains in this study are derived from Escherichia coli ECNR2 [31].
LB min media from AmericanBio (Canton, MA) was used for routine strain growth and cloning.
Growth and pAF production assays were performed in M9 minimal medium supplemented with
0.25 pg/L betaine and vitamin and trace mineral mixes from Neidhardt EZ rich defined medium
[56] (see Supplementary Table S2 for media components). Where indicated, M9 medium was
also supplemented with 0.2 mM tyrosine, 0.4 mM phenylalanine, and 0.1 mM tryptophan to
support the growth of strains with knockouts in aromatic amino acid biosynthesis genes. 0.4%
(w/v) glucose was used as a carbon source for all M9 media formulations. 50 pg/ml carbenicillin
was used for the growth of ECNR2 and derivatives in all conditions. Strains harboring papBAC,

aroC, and GFP expression plasmids were cultured in carbenicillin and 95 pg/ml spectinomycin.
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Cloning and strain engineering: Synthetic DNA fragments encoding codon-optimized papA, papB,
and papC genes from Pseudomonas fluorescens were synthesized by GenScript (Piscataway, NJ).
Primers and single-stranded oligonucleotides used for cloning and MAGE were synthesized by
Integrated DNA Technologies (Coralville, IA) (Supplementary Table S3). Synthetic inducible
circuits were generated by cloning DNA fragments into linearized plasmids with a p15A origin of
replication and a spectinomycin resistance cassette. Linear DNA fragments were amplified using
high-fidelity PCR kits from Kapa Biosystems sourced from Millipore Sigma (Burlington, MA).

Gibson assembly (New England Biolabs; Boston, MA) was used for plasmid assembly.

MAGE [31] and recombineering [50] were used to implement all genomic perturbations
described in the study. Small genomic interventions (i.e., aroF and aroG feedback inhibition
mutations) were implemented by performing 3 rounds of MAGE using 90-mer single-stranded
DNA oligonucleotides encoding the desired mutation. Cultures were then plated on LB agar to
isolate individual clones, which were then screened for the desired mutation(s) using multiplex
allele-specific colony PCR [57]. For scarless gene-scale deletions, we first recombineered the
counter-selectable marker to/C [58] into the locus to be deleted and selected for recombinants
by plating on LB + 0.1% sodium dodecyl sulfate. We then used MAGE to delete to/C and selected
for scarless mutants by growing cultures for 8 hours in LB containing colicin E1. Cultures passing
the liquid selection were then plated on LB agar to isolate individual clones. All genomic

interventions were then confirmed via Sanger sequencing.

Growth assays: Cells were plated for single colonies on LB agar containing the appropriate
antibiotics and grown overnight. Replicate (n = 3) single colonies were picked and inoculated into
3 ml LB min broth with the appropriate antibiotics. Once cell cultures reached mid-log phase
(ODeoo 0.4-0.5), they were diluted 1:100 into 3 ml M9 media without inducers. Cells were again
grown to mid-log, OD-normalized to 0.4, and washed 1x via centrifugation with M9 medium to
remove residual LB medium. 3 pl of OD-normalized culture was then inoculated into 147 pl M9
with appropriate inducers in a 96-well bioassay plate. Cultures were grown with shaking at 34 °C

in a Biotek Synergy HT microplate reader and ODsoo Was measured every 10 minutes. Growth
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curves were analyzed using MATLAB scripts written to calculate doubling times (Supplementary

Software S2).

PAF production assays: Cells were plated for single colonies on LB agar containing the appropriate
antibiotics and grown overnight. Single colonies were picked and inoculated into 3 ml LB min
broth with the appropriate antibiotics. Upon reaching mid-log phase, cultures were OD-
normalized to 0.4 and washed 1x via centrifugation with M9 medium to remove residual LB
medium. OD-normalized cultures were diluted 1:100 into 3 ml of fresh M9 medium with
supplements (see “Materials, strains, and media”). Cells were grown at 34 °C with shaking for 5
hours, and papBAC and aroC were induced with the addition of aTc and vanillic acid, respectively,
to the cultures. Cells were incubated at 34 °C with shaking for 24 or 40 hours. After the induction

period, cultures were centrifugated and supernatant was collected for analysis via LC/MS.

Sample Preparation and Liquid Chromatography/ Mass Spectrometer analysis (LC/MS analysis)
Supernatant from bacterial cell cultures was collected. To precipitate protein, the supernatant
was treated with a 1:10 volume of 100% (w/v) ice-cold TCA, incubated on ice for 20 minutes, then
centrifuged at 17,000 x g for 10 mins. This supernatant contained the compounds of interest.
Samples were injected onto an Agilent Eclipse Plus C18 RRHD column (2.1x50mm, 1.8um particle
size) and run over a gradient of 8 minutes. The mobile phase consisted of a linear gradient of (A)
0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile using LCMS grade solvents
(Optima, Fisher Chemical). The gradient parameters were as follows: 0-1 min, 10% B (isocratic
wash); 1-8 min, 10-95% B;8-10 min, 95-10% B. The flow rate throughout the procedure was 0.5
ml/min. Injection volume was 12ul. The source gas temperature was set at 280 C at 11L/min,
sheath gas was set to 350 C at 11 L/min. Nebulizer was set at 40 psig. Positive ion mode capillary
voltage was 5.5 kV, and the nozzle voltage set at 2.0 kV. Separation and analysis were performed
using an Agilent 1290 Infinity UPLC system coupled to an Agilent 6550 QToF iFunnel mass
spectrometer in ESI+ mode. Data was collected in ms mode, scan range of 110 -1700, at 3
spectra/sec Lock mass spray was employed for all analysis. pAF concentration was quantified

using standards consisting of known concentrations of pAF dissolved in supernatant of ECNR2
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grown in M9 minimal medium (Supplementary Figure S4). Reference standards were generated
in technical triplicate for each LC/MS experiment. A standard curve was generated from
extracted ion chromatograms using the mean of the area under the curve of reference standards

to interpolate pAF concentration in biological samples (Supplementary Figure S5).
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Figure 1. Trade-off between pAF production and growth in non-engineered strains. (A)
Overview of pAF production via heterologous expression of papBAC. Chorismate, the end-
product of the shikimate pathway, is converted to p-aminophenylpyruvate by the PapBAC
enzymes, which is then converted to pAF by host cell deaminases. (B) Diagram of aTc-inducible
papBAC overexpression circuit used in this study. (C) pAF production as a function of aTc
concentration in E. coli strain ECNR2 bearing the aTc-inducible papBAC overexpression cassette
and grown in M9 minimal medium. (D) pAF production and doubling time (relative to growth
without aTc) for EcNR2 bearing the aTc-inducible papBAC overexpression cassette. (E) GFP
fluorescence and doubling time (relative to growth without aTc) for ECNR2 bearing GFP in the
place of papBAC under an aTc-inducible expression cassette.
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Figure 2. Computational design of a pAF-producing E. coli strain using a heterologous pathway.
(A) The predicted pAF production levels as a function of the biomass production flux (i.e., growth).
(B) Identified metabolic interventions to enhance pAF production. (C) The impact of predicted
metabolic flux interventions (left panel) on the minimum (i.e., guaranteed) pAF production in the
metabolic network and the corresponding gene-level interventions inferred from gene-reaction
associations in the model (right panel). A minimum of three reaction (or gene) interventions are
needed to achieve a non-zero minimum pAF production yield.
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Figure 3. pAF production and growth rate trade-offs in engineered strains. (A) pAF production
in strains with modulations in aTc-induced papBAC overexpression, vanillic acid-induced aroC
overexpression, aromatic amino acid biosynthesis gene knockouts, and shikimate pathway
feedback inhibitions. “GFP” condition denotes a strain bearing an aTc-inducible GFP
overexpression cassette. All strains were grown in M9 minimal medium supplemented with
phenylalanine, tryptophan, and tyrosine. (B) pAF production in strains with shikimate pathway
feedback inhibition mutations (aroFG-FIM and AtyrR) and modulated papBAC and aroC
overexpression. The strain in the top panel bears feedback inhibition mutations only, and the
strain in the bottom panel bears knockouts in pheA, trpDE, and tyrA in addition to feedback
inhibition mutations. (C) pAF production and doubling time (relative to the growth of ECNR2) for
strains with different combinations of genomic interventions. Strains in which pAF production
was not detected are not included. (D) Representative growth curves of ECNR2 and EcNR2.aroFG-
FIM.AtyrR bearing aTc-inducible papBAC overexpression cassettes at 0 aTc (top panel) and 2
ng/ul aTc (bottom panel).

27


https://doi.org/10.1101/2022.04.02.486821
http://creativecommons.org/licenses/by/4.0/

