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ABSTRACT

Metacells are cell groupings derived from single-cell sequencing data that represent highly
granular, distinct cell states. Here, we present single-cell aggregation of cell-states (SEACells),
an algorithm for identifying metacells; overcoming the sparsity of single-cell data, while retaining
heterogeneity obscured by traditional cell clustering. SEACells outperforms existing algorithms in
identifying accurate, compact, and well-separated metacells in both RNA and ATAC modalities
across datasets with discrete cell types and continuous trajectories. We demonstrate the use of
SEACells to improve gene-peak associations, compute ATAC gene scores and measure gene
accessibility in each metacell. Metacell-level analysis scales to large datasets and are particularly
well suited for patient cohorts, including facilitation of data integration. We use our metacells to
reveal expression dynamics and gradual reconfiguration of the chromatin landscape during
hematopoietic differentiation, and to uniquely identify CD4 T cell differentiation and activation
states associated with disease onset and severity in a COVID-19 patient cohort.
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Introduction

A fundamental disconnect currently exists between the cellular resolution of single-cell genomics
data and the cluster-level resolution of analysis, which has dramatically limited these technologies
in fulfilling their potential for biomedical research. A dataset that harbors tens of thousands of cells
is typically summarized as a handful of clusters in order to overcome the noise and sparsity
inherent to single-cell data. Sparsity is particularly acute in single-cell assay for transposase-
accessible chromatin sequencing (scATAC-seq) data, which only captures the trinary zygosity
states at a few thousand of the hundreds of thousands of open chromatin regions in a cell, making
it impossible to infer regulation at the single-cell level (Supplementary Fig. 1). While single-cell
RNA sequencing (scRNA-seq) data is not as sparse, projects such as the Human Cell Atlas' and
Human Tumor Atlas Network? are scaling to millions of cells, causing even routine dimensionality
reduction and visualization tasks to struggle with computational complexity and confounding by
sample-level batch effects. As a result, large scRNA-seq datasets are also best analyzed at the
cluster level.

Cluster-level analysis has led to important biological discoveries. However, a typical cluster is not
homogenous; structured variability in gene programs within clusters suggests underlying cell-
state heterogeneity (Fig. 1A,B). For example, cells within T-cell clusters can exhibit different
levels of activation and metabolic activity’. Moreover, single-cell data has been shown to reside
on a continuum*”. For instance, binning the expression of GATA2, a driver of erythroid fate, in
one cluster of erythroid precursor cells® by developmental progression demonstrates gradual cell-
state changes within each bin during human hematopoiesis that is accompanied by epigenomic
variation (Fig. 1C,D). The accessibility landscape of the GATAZ2 locus suggests that its expression
dynamics are enabled by gradual opening of regulatory elements (Fig. 1D and Supplementary
Fig. 1B). Such dynamics are lost in any discrete cluster-level analysis.

The concept of metacells®—groups of cells that represents distinct, highly granular cell states,
whereby within-metacell variation is due to technical rather than biological sources—was
proposed as a way to maintain statistical utility while maximizing effective data resolution®.
Metacells are far more granular than clusters, and are optimized for homogeneity within cell
groups, rather than for separation between clusters. However, existing approaches®'® fail on
scATAC-seq data, aggressively cull outliers (particularly inappropriate for disease studies, which
are often driven by rare cell populations), and are poorly distributed across the phenotypic space.
Consequently, metacells have not been routinely used in single-cell analysis, and scATAC-seq
data has remained heavily underutilized.

Here, we present SEACells, a graph-based algorithm that uses iterative archetypal analysis to
compute metacells. We evaluate our approach on peripheral blood data with discrete, well-
separated cell-types, and on CD34" hematopoietic stem and progenitor cell (HSPC) data from
human bone marrow with continuous gradients underlying early decisions in hematopoiesis.
SEACells metacells provide robust, comprehensive characterizations of scRNA-seq cell states,
including gene-gene relationships representative of each state''; and they successfully describe
chromatin cell states at resolutions that enable the inference of regulatory elements underlying
gene expression. Our metacells achieve a sweet spot between signal aggregation and cellular
resolution, and they capture cell-states across the phenotypic spectrum, including rare states.
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They are also computationally tractable, enabling powerful downstream analysis of large-scale
datasets. We show that our metacells overcome technical batch effects to allow for superior data
integration when matching metacells across samples in a cohort. We use SEACells to learn
dynamics of expression and accessibility during hematopoietic differentiation and temporal
dynamics of T-cell response during COVID-19 infection, biological insights that are missed by
single-cell and cluster-level analysis. SEACells provides a powerful toolkit for gene regulatory
inference from scATAC-seq data and a tractable solution for integration of large cohort based
single-cell data.

Results

The SEACells algorithm identifies metacells across the phenotypic manifold

SEACells seeks to aggregate single cells into metacells that represent distinct cellular states, in
a manner agnostic to data modality. Using a count matrix as input, it provides per-cell weights for
each metacell, per-cell hard assignments to each metacell, and the aggregated counts for each
metacell as output. Moreover, an explicit design goal of our approach is to capture the full
spectrum of cell states in the data, including rarer states. We base SEACells on a few key
assumptions: 1) single-cell profiling data can be approximated by a lower-dimensional manifold
(phenotypic manifold), 2) much of the observed variability across cells is due to incomplete
sampling; molecular profiles only represent a small fraction of transcripts in each cell, and 3) most
cells can be assigned to a finite set of cell states, each characterized by a distinct combination of
active gene programs. Biology is modular—each cell needs to perform a distinct set of tasks and
each task requires the activity of a relevant gene program, creating constraints and structure.
Moreover, many gene programs interact through feedback and feedforward regulation, further
constraining the system.

SEACells takes advantage of graph-based algorithms for manifold learning that have been proven
to capture the cell state landscape in single-cell genomics data faithfully and robustly*®"'>1% The
algorithm first constructs a nearest-neighbor graph to represent the phenotypic manifold. It then
applies archetype analysis'®"" to iteratively refine metacells, and finally aggregates counts into a
set of output metacells. Manifold construction is tailored to each data modality, at which point the
algorithm can proceed in data-type agnostic fashion (Supplementary Fig. 2). We use CD34+
cells from early human hematopoiesis to demonstrate our method (Fig. 1). For initializing the
metacell search, we utilize our max-min sampling approach®. Max-min sampling identifies a set
of representative cell states that are distributed uniformly across the phenotypic manifold (Fig.
1E), and it is particularly adept at dealing with density differences, thus ensuring the capture of
rare states. These sampled cell states are waypoints (multiple per cell type) that define clear
structure in the neighbor graph; however, the cell-states themselves remain somewhat diffuse
(Fig. 1F).

To refine metacells, we employ archetypal analysis'®, a robust, linear matrix decomposition
approach shown to optimally capture manifold structure and to identify cell states representing
characteristic biological processes and tasks (Fig. 1G, Methods). Although archetype analysis is
linear in nature, applying it to the neighbor-graph-defined adjacency matrix enables it to capture
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the non-linear structure of the manifold. Archetypal analysis finds the set of archetypes that
optimally reconstruct the data matrix, while constraining them to reside within the phenotypic
manifold, focusing the computation on the strongest axes of variation. The archetype procedure
partitions the data in such a way that the cell-cell similarity matrix has tight block structure along
the diagonal, which best represents distinct cell states in the data (Fig. 1H). While early human
hematopoiesis is largely defined by differentiation trajectories, we note that the cells underlying
these relatively continuous processes are well-represented by a set of distinct metacells.

SEACells metacells represent accurate and robust cell states in diverse data

We first evaluated SEACells performance on a public multiome (simultaneous single-cell RNA-
seq and ATAC-seq) dataset of peripheral blood mononuclear cells (PBMCs), as a well-studied
system with distinct cell populations. We found that SEACells metacells are comprehensive and
well-distributed among cell types in both RNA and ATAC data (Fig. 2A,B). Metacells of both
modalities also exhibit a high degree of cell-type purity, which agrees well with the fact that
PBMCs are made up of discrete, mature cell types (Fig. 2A,B, Methods). Further, reciprocal
projections of RNA and ATAC metacells onto each other demonstrate that metacells of different
modalities are highly concordant (Supplementary Fig. 3A,B, Methods).

The key advantage of metacells is that they help to overcome data sparsity, which is extreme in
scATAC-seq. We found that each SEACells metacell provides a more complete molecular
characterization than individual cells—for example, by revealing accessibility at known marker
genes for major cell types (Supplementary Fig. 3C,D). Accessibility and expression of CD4 and
CD8 from metacells, but not most individual cells, can accurately distinguish the two T-cell
subsets, and NKG7 and CD8A are sufficient to distinguish NK and CD8 T-cell populations (Fig.
2C). Metacells thus comprise pure cell types expressing expected markers in this data; they are
granular enough to distinguish states within cell types; and they can be queried with classical
immune markers.

We next tested whether SEACells can accurately determine metacells in continuous
differentiation trajectories during the earliest decisions in human hematopoiesis, when cells are
not yet well-separated. We collected a single-cell multiome dataset of 6,800 hematopoietic stem
and progenitor cells (HSPCs) from healthy bone marrow sorted for pan-HSPC marker CD34
(Methods). Similar to PBMCs, we found that metacells are well-distributed across all bone marrow
cell types and span the RNA and ATAC phenotypic manifolds (Fig. 2D). To determine whether
metacell resolution is sufficient to accurately recover gene expression dynamics that are lost in
clustering, we applied the Palantir trajectory algorithm?® directly to metacells. Palantir could indeed
recover the known expression and accessibility dynamics of key hematopoietic genes
(Supplementary Fig. 4). As a further challenge, we ran Palantir on aggregated RNA from
metacells computed on the ATAC modality, since the sparsity of sSCATAC-seq data renders cell-
state identification much more difficult (Fig. 2E and Supplementary Fig. 4). The fidelity of
captured gene trends reinforces that SEACells metacells overcome sparsity but retain cell-state
heterogeneity and dynamics in systems with continuous state transitions.

We also used this dataset to assess the robustness of SEACells (Methods). First, we verified that
SEACells is robust to different initializations by observing consistency in the metacells identified
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in different runs (Supplementary Fig. 5A). Specifically, we jointly embedded metacells from two
initializations using diffusion components and tested the percentage of mutually nearest
neighboring cell-states between the initializations that connect states of the same cell type
(Methods). SEACells metacells are extremely robust to different initializations in both RNA and
ATAC modalities (Supplementary Fig. 5B). We then demonstrated that specifying different
numbers of metacells still recovers consistent states (Supplementary Fig. 5C,D). Our results
confirm that SEACells calls metacells robustly in both RNA and ATAC modalities.

Another key performance metric is the ability to capture rare cell states. SEACells were able to
accurately recover rare cell-types such as pDCs and B-cell precursors in the PBMC RNA and
ATAC modalities (Fig. 2A,B). To further test the ability of SEACells to identify rare intermediate
cell states in continuous trajectories, we generated a second multiome dataset of T-cell depleted
bone marrow cells representing the full span of human hematopoiesis (Supplementary Fig.
6A,F). As expected, we observed an extraordinary diversity of densities across the phenotypic
manifold, with low-density regions representing rare intermediate cell types (Supplementary Fig.
6B,C,G,H). SEACells accurately identified metacells in these low-density regions
(Supplementary Fig. 6D,l), otherwise masked by clustering (Supplementary Fig. 6E,J),
demonstrating that the algorithm can recover rare cell types and cell states in both discrete and
continuous datasets across RNA and ATAC data modalities.

SEACells empowers gene regulatory inference

Peaks of ATAC-seq read counts represent open chromatin regions, and gene regulation can be
inferred by identifying putative transcription factor (TF) binding motifs within these accessible
regions. Single-cell ATAC-seq provides many observations (cells) with the potential to infer more
complex gene regulatory models—using trajectory inference, for example—at fine resolution®%.
However, the sparsity of SCATAC-seq data has severely restricted its utility, as analysis typically
occurs at the resolution of clusters. We surmised that SEACells metacells provide an ideal trade-
off between fine resolution and sufficient coverage to overcome sparsity for diverse gene
regulatory inference tasks.

A typical SEACells metacell contains 1.2 million reads, a large improvement over the 25,000
reads in an individual cell, but still far fewer than the 50 million reads processed in a typical bulk
sample. The first step towards building a SEACells regulatory toolbox is thus to improve the
signal-to-noise ratio in ATAC peak calling. We take advantage of the characteristic ATAC-seq
fragment length distribution (Supplementary Fig. 7A)*', in which the first mode represents
nucleosome-free (NFR) fragments likely enriched for TF binding events, and the second mode
represents nucleosomes. Since nucleosomes occupy a broader region of the genome compared
to TFs, we observed that they cause many false positive motif calls; peaks called using all
fragments thus result in poorly resolved regulatory elements (Supplementary Fig. 7B). Using
only NFR fragments identifies fewer peaks; however, we found that these peaks are enriched for
TF-bound open chromatin, including a large number of additional peaks that were obscured when
considering all fragments (Supplementary Fig. 7B,C). Regulatory element identification thus
benefits from using NFR fragments rather than all fragments (Supplementary Fig. 7C).
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The next task in gene regulatory inference is to associate each gene with the specific elements
that regulate it. Only a subset of local open-chromatin peaks is relevant to the expression of a
gene, since ATAC-seq profiles reflect regulatory elements as well as structural factors such as
CTCF?. The correlation between accessibility peaks and expression across cells has been used
to predict the set of cis elements that regulate each gene, using either multiome'® or separate
scRNA-seq and scATAC-seq data that is integrated®. Data sparsity precludes robust linkage of
regulatory elements with genes at the single-cell level. Using SEACell metacells from the CD34*
bone marrow dataset, we computed correlations between gene expression and NFR peak
accessibility for each peak within +/-100 kb of each gene in a core hematopoietic gene set®. For
all core genes, accessibility of the most correlated peak using ATAC metacells faithfully tracks
with gene expression, representing a substantial improvement over correlations identified from
the same data at the single-cell level (Fig. 3A and Supplementary Fig. 8). For example, the
correlation between peak accessibility and expression in metacells for key erythroid lineage
regulator TAL1 is 0.82, and cells on the erythroid trajectory exhibit the highest values, whereas
the correlation is 0.03 at single-cell level, with no distinction among erythroid cells (Fig. 3A).

To build a comprehensive map of regulatory elements, we identified all peaks significantly
correlated with a gene compared to GC-content-matched peaks sampled from the data as an
empirical background set'® (Methods). For the key erythroid factor GATA2, single-cell data only
recovers 2 of 11 associations detected using metacells (Fig. 3B). To systematically explore the
accuracy of predicted peak-gene associations, we computed gene scores® by aggregating the
accessibility of all significantly correlated peaks and comparing them to gene expression
(Methods). SEACells gene scores are substantially better correlated and outperform aggregating
single cells across all correlated peaks (correlation of 0.05, compared to 0.88 using SEACells)
(Fig. 3C and Supplementary Fig. 9). This improvement was consistent across the core
hematopoietic genes, as well as all genes with expression in at least 10 cells (Fig. 3C and
Supplementary Fig. 9C). SEACells metacells thus clearly identify cis elements that are
significantly correlated with gene expression and likely regulate the corresponding gene, enabling
complex gene regulatory modeling.

To overcome data sparsity in scATAC-seq, genome-wide information is often aggregated for all
peaks associated with a particular TF and summarized as a TF activity score. chromVAR?* is a
widely used tool for predicting transcription factor activity from scATAC-seq data. It provides a
per-cell deviation score for a TF by computing whether the peaks predicted to contain its binding
motif have greater accessibility compared to a GC-matched background peak set?*. To
demonstrate that metacell resolution can substantially improve TF activity inference, especially in
more complex regulatory landscapes, we used T-cell subsets, which reside on a relatively
continuous landscape''?>% driven by competing feedback loops. We determined chromVAR
scores for all T-cell subsets (CD4 naive and memory, CD8 naive and memory) using the PBMC
multiome dataset (Fig. 3D). chromVAR scores provide an alternate representation of the ATAC
data, useful for all downstream analyses including clustering and visualization. Indeed, chromVAR
scores using metacells accurately recovered the distinction between different T cell subsets,
whereas single-cell chromVAR scores failed to distinguish CD8 and CD4 (Fig. 3E). We identified
several known compartment-specific TFs that likely drive these T-cell states, including JUNB, a
factor active in CD4 and CD8 memory T-cells?’; LEF1, active in CD4 and CD8 naive T-cells?;
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EOMES, a key regulator of CD8 memory cells*® and RELA, a factor necessary for CD4 memory
cell function® (Fig. 3F) Single-cell chromVAR scores of these factors failed to distinguish the
same populations (Supplementary Fig. 10). In summary, SEACells substantially improves the
regulatory toolkit for analyzing and interpreting scATAC-seq data, including widely used tools
such as chromVAR.

SEACells outperforms metacell approaches for RNA and is the only
approach amenable to ATAC data

Baran and colleagues® introduced and effectively articulated the metacell concept. Their MetaCell
algorithm was demonstrated on healthy systems and designed around MARS-seq data, which
has a high instance of extreme values®', so it culls outliers aggressively. However, rare cell
populations often drive biology, especially in contexts such as cancer and regeneration. We found
that on lung adenocarcinoma scRNA-seq data®, MetaCell throws out more than one-third of all
cells (Supplementary Fig. 11A,B). Another approach, Super-cells', is effectively a very fine
clustering strategy that adapts widely-used community detection algorithms to generate a large
number of small clusters. We determined that SEACells is superior to both approaches on RNA,
and it is the only method that works on scATAC-seq data (Fig. 4).

We compared the three algorithms using ATAC and RNA modalities from CD34" bone marrow
and PBMC datasets. Since both MetaCell and Super-cells require a gene count matrix, we
aggregated peaks in the gene body to derive a count matrix representation for ATAC data. Unlike
these methods, SEACells explicitly samples the entire manifold, optimizing the inclusion of cell
states distinct from those already detected. Ours was the only algorithm to cover the entire
phenotypic landscape (Fig. 4A and Supplementary Fig. 12). For ATAC in particular, MetaCell
and Super-cells neglected the majority of cell states by focusing calls on cell-dense regions. In
bone marrow, they failed to represent important populations such as common lymphoid progenitor
(CLP) cells, monocytes, and DC subpopulations, and in PBMCs, they failed to identify coherent
cell states (Fig. 4A). Super-cells severely under sampled metacells in low density regions
(Supplementary Fig. 12A), failing to accurately recover the distinction between different T-cell
states.

By definition, a metacell represents a single biological cell state, meaning that its constituent cells
should share the same cell-type label. We evaluated cell type purity in PBMC data, which contains
well-separated cell types, and found that SEACells metacells of both modalities show significantly
greater purity than metacells from other methods (Supplementary Fig. 11C). These differences
in performance greatly impact the downstream analysis and interpretability of sSCATAC-seq data.
Peak accessibility and gene expression are also much better correlated in metacells from
SEACells (Fig. 3A and Supplementary Fig. 8A), than MetaCell or Super-cells (Fig. 4B and
Supplementary Fig. 13).

To quantify performance at higher resolution, we defined metrics for metacell compactness and
separation. An ideal metacell is compact (exhibits low variance amongst constituent cells) and
well-separated (remains distant from cells of a neighboring metacell). We measured compactness
by the diffusion component variability of cells within a metacell and separation by the diffusion
distance between a metacell and its nearest neighbor (Methods). In both bone marrow and


https://doi.org/10.1101/2022.04.02.486748
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.02.486748; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

8

peripheral blood ATAC datasets, we found that SEACells metacells are significantly more
compact and better separated than MetaCell and Super-cells metacells (Fig. 4C and
Supplementary Fig. 14A,B), especially in low cell-density regions, which are biologically relevant
(Supplementary Fig. 14A,B). Super-cells does show marginally better separation in high density
regions, however, since it creates a few very large partitions containing hundreds of cells in these
regions (Supplementary Fig. 11D).

While the different approaches are qualitatively similar using the RNA modality (Supplementary
Fig. 12B,C), SEACells metacells are significantly more compact than Super-cells (P < 1e-5,
Wilcoxon rank-sum test) and marginally more compact than Baran et al. metacells
(Supplementary Fig. 14C). Conversely, SEACells RNA metacells are significantly better
separated than Baran et al. metacells (P < 1e-2, Wilcoxon rank-sum test), whereas the separation
of Super-cells is artificially boosted by the large partition size in high density regions
(Supplementary Fig. 14D). Similar to ATAC, SEACells metacells have greater cell-type purity in
the PBMC RNA data, which comprises distinct cell types (Supplementary Fig. 11C).

Collectively, our results show that metacells generated by SEACells better represent the catalog
of cell-states present in the data and are more homogenous, compact and well-separated than
alternative methods across both RNA and ATAC modalities.

SEACells reveals gene accessibility dynamics during hematopoietic
differentiation

Hematopoietic differentiation is characterized by the upregulation of lineage-defining genes and
the downregulation of stem-cell identity genes, driven by precise changes in enhancer
accessibility that enable or impede transcription factor binding at these loci (Fig. 5A). Both bulk
and single-cell ATAC-seq data reveal extensive poising of regulatory elements in stem cells,
whereby most enhancers regulating lineage genes are accessible and primed for lineage-specific
expression'®*34 To demonstrate the potential of SEACells metacells for advanced scATAC-seq
analysis, we set out to examine how the primed and permissive epigenomic landscape of
hematopoietic stem cells dynamically reconfigures to a landscape with sharply reduced plasticity
and developmental potential in differentiated cells.

Tracking accessibility dynamics requires overcoming sparsity to identify which regulatory
elements are open and accessible. We identified open elements in each metacell
(Supplementary Fig. 15, Methods), then defined a metric of gene accessibility as the fraction of
gene-associated peaks (Fig. 3C, Methods) that are open in a given metacell, ranging from 0 (all
peaks closed) to 1 (all peaks open). Our accessibility scores track with gene expression for key
lineage-specific genes, indicating that they accurately represent underlying biology
(Supplementary Fig. 16A). For example, GATA1 and MPO scores undergo specific increases in
erythroid and myeloid lineages, respectively, consistent with their characterized roles®
(Supplementary Fig. 16B).

We next examined gene accessibility across cell compartments for all highly regulated genes,
and observed that the earliest cell type, hematopoietic stem cell (HSC), follows a unimodal
distribution centered at 0.5 (Fig. 5B). In contrast, expression of these genes in HSCs follows a
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long-tailed distribution, indicating that only a subset is expressed, and suggesting an epigenomic
landscape in stem cells that is poised for hematopoietic gene expression (Supplementary Fig.
17A), as previously observed'®%34 As cells differentiate along a lineage, genes that define the
lineage gain accessibility peaks, while genes that define alternative lineages lose peaks (Fig.
5B,C). The resulting bimodality of differentiated cells is most clearly observed in the erythroid
lineage (Fig. 5B). All other lineages show the emergence of long-tailed distributions
(Supplementary Fig. 17B). Previous studies have shown that the erythroid lineage is established
first>3® and posited that the lack of clear bimodality in other lineages could be due to the capture
of CD34" sorted cells that have not yet expressed lineage programs. We therefore performed a
similar analysis on an scATAC-seq dataset of unsorted bone marrow mononuclear cells' and
observed more pronounced bimodality across hematopoietic lineages (Supplementary Fig. 17C,
D).

We focused on gene accessibility dynamics in the erythroid lineage. We first applied Palantir® to
SEACells metacells using the RNA modality of multiome data to determine a pseudotime ordering
of metacells along this lineage (Fig. 5D, Methods). We then examined the gene accessibility
dynamics of highly regulated genes in each metacell along the pseudotemporal order and
observed that epigenomic reconfiguration is itself gradual and continuous (Fig. 5D). Using
pseudotime bins instead of metacells does not reveal any bimodality or dynamics, demonstrating
that the resolution of SEACells metacells is uniquely suited for capturing dynamics (Fig. 5D). We
next fit a generalized additive model to examine gene accessibility as a function of pseudotime
(Fig. 5E, Methods). The absence of step-like behavior in any accessibility trends reinforces the
continuous nature of epigenomic reconfiguration. Moreover, the opening and closing of regulatory
elements at diverging lineage-specific loci mirrors each other (Fig. 5E), suggesting that similar
mechanisms drive these two processes through gradual changes in plasticity and developmental
potential, as observed in studies that combine lineage tracing with scRNA-seq profiling®.

Gene ontology enrichment analysis revealed that genes with increasing accessibility in the
erythroid lineage establish erythroid cell identity and function, whereas those with decreasing
accessibility are enriched for HSC and diverse other lineage identity genes, in further support of
epigenomic priming in HSCs (Fig. 5E, Methods). Finally, the enrichment of TF motifs in peaks
gained and lost in erythroid differentiation predicts a role for GATA2 and PU.1, respectively (Fig.
5E, Methods), consistent with the known mutual antagonism of these factors in the decision
between erythroid and myeloid lineages®”. Together, our results show that SEACells metacells
make it possible to model the dynamics of gene accessibility during differentiation. We find that a
unimodal landscape of open chromatin in HSCs is reconfigured to a bimodal distribution in
differentiated cells that involves the gradual and continuous opening and closing of peaks.

SEACells enables the integration of large-scale single-cell datasets

Advances in scRNA-seq technology and atlas projects such as the Human Cell Atlas’ are
prompting the generation of single-cell datasets spanning millions of cells®***“® and hundreds of
individuals, rendering even the most fundamental analyses such as dimensionality reduction and
clustering computationally infeasible. SEACells identifies robust, well-defined metacells from any
sample, and thus can be used to integrate large-scale single-cell datasets in a computationally
efficient manner. Moreover, by enumerating meta-cells on each sample, we provide per sample
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summary statistics that is less susceptible to batch effects, facilitating data integration that is
better able to resolve biological (rather than technical) differences between individuals. We
demonstrated the utility of SEACells using a recently published dataset of PBMCs containing over
175,000 cells from 23 healthy donors and 17 critical COVID-19 patients**.

We first applied SEACells to identify metacells in each sample (Fig. 6A and Supplementary Fig.
18) and verified that the metacell states are consistent across healthy donors and across COVID-
19 patients (Supplementary Fig. 19, Methods). Encouraged by this high level of reproducibility,
we used metacell gene expression counts for downstream tasks such as data integration*®,
clustering*® and visualization using UMAPs (Fig. 6B). Batch effects prior to integration are severe
(Supplementary Fig. 20A,B), but are significantly lower in metacells compared to single cells
(Supplementary Fig. 20C), enabling reasonable downstream analysis even without integration.
While data integration eliminated batch effects in both single cells and metacells (Supplementary
Fig. 20C), metacells required orders of magnitude less compute time compared to data
integration, visualization, and clustering at the single-cell level (Supplementary Fig. 21). This
ability to scale is particularly important when new data accumulates, and existing analyses need
to be rerun. A single upfront investment in metacell assignment avoids compounding the near-
exponential increases in runtime associated with adding cells, for each single-cell-level analysis
(Supplementary Fig. 21).

SEACells identifies the temporal dynamics of T-cell response during COVID-
19 infection

We next examined whether SEACells metacells can be used to identify state changes from
healthy to severe COVID-19 patients. We pooled metacells from all donors and re-applied
SEACells to derive metacell aggregates representing states across all samples (Supplementary
Fig. 22A). Each aggregated metacell is a combination of healthy and COVID-19 metacells, such
that the fraction of COVID-19 cells can be visualized for each state (Supplementary Fig. 22B).
Our results reveal a broad spectrum of metacell states, from those specific to healthy donors to
those exclusive to COVID-19 (Supplementary Fig. 22B), prompting us to develop a permutation
test to identify cell-states that differ significantly between the two (Fig. 6C, Methods). By contrast,
analysis at the cell-type level completely masks the extensive heterogeneity present in individual
states within the cell-type (Fig. 6C).

We focused our analysis on CD4" T cells, which are known to differentiate into distinct subsets
upon activation and differentiation®>?°, using differential gene expression analysis at the metacell
level to identify cell-state defining genes. Within CD4" T-cell metacells, this analysis revealed a
fine-grained trajectory of phenotypes enriched in patients with COVID-19, with meaningful
correspondence between T cell phenotypes and temporal stage of disease (Fig. 6D). For
example, a metacell enriched in COVID-19 patients soon after infection (metacell A) contains
cells in an early activation state distinguished by the expression of NF-xB response genes, IFN-
a receptor subunit IFNAR2, and downstream interferon-stimulated genes (IRF7, IRF9, ISG15,
IFITM1), reflecting T cell responsiveness to type | IFN, a cytokine associated with viral infections
and SARS-COV2 pathology*’ (Fig. 6D). A metacell enriched in COVID-19 patients approximately
10 days after symptom onset (metacell B) comprises Foxp3® Treg cells expressing the chemokine
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receptor gene CCR10, suggesting recruitment to the inflamed lung or mucosal epithelium and a
potential role in regulation of inflammation*® (Fig. 6D). Finally, a metacell enriched in patients with
persistent severe COVID-19 at day 13 (metacell C) contains cells that express hallmark Tu17
genes (RORC and CCR6), reflecting a shift towards type Il inflammation.

We postulate that while data integration methods aim to make samples more similar without
distinguishing between batch and biological signal, aggregating data into metacells on the per-
sample level provides robust capture of true biological variation between the samples. Indeed,
our results show that SEACells can capture biologically meaningful CD4 T-cell subsets and
states, highlighting the full spectrum of activation and differentiation during an evolving viral
infection, in which cells transition between active and quiescent states over the course of hours
and days. Differential abundance testing'® at the single-cell level failed to recover these dynamics
(Supplementary Fig. 22C,D).

Discussion

SEACells identifies robust, reproducible metacells from single-cell data that overcome sparsity
while retaining the rich heterogeneity of the data. SEACells metacells are more compact, better
separated, and more evenly distributed across the full cell-state landscape than metacells
generated by existing methods. We have shown that they faithfully represent both discrete and
continuously varying cell states, and that they provide enormous benefits for scaling to large
cohort-based datasets, including carrying out data integration across samples and modalities.
Critically, only SEACells is currently able to derive cell states from scATAC-seq data in an
accurate and comprehensive manner, greatly empowering gene regulatory inference.

The performance of SEACells is due to its (i) representation of single-cell phenotypes using an
adaptive Gaussian kernel to accurately capture the major sources of variation in the data, (ii) use
of max-min cell sampling for initialization to ensure even representation of cell-states across
phenotypic space, regardless of cell densities, and (iii) application of archetypal analysis for
identifying highly interpretable metacells. The adaptive kernel and max-min sampling make
SEACells particularly adept at robustly identifying rare cell-states, which often represent critical
populations that drive biology or disease.

Kernel representation also eliminates the need for specific data representations such as gene
scores, allowing SEACells to generalize to multiple modalities. We show that metacells are
particularly effective on scATAC-seq data, which is currently analyzed at the cluster level due to
extreme sparsity, and thus remains underutilized. Whereas gene scores, open regulatory
elements, and correlations between gene expression and chromatin accessibility cannot be
determined robustly at the single-cell level, they can be computed for individual metacells. Such
improvements in fundamental ATAC analysis enable more sophisticated regulatory network
inference, promising wide utility for SEACells in studies with single-cell chromatin profiling data.

Our procedures for computing peak-to-gene associations, gene scores and gene accessibility
assume the availability of either multimodal data or integrated RNA and ATAC modalities. Several
approaches have been developed for data integration across modalities™*° and are likely to
exhibit improved performance when applied at the metacell level. Given the kernel representation,
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50,51

SEACells should generalize to other modalities such as CUT&Tag
chromatin modification measurements® with appropriate preprocessing.

or other single-cell

We also anticipate that SEACells will be used extensively as a scalable solution for integrating
large single-cell datasets from cohorts. Metacells can be computed separately for each sample,
rendering the integration of additional cohort members extremely resource-efficient, while
retaining heterogeneity in the data. Computing metacells at the sample level also provides a more
robust representation of sample-specific biology than data integration approaches that struggle
to distinguish biological and technical differences between samples. Aggregating dozens of cells
per metacell provides a more comprehensive expression or chromatin accessibility profile, and
also generates a distribution over these features, facilitating comparison between metacells
across samples. As demonstrated in COVID-19 data, sample-level sufficient statistics provided
by SEACells are particularly well suited to compare disease states between healthy and normal,
as well as more nuanced disease states such as progression.

An important consideration when running SEACells is how to specify the number of metacells.
There should be enough metacells to capture cell states at high resolution, while maintaining
sufficient cells per metacell to ensure robustness. The optimal number thus depends on biological
heterogeneity in the dataset and the total number of cells profiled. For example, cells from a
homogeneous cell line will have less biological structure compared to a similar sized tissue
sample. To choose the number of metacells, we recommend examining the initialization to ensure
that cell-states span the full phenotypic manifold (Methods).

Metacell analysis allowed us to determine a metric for gene accessibility and to demonstrate that
chromatin landscape reconfiguration is continuous and gradual during hematopoietic
differentiation. Further, we utilized the scalability and robustness of SEACells to integrate a large-
scale COVID-19 scRNA-seq dataset and identify a disease progression of COVID-19-enriched
CD4" T-cell states relating to differentiation and activation. These critical states are not detected
by differential abundance testing at the single-cell level. In addition to enabling cohort-scale
analysis, SEACells metacells serve as more robust cell-state inputs, which facilitates the
distinction of biological signal from batch effect—features that enabled our discovery of the T-cell
state continuum. SEACells is a powerful discovery tool for emerging single-cell cohorts.

Data Availability

The newly generated CD34+ bone marrow and T-cell depleted bone marrow multiome datasets
will be deposited to GEO. Filtered and processed count matrices including cell-type annotations
and ATAC fragment files are available on Zenodo at 10.5281/zenodo . 6383269.

Code Availability

SEACells is available as a Python module at https://github.com/dpeerlab/SEACells. Jupyter
notebooks detailing the usage of SEACells include metacell identification, aggregation and the
ATAC preprocessing, and gene regulatory toolkit are available at
https://github.com/dpeerlab/SEACells/tree/main/notebooks. Modified ArchR pipeline for peak
calling using NFR fragments is available at https://github.com/dpeerlabArchR
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Methods

SEACells algorithm

SEACells - Single-cEll Aggregation of High-Resolution Cell-states - is an algorithm to
determine metacells, groups of cells that represent singular cell-states from single-cell
data. The SEACells algorithm assumes that biological systems consist of well-defined
and finite sets of cell-states defined by co-varying patterns of gene expression. Observed
single-cell data are assumed to be noisy measurements of these cell-states with current
state of the art single-cell measurement technologies able to capture <10% of transcripts
or <5% open chromatin regions. Despite the high degree of noise, cells sampled from the
same states are assumed to be closely related in their phenotypes as a result of gene
expression patterns and regulatory mechanisms that define the cell-states. Thus,
SEACells algorithm aims to aggregate closely related single-cells and identify metacells
that represent cell-states. As a result of aggregation, metacells overcome the sparsity
issues that plague single-cell data, with single-cell ATAC-seq data particularly limited in
its utility due to its sparsity. SEACells metacells also provide a scalable representation to
efficiently handle large-scale single-cell data. While clustering is widely used to overcome
issues of sparsity, clustering masks the substantial heterogeneity present in the data (Fig.
1A-D). SEACells metacells achieve a resolution that retains the heterogeneity while
overcoming the sparsity issues of single-cell data.

The major inputs to SEACells algorithm are: (i) raw count matrices (E.g.: gene expression
for RNA, peak or bin counts for ATAC), (ii) low dimensional representation of the data
such as PCA derived using an appropriate preprocessing procedure dependent on data
modality and biological system and (iii) the number of metacells to be identified. Using
this information, SEACells produces as output groupings of cells that represent metacells
and aggregated metacells X feature raw counts matrices. SEACells algorithm is available
as a Github repository as https://github.com/dpeerlab/SEACells. In addition to
documentation and tutorials for computing metacells, the repository also includes tutorials
for computation of gene expression - peak accessibility correlations, ATAC gene scores,
open peaks in metacells and gene accessibility scores using multiome or integrated RNA
& ATAC data.

SEACells comprises five main steps:
(1) Construct a k-nearest neighbors graph using Euclidean distances between cells

computed in the lower dimensional embedded space. This KNN graph provides a
representation of the phenotypic manifold to identify tightly connected groups of
cells, to be aggregated into metacells.

(2) An affinity matrix of cell-to-cell similarities is derived using the nearest neighbor
graph. The distances in the graph are transformed to similarities using an adaptive
Gaussian kernel to account for the dramatic differences in densities in the
phenotypic manifold spanned by single-cell data. The affinity or kernel matrix (Fig.
1F) also encodes the non-linear relationships between cells .
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(3) The kernel matrix then serves as input to kernel archetypal analysis, for linear
decomposition of the input single-cell data. The linear nature of this procedure
maximizes interpretability. Archetypal analysis decomposes the data into an
archetype matrix, linear combinations of cells that are representative of the cell-
states on the phenotypic manifold and a membership matrix that reconstructs the
single-cells as linear combinations of archetypes (Fig. 1G). This procedure
partitions the data in such a way that the cell-cell similarity matrix has tight block
structure along the diagonal, which best represents distinct cell states in the data
(Fig. 1H). Each distinct partition is a group of cells and represents a metacell. The
specified number of metacells are used as input to archetypal analysis.

(4) The groupings identified through archetypal analysis are SEACells metacells.
Single-cell raw counts are aggregated using these groupings to derive a metacell
X feature count matrix.

(5) Normalized metacell count matrices can be used for all downstream tasks
including clustering, visualization, data integration, trajectory inference, ATAC-seq
based regulatory inference and other analysis performed with single-cell data.

These design principles ensure that metacells identified by SEACells algorithm are
robust, compact, well-separated, provide sufficient meta-cells, and span the entire
phenotypic manifold. SEACells can be applied to single-cell datasets with discrete cell-
types and continuous trajectories. SEACells has been tested and benchmarked using
scRNA-seq and scATAC-seq datasets and in principle can be applied to other single-cell
modalities as well. An appropriate preprocessing procedure that generates a faithful low-
dimensional representation of the single-cell data is a critical element for success of
SEACells algorithm to generalize to additional data modalities. We have outlined a
procedure to analyze each data modality separately, but a graph or representation
derived using multiple modalities'34° can also be used as input to SEACells.

Low Dimensional Embedding

A central input to SEACells algorithm is a low dimensional representation of single-cell
data. This representation is used as input to construct the k-nearest neighbor graph using
Euclidean distance between cells. Single-cell data is extremely noisy due to low capture
rates, and as a result measuring distances between cells in the measured expression or
accessibility is unreliable. A low dimensional representation such as PCA, overcomes the
noise in the data with the top components encoding information about biological
variability. Low-dimensional embedding can be derived by using appropriate pre-
processing and normalization steps for the data modality of interest (Supplementary Fig.
2). This allows us to be both flexible to data type, and robust to the extensive degree of
sparsity and noise in data types such as scRNA-seq and scATAC-seq. We utilized the
following preprocessing steps adapted to the characteristics of each technology.

PCA for scRNA-seq

Following standard practices, we perform three main pre-processing steps using the
scanpy®? package: 1) library size normalization by dividing raw counts by total molecules
per cell, 2) log-transformation with a pseudo-count of 0.1 and 3) selection of highly
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variable genes. Based on our prior observations for PBMCs and CD34 bone marrow
datasets [ref], we chose 2500 highly variable genes for analysis. This number should be
adapted to ensure all the heterogeneity is captured in the dataset of interest. Principal
components are computed from these highly variable genes, with the number of principal
components being selected based on proportion of variance explained (Typically 50).
SVD for scATAC-seq

We used the ArchR package?? for preprocessing of sc-ATAC data. Fragment counts for
each cell were computed in 500 base genome bins. The counts were normalized using
TF-IDF%*. The normalized counts were used as input to derive a low-dimensional
embedding using SVD. Similar to PCA, the number of principal components were
selected based on the proportion of variance explained (Typically 30). As has been
observed previously, despite normalization the first SVD component shows high
correlation with number of fragments per cell (correlation > 0.97) and is excluded from
downstream analysis.
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Nearest Neighbor graph

A k-nearest neighbor graph is constructed using Euclidean distance in the low-
dimensional embedding (PCA or SVD). The graph is a representation of the phenotypic
manifold, with nodes as single cells, each connected to their most similar neighbors. The
nearest graph can be represented as a matrix D € R"X™, where n is the number of cells.
D;; represents distance between cells i and j if they

are neighbors and D;; = 0 otherwise. The graph serves as input for the construction of
the cell-cell kernel matrix. As default, 50 neighbors are used for nearest neighbor graph
construction, and we have previously demonstrated that the kernel matrix construction is
robust to a reasonable range of number of nearest neighbors®.

Adaptive Gaussian kernel

The goal of SEACells algorithm is to identify metacells that are tightly related groups of
cells to represent cell-states (Fig. 1H,G). Therefore, we need to transform the distances
in the neighbor graph to similarities between neighboring cells. Gaussian kernels provide
an approach for this transformation but assume that densities in underlying data are
approximately uniform. Single-cell data, however, show remarkable variability in data
densities (Supp. Fig. 6) with low-density regions or rare cell-types often the most
meaningful in describing the biology of the system. We have previously demonstrated
that an adaptive kernel that uses neighbor distance as the scaling factor for each cell,
rather than a fixed parameter, is highly effective in faithfully representing the phenotypic
similarities®®®. Therefore, SEACells uses an adaptive (width) Gaussian Kernel to
determine similarities between cells and more faithfully represent the underlying
phenotypic manifold (Fig. 1F). The adaptive kernel corrects for densities using the
distance to the I*" (I < k) nearest neighbor as a scaling factor i.e, the scaling factor of
cell i is given by o; =distance to [*"nearest neighbor.

The adaptive Gaussian kernel is then given by
1 10 —x)"(x; — %)
M(x;, x;) = exp (—=

J2n(o; + 0;) ) 2 o; + 0j
where x; is the low-dimensional embedding corresponding to cell i.
M € R™X™is the affinity matrix. M;; represents the similarity between cells i and j if they

are neighbors and M;; = 0 otherwise.

Kernel Archetypal Analysis

The adaptive kernel serves as input to a kernel archetypal analysis procedure . Archetypal
analysis identifies a linear decomposition of the data matrix where the goal is to identify
a specified number of archetypes that are each a linear combination of the data points
represented by the archetype matrix. The data points themselves are represented as a
linear combination of the archetypes in a membership matrix to reconstruct the original
data matrix (Fig. 1G). Therefore, archetypal analysis functions in a manner similar to an
autoencoder with the lower dimensionality of the archetype and membership matrices
creating an information bottleneck that ensures an optimal linear decomposition of the
data'”. Membership matrices can be used to derive cell partitions that are aggregated to
metacells (Fig. 1H). The linear nature of archetypal analysis ensures maximal
interpretability and identification of metacells. Further, the iterative procedure of
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archetypal analysis supports the use of cell-cell similarity kernels which already encode
the non-linear relationships between cells.

Formally, the data matrix X € R**" consists of d-dimensional vectors corresponding to n
cells. Here d is the dimensionality of low-dimensional embedding such as PCA or SVD.
The goal of archetypal analysis is to decompose data as X = ZA i.e, the data matrix X is
represented as a convex combination of a latent archetype matrix Z € R?*S and cell
membership matrix A € RS*", where s < n is the number of archetypes. As these latent
archetypes are a priori unknown, they are themselves defined as convex combinations
Z = XB of the data, X, and archetype weight matrix B € R™*S. To ensure that data points
are convex combinations of archetypes, and vice versa, weight matrices A and B must
be row- and column-stochastic, respectively, such that their entries are non-zero and
rows/columns sum to one.

Formally, for entries a;; € A and b;; € B,

S

a; =0,Vj= 1..n2aij =1

i=1
N
j=1

Taken together, the objective of archetypal analysis is to find matrices A, B such that
product XBA forms a faithful reconstruction of the original data matrix X.

The objective of kernel archetype analysis is to minimize squared reconstruction error
(SRE) as follows:
minSRE = ||X — XBA||? = tr[X"X —2XTXBA + ATBT XTX]

Note that this optimization problem depends only on the dot product i.e., linear kernel of
the data matrix X. Therefore, non-linear kernels can be substituted to model systems
where the data is generated from non-linear combinations of archetypes using the kernel
trick. We therefore replace the linear kernel with the adaptive gaussian kernel M and the
optimization problem can then be formulated as.

minSRE = ||1X — XBA||? = tr[K(X,X) —2K(X,X)BA + ATBT K(X,X)]

= tr[M — 2MBA + ATBT M]
The number of archetypes, s, representing the number of metacells, is a parameter.

Optimizing Archetypes and Cell Assignments

The objective function for kernel archetype analysis involves optimizing the non-convex
product AB, and thus has many local minima. The objective function is, however, convex
in A given a fixed B matrix, and vice versa. Therefore, alternating minimization of weight
matrices A and B is used to make the problem of solving archetypal analysis more
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tractable. Given this, we use the Frank-Wolfe updates to optimize each weight matrix in
turn, as described in 17,

Initialization

As archetypal analysis is a non-convex problem, solutions depend on the initialization of
archetype and cell assignments. Given the density differences in the phenotypic manifold,
random sampling of cells will lead to significant overrepresentation of initial points in the
high density regions and severe underrepresentation of cells in the biologically critical low
density regions. Therefore, we employ max-min sampling of waypoints, described and
implemented by ° to initialize archetypal analysis.

Given a set of waypoints, each additional waypoint is chosen to maximize the distance to
the current set, i.e. maximize the minimum distance to any of the points in the current set.
This ensures that the sampled waypoints are uniformly distributed across the phenotypic
manifold irrespective of the density (Fig. 1E). We first derive a diffusion map embedding
using the adaptive Gaussian kernel M. As demonstrated previously®, each diffusion
component represents an axis of biological variance in the data. Diffusion maps can be
used to describe both continuous trajectories as well as to define separation between
discrete cell-types. Waypoints are sampled from each component and pooled for
initialization. The number of components can be chosen by the eigengap statistic, though
in practice we observed that the first 10 diffusion components typically account for all the
biological variability in the data.

Waypoint sampling is used to initialize the matrix B, following which matrix A is updated
and the process is repeated until convergence.

Metacell identification

Archetypal analysis computes partial assignments of cells to archetypes. However, in
order to aid in interpretability and facilitate downstream analysis, metacells are
constructed by (1) computing binarized assignments of cells to archetypes (of the A
matrix) and (2) aggregating single cells assigned to each SEACell by summing over raw
counts (Fig. 1G). This summarized SEACells data matrix is significantly less sparse and
noisy and can then be used for more robust downstream analysis.

Metacell normalization

Metacell raw counts can be normalized analogous to single-cell data normalization.
Metacell counts are divided by the total counts per metacell and then multiplied by the
median of the total metacell counts to avoid numerical issues. The data is then log-
transformed using a pseudo count of 0.1

Notes about number of metacells

The number of metacells should be specified as a parameter to the SEACells algorithm.
We have evaluated the robustness of SEACells to the number of metacells and
determined that the results are robust across a wide range of parameters
(Supplementary Fig. 5). We currently use a heuristic of one metacell per 75 single-cells
in the dataset under consideration. However, the number is largely dependent on the
biological structure in the data. As an example, a dataset profiling 10k cells from a
homogeneous cell-line will be expected to be less heterogeneous and thus encode less
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biological structure compared to a similar sized single-cell dataset of more complex
biological systems such as tumors or differentiation. Therefore, we recommend
examination of initialization to ensure that cell-states span the entirety of the phenotypic
manifold to choose the number of metacells.
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Toolkit for scATAC analysis

Analysis of bulk ATAC-seq data has provided a broad array of tools that are powerful in
interpretation of open chromatin data. Direct application of these tools is prohibitive for
single-cell data analysis due to issues of sparsity. SEACells metacells are aggregates of
tightly related cells and therefore are substantially less sparse and encode more
information per cell-state compared to analysis at the single-cell level. Metacells faithfully
retain the heterogeneity and structure of the data, and hence enable the construction of
a robust toolkit for scATAC-seq data analysis with adaptations of tools from bulk data
analysis.

Peak calling

Peak calling was performed using ArchRZ. ArchR first clusters single-cell data and uses
the MACS2 peak caller®® to identify peaks separately for each cluster. Each peak is then
resized to 500 bases with the peak summit at the center and overlapping peaks across
different clusters are merged. The merged peaks are again resized to 500 bases.

ATAC-seq data provides a profile of open chromatin regions spanning transcription factor
binding and nucleosomes in non-repressed regions. The fragment size distribution of
ATAC-seq data contains characteristic modes which reflect the diversity of information
(Supplementary Fig. 7A). Since the first mode represents nucleosome free regions
(NFR), we implemented a change in the ArchR pipeline to identify peaks using only the
NFR fragments (fragment length < 147) rather than use of all fragments as is default in
ArchR. This change leads to substantially better sensitivity in identification of regulatory
elements (Supplementary Fig. 7B,C).

The modified ArchR pipeline is available at https://github.com/dpeerlab/ArchR

Peak-gene associations and gene scores

While use of NFR fragments improves the sensitivity of called peaks, not all identified
peaks represent TF binding events that directly regulate the expression of a gene.
Examples include structural factors such as CTCF which also show a signal in ATAC-seq
data but do not directly regulate the expression of a gene. Therefore, studies have
proposed the use of correlation of peak accessibility and gene expression using multiome
or integrated ATAC & RNA data to identify the candidate list of peaks i.e., regulatory
elements that likely regulate the expression of the gene'®. SEACells metacells retain the
heterogeneity in data but overcome data sparsity and thus provide an ideal resolution to
compute these associations which are unreliable when computed using single-cell data
due to high degree of noise and sparsity. We use metacells identified using the ATAC
modality for building the peak-gene associations t for robust associations.

We adopted the procedure outlined by Ma et. al.’® to identify significant peak-gene
associations. For each gene, Pearson correlations were computed for each peak across
a span of 100kb upstream and 100kb downstream of the gene using the normalized
metacell expression and normalized ATAC accessibility. To assess the significance of the
peak-gene correlation, an empirical background of 100 peaks were sampled that matched
the GC content and accessibility of the peak under consideration. Peaks were binned into
100 bins separately based on GC content and accessibility to sample the empirical
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background. Any peak with a nominal p-value < 1e-1 was considered a significant peak-
gene association. Peaks identified using NFR fragments were used for this analysis. The
aggregate accessibility of all peaks associated with a gene was used to determine the
metacell gene score.

For single-cell comparisons, normalized single-cell expression and normalized single-cell
accessibility were used for determining peak-gene associations. Gene scores for single-
cell ATAC were computed using the ArchR?3 defaults.

chromVAR using SEACell metacells and single-cells

chromVAR?* was run using default parameters using the chromVAR “human_pwms_v2”
motif database. chromVAR scores were computed using aggregated fragment counts for
metacells and single cell fragment counts for single-cell data. Similar to the single-cell
data analysis, chromVAR scores were first reduced to 50 principal components using
knee-point analysis. PCs then served as input to umaps for visualization.

Metacell peak calling

Identification of the set of open regulatory elements is practically implausible at single-
cell level due to noise and sparsity. SEACells metacells however, provide a sufficient
number of fragments per cell-state to enable the identification of open regulatory elements
in each state. We observed that de novo peak calling in each metacell results in loss of
sensitivity (Supplementary Fig. 7).. Therefore, we use the peaks identified by ArchR
across all cells as an atlas to determine the subset of peaks open in each metacell.

A procedure inspired by MACS2 is used to identify open regulatory elements in metacells
since the peaks themselves were called by MACS2. The fragments mapping to peaks are
modeled as a Poisson distribution. The mean of the Poisson distribution for a metacell s
is estimated using®®:

__ Width(peaks) * Total fragmentsins
A= .
Effective genome length

Since all the widths are identical, the first term of the numerator is set to 500. Rather than
use the whole genome length as the denominator, effective genome length was set to be
num. of peaks * 5000, a more stringent local estimate of the mean as proposed in MACS2.
For a peak p in metacell s with n fragments , Ais used to estimate the p-value of
observing more than n fragments and p is considered open in s if p-value < 1e-2.

We noticed that some of the ATAC metacells had low overall fragment counts - therefore
we computed fragments per peak and total fragments from 2 nearest metacells. We apply
this procedure for all metacells to avoid any biases.

Gene accessibility scores
Gene accessibility scores for a gene and metacell is defined as the fraction of gene
associated peaks that are open in the particular(Fig. 4B). Gene accessibility scores range
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from O, indicating all correlated peaks are closed, to 1, indicating that all correlated peaks
are open.

Gene Accessibility (Gene g, Metacell m)
_ No.of open peaks in s correlated with expression of gene g

No.of peaks correlated with expression of gene g

Multiome data generation

CD34+ bone marrow cells

Cryopreserved bone marrow stem/progenitor CD34+ cells from a healthy donor were
purchased from AllCells, LLC. (catalog no. ABM022F) and stored in vapor phase nitrogen.
Vial was removed from the storage and immediately thawed at 37 °C in a water bath for
2 min while gently shaking. Next, vial content (1 mL) was transferred to a 50-mL conical
tube. To prevent osmotic lysis and ensure gradual loss of cryoprotectant, 1 mL of warm
medium (IMDM with 10% FBS supplement) was added dropwise after washing the
storage vial, while gently shaking the tube. Then, the cell suspension was serially diluted
5 times with 1:1 volume additions of warm complete growth medium with 2-min wait
between additions. The final ~32-mL volume of cell suspension was pelleted at 300g for
5 min. After removing supernatant, cells were washed once with 10-mL of warm media
and twice in ice-cold 1x PBS with 0.04% (wt/vol) BSA supplement to remove traces of
medium. Cell concentration and viability were determined with a Countess Il automatic
cell counter using 0.4% trypan blue staining method.

Single Cell Multiome ATAC + Gene Expression was performed with a 10X genomics
system using Chromium Next GEM Single Cell Multiome Reagent Kit A (catalog no.
1000282) and ATAC Kit A (catalog no. 1000280) following Chromium Next GEM Single
Cell Multiome ATAC + Gene Expression Reagent Kits User Guide and demonstrated
protocol - Nuclei Isolation for Single Cell Multiome ATAC + Gene Expression Sequencing.
Briefly, 200,000 cells (viability 95%) were lysed for 4min and resuspended in Diluted
Nuclei Buffer (10x Genomics, PN- 2000207). Lysis efficiency and nuclei concentration
was evaluated on Countess Il automatic cell counter by trypan blue staining. 9,660 nuclei
were loaded per transposition reaction, targeting recovery of 6,000 nuclei after
encapsulation. After transposition reaction nuclei were encapsulated and barcoded. Next-
generation sequencing libraries were constructed following the User Guide, which were
sequenced on an lllumina NovaSeq 6000 system.

T-cell depleted bone marrow cells

Cryopreserved bone marrow cells from healthy donor were purchased from AllCells, LLC.
(ABMOO7F) and stored in vapor phase nitrogen. Vial was removed from the storage and
immediately thawed at 37 °C in a water bath for 2 min while gently shaking. Next, vial
content (1 mL) was transferred to a 15 mL conical tube. To prevent osmotic lysis and
ensure gradual loss of cryoprotectant, 1 mL of warm medium (IMDM with 10% FBS
supplement) was added dropwise after washing the storage vial, while gently shaking the
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tube. Then, the cell suspension was dropwise diluted to 15 mL by addition of warm
complete growth medium. The final 15 mL volume of cell suspension was pelleted at room
temperature, 400g for 5 min. After removing supernatant, cells were washed once with 1
mL of Cell Staining Buffer (CSB), Biolegend (420201), cells were centrifuged again at
400g for 5 minutes 4 °C and resuspended in 100 uL of CSB. Concentration and viability
were determined with a Countess Il automated cell counter using 0.4% trypan blue
staining method. Cells were incubated with Human TruStain FcX™ (Fc Receptor Blocking
Solution), Biolegend (422301), for 10min at 4 °C. After blocking, bone marrow cells were
stained with CD3 Monoclonal Antibody (UCHT1), PE-Cyanine7, eBioscience™ (25-0038-
42) 1:100 for 20 minutes at 4°C. Cells were washed 2 times with CSB before
Fluorescence-activated cell sorting (FACSymphony S6, BD Biosciences) where CD3
negative cells were collected. Sorted cells were concentrated, count and viability was
determined with a Countess Il automated cell counter using trypan blue staining.

Single Cell Multiome ATAC + Gene Expression was performed with a 10X genomics
system using Chromium Next GEM Single Cell Multiome Reagent Kit A (1000282) and
ATAC Kit A (1000280) following Chromium Next GEM Single Cell Multiome ATAC + Gene
Expression Reagent Kits User Guide and demonstrated protocol - Nuclei Isolation for
Single Cell Multiome ATAC + Gene Expression Sequencing. Briefly, 300,000 cells
(viability 95%) were lysed for 4 min and resuspended in Diluted Nuclei Buffer, 10x
Genomics (2000207). Lysis efficiency and nuclei concentration was evaluated on
Countess Il automated cell counter by trypan blue and DAPI staining. 16,100 nuclei were
loaded per transposition reaction, targeting recovery of 10,000 nuclei after encapsulation.
After transposition reaction nuclei were encapsulated and barcoded. Next-generation
sequencing libraries were constructed following the 10X Genomics User Guide and were
sequenced on an lllumina NovaSeq 6000 system.
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Application of SEACells to PBMCs and bone marrow datasets

Data preprocessing

CD34+ Bone marrow Multiome data - RNA modality

Count matrices for the two samples were generated using CellRanger ARC®’. Starting
with the filtered barcode matrices from CellRanger ARC, barcodes from the bottom and
top 2.5th percentile in molecule counts were excluded. Further cells with less than 0.4
fraction of reads in peaks in ATAC modality and greater than 20% of reads from
mitochondria from the RNA modality were excluded from downstream analysis. The
specified cutoffs were also chosen based on the respective empirical distributions to
remove outliers.

Data was generated in two lanes. For each sample, scrublet® was used to compute
doublet scores using default parameters and a cluster of cells with high doublet scores
were removed from downstream analysis (note, CD34+ has a continuous nature that can
lead to false doublet calls). Following the filtering steps, the two samples were
concatenated, normalized for molecule counts by dividing the raw data by the total counts
per cell. The normalized data was multiplied by the median of total counts across cells to
avoid numerical issues and log transformed with a pseudo-count of 0.1. Feature selection
was then performed to select the top 2500 most highly variable genes (using
scanpy.pp.highly_variable_genes) which was then used as input for principal
component analysis with 50 components. The parameters were chosen based on prior
analysis on a CD34+ scRNA-seq dataset®.

The PCs were used as input for generating umaps and clustering using phenograph’.
The preprocessing and analysis was undertaken using scanpy®3. Diffusion components
were generated using the adaptive kernel following the functions in the Palantir package®
and imputation of gene expression was performed using MAGIC®. Each cluster was
annotated as specific cell-types using the markers defined in®, following which mature B-
cells were excluded from the analysis. Highly variable gene selection, PCA, clustering,
visualizations, diffusion maps and imputation were repeated following B-cell exclusion. A
total of 6881 cells were retained after all the filtering steps.

CD34+ Bone marrow Multiome data - ATAC modality

Analysis of the ATAC modality was undertaken using the ArchR pipeline?® using the
subset of cells post-filtering from the RNA modality. 100k features were used instead of
the default 25k features for ArchR processing. Using ArchR, data was normalized using
IterativeLSI and SVD used to determine a lower dimensional representation of the sparse
data. The first SVD component showed a greater than 0.97 correlation with log library
size and was excluded from downstream analysis. SVD was used as input to cluster the
data using phenograph and visualize using umaps. Peak calling was performed using the
modified ArchR pipeline described in “Peak calling”.
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T-cell depleted Multiome data

The preprocessing and analysis of RNA and ATAC modalities were performed following
the steps outlined for the CD34+ bone marrow data. NK cells, mature monocytes and B-
cells were excluded from the analysis in Supplementary Fig. 6. A total of 7439 cells were
retained after all the filtering steps.

PBMC Multiome data

Counts for the PBMC Multiome data were downloaded from 10X Genomics. The
preprocessing and analysis of RNA and ATAC modalities were performed following the
steps outlined for the CD34+ bone marrow data. Cell-type annotation was performed
using the marker genes in % and no cell-types were excluded from the analysis. A total
of 11543 cells were retained after all the filtering steps.

Lung adenocarcinoma

Fully annotated count matrices for single-cell profiling of lung adenocarcinoma in patient
samples were downloaded from 32. All non-immune cells contained in the data-set were
used in the analyses, comprising a total of 4770 cells. Each patient sample was
individually processed by performing normalization on raw counts, followed by log-
transformation. Following the procedure outlined in the manuscript, 1500 most highly
variable genes were identified and principal components were computed from the
expression of these genes.

Bone marrow mononuclear cells scATAC-seq dataset

Fragment files for single-cell ATAC-seq data of bone marrow mononuclear cells and
CD34+ cells (total of 5 samples) and the respective cell-type annotations were
downloaded from GEQ'®. All the cells described in the manuscript'® were used except for
T-cells since they do not differentiate in the bone marrow. The preprocessing and peak-
calling followed the same procedure outlined for the ATAC modality of the CD34+ bone
marrow Multiome dataset. A total of 19438 cells were retained after all the filtering steps.

Metacell identification

SEACells was applied with default parameters to PBMC and CD34+ bone marrow
datasets. The number of metacells were chosen outlined in the “Notes about number of
metacells” section. The number of metacells for each sample were: (i) PBMC multiome:
100, (ii) CD34+ bone marrow multiome: 85, (iii) T-cell depleted bone marrow multiome:
100, (iv) Single-cell ATAC-seq of bone marrow mononuclear cells: 270. SEACells was
applied separately for the RNA and ATAC modalities of the multiome datasets, using the
PCA and SVD representations respectively. Metacell raw counts for different datasets
were determined as described in the “Metacell identification” section. Metacell counts
were normalized as described in “Metacell normalization”.

Comparison of metacells from two modalities using PBMC multiome data
We used the paired nature of multiome data to compare consistency of metacells
identified between the two modalities. Due to the clear separation between cell types,
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PBMC multiome dataset was used for this analysis to verify whether relationships
between metacells within and across cell-types were consistent between the two data
modalities. We checked whether single-cell groups derived using ATAC modality could
be applied to the RNA modality and retain cell-type consistency.

We first computed the aggregated RNA metacell matrix. We then computed a second
aggregated gene expression using the single-cell groups from ATAC modality instead of
the RNA modality. We jointly normalized the two aggregated matrices, identified highly
variable genes, computed principal components and visualized data using UMAPs
(Supplementary Fig. 3A). No batch correction was used for this analysis. We repeated
the same procedure using aggregated peak counts from ATAC and RNA metacells
(Supplementary Fig. 3B).

Peak-calling, gene scores and gene accessibility in CD34+ bone marrow dataset
Peak calling, peak gene associations, gene score computation and gene accessibility
scores were determined as described in the “Toolkit for sScATAC analysis” section.

Since only scATAC is available for the BMMC dataset, peak-gene associations identified
using the CD34+ multiome dataset were used for the gene accessibility analysis.
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Robustness of SEACells algorithm

Due to its more challenging continuous nature, we used the CD34+ bone marrow data for
assessing the robustness of SEACells algorithm. With a series of cell states spanning
continuous trajectories, this dataset provides a greater challenge for test of robustness
compared to the well-separated PBMC multiome dataset.

Robustness to different initializations

Since the max-min sampling procedure relies on a random seed, we first tested the
robustness of SEACells algorithm to different initializations. We consider the procedure
robust if cells are consistently assigned to the same cell type across different runs.
Normalized metacell RNA matrices were determined separately for each initialization. To
compare a pair of initializations, we first concatenated the normalized matrices and then
computed diffusion components using both groups of metacells. Briefly, PCA was used
to derive a low dimensional embedding of the concatenated metacell matrix using the
single-cell data determined highly variable genes. Diffusion components were determined
using PCs as the input and a permissive 10 diffusion components were used for
downstream analysis. For each metacell in an initialization, nearest metacell neighbors
from the alternative initialization were computed. Two metacells from different
initializations were considered equivalent if they were mutually in each others’ top two
nearest neighbors (Supplementary Fig. 5A). Neighborhood computation was performed
using diffusion components and diffusion distance®. We quantified the comparison for
each pair of initializations by computing the proportion of mapped metacells from
alternate initializations with matching cell-types (Supplementary Fig. 5B).

A similar procedure was used to test the robustness of the ATAC modality using
aggregated ArchR gene scores instead of gene expression as inputs.

Robustness of different numbers of metacells
Robustness to different numbers of metacells (Supplementary Fig. 5C,D) were
determined using the same procedure outlined above, using the CD34+ RNA modality.
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Metacells methods comparison

Baran et. al. MetaCell

MetaCell® approach uses a non-parametric graph algorithm to partition scRNA-seq data
into distinct metacells. This algorithm constructs a balanced kNN graph, which is
subsampled multiple times into dense subgraphs in order to determine metacell partitions.
Ouitlier cells are identified, and the final output is the assignment of cells to metacells.
MetaCell was run using the default processing steps outlined in
https://tanaylab.qgithub.io/metacell/articles/a-basic_pbmc8k.html with raw count data.

We ran Baran et. al. metacell on three scRNA-seq datasets using default parameters -
CD34+ bone marrow, PBMC and lung adenocarcinoma in order to evaluate the
performance in the contexts of continuous differentiation, discrete cell states and a cancer
dataset, respectively. For each dataset, Baran et. al. metacell automatically infers the
number of metacells and discards a subset of the data as outliers. To compare faithfully
across methods, we used the same number of partitions as input to SEACells and Super-
cells on the same subset of data.

To apply Baran et. al. metacells to scCATAC data, the peak count matrices were modified

to be used as input by mapping peaks to the nearest gene and aggregating all peaks
within each gene to create a pseudo cell-by-gene count matrix as input. Following this
representation, we ran Baran et. al. metacell on the CD34+ bone marrow and PBMC
SCATAC-seq datasets with default parameters.

Super-cells

Super-cells use the walktrap algorithm to partition nodes in a single-cell graph into a
predefined number of super-cells'®. Therefore, similar to SEACells, the number of
metacells is a parameter to the Super-cells algorithm. Super-cells constructs a single-cell
graph, placing edges between cells with similar transcriptomic profiles, and merges nodes
which are highly connected. Effectively, Super-cells can be viewed as fine resolution
community-detection based clustering

Super-cells was  run using the default parameters  specified in
https://qgithub.com/GfellerLab/SuperCell, with the graining level chosen to obtain the
same number of partitions as those obtained by Baran et. al metacells, in order to
compare methods across similar levels of granularity. We ran Super-cells on the CD34+
bone marrow and PBMC scRNA-seq datasets using default parameters.

We applied Super-cells to CD34+ bone marrow and PBMC scATAC-seq data using the
aggregation approach we used for running Baran et. al. approach.
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Metrics for metacell benchmarking

We developed a number of metrics to evaluate the quality of identified metacells and
quantify the differences between different metacell approaches. Given that metacells
represent distinct cell-states of the biological system under consideration, inferred
metacells should be (i) compact i.e., low variability amongst cells that are aggregated
together with most of the variability a result of measurement noise and (ii) well separated
from neighboring metacells since distinct metacells should include distinct gene-gene
covariation matrices, even if these distinctions are subtle.

We used diffusion components to quantify both the compactness and separation of
metacells. Diffusion maps have been used extensively to robustly and faithfully represent
the phenotypic manifold using single-cell data®. Each diffusion component represents a
key axis of biological variance in both continuous trajectories and discrete states and
thus provides an ideal platform to quantify metacell qualities.

Compactness

Compactness provides a measure of how homogeneous cells within a metacell are. We
first compute diffusion components using single-cell data. For each metacell, the
variance in each diffusion component dimension is computed across the cells that
constitute the metacell. The average variance across components is reported as the
compactness. Since diffusion components are by definition orthonormal, we can compute
the variance of each component separately. The average variance ensures that the
homogeneity of cells that constitute the metacell are measured across all axes of
biological variance.

For a metacell, s, the compactness, Compactness(s) is formally defined as follows.
d

1
Compactness(S) = Ez variance s e s (DC;)
i=1
where DC € R™? where is the matrix of diffusion components computed using single-cell
data.

A high quality metacell should have a low compactness score indicating low variability or
equivalently high homogeneity amongst the cells that constitute the metacell.

Implementation details

For scRNA-seq, diffusion components are computed based on principal components, and
for scATAC-seq, based on the singular value decomposition following preprocessing of
single-cell data as described in “Data preprocessing”. The number of components can be
chosen by the Eigen gap statistic. We noted that across datasets and modalities, the
number of diffusion components ranged from 6-8. For consistency and simplicity, we fixed
the number of diffusion components as 10 for all evaluations.
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Separation

To assess whether metacells are distinct from each other, we evaluated the separation
between neighboring metacells using diffusion components. Diffusion components are
computed at the single-cell level as described in the “Compactness” section. For each
metacell, diffusion embedding is determined as the average of the cells that constitute
the metacell. Distance between the metacell and its nearest neighbor is reported as the
separation of the metacell. Since diffusion components are a faithful representation of
the phenotypic manifold, a greater distance between metacells determined in diffusion
space indicates a better separation between them.

Cell-type Purity

Cell-type purity is a measure of the consistency of cell-types amongst cells that constitute
a metacell and was introduced to assess the quality of Super-cells'®. Cell-type purity is
computed as the proportion of cells which belong to the modal cell-type in a metacell.
Note that purity metric is applicable and valid when the biological system under
consideration comprises distinct cell-types with distinct functions such as PBMCs. Cell-
type purity is not a reliable metric for continuous trajectories since the different cell-types
or compartments are merely a partitioning of the trajectory and do not necessarily
represent well separated cell-types.

Comparison of different metacell approaches using benchmarking metrics
Benchmarking metrics were determined for each metacell for all (data modality, dataset,
method) combinations. Cell-type purity was used to assess the quality of PBMC
metacells. Different methods were compared using the Wilcoxon rank-sum test. Top
performing metacell approaches should have a low score on compactness, high score on
separation and high score on cell-type purity.

We compared the metacell approaches using all metacells and separately for metacells
in low- and high-density regions to verify that all biologically relevant states are uniformly
assessed. We once again used diffusion components to quantify the density of cells.
Distance to the 150th neighbor in a single-cell nearest neighbor graph has been
demonstrated to be a reasonable approximation for the density in the high dimensional
space®®. We computed the distance to the 150th neighbor for each single-cell using
diffusion components. Single cells with densities in the upper quartile of distances were
designated as ‘low-density cells’, and similarly, those in the lower quartile of distances
were designated as ‘high-density cells’. Analogously, metacells containing these low-
density cells were designated as low density metacells, and vice versa for high density
metacells. The proportion of all metacells designated as either low or high density were
each capped at 30% of all metacells, and these were used as low-density and high-
density regions respectively for comparisons (Supplementary Fig. 14).
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Characterization of hematopoietic dynamics

Palantir application for CD34+ bone marrow data

Palantir® was applied using default parameters using the RNA modality of CD34+ bone
marrow Multiome data at single-cell level. Briefly, diffusion components were computed
using the adaptive kernel and the number of informative diffusion components (n=7) were
identified using the Eigen gap statistic. Palantir was run using these diffusion components
using a CD34 high hematopoietic stem cells as the start cell. The terminal states for
Erythroid, Lymphoid, Megakaryocyte, Monocytes, cDC and pDC lineages were all set
manually. The pseudo-temporal ordering of metacells was computed as the average
pseudo-time ordering of the constituent single-cells.

For pseudo-time bins in Fig. 5D, cells were categorized into one of forty bins based on
their Palantir pseudo-time order, which ranged from 0.0-0.82 for the erythroid lineage. We
then created 40 equal sized bins with a bin size of 0.02 and assigned each cell to the
respective bin. Fragments that belong to all cells in a bin were pooled and open peaks
identified using the Poisson procedure.

Accessibility trends

Gene accessibility trends were determined using generalized additive models (GAMs)®.A
GAM was fit for gene accessibility trend as a function of the Palantir pseudo-time for each
gene. Gene accessibility of g in cell i, yg; is fit as

Ygi = Bo + f(t:)

where i is a cell along the relevant lineage, t; is the Palantir pseudo-temporal ordering of
cell i. Cubic splines are used as the smoothing functions since they are effective in
capturing non-linear relationships. The pseudo-time is then divided into 150 equally sized
bins and the smooth trend is derived by using the fit from the Generalized Additive Model
to predict the accessibility of the gene at each bin.

Gene ontology analysis

Gene ontology analysis (Fig. 5E) was performed to identify enriched ontologies in genes
with increasing or decreasing accessibility, measuring enrichment using the
hypergeometric test. The “c7: immunologic signature” gene sets from Molecular Signature
Database (MSigDB) (http://software.broadinstitute.org/gsea/msigdb/index.jsp) was used.

Motif enrichments in genes with changing accessibility

Predicted TF binding sites in each peak were determined using FIMO®' using default
parameters and the cisBP v2 motif database®?. Hypergeometric tests were used to
identify the most enriched motifs in peaks with increasing or decreasing accessibility
using all the peaks as the background.
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SEACells application to COVID-19 samples and data integration

COVID-19 data preprocessing

Raw counts for single-cell RNA-seq data of peripheral blood mononuclear cells as well
as the respective cell-type, disease severity and sample annotations were downloaded
from https://covid19cellatlas.org** . Cells corresponding to patients annotated as healthy
or as critical were used, comprising a total of 96405 cells from 23 healthy patients and
80837 cells from 17 patients. Each sample was individually processed by performing
normalization, followed by log-transformation as described in the “Data preprocessing”
section. The 1500 most highly variable genes were identified, and principal components
were computed from the expression of these genes.

SEACells metacells were also computed separately for each sample using approximately
one metacell for every seventy-five single-cells following the procedure described in
“Notes about number of metacells”. Following metacell identification, an aggregated
metacell X gene expression matrix was computed for each sample.

Batch correction

Harmony*® was used to perform batch correction across all 40 samples on the metacell
aggregated gene expression matrices using default parameters. Harmony
(scanpy.external.pp.harmony_integrate) was applied to the principal components
derived from the top 1500 highly variable genes using default parameters.

Harmony was applied separately at single-cell and metacell levels for comparison
(Supplementary Fig. 20).

Mapping of SEACell metacells between individuals

We mapped metacells across patients to determine consistency. The analysis was
performed using the same procedure described in the “Robustness of SEACells
algorithm” section. For each pair of patients, Harmony corrected metacell principal
components were used for the analysis. Diffusion components were determined using
Harmony corrected PCs as the input and a permissive 10 diffusion components were
used for downstream analysis. For each metacell in a patient, nearest metacell neighbors
from the second patient were computed. Two metacells from different patients were
considered equivalent if they were mutually in each others’ top two nearest neighbors
(Supplementary Fig. 19A,B). We quantified the comparison for each pair of samples by
computing the proportion of mapped metacells with matching cell-types (Supplementary
Fig. 19C).

Differential abundance testing of cell-states between healthy individuals and
COVID-19 patients

By aggregating single-cells that are most likely a result of technical noise, metacells
provide a robust segmentation of the data. Thus, metacells computed per sample thus
provide a granular representation for across sample comparison. Metacells are inherently
less susceptible to batch effects compared to single-cell data and thus provide a concrete
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baseline to infer altered cell-state abundances across different conditions
(Supplementary Fig. 20).

Generation of aggregates of metacells in COVID data

While mapping metacells demonstrates consistency between pairs of individuals, the
approach does not provide a path to identify similarities and differences between healthy
individuals and COVID-19 patients. We therefore devised a procedure for seamless
comparison across any number of patients and identify enriched and depleted metacells
in different conditions.

We re-computed SEACells metacells using the aggregated and batch corrected metacell
count matrices for each sample. These second level metacells, or Meta?cells, therefore
contain metacells across healthy and critical patient samples. To compute Meta®cells, we
ran the algorithm asking for approximately one Meta®cell for every ten metacells, since
the dataset was already highly summarized in the first round of aggregation.

To summarize the cell-type annotations of cells in a constituent Meta?cell, the modal cell-
type of constituent cells was chosen if the purity was greater than 80%, otherwise the
cell-type was denoted as ‘Mixed’.

Tests for differential abundance of cell-states in COVID-19 patients

The Meta®cells computed across healthy individual and critical patients define cell-states,
each of which may be more strongly associated with healthy or diseased state. We
computed the proportion of COVID-19 metacells in each Meta?cell, providing a measure
of differential abundance of cell-state in COVID-19 patients. We then devised a
permutation test to assess the significance of these differential abundances.

First, the assignment of metacells to Meta?cell were randomly permuted. This ensures
that the number of metacells assigned to each Meta?cell does not change but the
constituent metacells and their associated healthy/COVID-19 labels will be permuted
providing a representative background distribution. Next, the proportion of metacells
derived from COVID-19 samples assigned to each Meta®cell was computed. This
procedure was repeated for 5000 trials of permutations, and a null distribution on COVID-
19 enriched metacell proportions was derived for each Meta?cell. The null distribution is
then used to compute a p-value

and a cell-state is nominated to be significantly enriched in COVID-19 is p-value < 0.1

Gene signatures of enriched cell-states

To assess the biological distinctions between healthy and diseased Meta?cell states, we
identified the differentially expressed genes for each Meta?cell by comparing against
other MetaZcells of the cell-type using scanpy.tl.rank_genes_groups.

Single-cell differential abundance testing

We used the extensively used Milo'® to perform differential abundance testing at the
single-cell level and compared the results to differential abundance testing using
metacells. We applied MiloR to all cells from 23 healthy patients and 17 critical patients.
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MiloR typically accepts a SingleCellExperiment object as input. However, due to memory
constraints in passing raw counts for all 177242 cells, we provided MiloR with the pre-
computed batch-corrected principal components, annotated with the sample of origin and
sample condition. Default parameters as specified in the Milo vignettes were then used
to compute neighborhoods as well as their differential abundances. All neighborhoods
with at least 80% CD4 cell-type purity were selected for downstream analysis, yielding
276 neighborhoods.

Gene signatures identified in the SEACells metacells of interest were used to compute a
gene signature score for each MiloR neighborhood. The gene signature score was
computed for each cell by summing across the expression z-scores of the signature
genes. Gene signature scores at the neighborhood level were computed by average the
scores of single-cells that constitute the neighborhood. To assess whether the cell-states
highlighted in Fig. 6D could be identified using differential abundance testing at single-
cell level, we compared the Milo neighborhood gene signature scores with the gene
scores derived using SEACells Meta®cell (Supplementary Fig. 22C).
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Fig. 1: Overview of the SEACells algorithm for cell-state identification from single-
cell data.

A. scRNA-seq UMAP (uniform manifold approximation and projection) of 6800 CD34+
hematopoietic stem and progenitor stem cells. Cells colored by cluster.

B. Contour plots of each cluster highlight density and indicate the presence of multiple cell-states
within each cluster. Inset, gene-gene covariance matrices reveal that each state is
accompanied by distinct gene expression programs.

C. Left, UMAP with megakaryocyte-erythroid progenitor (MEP) cluster highlighted. Right, MEP
cluster is divided into three equal-sized bins based on developmental progression (top),
reflecting imputed expression of GATAZ2 (known driver of MEP lineage) (bottom).

D. Coverage plots showing GATAZ2 accessibility in all MEPs (top), a single MEP cell (bottom) and
in the three bins in (C). Right, expression of GATAZ2 in corresponding cells. Highlighted peaks
demonstrate how accessibility dynamics track with expression dynamics. Information about
dynamics is masked at cluster level, whereas peak identification in single cells is too noisy.

E. UMAP as in (A), colored by cell-type. The SEACells algorithm for metacell identification is
initialized by waypoints (large red circles), a subset of cells sampled to uniformly cover the
phenotypic landscape.

F. Heatmap showing the cell-to-cell affinity matrix computed using an adaptive Gaussian kernel.
Cells are sorted by cell-types (top annotation row). Second annotation row shows the SEACells
initialization.

G. Schematic of archetypal analysis. The data matrix is decomposed into two the archetype matrix
B and embedding matrix A. Metacell membership is identified based on column-wise maximal
values across the matrix A.
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H. Left, cell-cell affinity matrix from (F), but ordered by metacell assignment. Right, contour plot
overlying UMAP from (E), highlighting the distribution of metacells; cells and contours colored
by metacell assignment.


https://doi.org/10.1101/2022.04.02.486748
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.02.486748; this version posted April 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A () PBMC RNA B &) PBMCATAC C ) ap )
Q 2500+ (1) :. Single 2500 (ii)
[ J [}
[ J [
® o
@ B Cell Pre
it #® Metacells o
© CD4 T Mem cieanmen® © 90900000
CD4TNave O130®@®@® © . 0-{i .
@cD8TMem < o 300 0 600
CD8 T Naive &
®CD14Mono (5
Dendritic
pDC 400 - (iii)
T Cells
NK Cells
® Mono/Macro ’.
® FCGR3A Mono
[ J
0 e oS 04}
. 0l 0 CD4 200 0 NKG7 1000
D E cATA1 accessibility GATA1 expression
CD34 RNA " CD34 ATAC 60 150
o
°
o o 8 % 00°
o o °
o 9" o Qg @
B0 gy @ ® 6 @51 ®
a3 o o >20
L ¥ o o o o © = c
8 fop % CH P o 5 | —— 2 - —
o o %e® o © 8L ® ? ——— 2 ol —
0.0 o 0oo o ® R ° g% . ‘%08 % 1] 0 1o 0 1
° o Q © S . ® Q S
@i e 09 @ ® © o 8 x
e o8 o P ° o ® . B
° R ¢ e i 028 ibili ° ;
o ik @iy o SN " Boo MPO accessibility B MPO expression
s e grir®ngn® T P T
@ °0 £ £
o o » £ £
— 200
HSC MEP @Mono @cDC . p 2 \ —
HMP  @®Ery ©DCPre «pDC 3 ‘ 0 1

1
Palantir pseudo-time

Fig. 2: SEACells metacells accurately identify cell states and outperform competing
approaches.

A. (i) UMAP of human PBMCs derived from RNA data of a multiome dataset, highlighting cell
types and SEACell metacells. (ii) Distribution of metacells per cell type for the RNA modality.
(iii) box plot of distribution of cell-type purity (frequency of the most represented cell-type in
each metacell). High purity represents a more accurate metacell.

B. As in (A), using ATAC data from the PBMC multiome dataset.

C. Metacell accessibility (i) and expression (iii) of CD4 and CD8A accurately distinguishes CD8
(green) and CD4 (orange) T-cell compartments. Metacell accessibility (ii) and expression (iv)
of NKG7 and CD8A distinguish NK (pink) and CD8 (green) T-cells. Insets, corresponding
single-cell accessibility is too sparse to achieve the same distinction.

D. UMAPs of CD34+ hematopoietic stem and progenitor stem cells highlighting cell types and the
SEACell metacells independently constructed from RNA (left) and ATAC (right) data.
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E. Accessibility (left) and expression (right) of GATA1 (erythroid factor) and MPO (myeloid factor)
along the Palantir pseudotime axis representing hematopoietic differentiation. Palantir was run
on RNA aggregates using ATAC metacells and accurately recapitulates dynamics.
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Fig. 3: SEACells empowers a gene regulatory toolkit

A. Spearman correlation between ATAC metacell-aggregated (top) or single-cell (bottom) gene
expression and accessibility of the most correlated peak in TAL71 (erythroid), MPO (myeloid)
and IRF (dendritic) marker genes, computed on CD34+ multiome data. Each metacell and
single cell is colored based on cell type.

B. Accessibility landscape of erythroid factor GATAZ2 in hematopoietic stem cells (HSC), myeloid-
erythroid progenitors (MEP) and erythroid cells (Ery) using NFR (top) or all ATAC (bottom)
fragments. Restricting chromatin accessibility analysis to NFR fragments improves peak
resolution and the association of regulatory elements with genes. Arcs are colored by peak-
gene Spearman correlation (color values between 0 and 1 at right), determined using SEACells
ATAC metacells. Highlighted peaks correlate significantly with GATAZ2 expression.
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C. Relationships between metacell-aggregated (top) and single-cell (bottom) gene expression
and ATAC gene scores for TAL1, MPO and IRF. Spearman correlations (Corr) computed using
the CD34+ multiome data. Metacell gene scores were computed by aggregating peaks that
correlate significantly with expression (e.g. Fig. 3B). Gene scores for single-cell data were
computed using ArchR.

D. RNA and ATAC UMAPs of the T-cell subset from the PBMC multiome dataset.

E UMAPs derived from chromVAR scores computed using single cells or metacell aggregates.
All peaks were used for chromVAR analysis. Metacell chromVAR scores accurately
recapitulate differences between T-cell subsets, whereas single-cell chromVAR scores fail to
distinguish CD4 and CD8 T-cells.

F. chromVAR score distributions can be used to identify key TFs that define different T-cell
compartments. Each dot represents a TF. X-axis shows the difference between SEACells
metacell chromVAR scores between the two CD8 compartments. Y-axis shows the difference
between SEACells metacell chromVAR scores between the two CD4 compartments
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Fig. 4: SEACells outperforms existing methods in cell-state representation and
correlation of expression and accessibility

A. ATAC modality UMAPs of CD34" bone marrow (as in Fig. 2D), colored by metacell aggregates
identified by the specified method or colored by cell density. Dots, cells; circles, metacells.

B. Pearson correlation between metacell-aggregated gene expression and accessibility of the
most correlated peak in TAL7 (erythroid gene), MPO (myeloid gene) and /IRF (dendritic gene)
using the CD34+ bone marrow ATAC metacells called by MetaCell (top) or Super-cells
(bottom).

C. Top: Metacell compactness (average diffusion component standard deviation; Methods)
measured in the ATAC modality of CD34" bone marrow multiome data. A lower score indicates
more compact metacells. Bottom: Metacell separation (distance between nearest metacell
neighbor in diffusion space; Methods) measured in the ATAC modality of CD34" bone marrow
multiome data. Greater separation indicates better performance. Comparisons were carried
out on all metacells, or metacells in low-density or high-density regions. Wilcoxon rank-sum
test; ns: P> 0.05, * 0.01 < P < 0.05, ** 0.001 < P <0.01, ** 0.0001 < P < 0.0001, **** P <
0.0001.
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Fig 5: Charting chromatin accessibility of hematopoietic differentiation using
SEACells metacells

A. Differentiation along a particular lineage involves upregulation of lineage-defining genes and
downregulation of stem genes or genes that define other lineages. Left, RNA modality UMAP
of CD34" bone marrow, with erythroid lineage cells highlighted. Middle, UMAPs colored by
expression of erythroid gene KLF1 and stem gene LPCAT2, which are upregulated and
downregulated, respectively, during erythroid differentiation. Right, accessibility landscapes of
KLF1 (top) and LPCAT2 (bottom), aggregated by cell type, during erythroid differentiation.

B. Distribution of gene accessibility for all highly regulated genes, for hematopoietic stem cells
(HSC) and erythroid cells (Ery). Unimodal gene accessibility in HSCs is reconfigured to a
bimodal distribution during erythroid differentiation.

C. Cartoon representing observed peak dynamics: Bimodal distribution results from a subset of
genes losing open peaks (top) and another subset gaining open peaks (bottom).

D. Chromatin accessibility distribution of highly regulated genes in all metacells along the
erythroid lineage (left, middle). Each line represents a meta-cell, colored by its stage (top) and
pseudotime (bottom). The emergence of bimodality is gradual and continuous. Right, signal is
poorly defined when using pseudotime bins rather than metacells.

E. Accessibility dynamics of genes that gain (orange) and lose (blue) open peaks during
differentiation from HSCs to erythroid cells. Trajectory computed using Palantir and each line
represents a fit gene trend. Pseudotime of each respective meta-cell plotted on the bottom.
Middle, results of gene ontology analysis using immune cell gene signatures. Opening peaks
are enriched for GATA motifs, and closed peaks are enriched for PU.1, master regulators of
erythroid and myeloid fates, respectively.
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Fig 6: SEACells metacells identify dysregulated states in COVID-19 patients

A. UMAPs showing PBMC profiles and respective metacells for a subset of healthy patients and
critical COVID-19 patients*. Dots, cells; circles, metacells. Cells and metacells are colored by
cell type.

B. UMAPs showing metacells from different patients integrated using Harmony*®. Metacells are
colored by cell type (left), sample (top right) or disease status (bottom right).

C. Top: Differential abundance of SEACells metacell states in COVID-19 patients compared to
healthy individuals, computed using a permutation test (Methods). Significantly differential
metacells are plotted as enlarged circles. Bottom: difference in proportion of cells derived from
COVID-19 patients compared to healthy individuals, analyzed at the cell-type level.

D. (i) UMAP of metacell aggregates (meta2cells). Right: zoom-in on CD4 T-cell metacells. Three
metacells enriched in COVID-19 patients compared to healthy donors are highlighted. (i) Same
as (i), with metacells colored by time since disease onset. (iii) Same as (i), with metacells
colored by proportion of COVID-19 cells. (iv) Expression patterns of T-cell activation and
differentiation enriched in highlighted CD4 T-cell metacells.
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