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ABSTRACT 
Metacells are cell groupings derived from single-cell sequencing data that represent highly 
granular, distinct cell states. Here, we present single-cell aggregation of cell-states (SEACells), 
an algorithm for identifying metacells; overcoming the sparsity of single-cell data, while retaining 
heterogeneity obscured by traditional cell clustering. SEACells outperforms existing algorithms in 
identifying accurate, compact, and well-separated metacells in both RNA and ATAC modalities 
across datasets with discrete cell types and continuous trajectories. We demonstrate the use of 
SEACells to improve gene-peak associations, compute ATAC gene scores and measure gene 
accessibility in each metacell. Metacell-level analysis scales to large datasets and are particularly 
well suited for patient cohorts, including facilitation of data integration. We use our metacells to 
reveal expression dynamics and gradual reconfiguration of the chromatin landscape during 
hematopoietic differentiation, and to uniquely identify CD4 T cell differentiation and activation 
states associated with disease onset and severity in a COVID-19 patient cohort.
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Introduction  
A fundamental disconnect currently exists between the cellular resolution of single-cell genomics 
data and the cluster-level resolution of analysis, which has dramatically limited these technologies 
in fulfilling their potential for biomedical research. A dataset that harbors tens of thousands of cells 
is typically summarized as a handful of clusters in order to overcome the noise and sparsity 
inherent to single-cell data. Sparsity is particularly acute in single-cell assay for transposase-
accessible chromatin sequencing (scATAC-seq) data, which only captures the trinary zygosity 
states at a few thousand of the hundreds of thousands of open chromatin regions in a cell, making 
it impossible to infer regulation at the single-cell level (Supplementary Fig. 1). While single-cell 
RNA sequencing (scRNA-seq) data is not as sparse, projects such as the Human Cell Atlas1 and 
Human Tumor Atlas Network2 are scaling to millions of cells, causing even routine dimensionality 
reduction and visualization tasks to struggle with computational complexity and confounding by 
sample-level batch effects. As a result, large scRNA-seq datasets are also best analyzed at the 
cluster level. 

Cluster-level analysis has led to important biological discoveries. However, a typical cluster is not 
homogenous; structured variability in gene programs within clusters suggests underlying cell-
state heterogeneity (Fig. 1A,B). For example, cells within T-cell clusters can exhibit different 
levels of activation and metabolic activity3. Moreover, single-cell data has been shown to reside 
on a continuum4-7. For instance, binning the expression of GATA2, a driver of erythroid fate, in 
one cluster of erythroid precursor cells8 by developmental progression demonstrates gradual cell-
state changes within each bin during human hematopoiesis that is accompanied by epigenomic 
variation (Fig. 1C,D). The accessibility landscape of the GATA2 locus suggests that its expression 
dynamics are enabled by gradual opening of regulatory elements (Fig. 1D and Supplementary 
Fig. 1B). Such dynamics are lost in any discrete cluster-level analysis.  

The concept of metacells9—groups of cells that represents distinct, highly granular cell states, 
whereby within-metacell variation is due to technical rather than biological sources—was 
proposed as a way to maintain statistical utility while maximizing effective data resolution9. 
Metacells are far more granular than clusters, and are optimized for homogeneity within cell 
groups, rather than for separation between clusters. However, existing approaches9,10 fail on 
scATAC-seq data, aggressively cull outliers (particularly inappropriate for disease studies, which 
are often driven by rare cell populations), and are poorly distributed across the phenotypic space. 
Consequently, metacells have not been routinely used in single-cell analysis, and scATAC-seq 
data has remained heavily underutilized. 

Here, we present SEACells, a graph-based algorithm that uses iterative archetypal analysis to 
compute metacells. We evaluate our approach on peripheral blood data with discrete, well-
separated cell-types, and on CD34+ hematopoietic stem and progenitor cell (HSPC) data from 
human bone marrow with continuous gradients underlying early decisions in hematopoiesis. 
SEACells metacells provide robust, comprehensive characterizations of scRNA-seq cell states, 
including gene-gene relationships representative of each state11; and they successfully describe 
chromatin cell states at resolutions that enable the inference of regulatory elements underlying 
gene expression. Our metacells achieve a sweet spot between signal aggregation and cellular 
resolution, and they capture cell-states across the phenotypic spectrum, including rare states. 
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They are also computationally tractable, enabling powerful downstream analysis of large-scale 
datasets. We show that our metacells overcome technical batch effects to allow for superior data 
integration when matching metacells across samples in a cohort. We use SEACells to learn 
dynamics of expression and accessibility during hematopoietic differentiation and temporal 
dynamics of T-cell response during COVID-19 infection, biological insights that are missed by 
single-cell and cluster-level analysis. SEACells provides a powerful toolkit for gene regulatory 
inference from scATAC-seq data and a tractable solution for integration of large cohort based 
single-cell data. 
 

Results 

The SEACells algorithm identifies metacells across the phenotypic manifold 
SEACells seeks to aggregate single cells into metacells that represent distinct cellular states, in 
a manner agnostic to data modality. Using a count matrix as input, it provides per-cell weights for 
each metacell, per-cell hard assignments to each metacell, and the aggregated counts for each 
metacell as output. Moreover, an explicit design goal of our approach is to capture the full 
spectrum of cell states in the data, including rarer states. We base SEACells on a few key 
assumptions: 1) single-cell profiling data can be approximated by a lower-dimensional manifold 
(phenotypic manifold), 2) much of the observed variability across cells is due to incomplete 
sampling; molecular profiles only represent a small fraction of transcripts in each cell, and 3) most 
cells can be assigned to a finite set of cell states, each characterized by a distinct combination of 
active gene programs. Biology is modular—each cell needs to perform a distinct set of tasks and 
each task requires the activity of a relevant gene program, creating constraints and structure. 
Moreover, many gene programs interact through feedback and feedforward regulation, further 
constraining the system.  

SEACells takes advantage of graph-based algorithms for manifold learning that have been proven 
to capture the cell state landscape in single-cell genomics data faithfully and robustly4,6,7,12-15. The 
algorithm first constructs a nearest-neighbor graph to represent the phenotypic manifold. It then 
applies archetype analysis16,17 to iteratively refine metacells, and finally aggregates counts into a 
set of output metacells. Manifold construction is tailored to each data modality, at which point the 
algorithm can proceed in data-type agnostic fashion (Supplementary Fig. 2). We use CD34+ 
cells from early human hematopoiesis to demonstrate our method (Fig. 1). For initializing the 
metacell search, we utilize our max-min sampling approach5. Max-min sampling identifies a set 
of representative cell states that are distributed uniformly across the phenotypic manifold (Fig. 
1E), and it is particularly adept at dealing with density differences, thus ensuring the capture of 
rare states. These sampled cell states are waypoints (multiple per cell type) that define clear 
structure in the neighbor graph; however, the cell-states themselves remain somewhat diffuse 
(Fig. 1F). 

To refine metacells, we employ archetypal analysis16, a robust, linear matrix decomposition 
approach shown to optimally capture manifold structure and to identify cell states representing 
characteristic biological processes and tasks (Fig. 1G, Methods). Although archetype analysis is 
linear in nature, applying it to the neighbor-graph-defined adjacency matrix enables it to capture 
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the non-linear structure of the manifold. Archetypal analysis finds the set of archetypes that 
optimally reconstruct the data matrix, while constraining them to reside within the phenotypic 
manifold, focusing the computation on the  strongest axes of variation. The archetype procedure 
partitions the data in such a way that the cell-cell similarity matrix has tight block structure along 
the diagonal, which best represents distinct cell states in the data (Fig. 1H). While early human 
hematopoiesis is largely defined by differentiation trajectories, we note that the cells underlying 
these relatively continuous processes are well-represented by a set of distinct metacells. 
 
SEACells metacells represent accurate and robust cell states in diverse data 
We first evaluated SEACells performance on a public multiome (simultaneous single-cell RNA-
seq and ATAC-seq) dataset of peripheral blood mononuclear cells (PBMCs), as a well-studied 
system with distinct cell populations. We found that SEACells metacells are comprehensive and 
well-distributed among cell types in both RNA and ATAC data (Fig. 2A,B). Metacells of both 
modalities also exhibit a high degree of cell-type purity, which agrees well with the fact that 
PBMCs are made up of discrete, mature cell types (Fig. 2A,B, Methods). Further, reciprocal 
projections of RNA and ATAC metacells onto each other demonstrate that metacells of different 
modalities are highly concordant (Supplementary Fig. 3A,B, Methods).  

The key advantage of metacells is that they help to overcome data sparsity, which is extreme in 
scATAC-seq. We found that each SEACells metacell provides a more complete molecular 
characterization than individual cells—for example, by revealing accessibility at known marker 
genes for major cell types (Supplementary Fig. 3C,D). Accessibility and expression of CD4 and 
CD8 from metacells, but not most individual cells, can accurately distinguish the two T-cell 
subsets, and NKG7 and CD8A are sufficient to distinguish NK and CD8 T-cell populations (Fig. 
2C). Metacells thus comprise pure cell types expressing expected markers in this data; they are 
granular enough to distinguish states within cell types; and they can be queried with classical 
immune markers. 

We next tested whether SEACells can accurately determine metacells in continuous 
differentiation trajectories during the earliest decisions in human hematopoiesis, when cells are 
not yet well-separated. We collected a single-cell multiome dataset of 6,800 hematopoietic stem 
and progenitor cells (HSPCs) from healthy bone marrow sorted for pan-HSPC marker CD34 
(Methods). Similar to PBMCs, we found that metacells are well-distributed across all bone marrow 
cell types and span the RNA and ATAC phenotypic manifolds (Fig. 2D). To determine whether 
metacell resolution is sufficient to accurately recover gene expression dynamics that are lost in 
clustering, we applied the Palantir trajectory algorithm5 directly to metacells. Palantir could indeed 
recover the known expression and accessibility dynamics of key hematopoietic genes 
(Supplementary Fig. 4). As a further challenge, we ran Palantir on aggregated RNA from 
metacells computed on the ATAC modality, since the sparsity of scATAC-seq data renders cell-
state identification much more difficult (Fig. 2E and Supplementary Fig. 4). The fidelity of 
captured gene trends reinforces that SEACells metacells overcome sparsity but retain cell-state 
heterogeneity and dynamics in systems with continuous state transitions. 

We also used this dataset to assess the robustness of SEACells (Methods). First, we verified that 
SEACells is robust to different initializations by observing consistency in the metacells identified 
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in different runs (Supplementary Fig. 5A). Specifically, we jointly embedded metacells from two 
initializations using diffusion components and tested the percentage of mutually nearest 
neighboring cell-states between the initializations that connect states of the same cell type 
(Methods). SEACells metacells are extremely robust to different initializations in both RNA and 
ATAC modalities (Supplementary Fig. 5B). We then demonstrated that specifying different 
numbers of metacells still recovers consistent states (Supplementary Fig. 5C,D). Our results 
confirm that SEACells calls metacells robustly in both RNA and ATAC modalities.  

Another key performance metric is the ability to capture rare cell states. SEACells were able to 
accurately recover rare cell-types such as pDCs and B-cell precursors in the PBMC RNA and 
ATAC modalities (Fig. 2A,B). To further test the ability of SEACells to identify rare intermediate 
cell states in continuous trajectories, we generated a second multiome dataset of T-cell depleted 
bone marrow cells representing the full span of human hematopoiesis (Supplementary Fig. 
6A,F). As expected, we observed an extraordinary diversity of densities across the phenotypic 
manifold, with low-density regions representing rare intermediate cell types (Supplementary Fig. 
6B,C,G,H). SEACells accurately identified metacells in these low-density regions 
(Supplementary Fig. 6D,I), otherwise masked by clustering (Supplementary Fig. 6E,J), 
demonstrating that the algorithm can recover rare cell types and cell states in both discrete and 
continuous datasets across RNA and ATAC data modalities. 
 
SEACells empowers gene regulatory inference 
Peaks of ATAC-seq read counts represent open chromatin regions, and gene regulation can be 
inferred by identifying putative transcription factor (TF) binding motifs within these accessible 
regions. Single-cell ATAC-seq provides many observations (cells) with the potential to infer more 
complex gene regulatory models—using trajectory inference, for example—at fine resolution18-20. 
However, the sparsity of scATAC-seq data has severely restricted its utility, as analysis typically 
occurs at the resolution of clusters. We surmised that SEACells metacells provide an ideal trade-
off between fine resolution and sufficient coverage to overcome sparsity for diverse gene 
regulatory inference tasks. 

A typical SEACells metacell contains 1.2 million reads, a large improvement over the 25,000 
reads in an individual cell, but still far fewer than the 50 million reads processed in a typical bulk 
sample. The first step towards building a SEACells regulatory toolbox is thus to improve the 
signal-to-noise ratio in ATAC peak calling. We take advantage of the characteristic ATAC-seq 
fragment length distribution (Supplementary Fig. 7A)21, in which the first mode represents 
nucleosome-free (NFR) fragments likely enriched for TF binding events, and the second mode 
represents nucleosomes. Since nucleosomes occupy a broader region of the genome compared 
to TFs, we observed that they cause many false positive motif calls; peaks called using all 
fragments thus result in poorly resolved regulatory elements (Supplementary Fig. 7B). Using 
only NFR fragments identifies fewer peaks; however, we found that these peaks are enriched for 
TF-bound open chromatin, including a large number of additional peaks that were obscured when 
considering all fragments (Supplementary Fig. 7B,C). Regulatory element identification thus 
benefits from using NFR fragments rather than all fragments (Supplementary Fig. 7C). 
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The next task in gene regulatory inference is to associate each gene with the specific elements 
that regulate it. Only a subset of local open-chromatin peaks is relevant to the expression of a 
gene, since ATAC-seq profiles reflect regulatory elements as well as structural factors such as 
CTCF22. The correlation between accessibility peaks and expression across cells has been used 
to predict the set of cis elements that regulate each gene, using either multiome18 or separate 
scRNA-seq and scATAC-seq data that is integrated23. Data sparsity precludes robust linkage of 
regulatory elements with genes at the single-cell level. Using SEACell metacells from the CD34+ 
bone marrow dataset, we computed correlations between gene expression and NFR peak 
accessibility for each peak within +/-100 kb of each gene in a core hematopoietic gene set5. For 
all core genes, accessibility of the most correlated peak using ATAC metacells faithfully tracks 
with gene expression, representing a substantial improvement over correlations identified from 
the same data at the single-cell level (Fig. 3A and Supplementary Fig. 8). For example, the 
correlation between peak accessibility and expression in metacells for key erythroid lineage 
regulator TAL1 is 0.82, and cells on the erythroid trajectory exhibit the highest values, whereas 
the correlation is 0.03 at single-cell level, with no distinction among erythroid cells (Fig. 3A). 

To build a comprehensive map of regulatory elements, we identified all peaks significantly 
correlated with a gene compared to GC-content-matched peaks sampled from the data as an 
empirical background set18 (Methods). For the key erythroid factor GATA2, single-cell data only 
recovers 2 of 11 associations detected using metacells (Fig. 3B). To systematically explore the 
accuracy of predicted peak-gene associations, we computed gene scores23 by aggregating the 
accessibility of all significantly correlated peaks and comparing them to gene expression 
(Methods). SEACells gene scores are substantially better correlated and outperform aggregating 
single cells across all correlated peaks (correlation of 0.05, compared to 0.88 using SEACells) 
(Fig. 3C and Supplementary Fig. 9). This improvement was consistent across the core 
hematopoietic genes, as well as all genes with expression in at least 10 cells (Fig. 3C and 
Supplementary Fig. 9C). SEACells metacells thus clearly identify cis elements that are 
significantly correlated with gene expression and likely regulate the corresponding gene, enabling 
complex gene regulatory modeling. 

To overcome data sparsity in scATAC-seq, genome-wide information is often aggregated for all 
peaks associated with a particular TF and summarized as a TF activity score. chromVAR24 is a 
widely used tool for predicting transcription factor activity from scATAC-seq data. It provides a 
per-cell deviation score for a TF by computing whether the peaks predicted to contain its binding 
motif have greater accessibility compared to a GC-matched background peak set24. To 
demonstrate that metacell resolution can substantially improve TF activity inference, especially in 
more complex regulatory landscapes, we used T-cell subsets, which reside on a relatively 
continuous landscape11,25,26 driven by competing feedback loops. We determined chromVAR 
scores for all T-cell subsets (CD4 naive and memory, CD8 naive and memory) using the PBMC 
multiome dataset (Fig. 3D). chromVAR scores provide an alternate representation of the ATAC 
data, useful for all downstream analyses including clustering and visualization. Indeed, chromVAR 
scores using metacells accurately recovered the distinction between different T cell subsets, 
whereas single-cell chromVAR scores failed to distinguish CD8 and CD4 (Fig. 3E). We identified 
several known compartment-specific TFs that likely drive these T-cell states, including JUNB, a 
factor active in CD4 and CD8 memory T-cells27; LEF1, active in CD4 and CD8 naive T-cells28; 
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EOMES, a key regulator of CD8 memory cells29 and RELA, a factor necessary for CD4 memory 
cell function30 (Fig. 3F) Single-cell chromVAR scores of these factors failed to distinguish the 
same populations (Supplementary Fig. 10). In summary, SEACells substantially improves the 
regulatory toolkit for analyzing and interpreting scATAC-seq data, including widely used tools 
such as chromVAR. 
 
SEACells outperforms metacell approaches for RNA and is the only 
approach amenable to ATAC data 
Baran and colleagues9 introduced and effectively articulated the metacell concept. Their MetaCell 
algorithm was demonstrated on healthy systems and designed around MARS-seq data, which 
has a high instance of extreme values31, so it culls outliers aggressively. However, rare cell 
populations often drive biology, especially in contexts such as cancer and regeneration. We found 
that on lung adenocarcinoma scRNA-seq data32, MetaCell throws out more than one-third of all 
cells (Supplementary Fig. 11A,B). Another approach, Super-cells10, is effectively a very fine 
clustering strategy that adapts widely-used community detection algorithms to generate a large 
number of small clusters. We determined that SEACells is superior to both approaches on RNA, 
and it is the only method that works on scATAC-seq data (Fig. 4). 
We compared the three algorithms using ATAC and RNA modalities from CD34+ bone marrow 
and PBMC datasets. Since both MetaCell and Super-cells require a gene count matrix, we 
aggregated peaks in the gene body to derive a count matrix representation for ATAC data. Unlike 
these methods, SEACells explicitly samples the entire manifold, optimizing the inclusion of cell 
states distinct from those already detected. Ours was the only algorithm to cover the entire 
phenotypic landscape (Fig. 4A and Supplementary Fig. 12). For ATAC in particular, MetaCell 
and Super-cells neglected the majority of cell states by focusing calls on cell-dense regions. In 
bone marrow, they failed to represent important populations such as common lymphoid progenitor 
(CLP) cells, monocytes, and DC subpopulations, and in PBMCs, they failed to identify coherent 
cell states (Fig. 4A). Super-cells severely under sampled metacells in low density regions 
(Supplementary Fig. 12A), failing to accurately recover the distinction between different T-cell 
states. 

By definition, a metacell represents a single biological cell state, meaning that its constituent cells 
should share the same cell-type label. We evaluated cell type purity in PBMC data, which contains 
well-separated cell types, and found that SEACells metacells of both modalities show significantly 
greater purity than metacells from other methods (Supplementary Fig. 11C). These differences 
in performance greatly impact the downstream analysis and interpretability of scATAC-seq data. 
Peak accessibility and gene expression are also much better correlated in metacells from 
SEACells (Fig. 3A and Supplementary Fig. 8A), than MetaCell or Super-cells (Fig. 4B and 
Supplementary Fig. 13). 

To quantify performance at higher resolution, we defined metrics for metacell compactness and 
separation. An ideal metacell is compact (exhibits low variance amongst constituent cells) and 
well-separated (remains distant from cells of a neighboring metacell). We measured compactness 
by the diffusion component variability of cells within a metacell and separation by the diffusion 
distance between a metacell and its nearest neighbor (Methods). In both bone marrow and 
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peripheral blood ATAC datasets, we found that SEACells metacells are significantly more 
compact and better separated than MetaCell and Super-cells metacells (Fig. 4C and 
Supplementary Fig. 14A,B), especially in low cell-density regions, which are biologically relevant 
(Supplementary Fig. 14A,B). Super-cells does show marginally better separation in high density 
regions, however, since it creates a few very large partitions containing hundreds of cells in these 
regions (Supplementary Fig. 11D).  

While the different approaches are qualitatively similar using the RNA modality (Supplementary 
Fig. 12B,C), SEACells metacells are significantly more compact than Super-cells (P < 1e-5, 
Wilcoxon rank-sum test) and marginally more compact than Baran et al. metacells 
(Supplementary Fig. 14C). Conversely, SEACells RNA metacells are significantly better 
separated than Baran et al. metacells (P < 1e-2, Wilcoxon rank-sum test), whereas the separation 
of Super-cells is artificially boosted by the large partition size in high density regions 
(Supplementary Fig. 14D). Similar to ATAC, SEACells metacells have greater cell-type purity in 
the PBMC RNA data, which comprises distinct cell types (Supplementary Fig. 11C).  

Collectively, our results show that metacells generated by SEACells better represent the catalog 
of cell-states present in the data and are more homogenous, compact and well-separated than 
alternative methods across both RNA and ATAC modalities. 
 
SEACells reveals gene accessibility dynamics during hematopoietic 
differentiation 
Hematopoietic differentiation is characterized by the upregulation of lineage-defining genes and 
the downregulation of stem-cell identity genes, driven by precise changes in enhancer 
accessibility that enable or impede transcription factor binding at these loci (Fig. 5A). Both bulk 
and single-cell ATAC-seq data reveal extensive poising of regulatory elements in stem cells, 
whereby most enhancers regulating lineage genes are accessible and primed for lineage-specific 
expression18,33,34. To demonstrate the potential of SEACells metacells for advanced scATAC-seq 
analysis, we set out to examine how the primed and permissive epigenomic landscape of 
hematopoietic stem cells dynamically reconfigures to a landscape with sharply reduced plasticity 
and developmental potential in differentiated cells. 

Tracking accessibility dynamics requires overcoming sparsity to identify which regulatory 
elements are open and accessible. We identified open elements in each metacell 
(Supplementary Fig. 15, Methods), then defined a metric of gene accessibility as the fraction of 
gene-associated peaks (Fig. 3C, Methods) that are open in a given metacell, ranging from 0 (all 
peaks closed) to 1 (all peaks open). Our accessibility scores track with gene expression for key 
lineage-specific genes, indicating that they accurately represent underlying biology 
(Supplementary Fig. 16A). For example, GATA1 and MPO scores undergo specific increases in 
erythroid and myeloid lineages, respectively, consistent with their characterized roles5 
(Supplementary Fig. 16B). 

We next examined gene accessibility across cell compartments for all highly regulated genes, 
and observed that the earliest cell type, hematopoietic stem cell (HSC), follows a unimodal 
distribution centered at 0.5 (Fig. 5B). In contrast, expression of these genes in HSCs follows a 
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long-tailed distribution, indicating that only a subset is expressed, and suggesting an epigenomic 
landscape in stem cells that is poised for hematopoietic gene expression (Supplementary Fig. 
17A), as previously observed18,33,34. As cells differentiate along a lineage, genes that define the 
lineage gain accessibility peaks, while genes that define alternative lineages lose peaks (Fig. 
5B,C). The resulting bimodality of differentiated cells is most clearly observed in the erythroid 
lineage (Fig. 5B). All other lineages show the emergence of long-tailed distributions 
(Supplementary Fig. 17B). Previous studies have shown that the erythroid lineage is established 
first5,35, and posited that the lack of clear bimodality in other lineages could be due to the capture 
of CD34+ sorted cells that have not yet expressed lineage programs. We therefore performed a 
similar analysis on an scATAC-seq dataset of unsorted bone marrow mononuclear cells19 and 
observed more pronounced bimodality across hematopoietic lineages (Supplementary Fig. 17C, 
D).  

We focused on gene accessibility dynamics in the erythroid lineage. We first applied Palantir5 to 
SEACells metacells using the RNA modality of multiome data to determine a pseudotime ordering 
of metacells along this lineage (Fig. 5D, Methods). We then examined the gene accessibility 
dynamics of highly regulated genes in each metacell along the pseudotemporal order and 
observed that epigenomic reconfiguration is itself gradual and continuous (Fig. 5D). Using 
pseudotime bins instead of metacells does not reveal any bimodality or dynamics, demonstrating 
that the resolution of SEACells metacells is uniquely suited for capturing dynamics (Fig. 5D). We 
next fit a generalized additive model to examine gene accessibility as a function of pseudotime 
(Fig. 5E, Methods). The absence of step-like behavior in any accessibility trends reinforces the 
continuous nature of epigenomic reconfiguration. Moreover, the opening and closing of regulatory 
elements at diverging lineage-specific loci mirrors each other (Fig. 5E), suggesting that similar 
mechanisms drive these two processes through gradual changes in plasticity and developmental 
potential, as observed in studies that combine lineage tracing with scRNA-seq profiling36.  

Gene ontology enrichment analysis revealed that genes with increasing accessibility in the 
erythroid lineage establish erythroid cell identity and function, whereas those with decreasing 
accessibility are enriched for HSC and diverse other lineage identity genes, in further support of 
epigenomic priming in HSCs (Fig. 5E, Methods). Finally, the enrichment of TF motifs in peaks 
gained and lost in erythroid differentiation predicts a role for GATA2 and PU.1, respectively (Fig. 
5E, Methods), consistent with the known mutual antagonism of these factors in the decision 
between erythroid and myeloid lineages37. Together, our results show that SEACells metacells 
make it possible to model the dynamics of gene accessibility during differentiation. We find that a 
unimodal landscape of open chromatin in HSCs is reconfigured to a bimodal distribution in 
differentiated cells that involves the gradual and continuous opening and closing of peaks. 
 
SEACells enables the integration of large-scale single-cell datasets 
Advances in scRNA-seq technology and atlas projects such as the Human Cell Atlas1 are 
prompting the generation of single-cell datasets spanning millions of cells38-43 and hundreds of 
individuals, rendering even the most fundamental analyses such as dimensionality reduction and 
clustering computationally infeasible. SEACells identifies robust, well-defined metacells from any 
sample, and thus can be used to integrate large-scale single-cell datasets in a computationally 
efficient manner. Moreover, by enumerating meta-cells on each sample, we provide per sample 
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summary statistics that is less susceptible to batch effects, facilitating data integration that is 
better able to resolve biological (rather than technical) differences between individuals.  We 
demonstrated the utility of SEACells using a recently published dataset of PBMCs containing over 
175,000 cells from 23 healthy donors and 17 critical COVID-19 patients44. 

We first applied SEACells to identify metacells in each sample (Fig. 6A and Supplementary Fig. 
18) and verified that the metacell states are consistent across healthy donors and across COVID-
19 patients (Supplementary Fig. 19, Methods). Encouraged by this high level of reproducibility, 
we used metacell gene expression counts for downstream tasks such as data integration45, 
clustering46 and visualization using UMAPs  (Fig. 6B). Batch effects prior to integration are severe 
(Supplementary Fig. 20A,B), but are significantly lower in metacells compared to single cells 
(Supplementary Fig. 20C), enabling reasonable downstream analysis even without integration. 
While data integration eliminated batch effects in both single cells and metacells (Supplementary 
Fig. 20C), metacells required orders of magnitude less compute time compared to data 
integration, visualization, and clustering at the single-cell level (Supplementary Fig. 21). This 
ability to scale is particularly important when new data accumulates, and existing analyses need 
to be rerun. A single upfront investment in metacell assignment avoids compounding the near-
exponential increases in runtime associated with adding cells, for each single-cell-level analysis 
(Supplementary Fig. 21). 
 
SEACells identifies the temporal dynamics of T-cell response during COVID-
19 infection 
We next examined whether SEACells metacells can be used to identify state changes from 
healthy to severe COVID-19 patients. We pooled metacells from all donors and re-applied 
SEACells to derive metacell aggregates representing states across all samples (Supplementary 
Fig. 22A). Each aggregated metacell is a combination of healthy and COVID-19 metacells, such 
that the fraction of COVID-19 cells can be visualized for each state (Supplementary Fig. 22B). 
Our results reveal a broad spectrum of metacell states, from those specific to healthy donors to 
those exclusive to COVID-19 (Supplementary Fig. 22B), prompting us to develop a permutation 
test to identify cell-states that differ significantly between the two (Fig. 6C, Methods). By contrast, 
analysis at the cell-type level completely masks the extensive heterogeneity present in individual 
states within the cell-type (Fig. 6C). 

We focused our analysis on CD4+ T cells, which are known to differentiate into distinct subsets 
upon activation and differentiation25,26, using differential gene expression analysis at the metacell 
level to identify cell-state defining genes. Within CD4+ T-cell metacells, this analysis revealed a 
fine-grained trajectory of phenotypes enriched in patients with COVID-19, with meaningful 
correspondence between T cell phenotypes and temporal stage of disease (Fig. 6D). For 
example, a metacell enriched in COVID-19 patients soon after infection (metacell A) contains 
cells in an early activation state distinguished by the expression of NF-kB response genes, IFN-
a receptor subunit IFNAR2, and downstream interferon-stimulated genes (IRF7, IRF9, ISG15, 
IFITM1), reflecting T cell responsiveness to type I IFN, a cytokine associated with viral infections 
and SARS-COV2 pathology47 (Fig. 6D). A metacell enriched in COVID-19 patients approximately 
10 days after symptom onset (metacell B) comprises Foxp3+ Treg cells expressing the chemokine 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2022.04.02.486748doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.02.486748
http://creativecommons.org/licenses/by/4.0/


 11 

receptor gene CCR10, suggesting recruitment to the inflamed lung or mucosal epithelium and a 
potential role in regulation of inflammation48 (Fig. 6D). Finally, a metacell enriched in patients with 
persistent severe COVID-19 at day 13 (metacell C) contains cells that express hallmark TH17 
genes (RORC and CCR6), reflecting a shift towards type III inflammation.  

We postulate that while data integration methods aim to make samples more similar without 
distinguishing between batch and biological signal, aggregating data into metacells on the per-
sample level provides robust capture of true biological variation between the samples. Indeed, 
our results show that SEACells can capture biologically meaningful CD4 T-cell subsets and 
states, highlighting the full spectrum of activation and differentiation during an evolving viral 
infection, in which cells transition between active and quiescent states over the course of hours 
and days. Differential abundance testing15 at the single-cell level failed to recover these dynamics 
(Supplementary Fig. 22C,D). 
 
Discussion 
SEACells identifies robust, reproducible metacells from single-cell data that overcome sparsity 
while retaining the rich heterogeneity of the data. SEACells metacells are more compact, better 
separated, and more evenly distributed across the full cell-state landscape than metacells 
generated by existing methods. We have shown that they faithfully represent both discrete and 
continuously varying cell states, and that they provide enormous benefits for scaling to large 
cohort-based datasets, including carrying out data integration across samples and modalities. 
Critically, only SEACells is currently able to derive cell states from scATAC-seq data in an 
accurate and comprehensive manner, greatly empowering gene regulatory inference. 

The performance of SEACells is due to its (i) representation of single-cell phenotypes using an 
adaptive Gaussian kernel to accurately capture the major sources of variation in the data, (ii) use 
of max-min cell sampling for initialization to ensure even representation of cell-states across 
phenotypic space, regardless of cell densities, and (iii) application of archetypal analysis for 
identifying highly interpretable metacells. The adaptive kernel and max-min sampling make 
SEACells particularly adept at robustly identifying rare cell-states, which often represent critical 
populations that drive biology or disease. 

Kernel representation also eliminates the need for specific data representations such as gene 
scores, allowing SEACells to generalize to multiple modalities. We show that metacells are 
particularly effective on scATAC-seq data, which is currently analyzed at the cluster level due to 
extreme sparsity, and thus remains underutilized. Whereas gene scores, open regulatory 
elements, and correlations between gene expression and chromatin accessibility cannot be 
determined robustly at the single-cell level, they can be computed for individual metacells. Such 
improvements in fundamental ATAC analysis enable more sophisticated regulatory network 
inference, promising wide utility for SEACells in studies with single-cell chromatin profiling data. 

Our procedures for computing peak-to-gene associations, gene scores and gene accessibility 
assume the availability of either multimodal data or integrated RNA and ATAC modalities. Several 
approaches have been developed for data integration across modalities13,49 and are likely to 
exhibit improved performance when applied at the metacell level. Given the kernel representation, 
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SEACells should generalize to other modalities such as CUT&Tag50,51  or other single-cell 
chromatin modification measurements52 with appropriate preprocessing.  

We also anticipate that SEACells will be used extensively as a scalable solution for integrating 
large single-cell datasets from cohorts. Metacells can be computed separately for each sample, 
rendering the integration of additional cohort members extremely resource-efficient, while 
retaining heterogeneity in the data. Computing metacells at the sample level also provides a more 
robust representation of sample-specific biology than data integration approaches that struggle 
to distinguish biological and technical differences between samples. Aggregating dozens of cells 
per metacell provides a more comprehensive expression or chromatin accessibility profile, and 
also generates a distribution over these features, facilitating comparison between metacells 
across samples. As demonstrated in COVID-19 data, sample-level sufficient statistics provided 
by SEACells are particularly well suited to compare disease states between healthy and normal, 
as well as more nuanced disease states such as progression.  

An important consideration when running SEACells is how to specify the number of metacells. 
There should be enough metacells to capture cell states at high resolution, while maintaining 
sufficient cells per metacell to ensure robustness. The optimal number thus depends on biological 
heterogeneity in the dataset and the total number of cells profiled. For example, cells from a 
homogeneous cell line will have less biological structure compared to a similar sized tissue 
sample. To choose the number of metacells, we recommend examining the initialization to ensure 
that cell-states span the full phenotypic manifold (Methods). 

Metacell analysis allowed us to determine a metric for gene accessibility and to demonstrate that 
chromatin landscape reconfiguration is continuous and gradual during hematopoietic 
differentiation. Further, we utilized the scalability and robustness of SEACells to integrate a large-
scale COVID-19 scRNA-seq dataset and identify a disease progression of COVID-19-enriched 
CD4+ T-cell states relating to differentiation and activation. These critical states are not detected 
by differential abundance testing at the single-cell level. In addition to enabling cohort-scale 
analysis, SEACells metacells serve as more robust cell-state inputs, which facilitates the 
distinction of biological signal from batch effect—features that enabled our discovery of the T-cell 
state continuum. SEACells is a powerful discovery tool for emerging single-cell cohorts.  

 
Data Availability 
The newly generated CD34+ bone marrow and T-cell depleted bone marrow multiome datasets 
will be deposited to GEO. Filtered and processed count matrices including cell-type annotations 
and ATAC fragment files are available on Zenodo at 10.5281/zenodo.6383269. 
 
Code Availability 
SEACells is available as a Python module at https://github.com/dpeerlab/SEACells. Jupyter 
notebooks detailing the usage of SEACells include metacell identification, aggregation and the 
ATAC preprocessing, and gene regulatory toolkit are available at 
https://github.com/dpeerlab/SEACells/tree/main/notebooks. Modified ArchR pipeline for peak 
calling using NFR fragments is available at https://github.com/dpeerlabArchR 
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Methods 

SEACells algorithm 

 
SEACells - Single-cEll Aggregation of High-Resolution Cell-states - is an algorithm to 
determine metacells, groups of cells that represent singular cell-states from single-cell 
data. The SEACells algorithm assumes that biological systems consist of well-defined 
and finite sets of cell-states defined by co-varying patterns of gene expression. Observed 
single-cell data are assumed to be noisy measurements of these cell-states with current 
state of the art single-cell measurement technologies able to capture <10% of transcripts 
or <5% open chromatin regions. Despite the high degree of noise, cells sampled from the 
same states are assumed to be closely related in their phenotypes  as a result of gene 
expression patterns and regulatory mechanisms that define the cell-states. Thus, 
SEACells algorithm aims to aggregate closely related single-cells and  identify metacells 
that represent cell-states. As a result of aggregation, metacells overcome the sparsity 
issues that plague single-cell data, with single-cell ATAC-seq data particularly limited in 
its utility due to its sparsity. SEACells metacells also provide a scalable representation to 
efficiently handle large-scale single-cell data. While clustering is widely used to overcome 
issues of sparsity, clustering masks the substantial heterogeneity present in the data (Fig. 
1A-D). SEACells metacells achieve a resolution that retains the heterogeneity while 
overcoming the sparsity issues of single-cell data.  
 
The major inputs to SEACells algorithm are: (i) raw count matrices (E.g.: gene expression 
for RNA, peak or bin counts for ATAC), (ii) low dimensional representation of the data 
such as PCA derived using an appropriate preprocessing procedure dependent on data 
modality and biological system and (iii) the number of metacells to be identified. Using 
this information, SEACells produces as output groupings of cells that represent metacells 
and aggregated metacells X feature raw counts matrices. SEACells algorithm is available 
as a Github repository as https://github.com/dpeerlab/SEACells. In addition to 
documentation and tutorials for computing metacells, the repository also includes tutorials 
for computation of gene expression - peak accessibility correlations, ATAC gene scores, 
open peaks in metacells and gene accessibility scores using multiome or integrated RNA 
& ATAC data.  
 
SEACells comprises five main steps: 

(1) Construct a k-nearest neighbors graph using Euclidean distances between cells 
computed in the lower dimensional embedded space. This KNN graph provides a 
representation of the phenotypic manifold to identify tightly connected groups of 
cells, to be aggregated into metacells. 

(2) An affinity matrix of cell-to-cell similarities is derived using the nearest neighbor 
graph. The distances in the graph are transformed to similarities using an adaptive 
Gaussian kernel to account for the dramatic differences in densities in the 
phenotypic manifold spanned by single-cell data. The affinity or kernel matrix (Fig. 
1F) also encodes the non-linear relationships between cells .  
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(3) The kernel matrix then serves as input to kernel archetypal analysis, for linear 
decomposition of the input single-cell data. The linear nature of this procedure 
maximizes interpretability. Archetypal analysis decomposes the data into an 
archetype matrix, linear combinations of cells that are representative of the cell-
states on the phenotypic manifold and a membership matrix that reconstructs the 
single-cells as linear combinations of archetypes (Fig. 1G). This procedure 
partitions the data in such a way that the cell-cell similarity matrix has tight block 
structure along the diagonal, which best represents distinct cell states in the data 
(Fig. 1H). Each distinct partition is a group of cells and represents a metacell.  The 
specified number of metacells are used as input to archetypal analysis.  

(4) The groupings identified through archetypal analysis are SEACells metacells. 
Single-cell raw counts are aggregated using these groupings to derive a metacell 
X feature count matrix. 

(5) Normalized metacell count matrices can be used for all downstream tasks 
including clustering, visualization, data integration, trajectory inference, ATAC-seq 
based regulatory inference and other analysis performed with single-cell data. 

 
These design principles ensure that metacells identified by SEACells algorithm are 
robust, compact, well-separated, provide sufficient meta-cells, and span the entire 
phenotypic manifold. SEACells can be applied to single-cell datasets with discrete cell-
types and continuous trajectories.  SEACells has been tested and benchmarked using 
scRNA-seq and scATAC-seq datasets and in principle can be applied to other single-cell 
modalities as well. An appropriate preprocessing procedure that generates a faithful low-
dimensional representation of the single-cell data is a critical element for success of 
SEACells algorithm to generalize to additional data modalities. We have outlined a 
procedure to analyze each data modality separately, but a graph or representation 
derived using multiple modalities13,49 can also be used as input to SEACells.  
 
Low Dimensional Embedding  
A central input to SEACells algorithm is a low dimensional representation of single-cell 
data. This representation is used as input to construct the k-nearest neighbor graph using 
Euclidean distance between cells. Single-cell data is extremely noisy due to  low capture 
rates, and as a result measuring distances between cells in the measured expression or 
accessibility is unreliable. A low dimensional representation such as PCA, overcomes the 
noise in the data with the top components encoding information about biological 
variability. Low-dimensional embedding can be derived by using appropriate pre-
processing and normalization steps for the data modality of interest (Supplementary Fig. 
2). This allows us to be both flexible to data type, and robust to the extensive degree of 
sparsity and noise in data types such as scRNA-seq and scATAC-seq. We utilized the 
following preprocessing steps adapted to the characteristics of each technology.  
PCA for scRNA-seq 
Following standard practices, we perform three main pre-processing steps using the 
scanpy53 package: 1) library size normalization by dividing raw counts by total molecules 
per cell, 2) log-transformation with a pseudo-count of 0.1 and 3) selection of highly 
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variable genes. Based on our prior observations for PBMCs and CD34 bone marrow 
datasets [ref], we chose 2500 highly variable genes for analysis. This number should be 
adapted to ensure all the heterogeneity is captured in the dataset of interest. Principal 
components are computed from these highly variable genes, with the number of principal 
components being selected based on proportion of variance explained (Typically 50).   
SVD for scATAC-seq 
We used the ArchR package23 for preprocessing of sc-ATAC data. Fragment counts for 
each cell were computed in 500 base genome bins. The counts were normalized using 
TF-IDF54. The normalized counts were used as input to derive a low-dimensional 
embedding using SVD. Similar to PCA, the number of principal components were 
selected based on the proportion of variance explained (Typically 30). As has been 
observed previously, despite normalization the first SVD component shows high 
correlation with number of fragments per cell (correlation > 0.97) and is  excluded from 
downstream analysis. 
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Nearest Neighbor graph 
A k-nearest neighbor graph is constructed using Euclidean distance in the low-
dimensional embedding (PCA or SVD). The graph is a representation of the phenotypic 
manifold, with nodes as single cells, each connected to their most similar neighbors.  The 
nearest graph can be represented as a matrix 𝐷	 ∈ 	𝑅!	#	!, where 𝑛 is the number of cells. 
𝐷$% represents distance between cells 𝑖 and 𝑗  if they  
 
are neighbors and 𝐷$% = 0 otherwise. The graph serves as input for the construction  of 
the cell-cell kernel matrix. As default, 50 neighbors are used for nearest neighbor graph 
construction, and we have previously demonstrated that the kernel matrix construction is 
robust to a reasonable range of number of nearest neighbors5.  
Adaptive Gaussian kernel 
The goal of SEACells algorithm is to identify metacells that are tightly related groups of 
cells to represent cell-states (Fig. 1H,G). Therefore, we need to transform the distances 
in the neighbor graph to similarities between neighboring cells. Gaussian kernels provide 
an approach for this transformation but assume that densities in underlying data are 
approximately uniform. Single-cell data, however, show remarkable variability in data 
densities (Supp. Fig. 6) with low-density regions or rare cell-types often the most 
meaningful in describing the biology of the system. We have previously demonstrated 
that an adaptive kernel that uses neighbor distance as the scaling factor for each cell, 
rather than a fixed parameter, is highly effective in faithfully representing the phenotypic 
similarities5,55.  Therefore, SEACells uses an adaptive (width) Gaussian Kernel to 
determine similarities between cells and more faithfully represent the underlying 
phenotypic manifold (Fig. 1F). The adaptive kernel corrects for densities using the 
distance to the 𝑙&'	(𝑙	 < 𝑘) nearest neighbor as a scaling factor i.e, the scaling factor of 
cell 𝑖 is given by 𝜎$ =distance to 𝑙&'nearest neighbor.  
 
The adaptive Gaussian kernel is then given by 

𝑀(𝑥! , 𝑥") 	= 	
1

)2𝜋(𝜎!	 +	𝜎"	) )
𝑒𝑥𝑝 (−

1
2
(𝑥! − 𝑥")$(𝑥!	 − 𝑥")

𝜎!	 +	𝜎"
) 

where 𝑥$ 	is the low-dimensional embedding corresponding to cell 𝑖.  
𝑀	 ∈ 	𝑅!	#	! is the affinity matrix. 𝑀$% represents the similarity between cells 𝑖 and 𝑗  if they 
are neighbors and 𝑀$% = 0 otherwise. 
Kernel Archetypal Analysis 
The adaptive kernel serves as input to a kernel archetypal analysis procedure . Archetypal 
analysis identifies a linear decomposition of the data matrix where the goal is to identify 
a specified number of archetypes that are each a linear combination of the data points 
represented by the archetype matrix. The data points themselves are represented as a 
linear combination of the archetypes in a membership matrix to reconstruct the original 
data matrix (Fig. 1G). Therefore, archetypal analysis functions in a manner similar to an 
autoencoder with the lower dimensionality of the archetype and membership matrices 
creating an information bottleneck that ensures an optimal linear decomposition of the 
data17. Membership matrices can be used to derive cell partitions that are aggregated to 
metacells (Fig. 1H). The linear nature of archetypal analysis ensures maximal 
interpretability and identification of metacells. Further, the iterative procedure of 
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archetypal analysis supports the use of cell-cell similarity kernels which already encode 
the non-linear relationships between cells. 
 
Formally, the data matrix 𝑋	 ∈ 𝑅(×! consists of 𝑑-dimensional vectors corresponding to 𝑛 
cells. Here 𝑑 is the dimensionality of low-dimensional embedding such as PCA or SVD. 
The goal of archetypal analysis is to decompose data as 𝑋 ≈ 𝑍𝐴	i.e, the data matrix 𝑋 is 
represented as a convex combination of a latent archetype matrix 𝑍	∈ 	𝑅(×*	and cell 
membership matrix 𝐴	 ∈ 𝑅*×!, where 𝑠 ≪ 𝑛	is the number of archetypes. As these latent 
archetypes are a priori unknown, they are themselves defined as convex combinations 
𝑍 = 𝑋𝐵 of the data, 𝑋, and archetype weight matrix 𝐵 ∈ 𝑅!×*. To ensure that data points 
are convex combinations of archetypes, and vice versa, weight matrices 𝐴 and 𝐵 must 
be row- and column-stochastic, respectively, such that their entries are non-zero and 
rows/columns sum to one.  
 
Formally, for entries 𝑎%$ ∈ 𝐴 and 𝑏%$ ∈ 𝐵, 

𝑎$% ≥ 0, ∀	𝑗 = 1. . 𝑛A𝑎$%	

*

$+,

= 1 

 

𝑏$% ≥ 0, ∀	𝑖 = 1. . 𝑛A𝑏$%	

*

%+,

= 1 

 
Taken together, the objective of archetypal analysis is to find matrices 𝐴, 𝐵 such that 
product 𝑋𝐵𝐴 forms a faithful reconstruction of the original data matrix 𝑋. 
 
The objective of kernel archetype analysis is to minimize squared reconstruction error 
(SRE) as follows: 
𝑚𝑖𝑛
-,/

𝑆𝑅𝐸	 = 	 ||𝑋 − 𝑋𝐵𝐴||0 	= 	𝑡𝑟[𝑋1𝑋	 − 2𝑋1𝑋𝐵𝐴	 + 𝐴1𝐵1	𝑋1𝑋] 
Note that this optimization problem depends only on the dot product i.e., linear kernel of 
the data matrix 𝑋. Therefore, non-linear kernels can be substituted to model systems 
where the data is generated from non-linear combinations of archetypes using the kernel 
trick. We therefore replace the linear kernel with the adaptive gaussian kernel 𝑀 and the 
optimization problem can then be formulated as. 

𝑚𝑖𝑛
-,/

𝑆𝑅𝐸	 = 	 ||𝑋 − 𝑋𝐵𝐴||0 	= 	𝑡𝑟[𝐾(𝑋, 𝑋) 	− 2𝐾(𝑋, 𝑋)𝐵𝐴	 + 𝐴1𝐵1	𝐾(𝑋, 𝑋)] 
																																																						= 	𝑡𝑟[𝑀	 − 2𝑀𝐵𝐴	 + 𝐴1𝐵1	𝑀]	

 
The number of archetypes, 𝑠, representing the number of metacells, is a parameter. 
 
Optimizing Archetypes and Cell Assignments 
The objective function for kernel archetype analysis involves optimizing the non-convex 
product 𝐴𝐵, and thus has many local minima. The objective function is, however, convex 
in 𝐴 given a fixed 𝐵 matrix, and vice versa. Therefore, alternating minimization of weight 
matrices 𝐴 and 𝐵 is used to make the problem of solving archetypal analysis more 
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tractable. Given this, we use the Frank-Wolfe updates to optimize each weight matrix in 
turn, as described in 17.  
Initialization 
As archetypal analysis is a non-convex problem, solutions depend on the initialization of 
archetype and cell assignments. Given the density differences in the phenotypic manifold, 
random sampling of cells will lead to significant overrepresentation of initial points in the 
high density regions and severe underrepresentation of cells in the biologically critical low 
density regions. Therefore, we employ max-min sampling of waypoints, described and 
implemented by 5  to initialize archetypal analysis.  
 
Given a set of waypoints, each additional waypoint is chosen to maximize the distance to 
the current set, i.e. maximize the minimum distance to any of the points in the current set. 
This ensures that the sampled waypoints are uniformly distributed across the phenotypic 
manifold irrespective of the density (Fig. 1E). We first derive a diffusion map embedding 
using the adaptive Gaussian kernel 𝑀. As demonstrated previously5, each diffusion 
component represents an axis of biological variance in the data. Diffusion maps can be 
used to describe both continuous trajectories as well as to define separation between 
discrete cell-types. Waypoints are sampled from each component and pooled for 
initialization. The number of components can be chosen by the eigengap statistic, though 
in practice we observed that the first 10 diffusion components typically account for all the 
biological variability in the data. 
 
Waypoint sampling is used to initialize the matrix 𝐵, following which matrix 𝐴 is updated 
and the process is repeated until convergence.  
Metacell identification 
Archetypal analysis computes partial assignments of cells to archetypes.  However, in 
order to aid in interpretability and facilitate downstream analysis, metacells are 
constructed by (1) computing binarized assignments of cells to archetypes (of the 𝐴 
matrix) and (2) aggregating single cells assigned to each SEACell by summing over raw 
counts (Fig. 1G). This summarized SEACells data matrix is significantly less sparse and 
noisy and can then be used for more robust downstream analysis. 
 
Metacell normalization 
Metacell raw counts can be normalized analogous to single-cell data normalization. 
Metacell counts are divided by the total counts per metacell and then multiplied by the 
median of the total metacell counts to avoid numerical issues. The data is then log-
transformed using a pseudo count of 0.1 
 
Notes about number of metacells 
The number of metacells should be specified as a parameter to the SEACells algorithm. 
We have evaluated the robustness of SEACells to the number of metacells and 
determined that the results are robust across a wide range of parameters 
(Supplementary Fig. 5). We currently use a heuristic of one metacell per 75 single-cells 
in the dataset under consideration.  However, the number is largely dependent on the 
biological structure in the data. As an example, a dataset profiling 10k cells from a 
homogeneous cell-line will be expected to be less heterogeneous and thus encode less 
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biological structure compared to a similar sized single-cell dataset of more complex 
biological systems such as tumors or differentiation. Therefore, we recommend 
examination of initialization to ensure that cell-states span the entirety of the phenotypic 
manifold to choose the number of metacells.  
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Toolkit for scATAC analysis 

Analysis of bulk ATAC-seq data has provided a broad array of tools that are powerful in 
interpretation of open chromatin data. Direct application of these tools is prohibitive for 
single-cell data analysis due to issues of sparsity. SEACells metacells are aggregates of 
tightly related cells and therefore are substantially less sparse and encode more 
information per cell-state compared to analysis at the single-cell level. Metacells faithfully 
retain the heterogeneity and structure of the data, and hence enable the construction of 
a robust toolkit for scATAC-seq data analysis with adaptations of tools from bulk data 
analysis.  
Peak calling  
Peak calling was performed using  ArchR23. ArchR first clusters single-cell data and uses 
the MACS2 peak caller56 to identify peaks separately for each cluster. Each peak is then 
resized to 500 bases with the peak summit at the center and overlapping peaks across 
different clusters are merged. The merged peaks are again resized to 500 bases.  
 
ATAC-seq data provides a profile of open chromatin regions spanning transcription factor 
binding and nucleosomes in non-repressed regions. The fragment size distribution of 
ATAC-seq data contains characteristic modes which reflect the diversity of information 
(Supplementary Fig. 7A). Since the first mode represents nucleosome free regions 
(NFR), we implemented a change in the ArchR pipeline to identify peaks using only the 
NFR fragments (fragment length < 147) rather than use of all fragments as is default in 
ArchR. This change leads to substantially better sensitivity in identification of regulatory 
elements (Supplementary Fig. 7B,C). 
 
The modified ArchR pipeline is available at https://github.com/dpeerlab/ArchR 
Peak-gene associations and gene scores 
While use of NFR fragments improves the sensitivity of called peaks, not all identified 
peaks represent TF binding events that directly regulate the expression of a gene. 
Examples include structural factors such as CTCF which also show a signal in ATAC-seq 
data but do not directly regulate the expression of a gene. Therefore, studies have 
proposed the use of correlation of peak accessibility and gene expression using multiome 
or integrated ATAC & RNA data to identify the candidate list of peaks i.e., regulatory 
elements that likely regulate the expression of the gene18. SEACells metacells retain the 
heterogeneity in data but overcome data sparsity and thus provide an ideal resolution  to 
compute these associations which are unreliable when computed using single-cell data 
due to high degree of noise and sparsity. We use metacells identified using the ATAC 
modality for building the peak-gene associations t for robust associations.  
 
We adopted the procedure outlined by Ma et. al.18  to identify significant peak-gene 
associations. For each gene, Pearson correlations were computed for each peak across 
a span of 100kb upstream and 100kb downstream of the gene using the normalized 
metacell expression and normalized ATAC accessibility. To assess the significance of the 
peak-gene correlation, an empirical background of 100 peaks were sampled that matched 
the GC content and accessibility of the peak under consideration. Peaks were binned into 
100 bins separately based on GC content and accessibility to sample the empirical 
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background. Any peak with a nominal p-value < 1e-1 was considered a significant peak-
gene association. Peaks identified using NFR fragments were used for this analysis. The 
aggregate accessibility of all peaks associated with a gene was used to determine the 
metacell gene score.  
 
For single-cell comparisons, normalized single-cell expression and normalized single-cell 
accessibility were used for determining peak-gene associations. Gene scores for single-
cell ATAC were computed using the ArchR23 defaults. 
 
chromVAR using SEACell metacells and single-cells 
chromVAR24 was run using default parameters  using the chromVAR “human_pwms_v2” 
motif database. chromVAR scores were computed using aggregated fragment counts for 
metacells and single cell fragment counts for single-cell data. Similar to the single-cell 
data analysis, chromVAR scores were first reduced to 50 principal components using 
knee-point analysis. PCs then served as input to umaps for visualization. 
 
Metacell peak calling 
Identification of the set of open regulatory elements is practically implausible at single-
cell level due to noise and sparsity. SEACells metacells however, provide a sufficient 
number of fragments per cell-state to enable the identification of open regulatory elements 
in each state. We observed that de novo peak calling in each metacell results in  loss of 
sensitivity (Supplementary Fig. 7).. Therefore, we use the peaks identified by ArchR 
across all cells as an atlas to determine the subset of peaks open in each metacell.  
 
A procedure inspired by MACS2 is used to identify open regulatory elements in metacells 
since the peaks themselves were called by MACS2. The fragments mapping to peaks are 
modeled as a Poisson distribution. The mean of the Poisson distribution for a metacell s 
is estimated using56: 
 

𝜆=𝑊𝑖𝑑𝑡ℎ(𝑝𝑒𝑎𝑘𝑠)	∗ 	𝑇𝑜𝑡𝑎𝑙	𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠	𝑖𝑛	𝑠𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑔𝑒𝑛𝑜𝑚𝑒	𝑙𝑒𝑛𝑔𝑡ℎ  
 
Since all the widths are identical, the first term of the numerator is set to 500. Rather than 
use the whole genome length as the denominator, effective genome length was set to be 
num. of peaks * 5000, a more stringent local estimate of the mean as proposed in MACS2. 
For a peak p in metacell s with n fragments ,  	𝜆	is used to estimate the p-value of 
observing more than n fragments and p is considered open in s if p-value < 1e-2. 
 
We noticed that some of the ATAC metacells had low overall fragment counts - therefore 
we computed fragments per peak and total fragments from 2 nearest metacells. We apply 
this procedure for all metacells to avoid any biases. 
 
Gene accessibility scores 
Gene accessibility scores for a gene and metacell is defined as the fraction of gene 
associated peaks that are open in the particular(Fig. 4B). Gene accessibility scores range 
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from 0, indicating all correlated peaks are closed, to 1, indicating that all correlated peaks 
are open. 
 

𝐺𝑒𝑛𝑒	𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦	(𝐺𝑒𝑛𝑒	𝑔,𝑀𝑒𝑡𝑎𝑐𝑒𝑙𝑙	𝑚)

=
𝑁𝑜. 𝑜𝑓	𝑜𝑝𝑒𝑛	𝑝𝑒𝑎𝑘𝑠	𝑖𝑛	𝑠	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑜𝑓	𝑔𝑒𝑛𝑒	𝑔

𝑁𝑜. 𝑜𝑓	𝑝𝑒𝑎𝑘𝑠	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑜𝑓	𝑔𝑒𝑛𝑒	𝑔  

 
 

Multiome data generation 

CD34+ bone marrow cells 
Cryopreserved bone marrow stem/progenitor CD34+ cells from a healthy donor were 
purchased from AllCells, LLC. (catalog no. ABM022F) and stored in vapor phase nitrogen. 
Vial was removed from the storage and immediately thawed at 37 °C in a water bath for 
2 min while gently shaking. Next, vial content (1 mL) was transferred to a 50-mL conical 
tube. To prevent osmotic lysis and ensure gradual loss of cryoprotectant, 1 mL of warm 
medium (IMDM with 10% FBS supplement) was added dropwise after washing the 
storage vial, while gently shaking the tube. Then, the cell suspension was serially diluted 
5 times with 1:1 volume additions of warm complete growth medium with 2-min wait 
between additions. The final ~32-mL volume of cell suspension was pelleted at 300g for 
5 min. After removing supernatant, cells were washed once with 10-mL of warm media 
and twice in ice-cold 1× PBS with 0.04% (wt/vol) BSA supplement to remove traces of 
medium. Cell concentration and viability were determined with a Countess II automatic 
cell counter using 0.4% trypan blue staining method. 
 
Single Cell Multiome ATAC + Gene Expression was performed with a 10X genomics 
system using Chromium Next GEM Single Cell Multiome Reagent Kit A (catalog no. 
1000282) and ATAC Kit A (catalog no. 1000280) following Chromium Next GEM Single 
Cell Multiome ATAC + Gene Expression Reagent Kits User Guide and demonstrated 
protocol - Nuclei Isolation for Single Cell Multiome ATAC + Gene Expression Sequencing. 
Briefly, 200,000 cells (viability 95%) were lysed for 4min and resuspended in Diluted 
Nuclei Buffer (10x Genomics, PN- 2000207). Lysis efficiency and nuclei concentration 
was evaluated on Countess II automatic cell counter by trypan blue staining.  9,660 nuclei 
were loaded per transposition reaction, targeting recovery of 6,000 nuclei after 
encapsulation. After transposition reaction nuclei were encapsulated and barcoded. Next-
generation sequencing libraries were constructed following the User Guide, which were 
sequenced on an Illumina NovaSeq 6000 system. 
 
T-cell depleted bone marrow cells 
Cryopreserved bone marrow cells from healthy donor were purchased from AllCells, LLC. 
(ABM007F) and stored in vapor phase nitrogen. Vial was removed from the storage and 
immediately thawed at 37 °C in a water bath for 2 min while gently shaking. Next, vial 
content (1 mL) was transferred to a 15 mL conical tube. To prevent osmotic lysis and 
ensure gradual loss of cryoprotectant, 1 mL of warm medium (IMDM with 10% FBS 
supplement) was added dropwise after washing the storage vial, while gently shaking the 
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tube. Then, the cell suspension was dropwise diluted to 15 mL by addition of warm 
complete growth medium. The final 15 mL volume of cell suspension was pelleted at room 
temperature, 400g for 5 min. After removing supernatant, cells were washed once with 1 
mL of Cell Staining Buffer (CSB), Biolegend (420201), cells were centrifuged again at 
400g for 5 minutes 4 °C and resuspended in 100 uL of CSB. Concentration and viability 
were determined with a Countess II automated cell counter using 0.4% trypan blue 
staining method. Cells were incubated with Human TruStain FcX™ (Fc Receptor Blocking 
Solution), Biolegend (422301), for 10min at 4 °C. After blocking, bone marrow cells were 
stained with CD3 Monoclonal Antibody (UCHT1), PE-Cyanine7, eBioscience™ (25-0038-
42) 1:100 for 20 minutes at 4 °C. Cells were washed 2 times with CSB before 
Fluorescence-activated cell sorting (FACSymphony S6, BD Biosciences) where CD3 
negative cells were collected. Sorted cells were concentrated, count and viability was 
determined with a Countess II automated cell counter using trypan blue staining. 
  
Single Cell Multiome ATAC + Gene Expression was performed with a 10X genomics 
system using Chromium Next GEM Single Cell Multiome Reagent Kit A (1000282) and 
ATAC Kit A (1000280) following Chromium Next GEM Single Cell Multiome ATAC + Gene 
Expression Reagent Kits User Guide and demonstrated protocol - Nuclei Isolation for 
Single Cell Multiome ATAC + Gene Expression Sequencing. Briefly, 300,000 cells 
(viability 95%) were lysed for 4 min and resuspended in Diluted Nuclei Buffer, 10x 
Genomics (2000207). Lysis efficiency and nuclei concentration was evaluated on 
Countess II automated cell counter by trypan blue and DAPI staining. 16,100 nuclei were 
loaded per transposition reaction, targeting recovery of 10,000 nuclei after encapsulation. 
After transposition reaction nuclei were encapsulated and barcoded. Next-generation 
sequencing libraries were constructed following the 10X Genomics User Guide and were 
sequenced on an Illumina NovaSeq 6000 system. 
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Application of SEACells to PBMCs and bone marrow datasets 

Data preprocessing                                                                                                                                                                         
CD34+ Bone marrow Multiome data - RNA modality             
Count matrices for the two samples were generated using CellRanger ARC57. Starting 
with the filtered barcode matrices from CellRanger ARC, barcodes from the bottom and 
top 2.5th percentile in molecule counts were excluded. Further cells with less than 0.4 
fraction of reads in peaks in ATAC modality and greater than 20% of reads from 
mitochondria from the RNA modality were excluded from downstream analysis. The 
specified cutoffs were also chosen based on the respective empirical distributions to 
remove outliers.  
 
Data was generated in two lanes. For each sample, scrublet58 was used to compute  
doublet scores using default parameters and a cluster of cells with high doublet scores 
were removed from downstream analysis (note, CD34+ has a continuous nature that can 
lead to false doublet calls). Following the filtering steps, the two samples were 
concatenated, normalized for molecule counts by dividing the raw data by the total counts 
per cell. The normalized data was multiplied by the median of total counts across cells to 
avoid numerical issues and log transformed with a pseudo-count of 0.1. Feature selection 
was then performed to select the top 2500 most highly variable genes (using 
scanpy.pp.highly_variable_genes) which was then used as input for principal 
component analysis with 50 components. The parameters were chosen based on prior 
analysis on a CD34+ scRNA-seq dataset5.  
 
The PCs were used as input for generating umaps and clustering using phenograph14. 
The preprocessing and analysis was undertaken using scanpy53. Diffusion components 
were generated using the adaptive kernel following the functions in the Palantir package5 
and imputation of gene expression was performed using MAGIC55. Each cluster was 
annotated as specific cell-types using the markers defined in5, following which mature B-
cells were excluded from the analysis. Highly variable gene selection, PCA, clustering, 
visualizations, diffusion maps and imputation were repeated following B-cell exclusion. A 
total of 6881 cells were retained after all the filtering steps. 
 
CD34+ Bone marrow Multiome data - ATAC modality 
Analysis of the ATAC modality was undertaken using the ArchR pipeline23 using the 
subset of cells post-filtering from the RNA modality. 100k features were used instead of 
the default 25k features for ArchR processing. Using ArchR, data was normalized using 
IterativeLSI and SVD used to determine a lower dimensional representation of the sparse 
data. The first SVD component showed a greater than 0.97 correlation with log library 
size and was excluded from downstream analysis. SVD was used as input to cluster the 
data using phenograph and visualize using umaps. Peak calling was performed using the 
modified ArchR pipeline described in “Peak calling”. 
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T-cell depleted Multiome data 
The preprocessing and analysis of RNA and ATAC modalities were performed following 
the steps outlined for the CD34+ bone marrow data. NK cells, mature monocytes and B-
cells were excluded from the analysis in Supplementary Fig. 6. A total of 7439 cells were 
retained after all the filtering steps. 
 
PBMC Multiome data  
Counts for the PBMC Multiome data were downloaded from 10X Genomics. The 
preprocessing and analysis of RNA and ATAC modalities were performed following the 
steps outlined for the CD34+ bone marrow data. Cell-type annotation was performed 
using the marker genes in 59 and no cell-types were excluded from the analysis. A total 
of 11543 cells were retained after all the filtering steps. 
 
Lung adenocarcinoma 
Fully annotated count matrices for single-cell profiling of lung adenocarcinoma in patient 
samples were downloaded from 32. All non-immune cells contained in the data-set were 
used in the analyses, comprising a total of 4770 cells. Each patient sample was 
individually processed by performing normalization on raw counts, followed by log-
transformation. Following the procedure outlined in the manuscript, 1500 most highly 
variable genes were identified and principal components were computed from the 
expression of these genes.   
 
Bone marrow mononuclear cells scATAC-seq dataset 
Fragment files for single-cell ATAC-seq data of bone marrow mononuclear cells and 
CD34+ cells (total of 5 samples)  and the respective cell-type annotations were 
downloaded from GEO19. All the cells described in the manuscript19 were used except for 
T-cells since they do not differentiate in the bone marrow. The preprocessing and peak-
calling followed the same procedure outlined for the ATAC modality of the CD34+ bone 
marrow Multiome dataset. A total of 19438 cells were retained after all the filtering steps. 
 
Metacell identification 
SEACells was applied with default parameters to PBMC and CD34+ bone marrow 
datasets. The number of metacells were chosen outlined in the “Notes about number of 
metacells” section. The number of metacells for each sample were: (i) PBMC multiome: 
100, (ii) CD34+ bone marrow multiome: 85, (iii) T-cell depleted bone marrow multiome: 
100, (iv) Single-cell ATAC-seq of bone marrow mononuclear cells: 270. SEACells was 
applied separately for the RNA and ATAC modalities of the multiome datasets, using the 
PCA and SVD representations respectively. Metacell raw counts for different datasets 
were determined as described in the “Metacell identification” section. Metacell counts 
were normalized as described in “Metacell normalization”. 
 
Comparison of metacells from two modalities using PBMC multiome data 
We used the paired nature of multiome data to compare consistency of metacells 
identified between the two modalities. Due to the clear separation between cell types, 
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PBMC multiome dataset was used for this analysis to verify whether relationships 
between metacells within and across cell-types were consistent between the two data 
modalities. We checked whether single-cell groups derived using ATAC modality could 
be applied to the RNA modality and  retain cell-type consistency. 
 
We first computed the aggregated RNA metacell matrix. We then computed a second 
aggregated gene expression using the single-cell groups from ATAC modality instead of 
the RNA modality. We jointly normalized the two aggregated matrices, identified highly 
variable genes, computed principal components and visualized data using UMAPs 
(Supplementary Fig. 3A). No batch correction was used for this analysis. We repeated 
the same procedure using aggregated peak counts from ATAC and RNA metacells 
(Supplementary Fig. 3B). 
 
Peak-calling, gene scores and gene accessibility in CD34+ bone marrow dataset 
Peak calling, peak gene associations, gene score computation and gene accessibility 
scores were determined as described in the “Toolkit for scATAC analysis” section.  
 
Since only scATAC is available for the BMMC dataset, peak-gene associations identified 
using the CD34+ multiome dataset were used for the gene accessibility analysis. 
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Robustness of SEACells algorithm 

Due to its more challenging continuous nature, we used the CD34+ bone marrow data for 
assessing the robustness of SEACells algorithm. With a series of cell states spanning 
continuous trajectories, this dataset provides a greater challenge for test of robustness 
compared to the well-separated PBMC multiome dataset.  
 
Robustness to different initializations 
Since the max-min sampling procedure relies on a random seed, we first tested the 
robustness of SEACells algorithm to different initializations. We consider the procedure 
robust if cells are consistently assigned to the same cell type across different runs.  
Normalized metacell RNA matrices were determined separately for each initialization. To 
compare a pair of initializations, we first concatenated the normalized matrices and then 
computed diffusion components using both groups of metacells. Briefly, PCA was used 
to derive a low dimensional embedding of the concatenated metacell matrix using the 
single-cell data determined highly variable genes. Diffusion components were determined 
using PCs as the input and a permissive 10 diffusion components were used for 
downstream analysis. For each metacell in an initialization, nearest metacell neighbors 
from the alternative initialization were computed. Two metacells from different 
initializations were considered equivalent if they were mutually in each others’ top two 
nearest neighbors (Supplementary Fig. 5A). Neighborhood computation was performed 
using diffusion components and diffusion distance5. We quantified the comparison for 
each pair of initializations by  computing  the proportion of mapped metacells from 
alternate initializations with matching cell-types (Supplementary Fig. 5B).  
 
A similar procedure was used to test the robustness of the ATAC modality using 
aggregated ArchR gene scores instead of gene expression as inputs.  
 
Robustness of different numbers of metacells 
Robustness to different numbers of metacells (Supplementary Fig. 5C,D) were 
determined using the same procedure outlined above, using the CD34+ RNA modality.  
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Metacells methods comparison 

Baran et. al. MetaCell 
MetaCell9 approach uses a non-parametric graph algorithm to partition scRNA-seq data 
into distinct metacells. This algorithm constructs a balanced kNN graph, which is 
subsampled multiple times into dense subgraphs in order to determine metacell partitions. 
Outlier cells are identified, and the final output is the assignment of cells to metacells. 
MetaCell was run using the default processing steps outlined in 
https://tanaylab.github.io/metacell/articles/a-basic_pbmc8k.html with raw count data.  
 
We ran Baran et. al. metacell on three scRNA-seq datasets using default parameters - 
CD34+ bone marrow, PBMC and lung adenocarcinoma in order to evaluate the 
performance in the contexts of continuous differentiation, discrete cell states and a cancer 
dataset, respectively. For each dataset, Baran et. al. metacell automatically infers the 
number of metacells and discards a subset of the data as outliers. To compare faithfully 
across methods, we used the same number of partitions as input to SEACells and Super-
cells on the same subset of data.  
 
 To apply Baran et. al. metacells to scATAC data, the peak count matrices were modified 
to be used as input by mapping peaks to the nearest gene and aggregating all peaks 
within each gene to create a pseudo cell-by-gene count matrix as input. Following this 
representation, we ran Baran et. al. metacell on the CD34+ bone marrow and PBMC 
scATAC-seq datasets with default parameters.  
 
Super-cells 
Super-cells use the walktrap algorithm to partition nodes in a single-cell graph into a 
predefined number of super-cells10. Therefore, similar to SEACells, the number of 
metacells is a parameter to the Super-cells algorithm. Super-cells constructs a single-cell 
graph, placing edges between cells with similar transcriptomic profiles, and merges nodes 
which are highly connected.  Effectively, Super-cells can be viewed as fine resolution 
community-detection based clustering  
 
Super-cells was run using the default parameters specified in 
https://github.com/GfellerLab/SuperCell, with the graining level chosen to obtain the 
same number of partitions as those obtained by Baran et. al metacells, in order to 
compare methods across similar levels of granularity. We ran Super-cells on the CD34+ 
bone marrow and PBMC scRNA-seq datasets using default parameters.  
 
We applied Super-cells to CD34+ bone marrow and PBMC scATAC-seq data using the 
aggregation approach we used for running Baran et. al. approach.  
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Metrics for metacell benchmarking 

We developed a number of metrics to evaluate the quality of identified metacells and 
quantify the differences between different metacell approaches. Given that metacells 
represent distinct cell-states of the biological system under consideration, inferred 
metacells should be (i) compact i.e., low variability amongst cells that are aggregated 
together with most of the variability a result of measurement noise and (ii) well separated 
from neighboring metacells since distinct metacells should include distinct gene-gene 
covariation matrices, even if these distinctions are subtle.   
 
We used diffusion components to quantify both the compactness and separation of 
metacells. Diffusion maps have been used extensively to robustly and faithfully represent 
the phenotypic manifold using single-cell data5. Each diffusion component represents a 
key  axis of biological variance in both continuous trajectories and discrete states and 
thus provides an ideal platform to quantify metacell qualities.  
 
Compactness 
Compactness provides a measure of how homogeneous cells within a metacell are. We 
first compute diffusion components using single-cell data. For each metacell,  the 
variance in each diffusion component dimension is computed across the cells that 
constitute the metacell. The average variance across components is reported as the 
compactness. Since diffusion components are by definition orthonormal, we can compute 
the variance of each component separately. The average variance ensures that the 
homogeneity of cells that constitute the metacell are measured across all axes of 
biological variance.  
 
For a metacell, 𝑠, the compactness, 𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠(𝑠) is formally defined as follows.  

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠(𝑆) 	= 	
1
𝑑A

(

$+,

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒2344*	∈	6	(𝐷𝐶$)  

where 𝐷𝐶 ∈ 𝑅!×( where is the matrix of diffusion components computed using single-cell 
data. 
 
A high quality metacell should have a low compactness score indicating low variability or 
equivalently high homogeneity amongst the cells that constitute the metacell.  
 
Implementation details 
For scRNA-seq, diffusion components are computed based on principal components, and 
for scATAC-seq, based on the singular value decomposition following preprocessing of 
single-cell data as described in “Data preprocessing”. The number of components can be 
chosen by the Eigen gap statistic. We noted that across datasets and modalities, the 
number of diffusion components ranged from 6-8. For consistency and simplicity, we fixed 
the number of diffusion components as 10 for all evaluations.  
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Separation 
To assess whether metacells are distinct from each other, we evaluated the separation 
between neighboring metacells using diffusion components. Diffusion components are 
computed at the single-cell level as described in the “Compactness” section. For each 
metacell, diffusion embedding is determined as the average of the cells that constitute 
the metacell. Distance between the metacell and its nearest neighbor is reported as the 
separation of the metacell. Since diffusion components are a faithful  representation of 
the phenotypic manifold, a greater distance between metacells determined in diffusion 
space indicates a better separation between them.  
 
Cell-type Purity 
Cell-type purity is a measure of the consistency of cell-types amongst cells that constitute 
a metacell and was introduced to assess the quality of Super-cells10. Cell-type purity is 
computed as the proportion of cells which belong to the modal cell-type in a metacell. 
Note that purity metric is applicable and valid when the biological system under 
consideration comprises distinct cell-types with distinct functions such as PBMCs. Cell-
type purity is not a reliable metric for continuous trajectories since the different cell-types 
or compartments are merely a partitioning of the trajectory and do not necessarily 
represent well separated cell-types.  
 
Comparison of different metacell approaches using benchmarking metrics 
Benchmarking metrics were determined for each metacell for all (data modality, dataset, 
method) combinations. Cell-type purity was used to assess the quality of PBMC 
metacells. Different methods were compared using the Wilcoxon rank-sum test. Top 
performing metacell approaches should have a low score on compactness, high score on 
separation and high score on cell-type purity. 
 
We compared the metacell approaches using all metacells and separately for metacells 
in low- and high-density regions to verify that all biologically relevant states are uniformly 
assessed. We once again used diffusion components to quantify the density of cells. 
Distance to the 150th neighbor in a single-cell nearest neighbor graph has been 
demonstrated to be a reasonable approximation for the density in the high dimensional 
space55. We computed the distance to the 150th neighbor for each single-cell using 
diffusion components. Single cells with densities in the upper quartile of distances were 
designated as ‘low-density cells’, and similarly, those in the lower quartile of distances 
were designated as ‘high-density cells’. Analogously, metacells containing these low-
density cells were designated as low density metacells, and vice versa for high density 
metacells. The proportion of all metacells designated as either low or high density were 
each capped at 30% of all metacells, and these were used as low-density and high-
density regions respectively for comparisons (Supplementary Fig. 14).  
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Characterization of hematopoietic dynamics 

Palantir application for CD34+ bone marrow data 
Palantir5 was applied using default parameters using the RNA modality of CD34+ bone 
marrow Multiome data at single-cell level. Briefly, diffusion components were computed 
using the adaptive kernel and the number of informative diffusion components (n=7) were 
identified using the Eigen gap statistic. Palantir was run using these diffusion components 
using a CD34 high hematopoietic stem cells as the start cell. The terminal states for 
Erythroid, Lymphoid, Megakaryocyte, Monocytes, cDC and pDC lineages were all set 
manually. The pseudo-temporal ordering of metacells was computed as the average 
pseudo-time ordering of the constituent single-cells. 
 
For pseudo-time bins in Fig. 5D, cells were categorized into one of forty bins based on 
their Palantir pseudo-time order, which ranged from 0.0-0.82 for the erythroid lineage. We 
then created 40 equal sized bins with a bin size of 0.02 and assigned each cell to the 
respective bin. Fragments that belong to all cells in a bin were pooled and open peaks 
identified using the Poisson procedure.  
 
Accessibility trends 
Gene accessibility trends were determined using generalized additive models (GAMs)60.A 
GAM was fit for gene accessibility trend as a function of the Palantir pseudo-time for each 
gene. Gene accessibility of 𝑔 in cell 𝑖, 𝑦7$ is fit as  
 
𝑦7$	 = 𝛽8 + 𝑓(𝜏$)  
 
where 𝑖 is a cell along the relevant lineage, 𝜏$ is the Palantir pseudo-temporal ordering of 
cell 𝑖. Cubic splines are used as the smoothing functions since they are effective in 
capturing non-linear relationships. The pseudo-time is then divided into 150 equally sized 
bins and the smooth trend is derived by using the fit from the Generalized Additive Model 
to predict the accessibility of the gene at each bin. 
 
Gene ontology analysis 
Gene ontology analysis (Fig. 5E) was performed to identify enriched ontologies in genes 
with increasing or decreasing accessibility, measuring enrichment using the 
hypergeometric test. The “c7: immunologic signature” gene sets from Molecular Signature 
Database (MSigDB) (http://software.broadinstitute.org/gsea/msigdb/index.jsp) was used. 
 
Motif enrichments in genes with changing accessibility  
Predicted TF binding sites in each peak were determined using FIMO61 using default 
parameters and the cisBP v2 motif database62. Hypergeometric tests were used to 
identify the most enriched motifs in peaks with increasing or decreasing accessibility 
using all the peaks as the background. 
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SEACells application to COVID-19 samples and data integration  

COVID-19 data preprocessing 
Raw counts for single-cell RNA-seq data of peripheral blood mononuclear cells as well 
as the respective cell-type, disease severity and sample annotations were downloaded 
from https://covid19cellatlas.org44 . Cells corresponding to patients annotated as healthy 
or as critical were used, comprising a total of 96405 cells from 23 healthy patients and 
80837 cells from 17 patients. Each sample was individually processed by performing 
normalization, followed by log-transformation as described in the “Data preprocessing” 
section. The 1500 most highly variable genes were identified, and principal components 
were computed from the expression of these genes. 
 
SEACells metacells were also computed separately for each sample using approximately 
one metacell for every seventy-five single-cells following the procedure described in 
“Notes about number of metacells”. Following metacell identification, an aggregated 
metacell X gene expression matrix was computed for each sample.  
 
Batch correction 
Harmony45 was used to perform batch correction across all 40 samples on the metacell 
aggregated gene expression matrices using default parameters. Harmony 
(scanpy.external.pp.harmony_integrate) was applied to the principal components 
derived from the top 1500 highly variable genes using default parameters.  
 
Harmony was applied separately at single-cell and metacell levels for comparison 
(Supplementary Fig. 20). 
 
Mapping of SEACell metacells between individuals  
We mapped metacells across patients to determine consistency. The analysis was 
performed using the same procedure described in the “Robustness of SEACells 
algorithm” section. For each pair of patients, Harmony corrected metacell principal 
components were used for the analysis.  Diffusion components were determined using 
Harmony corrected PCs as the input and a permissive 10 diffusion components were 
used for downstream analysis. For each metacell in a patient, nearest metacell neighbors 
from the second patient were computed. Two metacells from different patients were 
considered equivalent if they were mutually in each others’ top two nearest neighbors 
(Supplementary Fig. 19A,B). We quantified the comparison for each pair of samples by  
computing the proportion of mapped metacells with matching cell-types (Supplementary 
Fig. 19C).  
 
 
Differential abundance testing of cell-states between healthy individuals and 
COVID-19 patients 
By aggregating single-cells that are most likely a result of technical noise, metacells 
provide a robust segmentation of the data. Thus, metacells computed per sample thus 
provide a granular representation for across sample comparison. Metacells are inherently 
less susceptible to batch effects compared to single-cell data and thus provide a concrete 
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baseline to infer altered cell-state abundances across different conditions 
(Supplementary Fig. 20).  
 
Generation of aggregates of metacells in COVID data 
While mapping metacells demonstrates consistency between pairs of individuals, the 
approach does not provide a path to identify similarities and differences between healthy 
individuals and COVID-19 patients. We therefore devised a procedure for seamless 
comparison across any number of patients and identify enriched and depleted metacells 
in different conditions.  
 
We re-computed SEACells metacells using the aggregated and batch corrected metacell 
count matrices for each sample. These second level metacells, or Meta2cells, therefore 
contain metacells across healthy and critical patient samples. To compute Meta2cells, we 
ran the algorithm asking for approximately one Meta2cell for every ten metacells, since 
the dataset was already highly summarized in the first round of aggregation. 
 
To summarize the cell-type annotations of cells in a constituent Meta2cell, the modal cell-
type of constituent cells was chosen if the purity was greater than 80%, otherwise the 
cell-type was denoted as ‘Mixed’.  
 
Tests for differential abundance of cell-states in COVID-19 patients 
The Meta2cells computed across healthy individual and critical patients define cell-states, 
each of which may be more strongly associated with healthy or diseased state. We 
computed the proportion of COVID-19 metacells in each Meta2cell, providing a measure 
of differential abundance of cell-state in COVID-19 patients. We then devised a 
permutation test to assess the significance of these differential abundances.  
 
First, the assignment of metacells to Meta2cell  were randomly permuted. This ensures 
that the number of metacells assigned to each Meta2cell does not change but the 
constituent metacells and their associated healthy/COVID-19 labels will be permuted 
providing a representative background distribution. Next, the proportion of metacells 
derived from COVID-19 samples assigned to each Meta2cell was computed. This 
procedure was repeated for 5000 trials of permutations, and a null distribution on COVID-
19 enriched metacell proportions was derived for each Meta2cell. The null distribution is 
then used to compute a p-value  
and a cell-state is nominated to be significantly enriched in COVID-19 is p-value < 0.1 
 
Gene signatures of enriched cell-states 
To assess the biological distinctions between healthy and diseased Meta2cell states, we 
identified the differentially expressed genes for each Meta2cell by comparing against 
other Meta2cells of the cell-type using  scanpy.tl.rank_genes_groups. 
 
Single-cell differential abundance testing 
We used the extensively used Milo15 to perform differential abundance testing at the 
single-cell level and compared the results to differential abundance testing using 
metacells. We applied MiloR to all cells from 23 healthy patients and 17 critical patients. 
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MiloR typically accepts a SingleCellExperiment object as input.  However, due to memory 
constraints in passing raw counts for all 177242 cells, we provided MiloR with the pre-
computed batch-corrected principal components, annotated with the sample of origin and 
sample condition. Default parameters as specified in the Milo vignettes were then used 
to compute neighborhoods as well as their differential abundances. All neighborhoods 
with at least 80% CD4 cell-type purity were selected for downstream analysis, yielding 
276 neighborhoods.  
 
Gene signatures identified in the SEACells metacells of interest were used to compute a 
gene signature score for each MiloR neighborhood. The gene signature score was 
computed for each cell by summing across the expression z-scores of the signature 
genes. Gene signature scores at the neighborhood level were computed by average the 
scores of single-cells that constitute the neighborhood. To assess whether the cell-states 
highlighted in Fig. 6D could be identified using differential abundance testing at single-
cell level, we compared the Milo neighborhood gene signature scores with the gene 
scores derived using SEACells Meta2cell (Supplementary Fig. 22C). 
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Figures 
 
 
 

 

Fig. 1: Overview of the SEACells algorithm for cell-state identification from single-
cell data. 
A. scRNA-seq UMAP (uniform manifold approximation and projection) of 6800 CD34+ 

hematopoietic stem and progenitor stem cells. Cells colored by cluster.  
B. Contour plots of each cluster highlight density and indicate the presence of multiple cell-states 

within each cluster. Inset, gene-gene covariance matrices reveal that each state is 
accompanied by distinct gene expression programs.  

C. Left, UMAP with megakaryocyte-erythroid progenitor (MEP) cluster highlighted. Right, MEP 
cluster is divided into three equal-sized bins based on developmental progression (top), 
reflecting imputed expression of GATA2 (known driver of MEP lineage) (bottom). 

D. Coverage plots showing GATA2 accessibility in all MEPs (top), a single MEP cell (bottom) and 
in the three bins in (C). Right, expression of GATA2 in corresponding cells. Highlighted peaks 
demonstrate how accessibility dynamics track with expression dynamics. Information about 
dynamics is masked at cluster level, whereas peak identification in single cells is too noisy.  

E. UMAP as in (A), colored by cell-type. The SEACells algorithm for metacell identification is 
initialized by waypoints (large red circles), a subset of cells sampled to uniformly cover the 
phenotypic landscape.  

F. Heatmap showing the cell-to-cell affinity matrix computed using an adaptive Gaussian kernel. 
Cells are sorted by cell-types (top annotation row). Second annotation row shows the SEACells 
initialization.  

G. Schematic of archetypal analysis. The data matrix is decomposed into two the archetype matrix 
B and embedding matrix A. Metacell membership is identified based on column-wise  maximal 
values across the matrix A. 
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H. Left, cell-cell affinity matrix from (F), but ordered by metacell assignment. Right, contour plot 
overlying UMAP from (E), highlighting the distribution of metacells; cells and contours colored 
by metacell assignment.  
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Fig. 2: SEACells metacells accurately identify cell states and outperform competing 
approaches.  
A. (i) UMAP of human PBMCs derived from RNA data of a multiome dataset, highlighting cell 

types and SEACell metacells. (ii) Distribution of metacells per cell type for the RNA modality. 
(iii) box plot of distribution of cell-type purity (frequency of the most represented cell-type in 
each metacell). High purity represents a more accurate metacell. 

B. As in (A), using ATAC data from the PBMC multiome dataset.  
C. Metacell accessibility (i) and expression (iii) of CD4 and CD8A accurately distinguishes CD8 

(green) and CD4 (orange) T-cell compartments. Metacell accessibility (ii) and expression (iv) 
of NKG7 and CD8A distinguish NK (pink) and CD8 (green) T-cells. Insets, corresponding 
single-cell accessibility is too sparse to achieve the same distinction. 

D. UMAPs of CD34+ hematopoietic stem and progenitor stem cells highlighting cell types and the 
SEACell metacells independently constructed from RNA (left) and ATAC (right) data. 
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E. Accessibility (left) and expression (right) of GATA1 (erythroid factor) and MPO (myeloid factor) 
along the Palantir pseudotime axis representing hematopoietic differentiation. Palantir was run 
on RNA aggregates using ATAC metacells and accurately recapitulates dynamics. 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2022. ; https://doi.org/10.1101/2022.04.02.486748doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.02.486748
http://creativecommons.org/licenses/by/4.0/


 40 

 

 
 
Fig. 3: SEACells empowers a gene regulatory toolkit 
A. Spearman correlation between ATAC metacell-aggregated (top) or single-cell (bottom) gene 

expression and accessibility of the most correlated peak in TAL1 (erythroid), MPO (myeloid) 
and IRF (dendritic) marker genes, computed on CD34+ multiome data. Each metacell and 
single cell is colored based on cell type.  

B. Accessibility landscape of erythroid factor GATA2 in hematopoietic stem cells (HSC), myeloid-
erythroid progenitors (MEP) and erythroid cells (Ery) using NFR (top) or all ATAC (bottom) 
fragments. Restricting chromatin accessibility analysis to NFR fragments improves peak 
resolution and the association of regulatory elements with genes. Arcs are colored by peak-
gene Spearman correlation (color values between 0 and 1 at right), determined using SEACells 
ATAC metacells. Highlighted peaks correlate significantly with GATA2 expression. 
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C. Relationships between metacell-aggregated (top) and single-cell (bottom) gene expression 
and ATAC gene scores for TAL1, MPO and IRF. Spearman correlations (Corr) computed using 
the CD34+ multiome data. Metacell gene scores were computed by aggregating peaks that 
correlate significantly with expression (e.g. Fig. 3B). Gene scores for single-cell data were 
computed using ArchR. 

D. RNA and ATAC UMAPs of the T-cell subset from the PBMC multiome dataset. 
E UMAPs derived from chromVAR scores computed using single cells or metacell aggregates. 

All peaks were used for chromVAR analysis. Metacell chromVAR scores accurately 
recapitulate differences between T-cell subsets, whereas single-cell chromVAR scores fail to 
distinguish CD4 and CD8 T-cells.  

F. chromVAR score distributions can be used to identify key TFs that define different T-cell 
compartments. Each dot represents a TF. X-axis shows the difference between SEACells 
metacell chromVAR scores between the two CD8 compartments. Y-axis shows the difference 
between SEACells metacell chromVAR scores between the two CD4 compartments 
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Fig. 4: SEACells outperforms existing methods in cell-state representation and 
correlation of expression and accessibility 

A. ATAC modality UMAPs of CD34+ bone marrow (as in Fig. 2D), colored by metacell aggregates 
identified by the specified method or colored by cell density. Dots, cells; circles, metacells. 

B. Pearson correlation between metacell-aggregated gene expression and accessibility of the 
most correlated peak in TAL1 (erythroid gene), MPO (myeloid gene) and IRF (dendritic gene) 
using the CD34+ bone marrow ATAC metacells called by MetaCell (top) or Super-cells 
(bottom). 

C. Top: Metacell compactness (average diffusion component standard deviation; Methods) 
measured in the ATAC modality of CD34+ bone marrow multiome data. A lower score indicates 
more compact metacells. Bottom: Metacell separation (distance between nearest metacell 
neighbor in diffusion space; Methods) measured in the ATAC modality of CD34+ bone marrow 
multiome data. Greater separation indicates better performance. Comparisons were carried 
out on all metacells, or metacells in low-density or high-density regions. Wilcoxon rank-sum  
test; ns: P > 0.05, * 0.01 < P < 0.05, ** 0.001 < P < 0.01, *** 0.0001 < P < 0.0001, **** P < 
0.0001. 
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Fig 5: Charting chromatin accessibility of hematopoietic differentiation using 
SEACells metacells 

A. Differentiation along a particular lineage involves upregulation of lineage-defining genes and 
downregulation of stem genes or genes that define other lineages. Left, RNA modality UMAP 
of CD34+ bone marrow, with erythroid lineage cells highlighted. Middle, UMAPs colored by 
expression of erythroid gene KLF1 and stem gene LPCAT2, which are upregulated and 
downregulated, respectively, during erythroid differentiation. Right, accessibility landscapes of 
KLF1 (top) and LPCAT2 (bottom), aggregated by cell type, during erythroid differentiation.  

B. Distribution of gene accessibility for all highly regulated genes, for hematopoietic stem cells 
(HSC) and erythroid cells (Ery). Unimodal gene accessibility in HSCs is reconfigured to a 
bimodal distribution during erythroid differentiation.  

C. Cartoon representing observed peak dynamics: Bimodal distribution results from a subset of 
genes losing open peaks (top) and another subset gaining open peaks (bottom).  

D. Chromatin accessibility distribution of highly regulated genes in all metacells along the 
erythroid lineage (left, middle). Each line represents a meta-cell, colored by its stage (top) and 
pseudotime (bottom). The emergence of bimodality is gradual and continuous. Right, signal is 
poorly defined when using pseudotime bins rather than metacells.  

E. Accessibility dynamics of genes that gain (orange) and lose (blue) open peaks during 
differentiation from HSCs to erythroid cells. Trajectory computed using Palantir and each line 
represents a fit gene trend. Pseudotime of each respective meta-cell plotted on the bottom. 
Middle, results of gene ontology analysis using immune cell gene signatures. Opening peaks 
are enriched for GATA motifs, and closed peaks are enriched for PU.1, master regulators of 
erythroid and myeloid fates, respectively.  
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Fig 6: SEACells metacells identify dysregulated states in COVID-19 patients 
A. UMAPs showing PBMC profiles and respective metacells for a subset of healthy patients and 

critical COVID-19 patients44. Dots, cells; circles, metacells. Cells and metacells are colored by 
cell type. 

B. UMAPs showing metacells from different patients integrated using Harmony45. Metacells are 
colored by cell type (left), sample (top right) or disease status (bottom right). 

C. Top: Differential abundance of SEACells metacell states in COVID-19 patients compared to 
healthy individuals, computed using a permutation test (Methods). Significantly differential 
metacells are plotted as enlarged circles. Bottom: difference in proportion of cells derived from 
COVID-19 patients compared to healthy individuals, analyzed at the cell-type level.  

D. (i) UMAP of metacell aggregates (meta2cells). Right: zoom-in on CD4 T-cell metacells. Three 
metacells enriched in COVID-19 patients compared to healthy donors are highlighted. (ii) Same 
as (i), with metacells colored by time since disease onset. (iii) Same as (i), with metacells 
colored by proportion of COVID-19 cells. (iv) Expression patterns of T-cell activation and 
differentiation enriched in highlighted CD4 T-cell metacells. 
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