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Summary 

Key mechanisms underlying chronic pain occur within the neural circuitry of the dorsal horn. Recent 

genome-wide association studies (GWAS) have identified genetic variants associated with the 

predisposition to chronic pain. However, most of these variants lie in regulatory non-coding regions that 

have so far not been linked to spinal cord function. Here, we take a multi-species approach to determine 

whether chronic pain variants impact regulatory elements of dorsal horn neurons. We first built a more 

comprehensive single cell atlas; filling gaps by generating a high-quality Rhesus macaque atlas and 

integrating it with human and mouse. With cellular-resolution spatial transcriptomics, we mapped the 

laminar distributions of the resulting species-conserved neuron subtypes, uncovering an unexpected 

organization. Lastly, we generated a mouse single-nucleus open chromatin atlas to partition the heritability 

of chronic pain traits. From this, we identified strong, selective associations between specific, conserved 

neuron subtypes and major forms of chronic pain. 
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Introduction 

The spinal cord dorsal horn is the gateway for somatosensory integration and transmission of normal 

sensory processing as well as for maladaptive states such as chronic pain1,2.  It is organized into 

dorsoventral laminae (I-VI); that have roles defined in part by termination patterns of functionally distinct 

class(es) of primary sensory neurons3–9. The superficial laminae (I-II) receive input from sensory neurons 

that convey temperature, itch, crude touch and pain while the deeper laminae (III-V) receive input from 

sensory neurons that convey crude touch, and proprioception. The deeper laminae have also been 

implicated in sensorimotor transformations. Projection neurons reside in laminae I, and III-V and innervate 

many brain regions including the thalamus, parabrachial nucleus, dorsal column nuclei and cerebellum.  

Until recent single-cell transcriptomic studies of mouse and adult human spinal cord, interneurons 

were assigned to cell type classifications and functionally studied based on the expression of one or two 

gene markers10–15. Though these single-cell datasets provide a much richer understanding of the molecular 

composition and organization of the dorsal horn, barriers to bridging rodent models and human pain 

disorders still exist. For example, transcriptomic analysis from human donors is complicated by factors such 

as their limited availability, control of experimental conditions, and reduced cell viability. As for mouse, the 

evolutionary distance from humans can result in significant molecular, physiological, and anatomical 

differences. Inclusion of non-human primates, which are evolutionarily closer to humans and hence 

valuable translational models, overcomes many of these limitations.  

In parallel with the advances in the molecular characterizations of cell types, recent genome-wide 

association studies (GWAS) have identified dozens of loci confidently associated with the genetic 

predisposition to chronic pain16. Prior research in both human and animal models suggests that the genetic 

risk for chronic pain impacts the function of both primary sensory and dorsal horn neurons12,17,18. Previous 

studies have established some links between chronic pain-associated single-nucleotide polymorphisms 

(SNPs, single-nucleotide variants with at least 1% prevalence of each allele), and the SNP proximity to 

genes most expressed in specific cell types17,18. However, most of the genetic risk burden for chronic pain 

is from several common, small effect-size variants residing in non-coding genomic regions. Many of these 

variants likely disrupt the function of distal, cell-type-specific cis-regulatory enhancers19–22, which are 

abundant in open chromatin and can lie far away from the genes they regulate21,22. This genetic architecture 
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is common for polygenic traits, including those with a neural basis23,24. Without direct measures of cell-type-

specific regulatory regions, genetic analyses are limited to annotations via marker genes, bulk epigenomic 

measures, or expression quantitative trait loci (eQTLs), which are loci associated with changes in gene 

expression, an indirect measure of gene regulation. Notably, two recent analyses based on gene 

expression and eQTLs of chronic pain GWAS found no significant enrichment in bulk spinal cord RNA-

seq25,26. 

Thus, to more fully account for the spinal cord’s potential genetic risk of chronic pain disorders, a 

detailed epigenomic resource that provides functional annotations at the single-cell level is required.  Such 

data can then be used to link human genetics to species-conserved cell types studied in rodent and primate 

pain models. In this work, we provide the first comprehensive connection between species-conserved 

neuron subtypes of the dorsal horn using a single nucleus epigenomic dataset we developed, and their 

genetic risk for chronic pain.  

First, we generated a single-nucleus transcriptomic atlas of the young-adult Rhesus macaque 

dorsal horn and compared gene expression profiles to the publicly available mouse and human spinal cord 

datasets. We found high conservation of macaque cell type identities across all species, but less so for 

individual marker genes, leading us to identify new marker genes that better reflect conserved expression. 

Based on these conserved markers, we introduce a new nomenclature for these cell types that reflects 

better harmonization across datasets and species. We also compared the laminar patterns of these cell 

types in macaque, and mouse using two single-cell resolution assays, RNAscope and Xenium spatial 

transcriptomics, respectively27,28. Our analysis revealed an interesting relationship between the molecular 

uniqueness of a neuronal subtype and its laminar location, and it resolved a major discrepancy about the 

location and identity of an elusive cell type, Exc-PBX3/PDYN. Despite comparing disparate species and 

using significantly different technologies, we found highly consistent laminar distributions, across datasets 

providing multi-modal evidence of cross-species conservation. 

We then assessed the conserved neuron subtypes for human chronic pain genetic risk using the 

mouse open chromatin dataset, with a particular focus on distal regulatory regions such as enhancers, 

which are found within open, accessible chromatin. A single cell atlas of open chromatin in the mouse 

dorsal horn was generated using the single-nucleus Assay for Transposase Accessible Chromatin 
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(snATAC-seq)19,20. We labeled the nuclei using snRNA-seq integration, and then robustly mapped mouse 

open chromatin to human coordinates. Using a statistical method for partitioning heritability of traits by 

functional region, we show29 for the first time that the open chromatin regions of specific conserved neuron 

subtypes are indeed significantly enriched for human genetic variants linked to multiple chronic pain 

phenotypes. We also identified two genetic variants from the chronic pain GWAS that are particularly 

compelling because they intersect with open chromatin peaks of specific neuron-subtypes, indicating 

potential disruption of enhancer function by these variants in chronic pain disorders. 

In summary, we provide a set of data resources and a framework for decoding the logic of dorsal 

horn somatosensory circuits in animal models with greater generalizability to human genetics, physiology, 

and disease. These resources include a Rhesus macaque transcriptomic atlas, a new cell type framework 

of cell conservation, a mouse single cell open chromatin dataset, and a mouse single cell spatial dataset. 

We leveraged these new resources to provide the highest resolution analysis to-date of evolutionary 

conservation, spatial organization, open chromatin, and genetic risk of the dorsal spinal cord. The work will 

enable the field to make further discoveries about dorsal horn anatomy and function with greater precision, 

cross-species generalizability, and medical translatability. 

 

Results 

Major Cell Types of the Macaque Dorsal Horn  

We first sought to build a more detailed cellular map of the primate dorsal horn that would also fill gaps in 

the human map to further facilitate the translation from rodents and expand the resources of an important 

translational model system. We thus performed single-nuclear RNA sequencing (snRNA-seq) on lumbar 

tissue (L4-5) harvested from young adult (3-year-old) male Rhesus macaques (n=3) using the 10X 

Genomics Chromium platform. For the isolation of the dorsal horn nuclei, the spinal grey matter of each 

animal was dissected, transected at the central canal, and mechanically dissociated (Figure 1A). Deep 

sequencing of the single nucleus libraries produced an average of ~50M reads per animal. To optimize 

alignment of the reads to the macaque genome (rheMac10), we employed a custom annotation method 

(Methods) that mapped 91% of the reads to the genome29. After quality control filtering, 12,243 nuclei were 

retained for further analyses. The three biological replicates were then co-normalized to remove cell-specific 
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read sampling biases using Scran and subsequently integrated and batch-corrected with Scanorama 

(Figure S1B)30,31. Nuclei were assigned to their major cell type based on the expression of well-established 

marker genes. An average of 1,720 genes and 3,700 UMIs were detected per cell type (Figures 1B-D and 

S1A,C)11. The neuronal marker, RNA Binding Fox-1 Homolog 3 (RBFOX3), identified 2,698 nuclei, 

comprising ~22% of the total nuclei (Figure 1C-D).  The largest cell class was oligodendrocytes (39%, 

MBP, Figure 1C-D), which could be further sub-clustered into two groups based on the expression of either 

quinoid dihydropteridine reductase (Oligo 1, QDPR), or Dpy-19 like C-mannosyltransferase 1 (DPY19L1) 

together with S100 calcium binding protein B (S100B) (Figure 1C-D).  Astrocytes were also sub-clustered 

into two groups based on high (Astrocyte 1) or low (Astrocyte 2) expression of Glial fibrillary acidic protein 

(GFAP). Oligodendrocyte precursor cells, microglia, meninges, ependymal cells and Schwann cells all 

make up smaller individual clusters (Figure 1C-D). 

Transcriptomically Defined Macaque Neuronal Clusters 

We next sub-clustered the neuronal nuclei into 18 distinct clusters that could be broadly characterized as 

being either excitatory or inhibitory based on the  known gene markers: vesicular glutamate transporter 2 

(SLC17A6) for excitatory and vesicular inhibitory transporter (SLC32A1), as well as GABA synthesizing 

genes i.e. glutamate decarboxylase 1 and 2 (GAD1 and GAD2) for inhibitory (Figure S2A)32. Interestingly, 

two of these clusters were unusual in that they each contain both excitatory and inhibitory nuclei, but 

otherwise have indistinguishable gene expression profiles (Figure S2A).  This is characteristic of clusters 

previously identified to be a part of the intermediate and ventral regions of the mouse spinal cord 

(MidVent)11. Because of the difficulty in further refining cell identities within this cluster, we exclude these 

cells from downstream snRNA-seq analysis but consider their spatial distributions later on (see Results: 

Exc-PBX3/PDYN is a distinct dorsal horn cell type, while Spp1 neurons previously called MidVent 

are prevalent in the deep dorsal horn).  

Our final dataset, excluding the Spp1 domain, consists of 1,954 nuclei, with 64% classified as 

excitatory and 36% as inhibitory. Note, we further sub-clustered two inhibitory clusters (Inh-SORCS1/Inh-

PDZD2 and Inh-MEF2C/Inh-NXPH1) based on interesting discrepancies we observed within these neuron 

subtypes between mouse and macaque (see Results: Cross-Species Comparisons, Figure S2C). Thus, 

from these nuclei, we derived 18 distinct cell types, 11 excitatory and 7 inhibitory (Figure 1E). Each neuron 
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cluster has an average of 139 nuclei with a range of 49 to 222 nuclei per cluster, and each nucleus with an 

average 3,196 distinct genes detected and 8,010 UMIs (Figure 1F). Relationships between the 18 

individual clusters were visualized using the Ward’s hierarchical clustering method (Figures S2B). To 

provide a unified nomenclature for the dorsal horn neuron subtypes that apply to mammals more broadly, 

we assigned and hereafter use new names that are based on conserved marker genes we identified from 

our cross-species integration of macaque, mouse, and human single cell datasets (described in more detail 

later) (Table 1). 

 

Macaque and Human Laminar Distribution of Marker Genes   

The functional organization of the dorsal horn is to a degree imparted by its laminar organization.  To 

determine how the transcriptomically-defined macaque clusters are distributed within the Rexed laminae of 

the lumbar dorsal horn, we identified macaque-specific marker genes that we then mapped in the dorsal 

horn using RNAscope® (Figure 2A). For some clusters, a combination of marker genes was used to achieve 

sufficient representation of the nuclei that belong to the cluster. RNAscope® fluorescence in situ 

hybridization was performed with these combinations of marker genes on L4-5 spinal cord slices taken from 

both male and female macaques (Figures 2B-F, S4, S5)27.  

Nearly all cluster markers showed expression patterns that were significantly enriched in either the 

superficial (I-II) or deep dorsal horn (III-V) laminae (Figures 2B-F, S4-5). For example, the Exc-NMUR2 

cluster markers are located almost exclusively in the superficial laminae (Figure 2B) while markers for Exc-

MAF are enriched in the deep dorsal horn (Figure 2C). The Inh-SORCS1/Inh-PDZD2 cluster expresses 

Neuropeptide Y (NPY) and RREB1, whereas the Inh-NPY cluster only expresses NPY.  We therefore 

defined the Inh-NPY cluster as positive for NPY and negative for RREB1 expression (Figure 2D). Overall, 

inhibitory populations had a significant association with either superficial or deep laminae with the exception 

of Inh-PDYN (Figures 2E, S5). No difference was observed for cluster markers with respect to sex. 

We also examined the distribution of neuropeptides in the dorsal horn of macaques and humans. 

The dorsal horn is rich in neuropeptides that are involved in many aspects of somatosensory processing 

including NPY, CCK, GRP and TAC1. The laminar distribution of genes encoding neuropeptides has been 

well characterized in mice, but whether this laminar distribution is conserved in macaques and humans is 
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not known. Using RNAscope® we found a high conservation of the overall laminar distributions of 

neuropeptide genes between macaques and humans that are similar to those reported for mice (Figure 

S6, Tables S1-2).  We also observed co-expression of certain neuropeptide genes such as NMU and TAC3 

(Tac2 in mice) in lamina II, which has also been reported for mice.  One exception we observed was a 

higher percentage of CCK expressing cells in the superficial laminae of humans compared to what we 

observed in macaques and what has been published for mice33–35. 

 

Cross-species Comparisons of Macaque, Human and Mouse Dorsal Horn Neuronal Clusters  

Two additional snRNA-seq atlases of the spinal cord were recently made publicly available: (1) a meta-

analysis that unified six datasets from the mouse12, and (2) nuclei from human donors17. To determine the 

extent of molecular and cellular conservation between species, we compared the gene expression and cell 

types in our macaque dataset to the adult human dataset and the adult subset of the mouse atlas. First, we 

performed a focused comparison between macaque and mouse datasets. Details are discussed in 

Methods. Briefly, each neuronal nucleus from the macaque was compared to each nucleus from the mouse 

based on the top 100 marker genes from the mouse meta-analysis (Figure S2C-D, Table S3). Interestingly, 

the macaque Inh-SORCS1/Inh-PDZD2 and Inh-MEF2C/Inh-NXPH1 clusters show a poor correspondence 

to the mouse clusters (described in more detail below). Upon closer examination, however, we observed 

that macaque UMAPs of orthologous genes for two of the mouse family markers, RORB and ADAMTS5, 

show an interesting separation within the macaque clusters (Figure S2C), and that further sub-clustering 

revealed a strong correlation of Inh-SORCS1 and Inh-MEF2C with the mouse Rorb family and of Inh-

PDZD2 and Inh-NXPH1 with the Adamts5 family (Figure S2C-D). For this reason, we separated them into 

four independent but closely related cell types.  

We next integrated all three datasets, macaque, human and mouse, beyond the cluster level to 

visualize the similarity of single nuclei. The datasets were normalized and integrated simultaneously using 

Seurat and were found to be highly overlapping, with minimal experimental and species-specific differences 

(Figure 3A, left: macaque, middle: human, right: mouse). Regardless of species, cells expected to be 

of the same type based on our macaque-mouse comparison and a previous comparison between human 

and mouse, were aligned in the UMAP, suggesting that cell type signatures drive the visualization and 
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clustering. This is more formally supported by silhouette scores for each cell type (Figure S7) and label 

transfer, which uses the high-dimensional relationships of nearest neighbors to determine identity. Label 

transfer between mouse and human reproduced the same cell type mapping previously identified by Yadav 

et al. (Figure S8, compared to Figure 5C of 17). Additionally, per-cell label transfer results are shown from 

macaque to mouse and to human in Figure S9, and subtype homologies are also summarized in Table 

S4. Nearly all mouse and human cell types were consistently mapped to a single macaque cell type, with 

the exceptions of Exc-TAC3 and Exc-PBX3. Exc-TAC3 is a smaller cluster closely related to Exc-NMU, the 

latter of which did label several mouse and human cell types. Mouse cells from Excit.20 and Excit.30 

mapped to Exc-PBX3, but none of the human cells mapped to Exc-PBX3. However, because we used the 

subsets of the human and mouse datasets that were labeled as dorsal horn, and based on our own 

macaque clustering showing that Exc-PBX3 is closely related to Mid and Ventral cells, we theorized that 

Exc-PBX3 might better match to a cell type labeled within what others have called MidVent. We thus re-

integrated mouse and macaque datasets but this time included all mouse neuron cell types, and found that 

Exc-PBX3 is closely aligned with the cell population Excit.25 from mouse (Figure S10), a MidVent cluster 

homologous to the Ex-M-2 population in humans17. Overall, our results strongly support the delineation and 

integration of robust and consistent neuronal cell populations across all three species. 

 To facilitate reference to and study of these integrated cross species neuronal subtypes, we sought 

to identify marker genes that demonstrate consistent cross-species expression levels for each cell type. 

First, we identified per-species differentially expressed genes using Seurat (Tables S5-7) and differentially 

expressed genes from the integrated dataset (Table S8) to guide the choice of candidate markers. We next 

selected two to three genes per cell type that would separate neuron subtypes well based on visualization 

(Figures 3B, S11). To quantify this separability, we trained decision trees (Figures 3C, S13) to optimally 

distinguish cell types with just the selected genes. We trained our models using 80% of the macaque data 

(training set) and evaluated performance on the heldout 20% of macaque data as well as the full data for 

human and mouse (test sets). We performed this analysis on scaled, imputed36 RNA expression data 

because this better reflects dataset-independent relative differences and better approximates gene 

expression across cells. As expected, test performance was highest for macaque (Figure 3D), yet we found 

overall strong model performance across all species for identifying the target cell type (Tables S9-12). 
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Given our quantitative findings, we named the cell types based on these cross-species marker genes 

(Table 1), provided nicknames for them based on the first most specific marker gene, and created 

visualizations of marker gene expression in macaque (Figure 3B), human and mouse (Figure S11). This 

nomenclature is therefore used throughout the paper. 

 

Species-specific differences in Gene Expression   

We then used the atlas to analyze the cell type expression of several marker genes commonly used to label 

dorsal horn neuron populations for functional studies in mice. Some of these genes had low absolute 

expression in multiple datasets, which would then be artificially inflated by imputation. Thus, we visualized 

un-imputed expression in our macaque dataset, versus in the adult mouse11,12 and human datasets17, 

grouping cells based on our conserved cell type annotations (Figure S12).  In this comparison again, most, 

but not all genes show species conserved cell type enrichment (see Discussion). 

 

Identification and laminar distribution of conserved dorsal horn neurons in highly multiplexed in 

situ spatial transcriptomics of mouse spinal cord 

We next examined the laminar distributions of the integrated neuron subtypes we identified in mouse dorsal 

horn in situ and compared it to what we observed in macaque.  We used the Xenium in situ spatial 

transcriptomics assay, which sensitively measures the presence and position of hundreds of distinct genes 

in a single experiment at single-cell resolution. To test if we could recover the conserved neuronal subtypes 

in Xenium, we performed a simulation using the mouse snRNA-seq dataset with the 248 genes available 

in the mouse brain panel28. With the high per-gene sensitivity (simulated by imputation36) that is likely 

achievable with Xenium, we were able to distinguish the conserved neuronal subtypes (Figure S14). We 

next assayed adult mouse spinal cord slices with the mouse brain panel. Cell labeling was performed using 

the software Seurat37, taking a spatial-agnostic approach. We first integrated the full Xenium dataset with 

the full adult mouse snRNA-seq dataset, which yielded distinct, identifiable glial clusters and probable 

neuronal clusters (Figure S14A-B). The resulting representation of cell types after labeling is shown in 

Figure 4A. Figure 4B shows a representative slice with the cells labeled as in Figure 3A. The location of 

specific cell types faithfully match expected locations based on prior anatomical studies: for example, 
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Schwann cells lie in putative peripheral nerves, leptomeningeal cells line the spinal cord edge, 

oligodendrocytes and OPCs are most abundant in white matter, while neurons are limited to grey matter 

with the highest density in the dorsal horn. 

We then integrated the putative neuron clusters with the species-conserved dorsal horn neuron 

subtypes identified with snRNA-seq. Most clusters aligned (Figure S14C-D), but some putative neuronal 

clusters lacked a match, cells likely belonging to the population referred to as MidVent. Integrating the 

datasets after removing this large cell group led to a clear correspondence between each of the Xenium 

identified clusters and the conserved dorsal horn neurons labeled in the Sathyamurthy snRNA-seq dataset 

(Figure S14E-F). One exception to this was a lack of separation of the closely related subtypes, Inh-

SORCS1 and Inh-PDZD2, even if they were clustered at higher resolutions. The Xenium neurons assigned 

to conserved neuron subtypes are shown in Figure 4C. Neuron subtype counts are shown in Figure 4E, 

along with glial cell counts (Figure S16A) and the numbers of genes and transcripts for both neurons and 

glia (Figure S16B-E). Although several conserved marker genes from Figure 3D were absent from the 

Xenium panel, several were present: Pdyn, Plch1, Nts, Sntb1, Pdzd2, Rorb, and Sdk2; and all showed 

specificity for their corresponding neuron subtypes (Figure S21). Additionally, while parvalbumin (PVALB) 

was not detected in the snRNA-seq datasets we analyzed, it was clearly expressed in the Xenium dataset 

by the Inh-CACNA2D3 subtype (Figure S18A), and less robustly by Inh-SORCS1, Inh-PDZD2, and Exc-

MAF subtypes. PVALB inhibitory neurons are critical to the development and maintenance of mechanical 

hypersensitivity after injury, and their more precise assignment to particular inhibitory cell types will facilitate 

mechanistic studies38,39. The expression of PVALB in the Exc-MAF subtype is consistent with previous 

studies showing overlap of this gene with Cck38.    

We then examined the laminar patterns of the Xenium-derived dorsal horn neurons labeled as 

species-conserved neuron subtypes. As shown in Figure 4D, each subtype shows a restricted laminar 

distribution. Exc-MAF cells are in lamina III, whereas Exc-NMUR2 cells reside in lamina II. We hypothesized 

that with a formal analysis, each labeled subtype in the mouse would show similar superficial or deep dorsal 

horn distributions consistent with RNAscope analysis in macaque (see Figures 2B-F, S4-5). We thus 

computed a per-cell normalized measure of laminar position relative to other neurons in each of the sixteen 
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dorsal horn slices (z-score). As seen in Figure 4F, most neuron subtypes are in either the superficial or 

deep dorsal horn. Both the macaque RNAscope and mouse Xenium assays show the same significant 

patterns: Exc-BNC2, Exc-NMUR2, Exc-SKORS2, Exc-NELL2, and Inh-NXPH1 are all superficial; while 

Exc-MAF, Exc-NTS, Inh-CACNA2D3, and Inh-SORCS1/Inh-PDZD2 are deep. For the remaining subtypes, 

one of the two methods showed non-significant enrichment, but the trends were consistent with each other.  

 Finally, data obtained with Xenium from a second mouse again showed separable neuron subtypes 

(Figure S18A-B, D), that had similar laminar distributions and PVALB was again enriched in the Inh-

CACNA2D3 subtype (Figure S18C). 

Exc-PBX3/PDYN is a distinct dorsal horn cell type, while Spp1 neurons previously called MidVent 

are prevalent in the deep dorsal horn 

One unexpected observation from our spatial transcriptomics analysis is that the neuron subtypes were all 

located within laminae I-III (Figure 4B), We therefore went back to the large population of neurons that 

were previously not matched and were not clearly distinguishable as discrete clusters, initially assigned as 

MidVent (Figure S19A-B). To further characterize these neurons in the Xenium mouse in situ dataset, we 

performed clustering of the neurons not assigned to the conserved neuron subtypes (Figure S19C-D). We 

integrated them with the MidVent clusters of the adult mouse snRNA-seq. Consistent with our previous 

analyses, both Xenium clustering and Xenium-snRNA co-clustering yielded poor separation (Figure S20A). 

Label transfer between snRNA-seq and Xenium also failed (not shown; most cells erroneously labeled as 

motoneurons). Similar to the analysis in Figure 4F, we then tested whether these closely related Xenium 

sub-clusters show specific laminar patterns (Figure S20B). From this analysis, we observe that several of 

these sub-clusters are located dorsal to the central canal. Interestingly, one of these subclusters, xen.9. is 

found in the superficial dorsal horn and is well-aligned with Excit.25 previously designated in the mouse 

RNA-seq data (FigS19C-D) and Exc-PBX3/PDYN in macaque. It was previously shown to be homologous 

to Ex-M-2 in humans17.  

We then further differentiated xen.9 (putative Exc-PBX3/PDYN) and the remaining “MidVent” 

neurons by finding their top marker genes available in Xenium. We found the top marker for “MidVent” is 

Spp1 (Figure 5C). Because these cells are prevalent not just ventrally but also within the dorsal horn, we 
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re-named them the Spp1 family. Second, we confirmed that Pdyn was a highly specific marker for only sub-

cluster xen.9 (Figure 5C-E), and not expressed in Spp1 or excitatory dorsal horn subtypes. Given the 

congruence with prior snRNA-seq findings (Figure 2, see also Ex-M-2 expression of PDYN in Yadav et. al. 

Figure 3D), and the prior literature about excitatory prodynorphinergic neurons40,41, we named xen.9 the 

Exc-PBX3/PDYN cell type. A single-cell visualization of all neuron subtypes of the dorsal horn is depicted 

in (Figure 5A-B).  

Single-nucleus Open Chromatin of Dorsal Horn Conserved Neuron Subtypes 

Cell-type-specific gene expression patterns are driven by the activity of cis-regulatory elements such as 

enhancers. Previous studies of common, polygenic neuronal diseases have found that genetic variants 

found through genome-wide association studies (GWAS) are often linked to cell-type-specific cis-regulatory 

elements42–44. To investigate the relationship between chronic pain and dorsal horn regulatory elements, 

we harvested single nuclei from lumbar segments L3-5 of two pools of 10 mice each (20 total, 5 Female/5 

Male per pool, 7-8 weeks old), and performed single-nucleus assay for transposase-accessible chromatin 

sequencing (snATAC-seq, Figure 6A). Following sequencing, we pre-processed this dataset using the 

software ArchR45, removing nuclei that did not pass metrics for sufficiently high TSS enrichment (3.5) or 

unique fragments (log10(3.5)); we also removed potential doublets based on ArchR’s simulated doublet 

method. Overall, the data are of high quality based on several metrics such as TSS enrichment, 

nucleosome periodicity, number of fragments (Figures S22-24), and successful sample-wise batch 

correction was evident (Figure S25). The vast majority of nuclei have a TSS fold enrichment > 10, indicating 

high experimental quality46. We next performed un-biased clustering of cells, and then we applied ATAC-

RNA integration, which compares the accessibility at, and surrounding, gene transcription start sites as a 

proxy for gene expression in snATAC-seq, with the actual gene expression levels measured from nuclei in 

the snRNA-seq reference dataset. Assigning snATAC-seq nuclei to the most similar snRNA-seq nuclei 

provided a labeling of neurons versus glial cell classes, which we verified by also visualizing the gene 

scores for established marker genes of cell classes (Table S13). We identified 74,437 glial cells and 19,073 

neuronal cells in total (Figure 6B). We then sub-clustered the snATAC-seq neurons and again used ATAC-

RNA integration to label them with conserved subtype labels. RNA-ATAC co-embedding of neurons is 
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shown in Figure S26. Integration yielded distinct, well-separated neuron subtypes, recapitulating the 

separation seen in snRNA-seq data (Figure 6C), with the exception that Exc-PBX3 and Exc-NTS were not 

found in sufficient numbers for downstream analysis. With the nuclei now labeled, we generated cell-type-

specific open chromatin peaks for glia classes and for species-conserved neuron subtypes. 

 Chromatin accessibility and cis-regulatory activity are driven by the binding of transcription factors 

(TFs) with specific affinity for unique combinations of DNA motifs. Previous snRNA-seq studies found that 

dorsal horn neuron subtypes express characteristic TFs17, but were not able to connect them to their motifs 

without open chromatin data. Given our joint ATAC-RNA profiles of dorsal horn subtypes, we investigated 

whether TFs are specific in both gene expression and motif enrichment among the dorsal horn subtypes. 

We measured motif enrichment using the chromVAR software within ArchR. Higher deviation scores are a 

measure of higher subtype specificity of motif appearance. Given that families of TFs have similar motifs, 

it can be difficult to robustly link specific TF genes with distinct motifs. We thus calculated the correlation 

between gene expression of TFs (from the RNA integration) with their putative motif deviations; a higher 

correlation indicates a higher likelihood of a true biological correspondence between a TF-motif pair. We 

defined positive TFs regulators as having a maximal motif deviation above the 75th percentile (higher 

specificity) as well as correlation > 0.5 of per-nucleus motif enrichment with expression level of the TF gene 

(Figure 6D). As shown in Figure 6E, we found expected regulators such as MAF and RORA for the Exc-

MAF cells. We also found a novel potential regulator, NR3C1 (the glucocorticoid receptor) for Exc-LMO3 

and Exc-SKOR2. Given the limitations of RNA expression imputed via RNA-ATAC integration, we also 

identified candidates with very high deviations (above 95th percentile but with a relaxed gene correlation 

condition of > 0, Figure S27) to nominate candidate motifs for further investigation as potential drivers of 

neuron identity. For example, we found that ASCL2, MYOD1, and several TAL1 motifs were specific to Inh-

CACNA2D3. 

Genetic risk variants for chronic pain are enriched in mouse neuron subtype-specific open 

chromatin 

Recent chronic pain GWAS have revealed several candidate genetic risk loci for general chronic pain as 

well as localized conditions: head, face, neck and shoulder, back, hip, stomach and abdominal, and knee. 
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For other common polygenic diseases, risk variants tend to fall within non-coding regions of the genome, 

and we hypothesized this is the case for chronic pain. As an initial estimate, we calculated the proportion 

of genome-wide significant SNPS falling within coding or non-coding regions. We found that 15 of 389 (4%, 

Kupari et. al.) and 248 of 4,094 (6%, Khoury et. al.) were in exons, while the remaining 96% and 94%, 

respectively, of variants fell within non-coding regions. 

We then sought out cases when potentially causal SNPs from the chronic pain GWAS overlapped 

with subtype-specific open chromatin. First, we mapped GWAS SNP and open chromatin coordinates to 

the same human coordinates (hg38)47,48 (56% successfully mapped). We limited our search to the most 

significant loci from the GWAS, in particular those belonging to a credible set of potentially causal SNPs 

based on Bayesian fine-mapping estimates (LocusZoom49). We found notable SNPs near two genes of 

interest, LANCL1 and FOXP2 (Figure 6F-I). On human chromosome 2, we found the SNP rs17771664 (an 

expression quantitative trait locus for LANCL1), from 18, “Number of Pain Sites”, which fell within a peak 

shared by Exc-TAC3, Exc-SKOR2, and Exc-MAF (Figure 6F). We observed that this SNP is among the 

most significant of its LD block (Figure S28A) and belongs to the credible set of LocusZoom SNPs that 

were statistically calculated as likely causal (Figure S28B). As shown in Figure 6G, a peak belonging to 

Exc-NMU/MAFA/SNTB1 is also nearby this SNP of interest. Similarly, on human chromosome 7, we found 

the SNP rs12705986 nearby the gene FOXP2, also satisfying our criteria for LD and belonging to the fine-

mapping credible set (Figure S28C-D) and falling within a peak specific to Inh-PDYN (Figure 7H). As seen 

in Figure 7I, a peak specific to Inh-MEF2C is also nearby this SNP.  These SNPs are only a couple 

examples of the many that exist within this dataset. Because these data show links to open chromatin of 

specific dorsal horn neuron subtypes, we hypothesized that our open chromatin dataset is enriched for 

chronic pain variants on a larger scale, and thus establishes a link between chronic pain genetics and the 

spinal cord that has previously been missed in studies focused on marker genes.  

First, as a comparison, we investigated if variants are associated with non-coding regions nearby 

marker genes (Figure 7B, Gene-Based Enrichment). Taking the marker genes previously established for 

each cell type (Tables S5-7), we first observed that most marker genes are not strictly specific (blue bars) 

to a single neuron subtype (Figure 7A, blue bars), but rather most are shared (red bars). We next identified 

the intronic and flanking regions adjacent to each of these genes, in order to potentially capture regulatory 
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elements. To estimate the enrichment of significant SNPs from GWAS, we employed a stratified linkage 

disequilibrium score regression (s-LDSC) approach (see Statistical analyses)43. We performed s-LDSC 

analysis for chronic pain traits from three major GWAS studies as well as for three negative control traits 

(lean body mass, bone mineral density, and coronary artery disease)18,26,50. After correcting for false 

discovery rate, we found that none of the cell types were significantly enriched for any of the traits (Figure 

7B). We hypothesized that this result reflects a limitation of our approach rather than a true biological non-

association, partly on marker gene observations (Figure 7A) and constructing windows around genes is 

not a direct way of capturing regulatory elements, especially distal enhancers. We therefore hypothesized 

that our (human orthologs of) direct measurements of single-nucleus open chromatin could be functionally 

relevant to chronic pain and performed stratified LDSC using the open chromatin annotations (Figure 7C, 

Open Chromatin Enrichment). 

As comparators to the dorsal horn neurons and glia, we also analyzed open chromatin from bulk 

liver ATAC-seq51, neurons from the hippocampus and putamen52, and macrophages53, the latter given the 

potential immunogenic origin of some chronic pain disorders. As shown in Figure 7C, none of the negative 

control traits, or traits in non-dorsal horn cells or in glial cell types show enrichment.  

In contrast, among the dorsal horn neurons, all but one subtype (Exc-BNC2) are enriched for at 

least one chronic pain trait. The traits with the most associations are multi-site pain and higher number of 

pain sites. Several cell types (Exc-NMU, Exc-NMUR2, Exc-SKOR2, Inh-PDZD2, Inh-MEF2C) show 

associations with at least four traits. Differences in trait heritability or number of marginally significant SNPs 

for each trait are provided as potential factors for why some traits tend to be more enriched (Table S14).  

 
 
Discussion   

 
Understanding the molecular and spatial organization of the dorsal spinal cord is essential for defining 

functional circuits, determining how incoming somatosensory information is integrated and transformed, as 

well as for understanding the origins of chronic pain and how to treat it.  In this study, we generated a 

framework for the development of chronic pain, in which genetic variants for chronic pain lie within 

regulatory elements of specific dorsal horn neuron subtypes. This finding is consistent with previous work 
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showing dorsal horn subtypes have a causal role in persistent pain34,54,55. The implication of our findings 

here is that these variants work separately or together to produce functional changes in how these neuron 

subtypes respond to injury, predisposing people to the development of chronic pain. This model of altered 

functioning of regulatory regions of dorsal horn subtypes is consistent with what has been reported for other 

diseases with a genetic component; in fact, 80-90% of complex disease-associated genetic variants disrupt 

non-coding regulatory regions, primarily enhancers21. Thus, in this work, we provide insight into the 

predisposition for chronic pain that lies at the intersection of human genetics, regulatory genomics, and cell-

type-specificity, as a critical step for understanding the cellular mechanisms of how genetics influences 

chronic pain disposition. In future work, alterations in gene regulatory networks within these subtypes can 

be studied to identify dorsal horn mechanisms underlying chronic pain. 

Our comparative analyses between macaque, human, and mouse show that the underlying 

molecular and spatial organization is largely conserved with snRNA-seq integration demonstrating a high 

degree of consistency among cell types and across species (Figures 3-4, S8-9); although the number of 

defined clusters differed across studies, specific sets of mouse and human clusters reliably mapped to the 

macaque clusters with few exceptions, namely Exc-TAC3 and Exc-PBX3. In macaque, the Exc-TAC3 is a 

rare population with high similarity to the Exc-NMU subtype. Because we defined the macaque clusters 

more conservatively than prior spinal cord atlases (Figure 1), the difference in cell proportions observed 

between species may reflect experimental differences or a true divergence between the Exc-TAC3 and 

Exc-NMU subtypes in macaques.  

Our analysis using single cell spatial transcriptomics showed for the first time the precise location 

of the single cell RNA-seq defined neuron subtypes. Surprisingly, the most molecularly distinct subtypes 

are all restricted to the superficial laminae I-II and lamina III while the much less distinct clusters, that we 

initially defined as MidVent (now named SPP1), are in laminae IV-V and into the ventral cord. This finding, 

while surprising, is consistent with the functional roles of these regions of the dorsal horn, with the superficial 

laminae responsible for exquisite processing of many different modalities: cold, heat, itch, touch and pain, 

while the more ventral laminae process information related to touch and sensorimotor transformations56. 

The less distinct molecular composition of neurons in the deep dorsal horn may also apply to the many 

populations of projection neurons that reside there57. Intriguingly, many SPP1 sub-clusters express Tacr1, 
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which is associated with projection populations58. However, these are relatively rare populations and thus 

are not resolvable in the current work. Future studies can take advantage of our newly provided datasets, 

coupled with retrograde labeling and spatial transcriptomics, to molecularly and anatomically characterize 

these important rare populations in both rodents and primates.    

Our findings also resolve discrepancies for the PBX3/PDYN subtype reported among prior cell 

atlases. In previous studies, the mouse and human orthologs of Exc-PBX3/PDYN were assigned to 

“MidVent'' based on transcriptomic similarity to other neurons in that region of the cord, consistent with what 

we observed for macaque. However, in mice, the subtype had been assigned by RNAscope to layers IV-

VI (Russ et al), while in humans, using Visium (a lower resolution spatial platform than Xenium), it appears 

to be more superficial (Yadav), as we observed here. We thus establish in this study that Exc-PBX3/PDYN 

contain the excitatory prodynorphinergic neurons of the superficial dorsal horn40,41, a finding consistent with 

other published work using two probe in situ hybridizations in mouse55 and with our own RNAscope analysis 

in macaque and human (Figures S5-6).   

  The genetics of chronic pain has previously been studied in relation to marker genes within the 

spinal cord, but to our knowledge not in relation to the more direct measure of regulatory elements. We 

thus developed a single-nucleus open chromatin resource for the dorsal horn to investigate dorsal horn 

regulatory genomics and its relationship to chronic pain. First, we find that chromatin accessibility patterns 

are signatures of cellular identity (Figures 6C, S26), consistent with the established biology that cell-type 

specializations are determined by gene regulatory elements. We also identified several transcription factor 

regulators of particular cell types, including those previously suspected based on gene expression alone 

(e.g. MAF and RORA for Exc-MAF) and on novel candidate regulators (e.g. TAL1 and NR3C1). Motifs for 

NR3C1, the glucocorticoid receptor, were specifically abundant in the open chromatin of Exc-LMO3/Exc-

SKOR2, two closely related cell types in the mouse Sox5 family. NR3C1 is the well-known target of cortisol, 

which is released during periods of chronic stress as part of the hypothalamic-pituitary-adrenal (HPA) axis59. 

Several studies link NR3C1 expression to spinal modulation of pain60–64. Our findings suggest that Exc-

LMO3/Exc-SKOR2 could mediate the effects of chronic stress on pain phenotypes, whereby NR3C1 

activation by cortisol release leads to changes in Exc-LMO3/Exc-SKOR2 gene expression and potentially 

neural firing, although experimental follow-up is needed to confirm these hypotheses-generating results. 
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By analyzing accessible chromatin rather than genes, our work establishes the spinal cord as a 

tissue harboring significant genetic risk for chronic pain. Our combination of genomic analyses shows that 

unlike glia and comparative tissues such as macrophages, open chromatin of several dorsal horn neuron 

subtypes are significantly enriched for variants of chronic pain traits (Figure 7C), which our gene-based 

analysis did not capture (Figure 7B). Prior eQTL-based analysis of chronic pain GWAS also did not find 

enrichment in spinal cord26, showing that our open chromatin resource fills a critical gap in the 

characterization of tissue-specific mechanisms of chronic pain risk, and links risk to specific neuronal 

subtypes. Although the ability to find human phenotype enrichment in orthologs of mouse open chromatin 

may be surprising, tissue- and cell-type-specific transcription factor binding sites and open chromatin 

regions are often functionally conserved, even when individual nucleotide conservation is not51,65,66. This 

degree of conservation explains how complex trait-associated genetic variants can show similar enrichment 

in human cell type-specific open chromatin regions and orthologous open chromatin regions in mouse67. 

We note the existence of neuron-subtype enrichment depending on the anatomical location of pain; 

for example, SNPs from knee pain, a type of pain that likely has a strong inflammatory component, were 

strongly associated with Exc-MAF. This finding is consistent with experiments showing neurons in the Exc-

MAF subtype are critical for conveying mechanical hypersensitivity in mouse models of inflammatory pain34.  

Neuron subtypes for stomach/abdominal pain, which are visceral, were strongly associated with other 

populations, including Exc-NMUR2, Exc-NMU and Inh-PDZD2.  Studies of visceral pain circuitry in mice 

have not yet identified which dorsal horn neurons are important but these subtypes which overlap with 

somatostatin, PKCγ and PVALB neurons have been implicated in other types of persistent pain34,54,55.  

Headache SNPs are also enriched in open chromatin of Inh-PDZD2. This latter finding could be due to the 

innervation of upper cervical regions of the spinal cord by cranial muscles and dura or because of functional 

and anatomical similarities between spinal and medullary dorsal horns. Nevertheless, differences in the 

neuron subtypes that show strong associations for each type of pain reported is consistent with studies 

showing that chronic pain mechanisms and circuits differ by the nature of the injury34,68,69. It also fits that 

the number of neuron subtypes we identified as being highly enriched in open chromatin SNPs from patients 

with head/neck and multisite pain, which are likely to be combinations of inflammatory and neuropathic 

etiologies, was much greater than for the other types of pain. This finding is also consistent with the large 
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number of dorsal horn cell populations that have been implicated in persistent pain in rodent functional 

studies, including neuron subtypes implicated here70,71. Again, these results suggest further studies are 

warranted to understand precisely how the specific neuron subtypes are involved in these types of chronic 

pain.  

 We also took note of two genes, LANCL1 and FOXP2, that are nearby regulatory regions with 

highly significant SNPs, reported in the Kupari et al study. LANCL1 is a neuron-enriched antioxidant that is 

upregulated with neural activity, neurotrophic factors and the stress response72.  It is thought to play an 

important role in suppressing reactive oxygen species72. Reactive oxygen species have been implicated in 

central sensitization mechanisms underlying both neuropathic and inflammatory pain and ROS scavengers 

have been put forth as potential treatments73. Our results point to Exc-TAC3, SKOR2 and MAF as being 

particularly salient. The second gene, FOXP2 is a transcription factor that has been implicated in 

development of V1 interneurons in the ventral horn74, but is also expressed in both excitatory and inhibitory 

dorsal horn neuronal subtypes across species. Its role in the dorsal horn and potential role in chronic pain, 

particularly with respect to the Inh-PDYN subtype, which is known to be important for persistent mechanical 

hypersensitivity in inflammatory and neuropathic conditions55, remains to be explored. 

Our study and resources have some limitations. Limitations in clustering strategies have already 

been discussed above. Our analysis was focused on the dorsal horn, especially the distinct neuron 

subtypes that reside in laminae I-III, an area critical for acute and persistent forms of pain. To encapsulate 

the Spp1 family, the spatial transcriptomic analysis was extended beyond the dorsal horn, but ventral 

populations such as motoneurons73 which are beyond the scope of this paper, were not analyzed. 

Furthermore, there were some limitations of the Xenium spatial transcriptomics assay, as not all conserved 

marker genes are in the available pre-designed mouse brain panel. We do nevertheless provide strong 

evidence for reliable localization of the neuron subtypes, including analyzing the available conserved 

marker genes. There is also a limitation to the snATAC-seq and s-LDSC approach taken because precisely 

identifying tissue- and cell-type-specific enhancers is challenging. We used distal peaks from snATAC-seq 

as a proxy for enhancer activity. Also, peaks shared across non-disjoint subsets of neural subtypes may 

partially confound subtype-specific findings. But limiting choices to peaks found in only one cell type would 

lead to uncontrolled type I error75. Finally, the brain regions and immune cell databases analyzed here did 
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not show enrichments for chronic pain variants, but future studies may identify other tissues and cell types 

with heritable contributions to chronic pain.  

Overall, our findings demonstrate that this mouse open chromatin resource, in conjunction with the 

conserved cell type framework, can be used to generate novel, testable hypotheses about the origin and 

pathophysiology of chronic pain. Having anchored the relationships between cell identity, genetic risk, 

regulatory genomics, and pathophysiology in humans and in the animal models typically studied in 

biomedical research, we help provide the foundation for studying the complex genetics and neural 

mechanisms underlying chronic pain disorders, and for developing a new generation of targeted 

therapeutics. There are now several FDA approved gene therapies including for inherited blindness and for 

spinal muscular atrophy76–78, demonstrating the potential safety and efficacy of these strategies. The 

development of single cell genomics and epigenomics enables further advances in gene therapy, namely 

tissue- and cell-type-specific targeting, which has complementary applications both for mechanistic studies 

of neural circuits, and for gene therapy. Targeting dorsal horn subtypes using promoters has shown some 

success79,80, but a particularly compelling strategy is to drive expression of therapeutic transgenes using 

cell-type-specific enhancers. Previous work has shown the feasibility of this approach in the brain81–84, with 

most successful approaches being those based on enhancer identification from chromatin accessibility81–

83. Although our snATAC-seq dataset is from mice, extensive research shows that many cell-type-specific 

enhancers are robustly conserved across species51,65, and candidate enhancers identified in mouse would 

have therapeutic potential for humans. Thus, we are providing the spinal biology community with key 

resources to make progress on cell-type-specific targeting strategies for disorders such as chronic pain. 
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Further information and requests for resources and reagents should be directed to and will be fulfilled by 

the Lead Contact, Rebecca P. Seal (rpseal@pitt.edu). 

Materials Availability 

This study did not generate any new materials. 

Data and Code Availability 

The code and Jupyter notebooks used for the analysis of the macaque snRNA-seq has been made 

available at Github repository https://github.com/pfenninglab/dorsal_horn_snrnaseq. The code and 

notebooks for the analysis of three-species integration, conserved marker identification and decision 

trees, xenium analysis, and mouse snATAC-seq analysis are available at 

https://github.com/pfenninglab/dorsalhorn_conserved_rna_atac_xen.   

 

The raw and processed datasets for macaque snRNA-seq, mouse Xenium, and mouse snATAC are 

available through the GEO SuperSeries (GSE253954). 

Additionally, the macaque dataset can be accessed through an R shiny application 

(https://seallab.shinyapps.io/macaquedh/). This Shiny application was created using a Shiny Cell 

package81. 

Methods 

Macaque snRNA-seq Samples: 

Lumbar spinal cord samples for snRNA-seq were obtained from Macaca mulatta provided by Dr. David 

Lewis at the University of Pittsburgh. Monkeys were housed in groups in the same social setting. All animals 

were deeply anesthetized with ketamine and pentobarbital and perfused transcardially with ice-cold artificial 

cerebrospinal fluid. All housing and experimental procedures were conducted in accordance with the 

guidelines of the US Department of Agriculture and the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals and with the approval of the University of Pittsburgh Institutional Animal Care 

and Use Committee. No prior manipulations to the spinal cord were performed in these macaques. Three 
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male macaques (3-years old) were used for the single nuclear RNA-sequencing. Male and female macaque 

lumbar spinal cord samples (3-5 years old) were utilized for in situ hybridization studies. Though we did not 

observe sex differences for any of the genes using in situ hybridization, there is not enough statistical power 

to confidently assess if there are sex differences due to the limited availability of macaque tissue. 

Human Spinal Cord Samples: 

All human spinal cord procurement procedures were approved by the Institutional Review Boards at the 

University of Texas at Dallas. Donor information is provided in Supplementary Table 5. The human spinal 

cords were gradually embedded in OCT in a cryomold by adding small volumes of OCT over dry ice to 

avoid thawing. All tissues were sectioned at 20 µm onto SuperFrost Plus charged slides using a cryostat. 

Sections were only briefly thawed in order to adhere to the slide but were immediately returned to the -20°C 

cryostat chamber until completion of sectioning. Due to the limited availability of human donor tissue, sex 

differences at the gene level were not assessed.  

Nuclear Dissociation and Isolation 

Snap-frozen lumbar spinal cord segments were removed from -80ºC storage and placed into separate Petri 

dishes containing a cold slurry of dissection buffer consisting of 1x Phosphate Buffered Saline (PBS, 

ThermoFisher Scientific; AM9625), 10% Dithiothreitol (DTT, Sigma; 43816-50ML). 

From each animal, transverse sections (~50-75 mg) were made using a sterile razor blade. Three sections 

were selected for further dissection and the rest were discarded. The sections were cut in the coronal plane 

at the middle of the spinal cord to obtain dorsal and ventral halves. Any residual meningeal membranes 

were removed. The three dorsal halves were retained and the ventral halves discarded. 

Nuclei were isolated according to Martelotto with modifications73. The dorsal halves for each animal were 

transferred into separate Dounce homogenizers (Sigma) containing 1 mL of ice-cold homogenization buffer 

consisting of EZ Nuclei Lysis Buffer (Sigma; NUC101-1KT) with 0.5% RNasin Plus (Promega; N2615), 

0.5% SUPERase-In (ThermoFisher; AM2696) and 1mM DTT. The samples were homogenized on ice using 

20 strokes of Pestle A followed by 20 strokes of Pestle B. Any residual meningeal membrane was removed 

before switching pestles. The homogenate was filtered through a 50 µm filter (Sysmex; 04-004-2327) into 
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a 2 mL microcentrifuge tube (Eppendorf; 022431048). An additional 0.5 mL of homogenization buffer was 

used to wash the Dounce homogenizer and filter. The sample was then placed on ice while the remaining 

samples were processed. The sample was centrifuged at 500g at 4ºC for 5 min to obtain a crude pellet 

containing spinal nuclei. The supernatant was removed and discarded, being careful to not disturb the 

pellet. The pellet was resuspended in 1.5 mL of Homogenization Buffer and allowed to sit on ice for 5 mins. 

The samples were again centrifuged at 500x g, 4ºC for 5 min. The supernatant was removed and the pellet 

was resuspended in 1 mL of Nuclei Resuspension Buffer (NRB) consisting of 1x PBS, 1% Bovine Serum 

Albumin (BSA, Sigma; 2905-5GM) and 1% SUPERas-In followed by centrifugation at 500g, 4ºC for 5 mins. 

This wash step was repeated twice more for a total of 3 washes. The final pellet was resuspended in 0.5 

mL of NRB containing 6 µM 4′,6-diamidino-2-phenylindole, dihydrochloride (DAPI, ThermoFisher; D1306). 

The suspension was filtered through a 20 µm filter (Sysmex; 04-004-2325) into a polypropylene tube and 

kept on ice. 

Fluorescence Activated Nuclear Sorting (FANS) was performed to purify nuclei from debris on a FACSAria 

II (BD). Gates were set to isolate DAPI+ singlet nuclei based on forward scatter and side scatter as well as 

fluorescence intensity. The instrument was set to 40 pounds per square inch (psi) of pressure and a 70 𝜇𝑚 

nozzle was used, with sterile PBS sheath fluid. Nuclei were sorted into a 1.5 ml microcentrifuge tube 

containing 15 𝜇𝑙 of NRB at 4ºC. For each sample, 18,000 events were sorted into the collection tube. The 

sorted nuclei and NRB total volume were approximately 45 µl, allowing for loading the entire suspension 

into the Chromium Single Cell 3’ v3 solution (10x Genomics) without further manipulation. The 10x libraries 

were processed according to the manufacturer’s instructions. Completed libraries were run on the Novaseq 

6000 (Illumina). 

Macaque snRNA-seq Alignment  

Macaque snRNA-seq: Illumina sequencing bcl files were converted to fastq format using the cellranger 

mkfastq command line tool. Fastq reads were then aligned to the rheMac10 reference genome and 

quantified into a raw UMI count matrix using the STAR aligner with the -solo option74 against a custom 

transcriptome annotation that we previously developed was also given as input to the STAR aligner22.  
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Macaque snRNA-seq droplet Filtering 

Macaque snRNA-seq: Each biological replicate underwent a separate but standardized quality control (qc) 

filtering, whereby empty droplets were detected using the defaultDrops() function, which is a quantile 

filtering approach based on number of UMIs, with default parameters in the DropletUtils package75. Doublet 

filtering was also performed using the cxds_bcds_hybrid() function, which uses a hybrid approach utilizing 

artificial generated doublets and unlikely coexpression pairs to create a doublet score in the SCDS 

package76. Droplets with doublet scores above 1.0 were removed.  After both rounds of filtering, 12,243 

cells were left across 3 replicates. Both functions were run with default parameters. 

 

Macaque snRNA-seq Normalization 

Macaque snRNA-seq: The filtered digital gene expression matrices were then loaded into Scanpy to 

perform the pre-clustering needed for Scran normalization23,25. Each biological replicate expression count 

matrix was then normalized with log counts per million (CPM), and denoised using iterative pca with 50 

components. The pre-clustering was done via the Leiden community detection algorithm using Scanpy’s 

leiden() function77. All 3 biological replicates were then co-normalized using the computeSumFactors() 

function in Scran and normalize() function in Scuttle with the pre-clusters as input78. The size factor 

normalization that was used was chosen for its ability to handle sparse single cell data which may have cell 

types with different expression values. 

 

Unbiased Clustering of Macaque snRNA-seq 

Post-normalization clustering was performed again using Scanpy’s Leiden function77. The clusters were 

classified into oligodendrocytes 1 and oligodendrocytes 2, neurons, astrocyte 1 and astrocyte 2, 

oligodendrocyte precursor cells, microglia, meninges, ependymal cells and Schwann cells based on the 

expression of established marker genes (shown in Figure 1C). Neuronal clusters were then manually 

selected using the marker gene RBFOX3, which left a total of 2,698 cells across replicates. Data integration 

across biological replicates and neuron filtered gene expression matrices were performed using the 

integrate_scanpy() function in Scanorama, which uses a panoramic stitching algorithm to integrate datasets 

by producing a batch corrected cell-cell distance graph. Leiden community detection was then performed 
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with a resolution of 1.0 on the batch corrected cell-cell distance graph to get an initial integrated clustering77. 

It is important to note that while the Scanorama batch corrected data was used for clustering and integration, 

the ‘un-corrected’ data was used for marker gene and differential expression analysis to reduce possible 

bias added during batch correction.  Our initial clustering was organized into a dendrogram using Ward 

hierarchical clustering. Further refinement of these clusters was performed by splitting clusters that had 

both excitatory and inhibitory markers (SLC17A6 and SLC32A1, respectively). We computed a mid-ventral 

and dorsal score for each cluster based on the average z-score scaled expression of genes that have a 

high discriminative ability (AUROC) between the spinal cord regions as computed by previous studies16.  

Two of the macaque clusters were thus grouped into a single cluster labeled MidVentral. This cluster is 

excluded from our analysis of the dorsal horn populations as it lies outside our region of interest. The list of 

dorsal horn clusters was initially 11 excitatory clusters and 5 inhibitory clusters, and then extended to 7 

inhibitory clusters. Inh-SORCS1/Inh-PDZD2 and Inh-MEF2C/Inh-NXPH1 were split afterwards based on 

discrepancies between mouse and macaque (see Methods: Comparison of Macaque and Mouse 

Expression). 

 

Selecting Macaque-specific snRNA-seq Marker Genes 

A combination of methods was used for the marker gene selection for the clusters. A binary matrix was 

constructed by thresholding the normalized gene expression values at a threshold of 0.2 CPM. The binary 

matrix was then used to compute the precision and sensitivity of each gene for each cluster. In addition, 

the top differentially expressed genes were computed using the rank_gene_groups() function in Scanpy, 

and Wilcoxon rank-sum (Mann-Whitney-U) test. From this list, we removed genes that were co-expressed 

in non-neuronal cells. 

Comparison of Macaque and Mouse snRNA-seq Expression Patterns 

To identify orthologous genes across species, each mouse gene symbol was matched to the corresponding 

ENSEMBL ID using BioMart (v101). Then, BioMart was used to identify the orthologous human gene, 

filtering for one-to-one orthologs to avoid potential false positive matches between species. The macaque 

genome was annotated with orthologous human genes as previously described, motivated by previous 
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successful approaches to annotate more complete gene structures using orthology to human22,79. The 

resulting datasets frame for macaque and mouse contained 15,157 one-to-one orthologs. 

Orthologous genes of two of the mouse family markers, RORB and ADAMTS5, showed separation 

in the macaque UMAP, but were not independently clustered. Inh-SORCS1/Inh-PDZD2 and Inh-

MEF2C/Inh-NXPH1 clusters were re-clustered using Leiden clustering (resolution 0.3)77. Three of the 

identified clusters represented RORB populations while the remaining two populations represented 

ADAMTS5. We thus split Inh-SORCS1/Inh-PDZD2 and Inh-MEF2C/Inh-NXPH1 clusters into two sub-

clusters each, with Inh-SORCS1 and Inh-MEF2C representing the RORB population and Inh-PDZD2 and 

Inh-NXPH1 representing ADAMTS5 populations. 

We identified the top 100 most enriched and most-depleted makers for each of the mouse cell 

classes (Excitatory, Inhibitory, and MidVentral). Mouse and macaque markers for comparison were 

selected using the Wilcoxon rank sum approach in the rank_genes_groups() function25. The relative levels 

of those markers, weighted by their cluster enrichment scores, created a score that we could use to 

annotate each cell in the macaque population for each of the major cell classes. These enrichment scores 

corresponded strongly with the individual marker-based annotation of the macaque cell classes, and were 

used to identify significant shifts across the population using a t-test. The t-statistic confirms the broad 

differences in the distribution of the enrichment scores, with the exception of cluster Exc-PBX3, which has 

features of MidVentral neurons. 

The same procedure was used to score each macaque cell for its cluster identity relative to its cell 

class (Excitatory or Inhibitory). We used the 50 most enriched and depleted markers, rather than 100, 

because the strength of enrichment declined more quickly down the ranked list for subtler differences 

between subtypes of excitatory and inhibitory neurons. Again, the annotation of cell clusters based on a t-

test showed a strong match to annotation based on the most confident individual mouse markers. 

To find genes specialized in a particular species, the mouse cells used were limited to the 

Sathyamurthy adult mouse snRNA-seq data16,34. Rather than the processed data, where low variance 

genes are removed, we used an unfiltered version of the mouse dataset. This allowed us to identify potential 

examples where the gene is specialized in macaque, but not mouse. Log2-fold differences were calculated 

using the procedure described above for both the mouse and macaque for each cell class relative to the 
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others and for each family relative to the cell class. The family-level comparison was chosen to maximize 

the number of cells available for a rigorous identification in the differences in markers. We manually filtered 

out genes that exhibited a strong difference across species based on log2 fold change, but had very low 

abundance and were not significant. The marker genes of orthologous populations of cells were correlated 

with each other in their overall pattern (Pearson’s R ranging from 0.058 to 0.21; p-value from 1*10-9 to 7*10-

142). These correlations provide further support for our assignment of cell type families. The broad range 

reflected the relative abundances of the cell types rather than the lack of a strong match. To determine 

species-specific markers, we required a gene to have an adjusted p-value of < 10-5 and an absolute log2 

fold greater than 2. In addition, we required that the orthologous gene have a log2 fold difference of less 

than 0 in the other species. This highly stringent procedure is more selective for high-likelihood candidates, 

but may miss other candidates. 

 

Integration of Macaque and Mouse Dorsal Horn snRNA-Seq 

Raw count matrices for macaque and adult mouse populations were read into R for analysis with the Seurat 

package80. We removed the nuclei annotated as MidVentral to focus on the dorsal horn biology. As 

recommended in the LIGER package, the datasets from the mouse and three macaques were each scaled, 

separated and integrated using the RunOptimizeALS() function28. We performed a grid search across a 

small number of parameter values for lambda (5,7,10) and k (15,20,30,40). The parameters lamba=7, k=30 

were chosen as it produced the fewest number of cells in mouse only or macaque only cells with default 

parameters. The dataset was further normalized according to species and sample and visualized using the 

UMAP visualization with default parameters. 

 

Integration of Macaque, Human, and Mouse snRNA-seq 

We used the dorsal horn subsets of our macaque, the Satyamurthy adult mouse, and the Yadav human 

datasets. Using the software package Seurat v4.2, we first normalized each dataset with SCTransform. 

Then we identified the genes that are variable in all datasets using SelectIntegrationFeatures(). Next, we 

identified cross-dataset anchors for cells across the pairwise combinations of the datasets using 

FindIntegrationAnchors, which is based on the algorithm described in . We then ran IntegrateData which 
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uses the anchors from the previous step to construct a transformation matrix, which represents a weighted 

difference between the expression matrix of anchor pairs, then subtracts this transformation matrix from 

the original expression matrix, a process conceptually similar to batch correction and applicable to cross-

species integration. The resulting combined data is in a shared integrated space allowing for direct 

comparisons between cells. We then performed three label transfers: mouse-to-human (to compare to 

Yadav et al results), as well as mouse-to-macaque and human-to-macaque (to establish the mouse and 

human orthologs of our macaque cell types, respectively). This was done by applying Seurat’s 

FindTransferAnchors() and TransferData() between the macaque, human, and mouse subsets of the 

integrated dataset. We then calculated silhouette scores with the package cluster v2.1 to assess confidence 

in label transfer of individual cells and of cell types. 

Separately, we repeated the above integration steps in Seurat, but between only the mouse and 

macaque datasets and including the MidVentral cells. The purpose was to identify mouse orthologs of Exc-

PBX3 if they belonged to the MidVentral domain. After performing integration, we observed that Exc-PBX3 

most closely corresponds to Excit.25 of the mouse cells. 

 

Identifying Conserved Marker Gene Candidates and Visualizing Marker Genes 

First, we assigned names to mouse and human dorsal horn cells based on label transfer to macaque, to 

establish consistency in the resolution of neuron subtypes. Next, we found cell-type-specific marker genes 

for each of the three species datasets using Seurat’s FindAllMarkers(), which identifies differentially 

expressed genes between groups of cells using a Wilcoxon Rank Sum test. We also ran FindAllMarkers() 

on the cross-species integrated dataset, which found differentially expressed genes after experiment-

specific and species-specific signals were computationally removed via integration. Although finding 

differential expressed genes of the integrated dataset does not have a clear statistical interpretation, we 

found that the top marker genes from this procedure were effective at distinguishing cell types (see 

Decision Tree Evaluation of Conserved Marker Genes), and our goal was to select a small number of 

candidates from these lists. We selected top candidates from marker gene sets first based on their rank in 

log-fold change, and then by visualizing using violin plots and scatter plots (Seurat) how well combinations 

of marker genes distinguish cell types. 
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 Marker genes for specific cell types were visualized in figures using heatmaps in Seurat, which 

shows the expression of individual cells belonging to a cell type with vertical ticks. We visualized scaled, 

imputed expression (using the ALRA method). For historical marker genes, we show un-scaled, un-imputed 

expression because some of the genes have low overall expression which would result in misleadingly 

inflated scaled and imputed signals. 

 

Decision Tree Evaluation of Conserved Marker Genes 

After identifying conserved marker gene candidates, we quantitatively evaluated the cross-species 

separability of cell types using marker gene measures of expression. Because of the high rate of technical 

dropout in snRNA-seq for individual genes, yet the breadth of transcriptomic information available in 

snRNA-seq datasets which can be leveraged to infer missing expression patterns, we imputed expression 

signals using ALRA in order to more closely emulate experimental techniques such as RNAscope or 

Xenium spatial transcriptomics that have higher sensitivity measurements of specific genes. We also used 

scaled expression to assess relative differences in gene expression and to minimize other effects such as 

sequencing depth. We then extracted the cell-by-gene matrices of the macaque, human, and mouse 

datasets from their Seurat projects, and for a given learning problem (identifying a given cell type versus 

the others), we introduced binary labels for each cell whether they belonged to the target cell type (1) or 

another cell type (0). For each conserved cell type and using their set of two-to-three conserved marker 

candidates, we trained decision tree models based on 80% of the macaque cells using the rpart package. 

The models were then tested on the remaining 20% of the macaque cells, as well as all of the human and 

mouse cells. Thus, decision trees were trained based on the differences in a single species, macaque, and 

then evaluated for all species. We evaluated the performance of the models with the following metrics: 

Accuracy, Recall/Sensitivity, Specificity, Precision/Positive Predictive Value, Negative Predictive Value 

(Tables S9-12). We created visualizations of the decision tree classification boundaries for two example 

cell types (Exc-BNC2 and Inh-PDYN) using base R (Figure S13).  

RNAscope® in situ hybridization 
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Fresh frozen lumbar spinal cord tissue samples were harvested from 3-year-old male and female macaques 

perfused with aCSF. The tissue was immediately placed in OCT and frozen on dry ice. L4-L6 lumbar spinal 

cord was sectioned using a cryostat at 20 µm thickness onto Superfrost-charged slides and stored in -80⁰C 

until the start of the assay. In situ hybridization was performed according to the Multiplex v2 Fluorescent 

(Advanced Cell Diagnostics) protocol for fresh frozen tissue after fixing the slides with cold 4% 

paraformaldehyde (PFA) for thirty minutes. The probes were designed and purchased from Advanced Cell 

Diagnostics. Signal amplification was carried out using the TSA Fluorescin, Cyanine 3 and Cyanine 5 

reagents from Akoya Biosciences at 1:1500. All sections were co-stained for dapi. For in situ hybridization 

experiments conducted with human lumbar spinal cord, samples were fixed with cold 4% paraformaldehyde 

(PFA) for 15 minutes. The Multiplex v2 Fluorescent (Advanced Cell Diagnostics) protocol for fresh frozen 

tissue was followed with a 2-minute protease IV digestion. The Fluorescin, Cyanine 3 and Cyanine 5 

reagents from Akoya Biosciences were used for probe visualization.  

Combinations: 

Exc-BNC2 Crhr2; Col13a1 
Exc-NMUR2 Nmur2 
Exc-NMU Tac3; Nmu 
Exc-TAC3 Col5a2; Pax2 
Exc-SKOR2 Col24a1; Nmbr 
Exc-NELL2 Tac1; Anos1 
Exc-MAF Col21a1; Maf 
Exc-MAFA Mafa; Rbfox3 
Exc-NTS Adamts16; Tll2 
Exc-SNTB1 Otogl 
Exc-PBX3 and Inh-PDYN Pdyn; Pax2 
Inh-CACNA2D3 Masp1; Pax2 
Inh-SORCS1/Inh-PDZD2 Gdnf-as1; Rreb1 
Inh-NPY Npy; Rreb1 
Inh-MEF2C/Inh-NXPH1 Met; Ptn 

 

Human and Macaque Image Acquisition and Quantification 

For macaque spinal cord experiments, representative images were acquired at 10X magnification using the 

Nikon A1R and Nikon’s NIS-Elements imaging software and processed with ImageJ. Images taken for 

quantitative analysis were acquired using Nikon Eclipse 800. Laminar boundaries for the images were 

drawn with the Canvas X software using Atlas of the Spinal Cord: Mouse, Rat, Rhesus, Marmoset and 
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Human as a reference. The substantia gelatinosa of the primate dorsal horn is also easily recognizable due 

to its translucent nature and hence was used to demarcate the boundary between laminae II and III. 

For human spinal cord experiments, multiple 10x images were acquired of the dorsal horn starting 

from the substantia gelatinosa to lamina 10. The acquisition parameters were set based on guidelines for 

the FV3000 provided by Olympus. The 10x images were stitched together manually using anatomical 

landmarks (particularly lipofuscin) that were common between images.  

For the quantitative analysis, three or more closely spaced puncta were counted as a positive cell. 

To account for the presence of lipofuscin in the macaque/human spinal cord tissue, the 488 channel was 

left blank i.e., no probe or fluorophore was added, and this was used for background subtraction. 

Experimental Procedure of Xenium Spatial Transcriptomics Assay of Mouse Spinal Cord 

The first mouse (Figure 4) was a 10-week-old C57Bl/6 male that underwent sterile saline injection. The 

mouse was put under anesthesia at 4% isoflurane and then maintained at 2% isoflurane for the duration of 

the injection. A hamilton syringe was used to inject 5uL of saline intradermally into the left calf. The mouse 

was left under 1.25% isoflurane for 30 minutes after the injection. The mouse was IP injected with a solution 

of 100 mg/kg ketamine and 20 mg/kg xylazine one hour after the saline injection. It was then perfused using 

ice-cold RNAse-free PBS. The spinal cord was dissected, approximately one hour and 15 minutes after the 

injection of saline. 

The second mouse (Figure S18) was a 10-week-old C57Bl/6 female, and put under at 4% 

isoflurane and then maintained at 1-1.5% isoflurane. The mouse's left paw had a 0.07g von Frey filament 

applied for 3 seconds and was brushed, alternating between the two over the course of 5 minutes. The 

mouse was IP injected with a solution of 100 mg/kg ketamine and 20 mg/kg xylazine one hour after stimulus 

was completed. It was then perfused using ice-cold RNAse-free PBS. The spinal cord was dissected 

approximately one hour after stimulus. 

For both mice, lumbar region was quickly isolated and embedded following 10x Genomics'  Xenium 

in situ for Fresh Frozen Tissues Preparation Guide: https://www.10xgenomics.com/support/in-situ-gene-

expression/documentation/steps/tissue-prep-fresh-frozen/xenium-in-situ-spatial-profiling-for-fresh-frozen-

%E2%80%93-tissue-preparation-guide. The tissue was then stored at -80 degrees Celsius before being 
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cryosectioned at 20µm based on the Xenium guidelines. The cryosections were non-consecutive in order 

to capture information about distinct cells in each section. The slide was then stored again at -80 degrees 

Celsius until the Xenium run was completed per the protocols from 10x Genomics. 

 

Analysis of Xenium Spatial Transcriptomics of Mouse Spinal Cord 

We used Seurat v5 to load the full field of view of the Xenium run, which consisted of eight non-consecutive 

spinal cord sections (description of experiment above). First, we removed cells with zero gene counts. Next, 

we performed un-biased clustering of the full set of Xenium cells using the Seurat functions SCTransform(), 

RunPCA(), RunUMAP(), FindNeighbors(), and FindClusters(), which normalizes expression signals and 

performs dimensionality reduction using PCA, calculates k-nearest neighbors for cells and constructs a 

shared nearest-neighbor graph, then uses this graph to optimize community detection (i.e. clustering) using 

the smart local moving algorithm. Next, we normalized the Satymathurthy adult mouse dataset (all cells 

including glia and other) with SCTransform, subsetted the available features to those within the Xenium 

assay, and integrated the Xenium and Satyamurthy datasets. We assigned to the Xenium clusters the label 

of the nearest cluster from Satyamurthy et al within the shared integration space based on UMAP 

visualization. A Xenium cluster was assigned the label ‘Neurons’ if the nearest Satyamurthy cluster was 

any of the neuron subtypes. We then visualized the locations of the Xenium cell types within the spinal cord 

sections, verifying the known spatial patterns of major cell classes such as high neuron density in grey 

matter, high oligodendrocyte density in white matter, etc. 

 Next, we subsetted to Xenium cells now labeled Neurons, and re-clustered the neurons only with 

the same steps described above. Then we integrated with the Satyamurthy dorsal horn subset of neurons. 

We found that a large region of Xenium cells did not align closely with any of the dorsal horn neurons, 

besides Exc-PBX3, which we previously showed as being likely MidVentral. We concluded that these 

Xenium clusters were all MidVentral/Ventral, subsetted them out, then repeated the same clustering and 

integration steps with just the Xenium putative dorsal horn neurons and Satyamurthy dorsal horn neurons. 

We found that now all Xenium clusters aligned closely to a specific labeled neuron subtype, with the 

exceptions that (a) one Xenium cluster was not clearly Exc-NMUR2 or Exc-SKOR2 and was left unlabeled, 

and (b) the single Xenium cluster 2 corresponded to the combined Inh-SORCS1 and Inh-PDZD2 cell types 
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even after trying several resolutions (0.5 to 1.3) of the clustering algorithm. Inh-SORCS1 and Inh-PDZD2 

were previously established as closely related cell types and cluster 2 was labeled Inh-SORCS1/Inh-

PDZD2. 

 Once neuron subtype labels were assigned to Xenium dorsal horn neurons, we visualized the 

positions of these cells in the Xenium image and hypothesized that relative shallowness of these cell types 

would correspond to those previously found with macaque RNAscope. To quantify this, we estimated the 

vertical position of the image of each dorsal horn neuron relative to the average vertical position of all other 

dorsal horn neurons within the same dorsal horn section (two dorsal sections per spinal cord section = 16). 

By convention dorsal horns were aligned at the top of the image so that higher vertical position 

corresponded to a shallower laminar position. We calculated the following z-score metric z = x - u / s, where 

x is the vertical position of an individual cell, u is the average vertical position of dorsal horn neurons in the 

same slice, and s is the standard deviation of the positions of the dorsal horn neurons in each slice. After 

calculating the per-cell z-score for each cell, we tested if the distribution of each cell type’s position was 

significantly different from average in either the shallow or deep direction, using the Wilcoxon signed-ranked 

test and multiple hypothesis correction using Holm’s method. This was done with the distributions of 

individual cells aggregated across slices, and the per-slice distribution of the average z-scores of each cell 

type in each slice, with similar results. Visualization of results are shown in the main figure for the per-slice 

distributions, and supplemental figure for the per-cell distributions. 

 

Mouse Gene-Based Peaks from Introns and Flanking Regions 

For each cell type, we identified non-coding regions nearby the mouse-specific marker genes previously 

found with Seurat. Specifically, we aggregated the intronic regions and flanking regions 20KB on either side 

of each marker gene, which defines the gene-based peak foreground for that cell type. The background for 

all cell types was defined as the intronic and flanking regions (same distance) for all coding genes. The 

foregrounds and backgrounds as defined were first mapped to human orthologous regions (see Cross-

Species Peak Mapping), and then used as the inputs to LDSC, described in Cell-type-specific GWAS 

SNP enrichment. 
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Cross-Species Peak Mapping 

Peaks from above-described mouse datasets were originally in mm10 genome coordinates, while SNPs 

from GWAS are in human (hg38) coordinates. Non-coding regions such as enhancers generally exhibit 

less sequence conservation than protein-coding genes, and identifying orthologous regions requires a more 

flexible mapping technique. Thus, we mapped mouse mm10 peaks to human hg38 orthologs using the 

mapping tool HalLiftover in conjunction with HALPER, which constructs contiguous ortholog regions from 

HalLiftover outputs. Further details are described in the HALPER publication and 67. 

 

Mouse single nucleus ATAC sequencing 

Twenty sex-matched B6 mice were deeply anesthetized with Isoflurane, decapitated and the spinal 

cord was dissected out. Then, the lumbar spinal cord from L3-5 was mounted on an agarose mold 

and the dorsal halve was micro dissected on a vibratome (Leica Microsystems). Next, the tissue was 

Dounce homogenized with a loose pestle in 2 ml of Lysis Buffer containing in mM: 10 Tris-Cl, 10 NaCl, 

3 MgCl2; ~25 strokes, and filtered through a 70mm cell strainer, followed by a centrifugation step at 

400g for 5min at 4ºC. After that, the pellet was resuspended in 2 ml of Nuclei Wash and Resuspension 

Buffer (1X PBS, 1% BSA and RNase inhibitor 0.2U/mL) and filtered-through a 40mm cell strainer to 

optimize myelin and debris removal. Finally, nuclei viability was assessed by trypan blue staining and 

sequenced at 10X Genomics Core at the University of Pittsburgh. The 10x libraries were processed 

according to the manufacturer’s instructions. Completed libraries were run on the Novaseq 6000 (Illumina). 

 

Mouse snATAC-seq Pre-Processing, Cell Labeling, and Peak Calling 

Bcl files were converted to fastq format using the cellranger mkfastq command line tool. Fastq reads were 

then aligned to the mm10 genome using Chromap. Subsequent steps were done with the software suite 

ArchRv1.0. Arrow files were generated from the aligned fragments and doublet scores were generated 

using ArchR’s built-in doublet algorithm. An ArchR project was then generated from the Arrow files and 

sample metadata from the sequencing run. Cells were filtered with minimum transcription start site (TSS) 

enrichment = 8, minimum number of unique fragments 10^3.5, and doublets filtered out with cutoff 
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enrichment threshold of 0.5. Fragment periodicity plots were also inspected for intact periodicity from 

nucleosomes. 

 Un-biased clustering of cells was done using Iterative LSI, with variable features looped between 

30 and 230. 200 variable features was selected having a favorable resolution of clustering with minimal 

batch effects. Batch correction was performed with Harmony. Enrichment of marker genes for major cell 

types was visualized based on gene score, which is a proxy for gene expression based on accessibility at 

and around the TSS of the gene. Established marker genes used to identify major cell types are provided 

in Supplementary Table S13. 

 Once neuron clusters were identified by marker genes, two separate neuron and glia ArchR 

projects were generated and we re-clustered cells again with iterative LSI. The purpose of separating 

neurons from glia is for the clustering algorithm to learn variability in accessibility between neural subtypes, 

which would otherwise be dominated by the differences among neurons and glia cell types. 

Clusters within the neuron sub-project were labeled based on ATAC-RNA integration. Originally we 

attempted using the Satyamurthy mouse snRNA-seq dataset for integration, but found issues with the 

generated co-embeddings, and switched to using macaque. This is possibly because the macaque dataset 

has higher sequencing depth. We used the macaque snRNA-seq dataset with conserved dorsal horn cell 

type labels (along with unlabeled Mid and Ventral neurons) and we named the macaque genes the 

orthologous mouse gene names, in order to match with annotated mouse gene scores. We then performed 

unconstrained integration using ArchR’s implementation of Seurat’s label transfer algorithm using the 

command addGeneIntegrationMatrix. RNA-ATAC co-embeddings were generated and shown in Figure 

S26. After integration and putative cell labeling, we also visualized in UMAPs the marker gene expression 

in clusters now labeled as dorsal horn neuron subtypes. We used the macaque and conserved marker 

genes previously discussed. 

We re-combined the neuron and glia projects and generated reproducible peaks for dorsal horn 

neuron subtypes and glia major cell types using ArchR’s iterative overlap method, and determined peak 

signals (peak calling) with the statistical method MACS285. For GWAS enrichment analysis, we exported 

called peaks to narrowpeak files with summit-centered peaks of fixed 501bp length, which defines our 

neuron subtype-specific foregrounds. The background for each subtype was the union of all foregrounds 
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with the ENCODE Mouse UCSC DNAse Hypersensitivity Sites: https://storage.googleapis.com/encode-

pipeline-genome-data/mm10/ataqc/mm10_univ_dhs_ucsc.bed.gz 

 The foregrounds and backgrounds as defined were first mapped to human hg38 (see Cross-

Species Peak Mapping), and then used as the inputs to LDSC, described in Cell-type-specific GWAS 

SNP enrichment. 

 

Human Immune Cell snATAC-seq, Human Brain Tissue-specific ATAC-seq, and Mouse Bulk Liver 

ATAC-seq Pre-Processing 

Human Immune: We downloaded publicly available ATAC-Seq datasets of Naive, IFNγ-treated, and IFNβ-

treated CD14+ human monocyte-derived macrophages from Cheng et al. (2019) available at NIH SRA, 

https://www.ncbi.nlm.nih.gov/sra (Accession number: SRP145626). We reprocessed these datasets, 

identifying reproducible peaks with the irreproducible discovery rate (IDR) method86 using the ENCODE 

ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline) with default parameters. This 

pipeline filters low-quality reads, aligns reads to the hg38 reference genome via bowtie287, calls peaks with 

MACS285, excludes peaks in regions with unreliable read mapping88, and 88sesses peak reproducibility 

using IDR. The IDR reproducible peak sets were called across pooled pseudo-replicates, and we obtained 

31,497 peaks for Naive macrophages, 34522 peaks for IFNβ-treated macrophages, and 74,014 peaks for 

IFNβ-treated macrophages. The set of foregrounds was the set of peaks for each of the three cell types. 

The background for all cell types was the union of the merged foregrounds along with all merged 

annotations from the Roadmap Epigenomics Projects. 

Human Brain Tissue: We downloaded publicly available NeuN-sorted ATAC-seq52 of human postmortem 

brain from the Read Archive through Gene Expression Omnibus (GEO) accession #GSE96949. We re-

processed the dataset using the ENCODE pipeline as described above for Human Immune. The two 

foregrounds were the putamen and hippocampus bulk peak sets, and background for both tissues was the 

union of the merged foregrounds along with all merged annotations from the Roadmap Epigenomics 

Projects. 
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Mouse human liver: The experimental methods, data generation and pre-processing of this dataset are 

described in 51. Peaks from this study were then mapped from mm10 to hg38 with HALPER (see Cross-

Species Peak Mapping below). There was a single foreground, the set of peaks from the bulk ATAC-seq. 

The background was the union of the foreground with the ENCODE Mouse UCSC DNAse Hypersensitivity 

Sites. For each of these datasets, the foregrounds and backgrounds as defined for each, already in hg38 

coordinates, were used as the inputs to LDSC, described in Cell-type-specific GWAS SNP enrichment. 

 

Cell-type-specific GWAS SNP enrichment (Linkage-Disequilibrium Score Regression) 

We received the summary statistics from the corresponding authors of Kupari et al. and Khoury et al. We 

munged the raw summary statistics as described for linkage-disequilibrium score regression analysis 

https://github.com/bulik/ldsc. For all peak datasets described in above sections (human orthologs if 

applicable: mouse gene-based, mouse bulk liver ATAC-seq, mouse immune, human brain), we estimated 

enrichment of chronic pain GWAS SNPs using stratified linkage-disequilibrium score regression (S-LDSC). 

S-LDSC estimates the contribution of an annotation (in this case, tissue or cell-type-specific non-coding 

peaks) to per-SNP heritability in a joint model versus background. Further details are described by which 

used the same procedure. Briefly, we annotated the LD scores for each foreground and background set 

using the hg38 1000 Genomes European Phase 3 European super-population (1000G EUR) cohort. Then 

we estimated conditioned heritability enrichment. This was done separately for each combination of tissue 

or cell type along with each chronic pain trait. To adjust for multiple hypotheses, we used false discovery 

rate (FDR) correction (0.05 threshold) because of the inherent correlations between hypothesis tests. 

Resulting adjusted p-values and false-discovery-corrected significance were visualized. 

 

Identification of Enriched Peaks Nearby Spinal Injury-Associated Genes 

Browser visualizations were first done with the Interactive Genome Viewer (IGV)89 and LocusZoom49, and 

figures were generated with the package Plotgardener90. First, marginally significant chronic-pain-

associated SNPs from 18 and 26 were examined in single-base-pair coordinates for each study. SNPS at 

top loci were further scrutinized if they were estimated to be plausibly causal based on fine-mapping and 

generation of a credible set of SNPs by LocusZoom. We also verified that candidate SNPs were not in 
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strong LD with exonic SNPs. These credible SNPs were intersected with mouse dorsal horn subtype-

specific snATAC-seq peaks (see Mouse snATAC-seq Pre-Processing, Cell Labeling, and Peak Calling) 

using the SubsetByOverlaps function for GRanges objects. We examined if SNPs were eQTLs of nearby 

genes using the GTEx portal (https://www.gtexportal.org/home/snp/rs2287425), and searched the literature 

to see if nearby genes were linked to dorsal horn development or chronic pain. LANCL1 and FOXP2 were 

the two candidate loci highlighted here that were identified by this procedure. 

Transcription Factor Regulator Candidates in mouse snATAC-seq 

We identified transcription factor (TF) regulator candidates in accordance with the ArchR manual. First, we 

computed motif enrichment and cell-type-specific variability in enrichment (deviations) using ArchR’s 

implementation of chromVAR and computed the motif z-scores for all motifs. This generated a cell-by-motif 

deviations matrix. We computed the correlations of this TF matrix with gene expression of transcription 

factor genes, using the integrated snRNA-seq gene data for the gene expression matrix. Per the standard 

ArchR guidelines, TF regulators were identified as having a correlation between motif deviation and TF 

expression of 0.5 or greater, as well as a high average deviation of at least the 75th percentile. We note 

that integrated RNA expression is only a proxy for true single-nucleus accessibility and gene expression 

relationships, because integrated RNA signals are not actually from the same cell or experiment. Thus, we 

also considered TF motifs that had a non-negative correlation with TF expression and were in the 95th 

percentile or greater for highest motif deviation. The purpose was to capture strong TF regulator candidates 

based on particularly strong deviation signals in cases where RNA expression accuracy may be limited. 
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Main Figure 1. snRNA-seq and Cell Type Identities of the Macaque Dorsal Horn.  
A, Schematic overview of the single-nuclear RNA-sequencing (snRNA-seq) experimental workflow of the 
macaque lumbar dorsal horn. B. UMAP representation of major cell types identified by established marker genes. 
C, Pie chart representation of the contribution of each major cell type present in the macaque dorsal horn. D, 
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Dotplot of the normalized mean expression of key marker genes used to identify each major cell type. The size 
of the circles depicts the percentage of cells within each cluster that express the gene. E, UMAP visualization of 
the 1,954 dorsal horn neuronal nuclei identified through Leiden clustering. Excitatory clusters are prefixed with 
Exc and inhibitory clusters with Inh. Table 1 indicates naming and relationship to other cell types, and the 
rationale for naming is described in Results. F, Quality control and number of nuclei per cluster, Left: Violin plot 
of per-cell Unique RNA molecules by cluster, Middle: Violin plot of number of unique genes per cell found by 
cluster, Right: number of nuclei present in each cluster. 
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Main Figure 2. Macaque-specific markers of dorsal horn neuron subtypes and RNAscope In situ 
Validation.  
A, Heatmap of the normalized mean expression of macaque-specific marker genes (mentioned in Figure SX, 
dendrogram) for the neuronal subtypes. Inh-SORCS1* refers to the combined Inh-SORCS1/Inh-PDZD2 
population, and Inh-MEF2C *refers to the combined Inh-MEF2C/Inh-NXPH1 population. B-D, RNAscope results 
for the selected neuron subtypes B, Exc-NMUR2 C, Exc-MAF, and D, Inh-NPY. Panels depict the in situ 
hybridization marker gene combinations used to detect each target cell type, with the color of the marker name 
indicating the fluorescence of the marker in the image. Dorsal horn images are taken at 10x with the smaller 
insets showing a magnified image (20x) of the individual gene(s) as well as the merged image. Laminar 
boundaries (dashed lines) are drawn between II/III, III/IV and IV/V. Scale bars in bottom right corners of panels 
= 100 μm. Box plots indicate the binned laminar distribution (shallow=I-II, deep = III-V) of cell counts by sample: 
n=5 or 6 spinal cord sections from N=2-3 macaques. *p<0.05. 
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Main Figure 3. snRNA-seq integration of adult macaque, human, and mouse dorsal horn datasets; 
identification and validation of new conserved marker genes.  
A, UMAP representations of dorsal horn neuron subtypes of each adult species in integrated coordinates 
(Macaque, left; Human, middle; mouse, right). Overlayed, colored dots represent nuclei from the species titled, 
light grey background dots represent nuclei from the other species. The neuron subtype color scheme in panel 
B applies to UMAPs. B, Scaled gene expression of selected conserved marker genes. Rows are individual 
marker genes and columns are each neuron subtype. Each colored tick represents the expression of the given 
marker for an individual nucleus. The full correspondence between sets of marker genes and each cell type is 
given in Table 1. C. Schematic of an example decision tree to validate the choice of conserved marker genes 
for a given neuron subtype, in this case Inh-PDYN. The decision tree learns expression cutoffs that best separate 
the target cell type from off-target cells, trained using 80% of the macaque nuclei. D, Decision tree test accuracies 
are reported for each cell type and across the test sets of the three species: the remaining 20% of the macaque 
nuclei, and all of the human and mouse nuclei. Mac=Macaque. Hum=Human. Additional metrics are provided in 
Table S9-12. 
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Main Figure 4. Dorsal horn neuron cell types identified in mouse Xenium® Spatial Transcriptomics assay 
and calculation of laminar distributions. A, UMAP representation of major cell types identified in Xenium 
assay based on integration with adult mouse snRNA-seq dataset. B, Spatial distribution of major cell types in 
spinal cord cross-section. Individual dots represent individual cells segmented by Xenium. Dot color indicates 
cell type; the UMAP in panel A indicates the major cell type for a given color. Box indicates location of 
representative dorsal horn section, shown in Panel D. C, UMAP representation of dorsal horn neuron subtypes 
identified in Xenium assay based on integration with adult mouse snRNA-seq dataset with conserved labels. 
Inh-SORCS1 and Inh-PDZD2 are combined as a population as individual cell types were not readily 
distinguishable in Xenium. One cluster indicated as Unlabeled did not correspond to any snRNA-seq dorsal horn 
cell type. D, Cell type distribution of boxed region shown in Panel A. Superficial position defined as higher vertical 
coordinate in Xenium. Some trends are visually apparent, such as deeper location of Exc-MAF cells (purple).  E, 
Bar chart of cell counts per neuron subtype in Xenium. F, Box plot of laminar shallowness per cell type. z-score 
of laminar shallowness was the shallowness of an individual cell relative to the average y-coordinate of its slice 
and normalized by the variability in y-coordinates of the slice. Individual points of each box plot represent the 
average z-score for the cells of that cell type in one slice. * significant p-value indicating difference from zero 
(either significantly deep or shallow), after false discovery rate correction of 0.05. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2022.04.01.486135doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.01.486135
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Main Figure 5. Single-cell spatial visualization of dorsal horn neuron subtypes in mouse. Exc-PBX3 is a 
superficial dorsal subtype identifiable by Pdyn expression.  A. Distinct neural subtypes previously labeled 
based on RNA integration are shown with cell segmentations and individual colors. Leptomeninges and other 
glia are shown in shades of dark grey to demarcate the meningeal border and white matter of the spinal cord. 
The Spp1 family of neurons, previously called “MidVent”, are shown in light grey. B. Distinct neuron subtypes 
are shown to be concentrated in the superficial dorsal horn. C. Violin plot showing the expression of Spp1 (left) 
and Pdyn (right) among Spp1 neurons, Exc-PBX3, and distinct neural subtypes besides Exc-PBX3 (DistinctDH). 
These categories account for all dorsal horn neurons. D. Visualization of Spp1 (red) and Pdyn (light blue) 
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transcript distribution in the spinal cord. E. Violin plot of Pdyn expression across, glial cell types, distinct dorsal 
horn subtypes, and subclusters of the Spp1 family (indicated by xen.). In addition to the excitatory marker 
Slc17a6 (not shown), Pdyn expression distinguishes Exc-PBX3 from all other cell types and subclusters. 
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Main Figure 6. Mouse snATAC-seq open chromatin: Dorsal horn neuron neuron subtype identification, 
transcription factor motifs, and candidate regulatory SNPs. 
A, Schematic overview of the single-nucleus ATAC-seq experimental workflow of the mouse lumbar dorsal horn 
(L4/5). B. UMAP representation of snATAC nuclei and major cell types after label transfer using RNA-ATAC 
integration and confirmation using gene scores of marker genes. C. UMAP representation of dorsal horn neuron 
subtype nuclei after neuron-specific re-clustering and label transfer using RNA-ATAC integration. Cell subtype 
color scheme same as Figure 3,4,5. D. Identification of positive transcription factor (TF) regulators. Motifs are 
considered TF regulators if they satisfy (a) in the top quartile of motif deviation, a measure of cell-type specificity 
(y-axis), and (b) their presence is correlated (>0.5, Pearson correlation) with the imputed gene expression of 
their corresponding TF (x-axis). E. Heatmap showing the normalized motif deviation (z-score) of each TF 
regulator by neuron subtype. Black boxes highlight the MAF and RORA motifs specific to Exc-MAF, and NR3C1 
motifs (glucocorticoid receptor) specific to Exc-LMO3 and Exc-SKOR2. TF = transcription factor. F.-I. Example 
GWAS SNPs near genes linked to the spinal cord and chronic pain within subtype-specific mouse open 
chromatin peaks. Top section of each panel are Manhattan plots of significant SNPs (red dot, with rsID above) 
and nearby SNPs (blue dots) from Kupari et al. The bottom half of each panel are the following annotations from 
top to bottom (1) the nearby genes (Gene), (2) the open chromatin peaks of the highlighted neuron subtype, and 
(3) peaks of other dorsal horn subtypes (Other). The translucent red rectangle highlights the SNP falling within 
the peak of interest. F.-G. A LANCL1 SNP falling within Exc-TAC3/SKOR2/MAF peaks. H.-I. A FOXP2 SNP 
falling within an Inh-Pdyn peak. SNP - single-nucleotide polymorphism. eQTL = expression quantitative trait 
locus.chr2,7 = chromosome 2,7. KB = kilobases range of locus. 
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Main Figure 7. Open chromatin profiles rather than marker genes of distinct dorsal horn neuron subtypes 
are enriched for human SNP markers of several chronic pain disorders. A. Bar plot showing the proportion 
of marker genes for each neuron subtype that are either strictly specific to that neuron subtype (unique, blue) or 
a marker gene for at least one other neuron subtype (shared, red). B. Gene-based stratified LDSC based on 
marker gene enrichment only. The intronic and flanking non-coding regions of each neuron subtype (x-axis of 
panel C) were aggregated. The background for all subtypes was the intronic and flanking regions of all coding 
genes. Enrichment of GWAS SNPs per cell type versus the background was estimated by stratified LDSC. Per 
legend (shared by Panel C, lower left), darker purple indicates greater enrichment for the particular trait (y-axis) 
and neuron subtype (x-axis). Top three traits were non-neuronal negative controls. Significance based on FDR 
<0.05 is indicated by a black box around the square. C. Stratified LDSC of subtype-specific open chromatin. 
Foregrounds for each neuron subtype were the specific reproducible peaks from snATAC-seq. The background 
for each subtype was the union of foregrounds merged with a large mouse DNase hypersensitivity site dataset 
(see Methods). Legend and interpretation same as panel B. In addition to neuron subtypes, enrichment was 
estimated for glial cell types from the same dataset, as well as bulk liver, putamen and hippocampal brain 
neurons, and naïve, IFN-B, and IFN-G immune cells from separate datasets (details in Methods). J= Johnson et 
al, Kh = al Khoury et al, Ku = Kupari et al. 
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LDSC = Linkage-disequilibrium score regression. FDR = false discovery rate. GWAS = genome-wide association 
study. 
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