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ABSTRACT

CD8" T cell dysfunction impedes anti-tumor immunity in solid cancers but the underlying mechanisms are diverse
and poorly understood. Extracellular matrix (ECM) composition has been linked to both impaired T cell migration
and enhanced tumor progression; however, impacts of individual ECM molecules on T cell function in the tumor
microenvironment (TME) are only beginning to be elucidated. Upstream regulators of aberrant ECM deposition
and organization in solid tumors are equally ill-defined. Therefore, we investigated how ECM composition
modulates CD8" T cell function in undifferentiated pleomorphic sarcoma (UPS), an immunologically active and
desmoplastic tumor. Using an autochthonous murine model of UPS and data from multiple human patient
cohorts, we discovered a multifaceted mechanism wherein the transcriptional co-activator YAP1 promotes
collagen VI (COLVI) deposition in the UPS TME. In turn, COLVI induces CD8" T cell dysfunction and immune
evasion by remodeling fibrillar collagen and inhibiting T cell autophagic flux. Unexpectedly, collagen | (COLI)
opposed COLVI in this setting, promoting CD8" T cell function and acting as a tumor suppressor. Thus, CD8" T

cell responses in sarcoma depend upon oncogene-mediated ECM composition and remodeling.

INTRODUCTION

Immunosuppression in the solid tumor microenvironment (TME) is a barrier to T cell-mediated anti-tumor
immunity. Tumors evade host adaptive immune responses by inducing CD8" T cell dysfunction, a hypofunctional
state characterized by overexpression of inhibitory cell-surface receptors (e.g., PD1, TIM-3, LAG3), reduced
effector function, and impaired proliferative capacity (1). Molecular mechanisms underlying CD8" T cell
dysfunction in solid cancers are of significant interest due to theirimpact on immunotherapy strategies. However,
most prior studies in this area have focused on the roles of continuous antigen exposure/repetitive T cell receptor
stimulation, immune checkpoint-mediated inhibitory signaling, and immunosuppressive cytokines (2). Moreover,
the importance of TME contexture in the setting of T cell-based therapies is poorly described. Thus, a more
comprehensive and physiological evaluation of CD8" T cell dysfunction in solid tumors is critical for improving

our understanding of immune evasion mechanisms in the TME and advancing actionable interventions.
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Soft tissue sarcoma (STS) is a heterogeneous group of solid mesenchymal tumors comprised of ~70
distinct histologic subtypes (3). These lesions are characterized by mesenchymal gene expression, extensive
extracellular matrix (ECM) deposition, and increased ECM stiffness relative to normal tissues (4-7). Interestingly,
these features are also observed in high-grade, poorly differentiated epithelial tumors where they are linked to
progression, therapeutic resistance, and poor clinical outcomes (8-16). Recent studies have shown that the ECM
facilitates cancer progression in part by inhibiting T cell migration/infiltration (17-20). However, the roles of
individual ECM proteins in this process are only beginning to be defined. Moreover, little research has addressed
the effects of ECM molecules on T cell function, particularly in solid tumors, or identified upstream regulators of
aberrant ECM deposition and composition/organization in this context. This paucity of available data indicates
that further study, particularly in vivo, is necessary.

Members of the collagen superfamily, of which there are 28 distinct molecular species, are some of the
most abundant and diverse ECM constituents in both normal tissues and solid tumors (21). Although the roles
of specific collagen species in cancer-associated processes are ill-defined, a growing body of literature indicates
that individual collagen molecules can have context-specific functions in the TME. For example, type | collagen
(Coll), a fibrillar collagen that forms prototypical collagen fibers, promotes or is associated with malignant
progression in some tumor settings, but has anti-tumor effects in others (22-28). These findings underscore the
need to systematically interrogate the roles of individual collagen molecules, particularly with respect to their
potential impacts on adaptive immunity, in specific tumor contexts.

Undifferentiated pleomorphic sarcoma (UPS) is a relatively common STS subtype that predominantly
arises in adult skeletal muscle and has a 10-year survival rate of only ~25% (3, 29). Although some STS are
considered immunologically “cold”, recent clinical trials have revealed that patients with UPS can exhibit objective
clinical responses to immune checkpoint inhibition (30, 31). These encouraging findings suggest that studies of
UPS may provide valuable insights into strategies for enhancing T cell function and immunotherapy responses
in solid tumors. Our previous work linked the intrinsic oncogenic functions of the transcriptional co-regulator Yes-
associated protein 1 (YAP1), the central Hippo pathway effector, to UPS cell proliferation, tumor growth, and
reduced human patient survival (32-35). However, we had not investigated the contribution of YAP1 to the
broader UPS microenvironment or immune cell activity. In some epithelial tumors, cancer cell-intrinsic YAP1
modulates recruitment and differentiation of macrophages and myeloid-derived suppressor cells, suggesting a
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role in immunomodulation (36, 37). However, this observation has not been confirmed in mesenchymal cancers.
YAP1 also possesses mechanosensory functions, and its nuclear localization and activity increase in response
to stiff environments such as those found in tumor tissue (38). Therefore, in this study, we interrogated the role
of UPS cell-intrinsic YAP1 signaling in the regulation of ECM deposition/organization and adaptive immune cell
function in the TME. We discovered a novel role for YAP1 in the regulation of ECM composition and cytotoxic T
cell function, and found that collagen type VI (ColVI), a microfibrillar collagen, indirectly modulates effector T cell
function by opposing and remodeling collagen type | (Coll). We further identify COLVI as a putative ECM-
associated biomarker of diagnosis and survival in human UPS. Our findings implicate YAP1 inhibition, in

combination with immunotherapy, as a promising approach to mitigate immune evasion mechanisms in the TME

of patients with solid tumors.

RESULTS

UPS cell-intrinsic Yap1 inhibits T cell activation and promotes CD8" T cell dysfunction

Using the genetically engineered mouse model (GEMM) of skeletal muscle-derived UPS, Kras®'?®*; Trp53""
(KP) (39, 40), we previously showed that Yap1 promotes UPS tumorigenesis and progression via activation of
sarcoma cell-intrinsic NF-xB (33). In this GEMM system, tumors are generated by injecting adenovirus-
expressing Cre recombinase into the gastrocnemius muscle. Recombination initiates oncogenic Kras expression
and deletes Yap7 floxed alleles in infected muscle progenitor cells (39, 40). TP53 mutations and deletion are
prevalent in human UPS (41), as is hyperactivation of the MAPK pathway downstream of KRAS (42). Consistent
with our previous work (33), we observed significantly increased tumor latency and similar rates of tumor
development when we introduced Yap1"" alleles into the KP GEMM, creating LSL-Kras®'?®"*; Trp53"": Yap 17
(KPY) animals (Figure 1A, B, Supp. Figure 1A).

Our previous studies have focused on mechanisms by which Yap1 impacts sarcoma cell-autonomous
signaling and phenotypes such as proliferation, differentiation, and metastasis (32-34). Therefore, in the present
study, we tested the hypothesis that UPS-cell intrinsic Yap1 also impacts the TME. To identify potential
mechanisms of Yap1-mediated TME modulation, we explored a publicly available microarray-based gene
expression dataset previously published by our group (33) comparing 5 unique KP and KPY bulk tumors. Loss

of Yap1 enhanced expression of numerous pathways associated with immune activation, suggesting that UPS
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cell-intrinsic Yap1 contributes to immunosuppression through an unknown mechanism (Figure 1C). To
investigate how Yap1 controls immunosuppression in UPS, we performed flow cytometric and automated
immunohistochemical (IHC) analyses of KP and KPY tumors. We did not detect changes in myeloid cell (dendritic
cells, macrophages, neutrophils) infiltration or polarization, nor differences in B cell content (Supp. Figure 1B-
D). However, we did observe increased proportions of CD44"CD8* and CD44"CD4"* T cells in KPY relative to
KP tumors, indicating enhanced T cell activation (Figure 1D, E). Furthermore, the percentage of dysfunctional
effector CD8" T cells (CD39"/Pd1* and Tim-3*/Pd1* CD8" T cells) was higher in KP tumors compared to KPY
(Figure 1F, G). Markers of central CD8" memory T cell differentiation (CD62L, CD127) remained unchanged
(Supp. Figure 2A). Importantly, in KPY mice, the observed increases in T cell activation could not be attributed
to reduced immunosuppressive Foxp3™ T regulatory cell content, nor to enhanced effector T cell infiltration
(Supp. Figure 1B-D). In fact, CD4" and CD8" T cell content was modestly decreased in KPY relative to KP
tumors. Therefore, we conclude that Yap1 may promote CD8" T cell dysfunction but likely does not impact T cell
recruitment to the TME.

To further explore the relationship between Yap1® UPS cells and T cell activation, we evaluated
expression of the T cell cytolysis marker, granzyme B (Gzmb) (43), in GEMM tumors (Figure 1H). Gzmb mRNA
expression (normalized to total T cells; Cd3e) was significantly increased in KPY tumors, providing further
evidence that Yap1® UPS cells are associated with immunosuppression. Therefore, we determined if UPS cell-
intrinsic Yap1 modulates T cell effector function in addition to inhibitory surface marker expression. To this end,
we treated tumor-bearing KP and KPY mice with a-Pd1 or isotype control antibody. We hypothesized that
immune checkpoint blockade would show increased efficacy in KPY animals due to enhanced T cell activation,
but have no effect in KP mice. Consistent with this hypothesis, time to maximum tumor volume was significantly
increased in KPY, but not KP, animals (Figure 11). Notably, one KPY mouse experienced complete and lasting
tumor regression. We further evaluated the effect of YAP1* UPS cells on T cell function by leveraging human
chimeric antigen receptor T (CART) cells that target the Tn glycoform of mucin 1 on human cancer cells
(TnMUC1 CART cells (44)). This antigen is expressed on human STS-109 cells, derived from a UPS patient
tumor (Supp. Figure 2B). We co-cultured TNMUC1-CART cells with STS-109 cells expressing control or YAP1-
specific shRNAs (shYAP1) at multiple effector:target ratios and analyzed longitudinal cytolysis (Figure 1J, Supp.

Figure 2C). We observed that YAP1 deficiency in UPS cells enhances cytotoxic T cell function, confirming that

5


https://doi.org/10.1101/2022.03.31.486627
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.31.486627; this version posted January 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
YAP1* UPS cells promote immunosuppression. To explore this data in a human patient context, we leveraged
The Cancer Genome Atlas (TGCA) Sarcoma dataset (41). Consistent with our experimental findings, gene
expression levels of T cell cytolysis markers (GZMB and perforin [PRF1]) in human UPS tumors were associated
with improved survival (Figure 1K, L, Supp. Figure 2D) and negatively correlated with YAP1 levels (Figure 1M,
N). Thus, although some sarcomas are considered immunologically “cold”, our data suggest that cytotoxic T cell

activation is a critical factor in UPS patient survival, and that modulating Yap1 and T cell activity may improve

clinical outcomes.

UPS cell-intrinsic Yap1 promotes collagen VI deposition in the TME

We next sought to define the mechanism of crosstalk between Yap1® UPS cells and infiltrating CD8" T cells.
Recent studies in epithelial tumors have shown that Yap1 can influence the cancer cell “secretome” (45, 46).
Therefore, we measured 31 cytokines and chemokines in supernatants from the same samples used in our CAR
T cell cytolysis assays (Figure 1J). Many analytes were below the lower limit of detection of the assay, but those
we could detect were generally stable in UPS cell mono-cultures vs. co-cultures, and in cultures with YAP17-
sufficient vs. YAP1-deficient UPS cells (Supp. Figure 3A). UPS cells co-cultured with normal human donor T
cells (ND T cells) yielded similar results (Supp. Figure 3B). These findings support the conclusion that YAP1
likely does not control CD8" T cell function in the TME via cytokines or chemokines; thus, we focused on other
potential mechanisms.

YAP1 is a known modulator of mechanosensing properties associated with ECM remodeling (47).
Therefore, we investigated whether ECM-related processes are required for YAP1-mediated T cell suppression
in the UPS TME. Using our microarray dataset of KP and KPY tumors to identify Yap1-dependent matrix genes,
we found that many pathways associated with ECM and tissue remodeling were altered in KPY tumors relative
to KP (Supp. Figure 3C). We also observed that genes encoding many members of the collagen superfamily,
particularly collagen type VI (ColVI), were downregulated in KPY relative to KP tumors (Figure 2A, Supp. Figure
3D). Multiple genes encode ColVI (e.g., Col6a1, Col6a2, Col6a3), each of which results in a unique protein chain.
Col6a1 is indispensable for ColVI protein expression (48). qRT-PCR and IHC analysis of bulk tumor specimens
revealed that KPY tumors exhibited a trend toward reduced ColVI deposition overall (Figure 2B, C, Supp. Figure
3E-H). We did observe some heterogeneity in expression, potentially due to ColVI secretion by multiple cell
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types including macrophages (28, 49) and UPS cells themselves; however, IHC analysis clearly showed that
KPY tumors exhibited significantly less strong-positive (3+) and significantly more moderately positive (2+)
staining than KP tumors (Figure 2B, C). We validated these findings in vitro by gqRT-PCR and immunoblotting
of UPS cell lines derived from multiple unique KP GEMM tumors (KP230 and SKPY42.1 cells, referred to
hereafter as “KP cells”). Specifically, KP cells transduced with one of multiple Yap7-specific shRNAs expressed
substantially less Col6a1 and Col6a2 than control cells; Col6a3 was more modestly reduced (Figure 2D, E). In
contrast, we could not validate a role for Yap1 in the modulation of collagen type Il expression (Col3a1; Supp.
Figure 3l), nor that of other matrix genes such as fibronectin (Fn1; Supp. Figure 3J), indicating the potential
specificity of this regulation.

To confirm the relationship between Yap1 and ColVI in UPS with a pharmacological approach, we treated
tumor-bearing KP mice and KP cells in vitro with a combination of the histone deacetylase inhibitor (HDACI)
Vorinostat (also known as Suberoylanilide Hydroxamic Acid; SAHA) and the BRD4 inhibitor JQ1, or vehicle
control. We and others have reported that treatment with JQ1/SAHA (or other HDAC:) inhibits Yap1 expression
in UPS and other cancers (33, 50-52). Microarray, IHC, immunoblotting, and qRT-PCR analyses confirmed that
ColVI gene and protein expression were substantially downregulated in SAHA/JQ1-treated cells and tumors
(Figure 2F, G, Supp. Figure 3K-M). Taken together, these data support the conclusion that UPS-cell intrinsic
Yap1 promotes aberrant ColVI deposition in the TME, and that genetic and non-specific pharmacologic inhibition
of Yap1 can reverse this process.

As a transcriptional co-activator, Yap1 lacks a DNA-binding domain and must interact with Tea Domain
(TEAD) family transcription factors to stimulate gene expression; Tead1 is enriched in skeletal muscle tissue
(53) and potentially muscle-derived tumors. Therefore, to explore the mechanism by which Yap1 promotes ColVI
deposition, we leveraged publicly available Tead1 ChlP-seq data (GSE55186) from Yap1-driven embryonal
rhabdomyosarcoma (eRMS) (54), skeletal muscle-derived tumors that lie on morphological and transcriptional
continua with UPS (55). In murine Yap1-driven eRMS (54), Tead1-ChIP signal was enriched in a region that
overlapped with the Col6a1 5 untranslated region (UTR), likely corresponding to the Col6a1 promoter (Supp.

Figure 4A). A second peak ~5 kb upstream of the Col6a7 5 UTR was also observed, potentially representing

an enhancer region. Similarly, in cultured human eRMS cells (RD cells), TEAD1-ChlIP signal was enriched ~9
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kb upstream of the COL6A1 5 UTR (Supp. Figure 4B). These data suggest that transcriptionally active Yap1

upregulates ColVI deposition in skeletal muscle-derived sarcomas by directly stimulating Col6a1 transcription.

Yap1-mediated ColVI deposition promotes CD8" T cell dysfunction

Based on our findings, we hypothesized that Yap1-mediated ColVI deposition in the UPS TME promotes CD8"
T cell inhibitory marker expression and dysfunction. To test this idea, we developed a novel system in which
C57BL/6 KP cells (B6-KP cells) were seeded at 90% confluency and cultured under hypoxic conditions (1% O>),
stimulating them to deposit ECM. This ECM was then decellularized (decellularized ECM; dECM) and incubated
with activated syngeneic CD8" T cells (splenocytes; C57BL/6 background) under normoxic conditions (21% O)
(Figure 2H). dECMs were generated under hypoxic conditions because it is well-established that hypoxia
stimulates robust ECM gene/protein expression and matrix remodeling in the TME (4, 56); indeed, ColVI
deposition was significantly increased in dECMs generated under hypoxia vs. normoxia (Supp. Figure 4C, D).
Thus, UPS dECMs generated under hypoxic conditions were used in all experiments given our focus on Yap1-
mediated ECM deposition and not the role of hypoxia vs. normoxia per se. Subsequent CD8" T cell culture on
dECMs was conducted under normoxic conditions given previous reports that hypoxia can either enhance or
suppress CD8" T cell expansion and function depending on tissue/experimental context and extent of T cell
receptor (CD3) stimulation (57-60).

To determine if Yap1-mediated ColVI deposition in UPS enhances T cell dysfunction, we first generated
dECMs from control and Yap 7-deficient B6-KP cells. Immunofluorescent staining revealed that ColVI deposition
was somewhat heterogeneous, but was generally decreased in Yap7-deficient dECMs compared to controls,
confirming the regulatory role of UPS cell-intrinsic Yap1 in ColVI secretion (Figure 2I). Although the observed
reductions in ColVI were modest and only attained statistical significance for 1 shRNA, these results were
unsurprising because culturing cells at high confluence — which is required for matrix deposition in our system —
is a well-established Yap1 suppressor (61) and can thereby minimize differences in Yap1 activity between shScr
and shYap1 UPS cells. We cultured syngeneic CD8" T cells on these dECMs and measured the surface
expression of the T cell inhibitory receptors Pd1 and Tim-3 by flow cytometry. The proportion of CD8" T cells co-
expressing Pd1 and Tim-3 was modestly reduced following culture on dECMs from Yap 7-deficient compared to
control UPS cells (Supp. Figure 4E, F). We also observed significantly higher percentages of CD8" T cells co-
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expressing the cytolytic markers IFNy and TNFa following culture on dECMs from shYap1 cells (Figure 2J),
consistent with the results of our CART-TnMUC1 assay (Figure 1J). Together, these results support the
conclusion that UPS cell-intrinsic Yap1 promotes CD8" T cell dysfunction.

We then determined the specific effects of ColVI, downstream of Yap1, on CD8" T cell surface marker
expression by generating dECMs from ColVI-deficient KP cells (Figure 3A). In this assay, we targeted Col6a7,
rather than other ColVI-encoding genes, because Col6a7 is indispensable for ColVI protein synthesis (48).
Col6a1 depletion in KP cells significantly reduced CD8" T cell dysfunction in this assay as measured by co-
expression of Pd1 and Tim-3 (Figure 3B, C). We also confirmed that ColVI depletion does not affect KP tumor-
derived cell proliferation in vitro (Supp. Figure 5A, B), consistent with the hypothesis that the dominant role of
ColVl is specific to immune modulation in the TME. To directly test the effect of COLVI on T cell-mediated killing,
we employed the human CART-TnMUC1 system introduced in Figure 1J (44). Longitudinal T cell-mediated
cytolysis of STS-109 UPS cells expressing control or COL6A7-specific shRNAs revealed that COLVI depletion
enhanced cytotoxic T cell function, phenocopying the effects of YAP7 depletion (Figure 3D, E, Supp. Figure
5C). To address the possibility that shCOL6A1 UPS cells (and shYAP1 cells in Figure 1J) are simply more
susceptible than shScr cells to T cell-mediated apoptosis, we treated them with recombinant human TNFa
or IFNy, two cytolytic cytokines known to be produced by CD8" T cells, and evaluated apoptosis by flow
cytometry. We reasoned that equivalent doses of purified cytokines should elicit similar levels of apoptosis in
shYAP1/shCOL6A1 cells and controls if CD8" T cell function is truly enhanced in the setting of UPS cell-intrinsic
YAP1 or COL6A1 deficiency. We observed that purified cytokines did not increase shYAP1/shCOL6A1 UPS cell
apoptosis relative to shScr cells, confirming enhanced CART cell cytotoxicity in the presence of reduced UPS
cell-derived COLVI (Supp. Figure 5D, E). In fact, IFNy elicited lower rates of late apoptosis in shYAP1 and
shCOL6A1 UPS cells compared to controls; however, these effect sizes were modest and inconsistent across
cytokine concentrations and independent shRNAs. Consistent with these results, COLVI protein was detected
extracellularly and in UPS cell culture-conditioned medium (Supp. Figure 5F-H), where it can suppress CART-
TnMUC1-mediated cytolysis and promote T cell dysfunction.

In light of our in vitro findings that ColVI suppresses CD8" T cell function, we investigated this relationship
in vivo by generating control and Col6a7 shRNA-expressing UPS tumors (syngeneic allograft of SKPY42.1 KP

cells on a pure C57BL/6 background) in C57BL/6 hosts. In these immunocompetent mice, ColVI-deficient tumors
9
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were significantly smaller and slower growing than control tumors (Figure 3F, G). We demonstrated that ColVI-
dependent tumor growth is mediated by T cell inactivation by depleting CD8" T cells in the syngeneic transplant
system (Figure 3H, Supp. Figure 5l), where control and shCol6a1 tumors grew at the same rate. We also
generated syngeneic orthotopic tumors by injecting control and shCol6a1-expressing KP cells into the
gastrocnemius muscles of immunocompetent C57BL/6 mice (Figure 3l, Supp. Figure 5J). Flow cytometric
analysis indicated that the proportion of CD8" T cells expressing dysfunction markers, including Tox, Tim-3,
CD39, and Lag3, was significantly decreased in ColVI-deficient tumors compared to controls (Figure 3J, K).

Taken together, these findings confirm that Yap1-mediated ColVI deposition in the UPS TME promotes CD8" T

cell dysfunction and immune evasion.

ColVI colocalizes with and remodels collagen | fibers in the UPS TME

Next, we explored the mechanism by which COLVI promotes CD8" T cell dysfunction in the UPS TME. We first
asked whether CD8" T cell dysfunction is induced following direct interaction with deposited COLVI via known
COLVI receptors. To test this hypothesis, we developed a second novel in vitro system by incorporating purified
human COLVI into COLI-containing hydrogels. COLI, a fibrillar collagen, is one of the most widely used hydrogel
scaffolds due to its mechanical stability, hydrophilicity, versatility, in vivo abundance, and ease of extraction (62).
COLVI, which forms microfilaments instead of fibers, does not possess all of these properties and thus cannot
be used to generate hydrogels independently; moreover, unlike COLI, which can be found in isolation and need
not interact with other matrix proteins in vivo, COLVI is always found bound to other ECM molecules and/or cell
surface proteins (63). Activated human CD8" T cells were then cultured on these COLVI-containing hydrogels,
allowing us to assess the impact of purified matrix proteins on CD8" T cells in a three-dimensional environment.
Subsequently, we genetically or pharmacologically blocked the known COLVI receptors ITGB1, NG2 (CSPG4),
CMG2, and ITGAV (Supp. Figure 6A). ITGAV and ITGB1 can bind multiple collagen species, including both
COLVI and COLI; however, to our knowledge, NG2 and CMG2 are specific for COLVI (63-68). Neutralization of
ITGB1 or NG2 with blocking antibodies had no effect on CD8* T cell dysfunction as measured by co-expression
of TIM-3 and PD1, nor did it restore CD8" T cell proliferation (KI67 positivity). Similar results were obtained
following treatment of human CD8" T cells with cilengitide, a selective inhibitor of avp3 and avp5 integrins (69),

and with activated CD8" T cells from Cmg2’ mice (70) (Supp. Figure 6B-F). From these results, we conclude
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that CD8" T cell dysfunction is not strongly modulated by canonical COLVI receptors. However, we cannot
exclude the possibility that ITGAV and/or ITGB1 may be involved, as neutralization of these receptors would
likely block both T cell-COLVI and T cell-COLI interactions in our hydrogel system.

In the absence of a direct mechanism connecting ColVI receptors to T cell dysfunction, we investigated
potential indirect mechanisms. ColVI binds to a number of ECM proteins, including fibrillar collagens such as
Coll, one of the most prevalent collagens in mammalian tissues (71-73). In one study of resting peripheral blood
T cells, COLI induced CD8" T cell proliferation in vitro when used in conjunction with CD3/T cell receptor
stimulation (74). Therefore, we hypothesized that Yap1-mediated ColVI deposition promotes CD8" T cell
dysfunction by altering Coll content and/or organization in the UPS ECM. We first examined the effect of Col6a1
depletion on Coll levels in KP cells in vitro. gRT-PCR demonstrated no consistent changes in Coll-related gene
expression, whereas immunoblot, dot blot, and co-immunofluorescence assays indicated that Coll protein levels
generally did not change in Col6a1-deficient vs. control cells (Supp. Figure 7A-G). However, we did observe
marked colocalization between Coll and ColVI in control (shScr) KP dECMs, with 26.4% of Coll colocalizing with
ColVl, indicating a physical interaction between these two ECM components (Figure 4A, Supp. Figure 7H, Mov.
$1-3). Therefore, we considered the possibility that ColVI remodels Coll in the UPS TME, with potential
implications for CD8" T cell function.

To test this hypothesis, we began by examining the architecture of fibrillar collagen molecules in
explanted GEMM tumors. Using multiphoton second harmonic generation (SHG) imaging, we identified
significant alterations to fibrillar collagen organization, including significantly thinner and straighter fibers in KPY
tumors compared to KP (Figure 4B-D). Importantly, these changes in fibrillar collagen structure occurred despite
similar levels of Coll-related gene expression (Figure 2A, Supp. Figure 3D, 8A) and Coll protein deposition
(Supp. Figure 8B, C) in KP and KPY tumors. Similar results were observed in SAHA/JQ1-treated tumors
compared to controls (Supp. Figure 8D-F). We also evaluated human UPS tumors and found that their fibrillar
collagen structure recapitulated that of KP tumors, confirming that our GEMMs successfully reproduce this
aspect of tumor biology (Figure 4E, Mov. S4-6). To explore the impact of ColVI on Coll organization more
directly, we examined extracellular Coll immunofluorescent staining patterns in control and Col6a7-deficient KP
cell-derived ECMs (Figure 4F). In this experiment, matrices were not decellularized in order to circumvent the
potential (albeit minor) changes in ECM structure induced by the decellularization process. We observed that
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Coll fibers in shCol6a1l ECMs were significantly longer, straighter, and wider than those in shScr ECMs, and
exhibited significantly different orientation distributions, confirming ColVI-mediated remodeling (Figure 4G-l,
Supp. Figure 8G). Finally, we asked whether COLVI alters COLI structure directly or indirectly through other
mechanisms by performing SHG imaging of hydrogels containing purified COLI alone, or COLI together with
purified COLVI (Figure 4J). As SHG can only detect fibrillar collagen molecules, COLI, but not COLVI, is imaged
in this assay. Remarkably, the addition of COLVI (250 ug/mL) to our hydrogel system nearly abolished the
formation of COLI fibers and higher-level structures (e.g., fiber bundles; Figure 4K). In contrast, COLI fibers
remained abundant in the presence of a different non-fibrillar collagen, collagen type IV (COLIV; used at the

same concentration as COLVI), underscoring the potential specificity of the COLI-COLVI relationship (Figure

4L). Taken together, we conclude that ColVI directly modifies Coll fiber architecture in the UPS TME.

Coll opposes ColVI and abrogates CD8" T cell dysfunction

We next sought to understand mechanistically how Coll-ColVI interactions impact CD8" T cells, hypothesizing
that ColVI triggers dysfunction indirectly by remodeling Coll in the TME. To test the impact of Coll on CD8* T cell
function, we incubated activated murine CD8" T cells on dECMs from control or Col7a1-deficient B6-KP cells.
Unlike in the setting of Yap7 and Col6a7 deficiency (Figure 2, 3), the proportion of IFNy"TNFa™ CD8" T cells
was reduced following culture on Col71a1-deficient dECMs, indicating decreased cytolytic capacity (Figure 5A,
B). We then compared the effects of COLI and COLVI on activated human CD8" T cells by culturing them on
hydrogels containing purified COLI alone, or COLI together with purified COLVI (Figure 5C). The proportion of
CD8" T cells co-expressing PD1 and TIM-3 was significantly reduced on COLI gels compared to on COLVI-
containing hydrogels (Figure 5D, E); TIM-3 median fluorescence intensity was similarly decreased (Supp.
Figure 9A). Additionally, CD8" T cell proliferative capacity was improved on COLI gels relative to COLI + COLVI
gels as indicated by greater KI67 positivity (Figure 5F, G). The proportion of cytolytic IFNy*"TNFo* CD8" T cells
was also modestly elevated in the presence of COLI alone (Supp. Figure 9B). We then tested the specificity of
COLI-COLVI interactions on CD8" T cell function by substituting COLIV for COLVI in this assay. Remarkably,
CD8" T cell dysfunction was not significantly impacted by the addition of COLIV to COLI-containing hydrogels
(Supp. Figure 9C), consistent with our SHG data (Figure 4L), and further illustrating the specificity of the COLI-

COLVI relationship.
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Stiffened, fibrotic microenvironments such as those in desmoplastic solid tumors are well-known to
activate Yap1 (38). Therefore, we ascertained whether COLVI drives CD8" T cell dysfunction by increasing ECM
stiffness and potentiating Yap1 signaling. We queried the expression and subcellular localization of Yap1 in
control, shCol6a1, and shCol1a1 KP cells, but did not detect significant differences in Yap1 gene expression,
protein levels, or S127 phosphorylation, an established surrogate for cytoplasmic retention and degradation
(Supp. Figure 9D-F). Consistent with this observation, hydrogel stiffness was not significantly altered by the
addition of COLVI (Supp. Figure 9G).

We also investigated the involvement of a Coll receptor, Lair1, in CD8" T cell dysfunction, given a recent
report that Lair1 negatively regulates CD8" T cell activity and may promote immunotherapy resistance in lung
cancer (75). However, analysis of publicly available single-cell RNA-sequencing data from KP UPS tumors
(GSE144507; (76)) demonstrated that Lair1 was predominantly expressed on tumor-associated macrophages
and very minimally on CD8" T cells (Supp. Figure 9H). Moreover, LAIR1 (but not COL1A1 itself), was associated
with improved overall survival in UPS patients (Supp. Figure 9I, J), inconsistent with its putative role promoting
CD8" T cell immunosuppression (75). These results argue against the involvement of Lair? in UPS matrix-
mediated immune evasion. Finally, we confirmed that neither molecular diffusion rates throughout, nor oxygen
concentrations within, the hydrogels were substantially impacted by the addition of COLVI, demonstrating that
differential nutrient and/or oxygen availability likely does not underlie the observed COLVI-induced CD8* T cell
dysfunction in this system (Supp. Figure 9K, L). Taken together, these observations clearly indicate that COLI
can abrogate the CD8" T cell dysfunction mediated by COLVI, and demonstrate the relative importance of ECM
signaling over Yap1 hyperactivation in this process.

Our findings thus far suggest that ColVI functions to restrain Coll-mediated CD8" T cell activity and
proliferation. To test this hypothesis in vivo, we generated subcutaneous syngeneic tumors by injecting
SKPY42.1 cells expressing control, Col1a1-, or Col6a1-targeting shRNAs in C57BL/6 mice (Figure 5H). In this
immunocompetent setting, Col1a71-deficient tumors grew more rapidly than both control and Col6a7-deficient
tumors. shCol1a1 and shScr tumors also developed with similar efficiency (85% and 95%, respectively), whereas
shCol6a1 tumors only formed in 46.2% of mice (Figure 5l). Of the shCol6a1 tumors that did form, 83.3% (15/18)
rapidly regressed before they reached 100 mm?. Similar results were obtained in immunocompetent syngeneic
orthotopic tumor models (Supp. Figure 10A-C). Importantly, shCol1a1-tumor-bearing mice experienced
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significantly worse survival than mice bearing control tumors, whereas survival of shCol6a1-tumor bearing mice
was improved (Supp. Figure 10D). Furthermore, evaluation of dysfunction marker expression on CD8" T cells
revealed upregulation of Tim-3 and Tox in Col7a7-deficient UPS tumors compared to controls (Figure 5J, K),
indicative of increased dysfunction due to loss of Coll. Impressively, when we assessed the impact of Col1a1
depletion on KP cell growth in vitro, Col71a1-deficient cells proliferated more slowly than control cells, reflecting
a discrepancy between effects of Coll depletion in vitro and in vivo in this system (Supp. Figure 10E). These
results confirm that the presence of Coll in the UPS ECM controls tumor growth by enabling host anti-tumor
immunity, whereas the aberrant deposition of ColVI opposes Coll and promotes immune evasion.

To ascertain whether ColVI or Coll plays the dominant role in matrix-mediated CD8" T cell dysfunction,
we depleted Col6at1 and Col1at in the same population of SKPY42.1 cells and injected them into recipient
syngeneic C57BL/6 mice (Figure 5L, M). Cells deficient for both collagens formed tumors at intermediate rates
between those deficient for shCol6a1 or shCol1a1 individually (Supp. Figure 10F), but the resulting tumors
(herein referred to as “double knockdown tumors”) phenocopied shCol6a1 tumor growth, rapidly regressing
before they reached ~100 mm? (Figure 5N, Supp. Figure 10G). To confirm that this observed regression was T
cell-dependent, we generated control and double knockdown tumors in nu/nu mice, in which mature T cells are
lacking but innate immune cells are present. In this critical experiment, no statistically significant differences in
tumor formation or growth were observed (Figure 50, Supp. Figure 10H, I), confirming T cell-mediated double

knockdown tumor regression in the syngeneic model (Figure 5N). From these data, we conclude that ColVI

plays a dominant role over that of Coll in UPS matrix-mediated immune evasion.

ColVI promotes T cell dysfunction by disrupting CD8* T cell autophagic flux

To date, an immunosuppressive role of ColVI has not been documented in tumors. We therefore aimed
to identify the specific downstream mechanism by which ColVI deposition causes T cell dysfunction. ColVI most
notably regulates mesenchymal cell adhesion and migration (77, 78); however, we were intrigued by its ability
to modulate autophagy in fibroblasts and muscle tissue (79). Autophagy is a central regulator of T cell metabolism
and is essential for T cell activation (80, 81). To assess whether ColVI impacted CD8" T cell autophagy, we
encapsulated T cells in purified COLVI-containing hydrogels and visualized autophagosomes in situ. In the
presence of COLVI, T cells contained significantly more and brighter autophagosomes than T cells encapsulated
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in Coll gels (Figure 6A-C). To determine whether COLVI caused autophagosome accumulation by inducing
autophagy, or by disrupting autophagic flux and autophagosome clearance, we treated activated CD8" T cells
with chloroquine (CQ) in the presence or absence of COLVI and evaluated LC3B-Il expression. In murine T cells,
inhibiting autophagic flux with CQ did not further increase Lc3b-Il, indicating that COLVI disrupts autophagic flux,
but does not induce autophagy (Figure 6D, E). Activated human peripheral blood CD8" T cells generally showed
the same trend (Figure 6F-l1). We confirmed this result by staining for p62, a protein rapidly degraded during
autophagy induction. In the presence of COLVI, p62 accumulated within T cells as evidenced by increased mean
p62 signal intensity (Figure 6J, K). Together, these results indicate that extracellular COLVI inhibits autophagic
flux in CD8" T cells.

To explore the broader impacts of our findings, we next considered whether COLVI might also impact
CD8" T cell function in other cancer types. Analysis of TCGA PanCancer RNA-seq data revealed that, like in
sarcomas, COL6A1, COL6A2, and COL6A3 are highly expressed in pancreatic ductal adenocarcinoma (PDAC)
(Supp. Figure 11A). Indeed, PDAC tumors contain abundant desmoplastic stroma, most of which is secreted
by cancer-associated fibroblasts (CAFs) in the TME (24). Therefore, we generated dECMs from PDAC-CAFs
isolated from three independent human tumors and confirmed their ability to secrete COLVI (Supp. Figure 11B).
We then generated dECMs from control and shCOL6A1-expressing PDAC-CAFs and incubated them with
activated human CD8" T cells. Surprisingly, the proportion of CD8" T cells co-expressing PD1 and TIM-3* was
not altered by exposure to COL6A7-deficient vs. -replete PDAC-CAF-derived matrix (Supp. Figure 11C, D).
Thus, unlike in UPS, COLVI does not appear to modulate CD8" T cell function in PDAC. Given a recent report
that Coll produced by fibroblasts (containing Col1a1/Col1a2 heterotrimers) is distinct from that produced by
PDAC cancer cells (containing Col1a1 homotrimers that possess oncogenic properties) (82), we then asked
whether the differential immunomodulatory capacity of CAF-derived vs. UPS-derived ECM resulted from the
production of heterotrimeric vs. homotrimeric Coll, respectively. However, like fibroblasts (and unlike PDAC
cancer cells) (82), Col6a1-sufficient and -deficient UPS cells secreted both Col1a1 and Col1a2 (Supp. Figure
11E), demonstrating that differences in the composition of Coll trimers do not likely underlie the divergent effects
of CAF-derived vs. UPS-derived matrix on CD8" T cell function. Taken together, these data underscore critical
differences in matrix protein composition between sarcomas and carcinomas, and highlight the potential
specificity of the ColVI-CD8" T cell relationship to mesenchymal tumors.
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COLVI as a potential prognostic and diagnostic biomarker in human STS

To evaluate our experimental findings in UPS in the clinical setting, we used data from multiple human UPS
patient cohorts: the Detwiller et al. dataset (83), TCGA-Sarcoma, and surgical specimens from the Hospital of
the University of Pennsylvania (HUP). Like YAP1 (33), COL6A1, COL6A2, and COL6A3 were upregulated in
human UPS relative to normal muscle tissue and strongly correlated with poor outcome in UPS patients (Figure
7A-l). We also interrogated the relationship between YAP1 and COLVI in these datasets. Consistent with our in
vitro and GEMM data demonstrating that Yap1 promotes ColVI deposition in the UPS TME, COLVI expression
highly correlated with nuclear YAP1 staining, a surrogate for YAP1 transcriptional activity (Figure 7J, K).
Moreover, the COL6A1, COL6A2, and COL6A3 promoters appeared transcriptionally active in these specimens
based upon the presence of H3K27Ac marks at these loci (Figure 7L). Finally, COL6A3 gene expression
positively tracked with that of YAP71 and FOXM1 (Figure 7M, N), the latter of which is a YAPT target gene in
sarcoma.

Finally, we explored the relationship between COLVI expression in UPS and other sarcoma subtypes
using a sarcoma tissue microarray (TMA). UPS tumors exhibited the highest mean COLVI H-score of all tumor
types (88.52; range: 105.73), significantly greater than that of leiomyosarcomas, neurofibromas, and synovial
sarcomas (Figure 8A, B). Importantly, the dynamic range of COLVI staining in the UPS TMA cohort was similar
to that observed in the HUP cohort (Figure 7J-K, range: 142.94). Given that UPS is more prevalent among older
adults and presents with aggressive clinical features (29), associations between COLVI H-score and histology
were then adjusted for patient age, tumor grade, and tumor stage (Figure 8A). After controlling for these
variables, the relationships between COLVI H-score and histologic subtype were attenuated but remained
statistically significant. Tumor grade was the only other variable that exhibited significant associations with
COLVI H-score in univariate models. Furthermore, in TCGA dataset, COL6A1 gene expression was significantly
associated with reduced long-term survival among liposarcoma patients, where tumor COLVI expression levels
are similar to those in UPS, but not leiomyosarcoma patients, where tumor COLVI levels are significantly lower
(Figure 8C, D). These data indicate that COLVI expression may be a biomarker of long-term clinical outcomes

and sensitivity to immunotherapy in some human sarcoma patients.
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DISCUSSION

Until now, our understanding of the role of the ECM in anti-tumor immunity was primarily limited to ECM-
mediated T cell and macrophage migration. Additionally, upstream mediators of aberrant ECM protein
composition in the TME were poorly defined. Herein, we establish a more specific and mechanistic
understanding of individual collagen molecules in the ECM and how they impact adaptive immune cell function
in solid tumors (Figure 8E). We discovered that the highly expressed transcriptional co-regulator Yap1 promotes
the deposition of a pro-tumor matrix protein, ColVI, in the UPS ECM. In turn, ColVI opposes anti-neoplastic Coll
molecules in the TME, altering their organization/architecture, thereby disrupting CD8" T cell autophagic flux.
Ultimately, this cascade facilitates CD8" T cell dysfunction as measured by upregulation of co-inhibitory
receptors, suppressed proliferation, and reduced effector function. Here, we report a novel, non-canonical role
of Yap1 in the TME and establish a direct mechanistic link between specific ECM constituents and modulation
of immune cell function.

Despite the incredible diversity of the collagen superfamily and the abundance of collagen molecules in
solid tumors (21, 28), the effects of specific collagens and other matrix proteins on T cell effector function,
differentiation, and anti-tumor efficacy are only beginning to be characterized. For example, using murine lung
cancer models, Peng et al. (75) demonstrated that extracellular collagen molecules induced CD8" T cell
exhaustion and attenuated responses to a-Pd1 checkpoint therapy. Although these phenotypes were reversible
following inhibition of the collagen cross-linking enzyme LOXL2, the authors did not attribute them to a specific
collagen type, in part because LOXL2 inhibition disrupts the synthesis and deposition of multiple collagen
species. Additionally, Liu and colleagues have implicated laminin-111 as an inhibitor of CD8" T cell expansion
and function in vitro; however, they did not pursue in vivo validation of these results (84). The authors did show
that Matrigel, the primary component of which is laminin-111, may accelerate syngeneic mammary tumor growth
in immunocompetent mice, but did not address whether Matrigel also directly stimulates cancer cell proliferation
in vivo (84). Furthermore, Robertson et al. (85) recently showed that incubation of splenocytes with mammary
carcinoma cells on collagen type IV (COLIV)-containing matrices may reduce T cell-mediated cancer cell
clearance. However, this study (85) did not establish a direct mechanistic link between COLIV and suppression

of T «cell function, instead suggesting that COLIV may induce a more immunosuppressive

transcriptional/secretory profile in mammary carcinoma cells. Moreover, the authors’ use of mammary carcinoma
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cells and unstimulated splenocytes from mice of different genetic backgrounds, as well as their reliance on
transcriptional profiles from mixed carcinoma cell-T cell co-cultures as readouts of T cell function, make it
challenging to interpret their results (85). Conversely, in the present study, we uncovered specific
immunomodulatory roles of two distinct collagen species in UPS, and directly linked aberrant ECM
composition/organization to induction of CD8" T cell dysfunction. Using multiple orthogonal in vitro functional
assays and in vivo readouts, we discovered that ColVI and Coll possess opposing roles in this tumor context,
promoting and opposing immune evasion, respectively. Whereas a direct immunosuppressive role for ColVI has
not been previously documented, the ColVI-mediated dysfunction program observed herein upregulated multiple
T cell inhibitory receptors and dysfunction markers (Pd1, Tim-3, Lag3, CD39, Tox), suppressed CD8" T cell
proliferation, and blunted CD8" T cell cytolytic capacity. In contrast, Coll was a tumor suppressor in vivo and
reduced CD8" T cell dysfunction relative to ColVIl. These observations are consistent with recent studies
demonstrating the stimulatory effects of COLI on CD8" T cell function. For example, COLI co-stimulation
enhanced peripheral blood-derived effector T cell expansion in vitro (74), and increased intratumoral T cell
content and activation gene expression in pancreatic cancer models in vivo (25). In contrast, another study of
three-dimensional culture models reported that high COLI density suppressed T cell proliferation and cytolytic
marker gene expression, thereby impairing their ability to lyse melanoma cells (86). However, many of the
experiments in (86) were performed with mixed populations of CD4" and CD8" T cells and are challenging to
interpret. Nevertheless, taken together, these studies suggest that the effects of Coll on CD8" T cells are complex
and potentially context-specific. However, our work herein clearly shows that Coll is a requisite factor for CD8"
T cell function in UPS. By extension, stromal depletion strategies seeking to reduce COLI deposition in the TME
could elicit detrimental outcomes in sarcomas.

One of the most intriguing findings from our study is that ColVI in the UPS TME directly remodels
extracellular Coll. We suspect that this ColVI-mediated matrix remodeling masks binding motifs on Coll, such as
RGD (Arg-Gly-Asp) sites or GXXGER consensus sequences, that would otherwise facilitate tumoricidal Coll-
CD8" T cell interactions. However, the identity of the receptor on CD8" T cells mediating interactions with Coll in
the UPS TME remains an open question. We excluded the possibility that Lair1 may be involved given it was not
expressed on CD8" T cells in KP tumors. Similarly, the involvement of another Coll receptor, Ddr1, is unlikely,
given Ddr1’s previously reported role in the negative regulation of CD8" T cell migration/infiltration in carcinomas
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(87, 88). Conversely, certain Coll-binding integrins such as ltga1, Itgav, and ltgb1 may be candidates given their
putative roles in/associations with promoting CD8" T activity (89-92). However, these proteins are challenging to
study in UPS because they are receptors for both Coll and ColVI (63-68). Therefore, careful biochemical studies
will be required to fully elucidate the mechanism by which Coll promotes CD8" T cell activity and inhibits immune
evasion in UPS.

Senescence, functional exhaustion, insufficient homeostatic proliferation, deletion, and altered
metabolism have all been proposed as largely T cell-intrinsic mechanisms that hamper endogenous and
engineered T cell-mediated anti-tumor immunity (93). Our findings offer a novel alternative model in which cancer
cell-intrinsic biology drives failure of cytotoxic T cell activity by indirectly interfering with T cell autophagic flux.
Previous studies have shown that autophagy is rapidly induced upon T cell activation, and that the essential
autophagy genes Afg5 and Atg7 are critical for the survival, activation, and expansion of mature T cells (94, 95).
Moreover, disrupting T cell autophagic flux hinders clearance of damaged mitochondria, resulting in increased
reactive oxygen species (ROS) generation and T cell apoptosis (95). Thus, whether and how aberrant ColVI
deposition influences ROS production in T cells with dysregulated autophagic flux is an important direction for
future research.

Our study has multiple implications for the clinical management of UPS in human patients. First, as UPS
is a diagnosis of exclusion, some pleomorphic neoplasms are incorrectly classified as “UPS” when they are more
likely to be pseudosarcomas or other high-grade sarcomas (96). Thus, our observation that COLVI levels are
significantly increased in UPS relative to several other soft-tissue sarcomas indicates that it may be a useful
diagnostic tool for distinguishing UPS from other dedifferentiated pleomorphic tumors. Second, our study
revealed that Pd1 blockade extended survival of KPY, but not KP mice. This result indicates that anti-Pd1
treatment was not sufficient to reinvigorate dysfunctional effector T cells in KP mice, but did preserve CD8" T
cells with robust cytolytic function in the context of Yap1 deficiency. Taken together, our findings show that Yap1-
mediated signaling can contribute to immune evasion by modulating the composition and organization of the
TME, and indicate that individual collagen species may have unique or opposing effects on UPS patient
responses to T cell-based therapies. Specifically, COLVI in the UPS ECM may be detrimental to the efficacy of
anti-PD1 or anti-CTLA4 therapy, whereas COLI may potentiate responses to immune checkpoint inhibition. As
a result, this study underscores the critical need to systematically evaluate the roles of individual ECM
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components in the regulation of immune cell function. Furthermore, our data specifically implicate YAP1 and/or
COLVI targeting as promising strategies by which to improve the efficacy of checkpoint blockade and other T

cell-based therapies in UPS, and potentially other desmoplastic solid tumors.

METHODS

Detailed methods are provided in the Supplementary Methods file.

Statistics

Analyses were performed using Prism (Graph Pad Software). Data are shown as mean + SEM unless otherwise
specified. Data were reported as biological replicates as indicated in the figure legends; in vitro experiments
were replicated at least three times unless otherwise specified. Unpaired two-tailed t-tests and one-way ANOVAs
were performed to determine if differences between two or three group means, respectively, were statistically
significant. 2-way repeated-measures ANOVA, mixed models, or non-linear regression were used for in vivo
tumor growth curves. For correlations, Spearman’s coefficient was used if at least one dataset was not normally
distributed. Pearson’s coefficient was used if both datasets were normally distributed. Shapiro-Wilk test was
used to assess normality. P-values of <0.05 were considered statistically significant.

Study approval

All experiments were performed in accordance with NIH guidelines and approved by the University of
Pennsylvania Institutional Animal Care and Use Committee (approval number 805758). Studies performed with
human specimens were not considered human-subjects research because all samples were de-identified and

not collected exclusively for the purposes of this research.
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Figure 1. YAP1" UPS cells inhibit CD8" T cell activation and promote dysfunction. (A) Kaplan-Meier latency
curves of KP and KPY UPS tumors (n >10 per genotype). Log-rank test. (B) Validation of genotypes from A. (C)
Metascape pathway analysis of 5 unique bulk KP and KPY tumors. Includes all genes with >2-fold expression
increase in KPY vs. KP, identified via microarrays. (D, E) Representative contour plots (D) and quantification (E)
of CD8'CD44" and CD4*CD44" T cells in KP and KPY tumors. Each point represents an individual tumor; two-
tailed unpaired t-tests. (F, G) Representative contour plots (F) and quantification (G) of CD39, Tim-3, and Pd1
expression in CD8" T cells from KP and KPY tumors. Each point represents an individual tumor. Two-tailed
unpaired t-tests. (H) gqRT-PCR of Gzmb in bulk KP and KPY tumors; two-tailed unpaired t-test. (I) Kaplan-Meier
survival curves of KP and KPY tumor-bearing mice treated with a-Pd1 or control. Red and black circles in control
curves indicate IgG- and un-injected mice, respectively. Open circle: mouse with durable tumor regression. X-
axis: days since adeno Cre injection. Log-rank test. (J) Longitudinal cytolysis of shScr or shYAP1 human STS-
109 UPS cells during co-culture with CART-TnMUC1 cells. Measurements indicate % target (UPS) cell cytolysis.
Normalized cell index for STS-109 cells alone (not shown) controls for differences in target cell growth across
conditions. Quantification: area under the curve (AUC); one-way ANOVA with Dunnett’s (vs. shScr) for each
ratio. shScr data are identical to those in Fig. 3D-E (performed in the same experiment). (K, L) Kaplan-Meier
survival curves of UPS patients (n = 44) in TCGA-Sarcoma stratified by intratumoral GZMB (K) and PRF1 (L)

expression. Each tertile (low, medium, high) represents 1/3 of patients. Log-rank test. (M, N) Correlation of YAP1

with GZMB (M) and PRF1 (N) gene expression in UPS tumors from TCGA-Sarcoma.
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Figure 2. UPS-cell intrinsic Yap1 mediates collagen VI (ColVI) deposition in the TME. (A) Heat map of gene
expression microarray data comparing 5 unique KP and KPY bulk tumors. The top 1/3 of collagen-encoding
genes modulated by Yap1 deletion is displayed. Supp. Figure 3D shows the remaining 2/3 of collagen-encoding
genes. FC = fold change. (B, C) Representative images (B) and quantification (C) of ColVI IHC in KP and KPY
tumors. Two-tailed unpaired t-tests with Welch correction and Holm-Sidak multiple comparisons test (n = 3-5
mice per genotype with 3 sections per mouse). (D) qRT-PCR of Col6a1, Col6a2, Col6a3, and Yap1 gene
expression in KP cells expressing a control or one of multiple independent Yap17-targeting shRNAs. One-way
ANOVA with Dunnett’s (vs. shScr) for each gene. (E) Representative immunoblot of KP cells treated as in D. (F)
Representative images of ColVI IHC in KP tumor-bearing mice treated with 25 mg/kg SAHA + 50 mg/kg JQ1 or
vehicle control for 20 days. Quantification is in Supp. Figure 3M. (G) Representative immunoblot of KP cells
treated with SAHA (2 uM) + JQ1 (0.5 pM) or vehicle control for 48 hours. (H) Schematic of experimental model
to assess immunomodulatory role of UPS cell-derived decellularized extracellular matrix (dECM). (I)
Representative widefield images and quantification of ColVI deposition in dECM from KP cells expressing control
or Yap1-targeting shRNAs. One-way ANOVA with Dunnett’s (vs. shScr). Scale bars = 25 uM. Image brightness
and contrast were adjusted for publication. (J) Quantification and representative contour plots showing IFNy and
TNFa co-expression in CD44*CD8" T cells incubated on dECMs from control and shYap1-expressing KP cells.

Each point represents T cells isolated from an individual mouse. One-way ANOVA with Dunnett’s (vs. shScr).

The shScr plot and data are identical to those shown in Figure 5A (performed in the same experiment).
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Figure 3. ColVI in the UPS TME promotes CD8* T cell dysfunction. (A) Representative widefield images of
ColVI immunofluorescence in dECMs generated from control and shCol6a1-expressing B6-KP cells. Scale bar
= 20 uym. Image brightness and contrast were adjusted for publication. (B) Representative contour plots and (C)
quantification of Pd1 and Tim-3 co-expression in CD44"CD8" T cells incubated on dECM derived from control or
shCol6a1 KP cells. (D) Longitudinal cytolysis of shScr or shCOL6A1-expressing human STS-109 UPS cells co-
cultured with CART-TnMUC1 cells. Measurements indicate % target cell (UPS cell) cytolysis. Normalized cell
index for STS-109 cells alone (not shown) controls for differences in target cell growth across conditions. (E)
Quantification of area-under-the-curve (AUC) from D; one-way ANOVA with Dunnett’s (vs. shScr) for each ratio.
In D, E, shScr data are identical to those in Fig. 1J (performed in the same experiment). (F) Tumor growth curves
from subcutaneous (flank) syngeneic transplant of 3 x 10* B6-KP cells in Matrigel expressing control or Col6a1-
targeting shRNAs in syngeneic C57BL/6 mice. Two-way ANOVA. (G) Visualization of individual tumors from F.
(H) Tumor growth curves depicting subcutaneous (flank) syngeneic transplant of 5 x 10° KP cells (SKPY42.1
cell line) expressing control or Col6a1-targeting shRNAs in C57BL/6 mice treated with a-CD8a. every three days.
(1) Tumor growth curves depicting syngeneic orthotopic transplant (into the gastrocnemius muscle) of 2.5 x 10°
KP cells (SKPY42.1 cell line) expressing control or Col6a1-targeting shRNAs in C57BL/5 mice. Two-way
repeated-measures ANOVA, SEM. (J, K) Representative contour plots (J) and quantification (K) of T cell

dysfunction markers in CD8" T cells from control and shCol6a1 orthotopic tumors from I. Each point in K

represents an individual tumor. Two-tailed unpaired t-tests.
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Figure 4. ColVI interacts with and remodels Coll in the UPS TME. (A) Representative confocal micrographs
(maximume-intensity Z-projections) and 3D reconstructions showing Coll and ColVI co-immunofluorescence in
KP cell-derived dECMs. Scale bar = 100 uM (B) Representative multiphoton second-harmonic generation (SHG)
images (maximume-intensity Z-projections) of KP and KPY tumor sections. Scale bars = 50 uM. (C, D) Violin plots
of CT-FIRE analysis of images from B. Mean fiber width and linearity were plotted for >5 separate fields (n = 5
mice per genotype); two-tailed unpaired t-test. (E) Representative depth-coded SHG images of human UPS, KP,
and KPY explanted live tumors. Red = SHG signal farthest from the objective/greatest relative tissue depth, blue
= SHG signal closest to the objective/shallowest relative tissue depth. Scale bars = 50 uM. (F) Representative
confocal micrographs (maximum-intensity Z-projections) of Coll immunofluorescence in ECMs (non-
decellularized) generated from control and shCol6a1 KP cells. Scale bars = 50 uM. (G-l) Violin plots depicting
CT-FIRE analysis of images in F. Coll fiber length (G), width (H), and linearity (I) were plotted from 7 independent
fields across multiple dECMs per condition. Numbers above violin plots indicate means. Thick and thin dotted
lines within the shapes denote medians and quartile 1/3, respectively. (J) Schematic of in vitro hydrogel system
to assess how purified COLVI impacts purified COLI structure/organization. (K) Representative SHG images
(maximume-intensity Z-projections with 2x optical zoom) and quantification of COLI fiber number in COLI-alone
and COLI + COLVI hydrogels. Scale bars = 50 uM. (L) Representative SHG images (maximum-intensity Z-
projections with 2x optical zoom) and quantification of COLI fiber number in COLI-alone and COLI + COLIV

hydrogels. Scale bars = 50 uM. For K-L, quantification was performed for >6 independent fields across multiple

hydrogels per condition. Brightness and contrast of all micrographs in Figure 4 were adjusted for publication.
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Figure 5. ColVI-mediated CD8" T cell dysfunction is restored in the presence of Coll. (A) Representative
flow cytometry plots and (B) quantification of IFNy and TNFa. co-expression in CD44*CD8" T cells incubated on
dECMs from control or shCol1a1 KP cells. Each point represents T cells from an individual mouse. One-way
ANOVA with Dunnett’s vs. shScr. The shScr plot and data are identical to those in Figure 2J (performed in the
same experiment). (C) Schematic of in vitro hydrogel system to test how Coll impacts ColVI-mediated CD8* T
cell dysfunction. CTL = cytotoxic T lymphocyte. (D, E) Representative flow cytometry plots (D) and quantification
(E) of activated human CD8"CD44" T cells showing TIM-3 and PD1 co-expression after incubation on hydrogels
containing purified COLI with or without purified COLVI. Two-tailed unpaired t-test. (F, G) Representative flow
cytometry plots (F) and quantification (G) of KI67 in activated human CD8*CD44" T cells cultured as in D, E.
Two-tailed unpaired t-test. (H) Tumor growth curves from subcutaneous (flank) syngeneic transplant of 5 x 10°
KP cells (SKPY42.1 cell line) expressing control, Col6a1, or Col1a1-targeting shRNAs in C57BL/6 mice. Data
are from two independent animal cohorts (total n = 20 for shScr and shCol1a1; n = 39 for shCol6a1). (I) Tumor
formation rates from H. (J, K) Representative contour plots and quantification of Tim-3 (J) and Tox (K) expression
in CD8" T cells in tumors from H. Each point represents an individual tumor. Two-tailed unpaired t-test with Welch
correction. (L) Schematic depicting strategy for depleting Col6a1 and Col71a1 in the same UPS cell population.
(M) Validation of Col6a1 and Col1a1 expression in UPS cells from L (SKPY42.1 cell line). (N, O) Tumor growth

curves from subcutaneous syngeneic transplant of 1 x 10° KP cells (SKPY42.1 cell line) from M in C57BL/6 (N)

and nu/nu (O) mice.
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Figure 6. ColVI disrupts CD8" T cell autophagic flux. (A-C) Visualization (A) and quantification (B, C) of
autophagosomes in CD8" human T cells cultured on hydrogels containing purified COLI with or without purified
COLVI. Two-tailed unpaired t-test. (D, E) Western blot (D) and quantification (E) of Lc3b-ll expression in murine
CD8" T cells cultured on purified COLI-containing hydrogels in the presence or absence of purified COLVI, with
or without chloroquine (CQ) treatment. Two-tailed unpaired t-test. n = 2. SD. (F, G) Western blot (F) and
quantification (G) of LC3B-II expression in human CD8" T cells cultured on purified COLI-containing hydrogels
in the presence or absence of purified COLVI, with or without CQ treatment. (H, 1) Western blot (H) and
quantification (1) of LC3B-Il expression in human CD8" T cells cultured on purified COLI-containing hydrogels in
the presence or absence of purified COLVI, with or without CQ treatment. Molecular weight marker positions are
shown to demonstrate that the single LC3B band detected in this experiment corresponds to the reported
molecular weight for LC3B-Il (14-16 kDa for LC3B-Il vs. 16-18 kDa for LC3B-I). Samples from F, G and H, | were
generated from cells from different donors, and shown separately because the analyses were conducted at
different institutions using different detection methods (digital fluorescent detection vs. chemiluminescence on

film). (J, K) Representative images (J) and quantification (K) of p62 immunofluorescence in human CD8" T cells

cultured on purified COLI-containing hydrogels with or without purified COLVI. Two-tailed unpaired t-test.

32


https://doi.org/10.1101/2022.03.31.486627
http://creativecommons.org/licenses/by-nc-nd/4.0/

(WIRCh W ot bared by Peet rouiaw) 15 e ahorder, whts has Srontat oy & I6ence to-dispiay The et i pespenity. 1L made
available under aCC-BY-NC-ND 4.0 International license.
Figure 7. YAP1 and COLVI expression/activity are correlated in human UPS tumors. (A) COL6A1 gene
expression levels in specimens from the Detwiller sarcoma dataset (Oncomine) (83). DDLS = dedifferentiated
liposarcoma, PLS = pleomorphic liposarcoma, FS = fibrosarcoma. (B) gqRT-PCR analysis of COL6A 1 expression
in human sarcoma and normal skeletal muscle tissue specimens (Hospital of the University of Pennsylvania;
HUP). PLS = pleomorphic liposarcoma, SS = synovial sarcoma, FS = fibrosarcoma. (C) Kaplan-Meier overall
survival curves of UPS patients in TCGA-Sarcoma (n = 44) stratified by intratumoral COL6A1 gene expression
levels. (D) COL6A2 gene expression levels in specimens from the Detwiller sarcoma dataset. (E) gRT-PCR
analysis of COL6A2 expression in human sarcoma and normal skeletal muscle tissue specimens (HUP). (F)
Kaplan-Meier overall survival curves of UPS patients in TCGA-Sarcoma stratified by intratumoral COL6A2 gene
expression levels. (G) COL6A3 gene expression levels in specimens from the Detwiller sarcoma dataset. (H)
gRT-PCR analysis of COL6A3 expression in human sarcoma and normal skeletal muscle tissue specimens
(HUP). (I) Kaplan-Meier overall survival curves of UPS patients in TCGA-Sarcoma dataset stratified by
intratumoral COL6A3 gene expression levels. (J) Correlation of COLVI and nuclear YAP1 immunostaining in
UPS tumor specimens (HUP). Each point represents an individual specimen. (K) Representative IHC images
from J. Scale bar = 200 um. (L) Publicly available ChlP-seq data (GSE97295) of COL6A1, COL6A2, and
COL6A3 promoter H3K27 acetylation in human UPS samples (HUP). (M, N) Correlation of YAP1 with COL6A3

(M) and FOXM1 (N) gene expression in UPS tumors from TCGA-Sarcoma.
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Figure 8. COLVI expression in the microenvironments of UPS and other soft-tissue sarcoma subtypes.
(A) Association of IHC-based COLVI expression score with tumor subtype and clinicopathologic features.
Sarcoma tissue microarray (TMA). 'Univariate linear models. ?In univariate analyses, the Holm-Bonferroni
adjustment for multiple comparisons was performed for demographic or clinicopathologic variables with greater
than two levels, with a = 0.05. Results are considered statistically significant (bold text) if the univariate P-value
is smaller than the corresponding Holm’s alpha. °Fully adjusted model (age, grade, stage, and histology).
Correction for multiple comparisons was not performed due to insufficient statistical power. “Includes 2 alveolar
soft part sarcomas, 1 epithelioid hemangioendothelioma, 1 fibroma, 1 glomus tumor, 1 hemangioendothelial
sarcoma, 1 hemangiopericytoma, 1 osteosarcoma, and 1 tenosynovial giant cell tumor. °Excludes two benign
cases. (B) Waterfall plot depicting IHC-based COLVI expression scores in individual tumors from A. LMS =
leiomyosarcoma; LS = liposarcoma, NL = neurilemmoma, RD = rhabdomyosarcoma, SS = synovial sarcoma,
NF = neurofibroma. “Other” as described in A. Representative images of UPS and neurilemmoma are also
shown. (C, D) Kaplan-Meier disease-free and disease-specific survival curves of (C) liposarcoma and (D)

leiomyosarcoma patients in TCGA-Sarcoma stratified by COL6A1 gene expression. Each tertile (low, medium,

high) represents 1/3 of patients. Log-rank test. (E) Model depicting study findings.
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