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Abstract

When judging the average value of sample stimuli (e.g., numbers) people tend to either over- or
underweight extreme sample values, depending on task context. In a context of overweighting,
recent work has shown that extreme sample values were overly represented also in neural
signals, in terms of an anti-compressed geometry of number samples in multivariate
electroencephalography (EEG) patterns. Here, we asked whether neural representational
geometries may also reflect underweighting of extreme values (i.e., compression) which has been
observed behaviorally in a great variety of tasks. We used a simple experimental manipulation
(instructions to average a single-stream or to compare dual-streams of samples) to induce
compression or anti-compression in behavior when participants judged rapid number sequences.
Model-based representational similarity analysis (RSA) replicated the previous finding of neural
anti-compression in the dual-stream task, but failed to provide evidence for neural compression
in the single-stream task, despite the evidence for compression in behavior. Instead, the results
suggested enhanced neural processing of extreme values in either task, regardless of whether
extremes were over- or underweighted in subsequent behavioral choice. We further observed
more general differences in the neural representation of the sample information between the two
tasks. The results suggest enhanced processing of extreme values as the brain’s default. Such a
default raises new questions about the origin of common psychometric distortions, such as
diminishing sensitivity for larger values.

Keywords: decision making, numerical cognition, electroencephalography, MVPA, computational
modeling


https://doi.org/10.1101/2022.03.31.486560
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.31.486560; this version posted April 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

3

Introduction

When making decisions about magnitudes such as numbers, people tend to distort sample
information away from its true value. A commonly observed distortion is a compression of
magnitude, where extreme (or outlying) samples receive relatively less weight than prescribed by
a linear and, according to common interpretation, normative transformation of objective into
psychological or subjective values (Bernoulli, 1954; Fechner, 1860; Juechems et al., 2021; Li et
al., 2017; Tversky & Kahneman, 1992; Vandormael et al., 2017). However, in some task contexts,
the opposite type of distortion has been observed, that is, an anti-compression, where extreme
or outlying samples are overweighted (Clarmann von Clarenau et al., 2022; Kunar et al., 2017,
Luyckx et al., 2019; Spitzer et al., 2017; Tsetsos et al., 2012; Vanunu et al., 2020).

Using electroencephalographic (EEG) recordings and multivariate representational similarity
analysis (RSA), recent work has identified a potential neural signature of such psychometric
distortions. During processing of symbolic number samples, multivariate EEG patterns have been
characterized by a “numerical distance effect’”, where the representational similarity of, for
instance, “4” and “5” is larger than that between “4” and 6", which in turn is larger than that
between “3” and “7”, and so forth (Appelhoff et al., 2022; Luyckx et al., 2019; Sheahan et al.,
2021; Spitzer et al., 2017; Teichmann et al., 2018). Intriguingly, in a multi-sample decision task
that promoted anti-compression of number samples in behavior, the “neural numberline”
underlying the numerical distance effect was found to be anti-compressed as well (Appelhoff et
al., 2022; Luyckx et al., 2019; Spitzer et al., 2017). The findings suggested that behaviorally
relevant distortions in multi-sample decisions may occur already when the individual samples are
being processed.

However, such “neurometric” signature of psychometric distortion has thus far only been reported
in tasks that promoted anti-compression, that is, a selective overweighting of extreme (outlying)
sample values in behavior. A much more common observation in other task contexts is a
compression of magnitude, where extreme values are underweighted, for instance, in
psychophysical tasks (Fechner, 1860; Stevens, 1957; Wyart et al., 2012), in studies of numerical
cognition (Dehaene, 2003; Longo & Lourenco, 2007; Nieder & Dehaene, 2009; Nieder & Miller,
2003), and in behavioral economics experiments (Kellen et al., 2016; McAllister & Tarbert, 1999;
Tversky & Kahneman, 1992). To what extent large-scale neural patterns, as recorded with human
EEG, may also reflect psychometric compression is still unknown.

In the present study, we capitalized on recent progress in understanding the experimental factors
that may mediate whether people compress or anti-compress magnitudes in decision making (see
also Summerfield & Parpart, 2022). Specifically, in a recent behavioral study, we found
compression when judging the average of a single stream, but anti-compression when comparing
dual streams of number samples (Clarmann von Clarenau et al., 2022). Here, we adopted this
experimental manipulation to examine the neural signatures of compressive (as compared to anti-
compressive) number processing in multivariate EEG patterns.
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Behaviorally, the results confirmed a compression of numerical values in the single-stream task,
and an anti-compression of the same values in the dual-stream task. In neural signals, we
replicated the finding of an anti-compressed number representation in the dual-stream task.
Surprisingly, however, we found no evidence for neural compression in the single-stream task.
Instead, we observed more general differences in the neural representation of the sample
information. Whereas in the dual-stream task, the samples’ neural geometry predominantly
reflected their abstract magnitude, the single-stream task was associated with a more direct, non-
guantitative representation of the concrete sample stimuli. The results relativize the diagnosticity
of sample-level EEG-metrics for psychometric distortions. They also suggest a default mode of
processing, namely, enhanced neural processing of extreme sample values, regardless of
whether they are over- or underweighted in subsequent behavior.

Results

Participants (n=30) performed two different variants of a sequential integration task where they
observed sequences of ten digits (ranging between 1 and 9, colored in red or blue; Fig. 1a). In
the single-stream variant (“averaging” task), participants were asked to report whether the
average of all ten number samples (regardless of color) was larger or smaller than 5. In the dual-
stream variant (“comparison” task), they were asked to indicate whether the red or the blue
samples had the higher average value.

Behavioral results

As expected, mean choice accuracy (Fig. 1b) was higher in the single-stream task (80.5% * 0.8%
SE) than in the dual-stream task [76.3% + 0.7% SE; t(29)=5.51, p<0.001, d=1.02; paired t-test].
This suggests that comparing two streams was more difficult than averaging a single-stream (of
otherwise physically identical inputs; Fig. 1a).

To characterize how the numerical value (1-9) of a sample influenced subsequent choice, we
calculated model-free decision weights (see Materials and Methods). Descriptively, the weighting
curve showed a concave shape (indicating compression) in the single-stream task (Fig. 1c, left),
whereas an convex shape (indicating anti-compression) was evident in the dual-stream task (Fig.
1c, right).

For quantitative analysis, we fitted a psychometric model (see Materials and Methods), which
characterizes the transformation of sample values (1-9) as a sign-preserving power function with
exponent kappa (k; where k<1 indicates compression and k>1 anti-compression). The model
further includes parameters for overall bias (b) towards larger or smaller numbers (b > or < 0) and
decision noise (s, see Materials and Methods).
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Figure 1. Experimental paradigm and behavioral results. a) Each participant performed two variants of
a sequential number integration task. Left: In both variants, participants viewed a stream of ten rapidly
presented digits (five in red and five in blue color; in random serial order) drawn from 1 to 9 (uniform
random). In the single-stream averaging task, participants were asked to judge whether the average value
of all ten samples was higher or lower than 5 (ignoring the samples’ colors). In the dual-stream comparison
task, participants were asked to report whether the red or the blue samples had the higher average value.
Right: In both tasks, the response mapping onto left/right button presses was randomized across trials and
cued only after sample presentation, in order to avoid motor preparation confounds. b) Mean accuracy
(proportion correct choices) in the two tasks. c) Decision weights of nhumber values in the single-stream
(left) and dual-stream (right) tasks. Inset plots illustrate the shape of distortion implied by the best-fitting k
(see panel d) according to model Eq. 1, with b set to 0 for visual comparison between task conditions. d)
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Parameter estimates from fitting our psychometric model to the empirical choice data (cf. c). Error bars in
all panels show SE.

The best-fitting parameter estimates are shown in Fig. 1d. Of main interest was parameter kappa
(k), which indicates the extent to which a weighting policy is compressed or anti-compressed
relative to a linear weighting (k = 1). Indeed, k was significantly smaller than 1 in the single-stream
task [M=0.82, SE=0.07, t(29)=2.43, p=0.02, d=0.44; one-sample t-test against 1] and significantly
larger than 1 in the dual-stream task [M=1.82, SE=0.16, t(29)=5.21, p<0.001, d=0.95], which
confirms robust compression in single-stream averaging, and robust anti-compression in dual-
stream comparison. The essential difference in transformation (Eqg. 1) implied by these k-values
is illustrated in Fig. 1c (insets). While the transformation is concave (i.e., shallower towards the
extremes) in the single-stream task, it is convex (i.e., steeper towards the extremes) in the dual-
stream task.

Examining bias (b), we found significantly positive values both in the single-stream task [M=0.02,
SE=0.01, t(29)=3.52, p=0.001, d=0.64] and in the dual-stream task [M=0.21, SE=0.06, 1(29)=3.34,
p=0.002, d=0.61]. Thus, judgments in both tasks were overall biased towards larger numbers,
which is consistent with previous work (Clarmann von Clarenau et al., 2022; Luyckx et al., 2019;
Spitzer et al.,, 2017). Finally, noise (s) was significantly higher in the dual-stream (M=1.23,
SE=0.07) than in the single-stream task [M=0.98, SE=0.06; t(29)=4.40, p<0.001, d=0.70; paired
t-test]. This is consistent with the lower level of accuracy in the dual-stream task (see Fig. 1b).

Together, our experimental manipulation was successful in inducing opposite types of
psychometric distortions, with identical stimulus inputs in the two task conditions. Whereas
decision weighting was compressed (suggesting relative underweighting of extreme values) in
the single-stream task, it was anti-compressed (suggesting relative overweighting of extreme
values) in the dual-stream task.

EEG results

Multivariate (RSA) results

Turning to the EEG data, we first examined the encoding of sample information in multivariate
ERP patterns using RSA (see Materials and Methods). Specifically, we examined in each of the
two tasks (single-stream and dual-stream) the extent to which RSA patterns encoded (i) the
concrete digit that was shown as sample stimulus (e.g., “4” or “8”), (ii) its color (i.e., red or blue),
and (iii) the numerical magnitude information in a sample (i.e., 1-9, in terms of a numerical
distance effect; see Materials and Methods and Fig. 2a).
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Figure 2. RSA results. a) Model RDMs encoding individual sample attributes. Left, “Digit” model encoding
the unique number symbols; Middle, “Color” model encoding whether a sample was red or blue; Right,
“Numerical distance” model encoding the samples’ magnitude (1-9). For visual clarity, the model RDMs are
illustrated before orthogonalization (see Materials and Methods). b) Correlation between orthogonalized
model RDMs and the empirical ERP-RDMs in the single-stream (left) and dual-stream (right) task. Colored
shadings show SE. Marker lines on bottom indicate time windows of significant differences from zero. Gray
shading outlines the time window used in subsequent neurometric analysis (see Fig. 4 below ). ¢) Difference
in correlation between the single- and dual-stream tasks. Same conventions as in b.

The visual attributes of a sample (i.e., its color and digit shape) were encoded early on, from
approximately 100 to 700 ms after sample onset, in both tasks (Fig. 2b all pciuster<0.001). From
approx. 200 ms on, the RSA patterns also encoded the samples’ numerical magnitude, in terms
of a significant numerical distance effect (single-stream: pciuster<0.001; dual-stream: peiuster<0.001),
thus replicating and extending previous work (Appelhoff et al., 2022; Luyckx et al., 2019; Sheahan
et al., 2021; Spitzer et al., 2017; Teichmann et al., 2018). Descriptively, the numerical distance
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effect observed in the single-stream task, while robustly significant, appeared weaker than that in
the dual-stream task.

Comparing the RSA time courses between the two task conditions (Fig. 2c) confirmed that the
numerical distance effect was significantly stronger in the dual-stream task (pciuster<0.002).
Surprisingly, we found no difference in color encoding between the two tasks, even though color
was task-relevant only in the dual-stream task, but not in the single-stream task. Instead, in the
single-stream task, we observed a relatively stronger representation of the concrete digit (i.e., the
unique number symbol) that had been displayed (peuster<0.005). This effect was evident in a
relatively late time window (approximately 400-600 ms, that is, only after the early visual encoding
of digits and color).

Together, multivariate ERP patterns in both task conditions robustly encoded information about
the sample’s color, the number symbol it showed, and its numerical magnitude. The
representation of samples in the single-stream task, however, showed qualitative differences, in
terms of a relatively weaker encoding of numerical magnitude, and a relatively stronger encoding
of the concrete sample stimuli.

Neurometric RSA results

Next, we examined potential distortions of the “neural numberline” underlying the neural
magnitude representation disclosed in the above RSA results. To this end, we parameterized the
numerical distance model (Fig. 2d, right) to reflect distortions by k (compression/ anti-
compression) and b (bias towards/against larger numbers), analogously as in our psychometric
model (see Materials and Methods, Eq. 1). We then used exhaustive gridsearch to determine for
each patrticipant the parameter combination with which the model fitted the data best. Fig. 3b
illustrates the improvement in fit (in terms of A r relative to the standard model with k =1 and b =
0; cf. Fig. 2d, right) in a representative time window (0.2-0.6 s; cf Fig.2c and 3a). Note that
neurometric mapping was performed using a log scale of k (where log(k) = 0 corresponds to k =
1, see Fig. 3b) to avoid fitting bias (see Materials and Methods).

The results (Fig. 3b) replicated our previous finding of a significant distortion of the neural
numberline in the dual-stream task (Fig. 3b right). Specifically, like in our previous work (Appelhoff
et al., 2022; Spitzer et al.,, 2017), we observed neurometric estimates of k > 1 (i.e., anti-
compression) and of b > 0 (i.e., a bias towards larger numbers; p=0.013, FDR-corrected), which
mirrors the pattern observed in the behavioral data (cf. Fig. 1c-d, orange). However, contrary to
our expectations, we found no evidence for a neurometric compression in the single-stream task
(Fig. 3b, left), where the psychometric weighting in behavior was clearly compressed (cf. Fig. 1c-
d, blue). Descriptively, the neurometric map in the single-stream task indicated a pattern similar
to that in the dual-stream task (i.e., anti-compression k > 1, and positive bias, b > 0). However,
the improvement in fit over the linear/unbiased model was weak and statistically non-significant
(Fig. 3b, left), potentially reflecting that the numerical distance effect in the single-stream task was
overall weaker (cf. Fig. 2b).
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Examining the mean neurometric parameter estimates in the two tasks statistically, they showed
significant anti-compression (k > 1) both in the dual-stream [M=3.05, SE=0.40; t(29)=5.16,
p<0.001, d=0.94] and in the single-stream task [M=3.81, SE=0.57; t(29)=4.90, p<0.001, d=0.89,
t-tests against 1]. Direct comparison of neurometric k between the two tasks showed no significant
difference [t(29)=1.25, p=0.22, d=0.28, paired t-test]. A positive offset bias (b) was evident in the
dual-stream task [M=0.18, SE=0.04; t(29)=3.97, p<0.001, d=0.73] but not in the single-stream
task [M=0.04, SE=0.05; t(29)=0.75, p=0.46, d=0.14, t-tests against O; difference between tasks
t(29)=2.27, p=0.03, d=0.54, paired t-test]. Together, the neurometric RSA results yielded no
evidence for a compression of numerical magnitude akin to that observed in behavior in the single-
stream task. If anything, the results were suggestive of anti-compression (k > 1) in both tasks,
although it should be noted that the improvement in model fit (relative to a linear model) in the
single-stream task was small and not statistically significant (Fig. 3b, left).
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Figure 3. Neurometric RSA results. a) Mean ERP-RDMs in the time window of the numerical distance
effect (see gray shading in Fig. 2b). b) Mean neurometric maps. Left: single-stream task; right: dual-stream
task. Dashed lines indicate linear (k = 1) and unbiased (b = 0) parameterizations. Color scale indicates
increase in model correlation (A r) relative to the standard model where k = 1 and b = 0. Transparency
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mask delineates where the increase was statistically significant (p<0.05, FDR corrected). Red markers
show maxima (diamond, mean map; dots, individual participant maps).

Univariate ERP results (CPP/P3)

We complemented our analysis by examining neurometric distortions also in univariate ERP
signals, specifically in the sample-evoked CPP/P3 response. Previous research has implicated
the CPP/P3 in decision formation, with its amplitude reflecting the perceived strength of evidence
(Herding et al., 2019; O’Connell et al., 2012; Pisauro et al., 2017; Spitzer et al., 2016; Twomey et
al., 2015; Wyart et al., 2015). CPP/P3 amplitudes were previously also found to be modulated by
numerical sample values in the context of a dual-stream comparison task (Spitzer et al., 2017).
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Figure 4. Univariate CPP/P3 results. a) Centro-parietal ERPs (mean-subtracted) evoked by sample
values 1-9 in the single- (left) and dual-stream (right) tasks. Marker lines on bottom indicate time windows
of significant differences between the 9 different sample values (all pcuster<0.001, repeated measures
analysis of variance). b) Mean CPP/P3 amplitudes averaged over the time window outlined by gray shading
in a (0.3 - 0.7 s). ¢) Neurometric model fit of CPP/P3 amplitudes. Line plot shows grand mean fit. Inset bar
graph shows mean parameter estimates. Error indicators in all panels show SE.

We observed modulations of CPP/P3 amplitude by numerical value both in the single-stream (Fig.
4a, left; peouster<0.001) and in the dual-stream task (Fig. 4a, right; peuster<0.001, repeated measures
analyses of variance), with the modulation in the dual-stream task appearing descriptively
stronger. The mean amplitudes showed a U-shaped pattern over numbers 1-9 (Fig. 4b),
consistent with previous findings that CPP/P3 reflects the strength of decisional evidence in an
unsigned fashion, that is, a theoretical quantity similar to the absolute |dv| in our psychometric
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model, which would reflect the strength of evidence for either choice, “<” or “>” (see also Herding
et al., 2019; O’'Connell et al., 2012; Pisauro et al., 2017; Spitzer et al., 2016; Twomey et al., 2015;
Wyart et al., 2015). Thus, for model-based analysis, we fitted Eq. 1 to the CPP/P3 amplitude data
(using pairwise distance matrices and gridsearch analogous to our heurometric RSA above), but
using |dv| to generate the model-predicted pattern.

The best-fitting parameter estimates are shown in Fig. 4c (inset bar graph). Mirroring the RSA
results, the parameter estimates based on CPP/P3 amplitude showed significant anti-
compression (k > 1) in both tasks [single-stream: M=2.58, SE=0.55; 1(29)=2.88, p=0.007, d=0.53,
dual-stream: M=3.12, SE=0.51, t(29)=4.15, p<0.001, d=0.76, t-tests against 1], with no significant
difference between tasks [t(29)=0.69, p=0.49, d=0.18, paired t-test]. A positive offset bias was
again observed in the dual-stream task [M=0.28, SE=0.06; t(29)=5.00, p<0.001, d=0.912], but not
in the single-stream task [M=0.09, SE=0.05; t(29)=1.78, p=0.09, d=0.33, t-tests against O;
difference: t(29)=2.97, p=0.006, d=0.63, paired t-test]. Together, the univariate ERP analysis thus
corroborates our RSA finding that the neural processing of number samples in single-stream
averaging was not characterized by compression but—if anything—»by anti-compression, despite
the evidence for compression in subsequent behavioral choice (cf. Fig. 1c-d).

Discussion

We observed opposite types of psychometric distortions (compression or anti-compression) in
behavior when participants were instructed to process an identical stream of numbers in two
distinct ways, namely, comparing the complete stream against a fixed target value or comparing
two sub-streams against each other. However, contrary to expectations based on past research,
the neural signals associated with the processing of the individual number samples showed
evidence for anti-compression (i.e., enhanced processing of extreme values) under both
instructions, regardless of whether extreme values were over- or underweighted in subsequent
behavioral choice. We further observed qualitative differences between the sample
representations in the two tasks, with a relatively weaker encoding of the samples’ numerical
magnitude in the single-stream task.

In psychophysical research concerned with the how attributes of a physical stimulus (e.g., size,
weight, color) relate to their subjective experience or perception, human observers are commonly
found to underweight extreme values. Such subjective “compression” of magnitude can be
observed in a great variety of settings, from basic sensory-perceptual judgments (Fechner, 1860;
Stevens, 1957) to economic decisions (Kellen et al., 2016; McAllister & Tarbert, 1999; Tversky &
Kahneman, 1992). There exist various theoretical accounts for the origin and potential benefits of
subjective compression in perception and decision making (Bhui & Gershman, 2018; Ciranka et
al., 2022; de Gardelle & Summerfield, 2011; Li et al., 2017; Pardo-Vazquez et al., 2019; Stewart
et al.,, 2006; Summerfield & Li, 2018; Vandormael et al., 2017). Our present results seem to
contrast these vast literatures with the finding that human brain signals tended to reflect the
magnitude of numerical values in an anti-compressed fashion, even when they were compressed
in later choice.
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However, while the typical finding in many tasks is compression, there are task contexts where
observers overweight extreme samples in choice behavior, in line with an anti-compression of
sample values (Clarmann von Clarenau et al., 2022; Kunar et al., 2017; Ludvig et al., 2014; Luyckx
et al., 2019; Shevlin et al., 2022; Spitzer et al., 2017; Tsetsos et al., 2012; Vanunu et al., 2020).
We recently showed that such anti-compression can be beneficial in tasks that are
computationally challenging (like our dual-stream comparison task), and where capacity-limited
observers may be forced to selectively focus on a subset of the samples at the expense of others
(Clarmann von Clarenau et al., 2022; see also Tsetsos et al., 2016). Our present findings may
suggest that in task contexts in which higher-level processing capacities are exceeded, participant
behavior might more directly reflect the brain’s default response to extreme values (i.e., privileged
processing).

Despite the lack of evidence for different neural geometries of humerical magnitude in the two
tasks, the samples’ overall representation in neural signals yet differed. In the dual-stream task,
neural signals encoded the numerical magnitude of a sample more strongly than in the single-
stream task. This result was unexpected because nominally, the numerical magnitude of a sample
was of equal relevance in both tasks. In the single-stream task, in turn, we found relatively
stronger encoding of which unique number symbol was presented. Further, although the color of
a sample (red/blue) was task-irrelevant in the single-stream task, the neural encoding of color
was as strong and as sustained as in the color-based dual-stream task. While these results were
unexpected, they may suggest more general differences in the role of “abstract” magnitude
processing (Dehaene, 2003; Nieder, 2005; Nieder & Dehaene, 2009; Piazza & lzard, 2009;
Walsh, 2003) in the two tasks. Potentially, in the more challenging dual-stream task participants
relied more directly on an intuitive “sense of magnitude” (Leibovich et al., 2017; Piazza et al.,
2006; Spitzer et al., 2014) to gauge a sample’s decision value. The computationally simpler
single-stream task, in contrast, may have allowed them to engage in more symbolic-analytic
processing (e.g., approximate arithmetics and/or verbalization) — processes that might be less
amenable to EEG-decoding than the numerical distance pattern that prevailed in the dual-stream
task.

The neural anti-compression of sample values in both of the tasks was also evident in univariate
CPP/P3 signals which had previously been implicated in the decisional evaluation of stimulus
information (Herding et al., 2019; O’Connell et al., 2012; Pisauro et al., 2017; Spitzer et al., 2016;
Twomey et al., 2015; Wyart et al., 2015). Interpreting the amplitude of CPP/P3 signal as an index
of the perceived strength of evidence, our findings in the single-stream task show a mismatch
between the pattern observed in sample-by-sample processing (anti-compression, as revealed
by neural data) and that in eventual judgment of the aggregate stream (compression, as evident
in behavior). Future work will be required to identify the neural mechanisms underlying the
eventual downweighting of extreme values in such task contexts, despite enhanced encoding in
sample-level decision signals. It should be noted that the amplitude of P3 signals is known to be
modulated by various factors, including how rare or surprising an event is (Donchin, 1981;
Duncan- Johnson & Donchin, 1977). However, the sample values in our experiment were
uniformly distributed, that is, each value occurred equally often on average, ruling out an
explanation in terms of stimulus frequency.
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Whether extreme values are over- or underweighted has major implications for the behavioral
choices people make. One and the same numerical evidence, as in the present study, may lead
to opposite choices, depending on how people respond to and process extreme values. For
instance, anti-compression can explain systematic violations of “rational” axioms, such as
transitivity, in multi-attribute choice (Summerfield & Tsetsos, 2015; Tsetsos et al., 2016). More
generally, non-linear distortions of objective data (such as numbers) have often been interpreted
as paradigmatic manifestations of seemingly “irrational” human behaviors in decision making
(e.g., non-linear probability weighting in risky choice as assumed in cumulative prospect theory;
Tversky & Kahneman, 1992). However, over the past years a new literature has evolved that
recasts these behaviors as well-adapted policies of capacity-limited observers, fostering rather
than hampering their measurable performance under these constraints (Bhui et al., 2021;
Gigerenzer et al., 2011; Gigerenzer & Brighton, 2009; Juechems et al., 2021; Lieder & Griffiths,
2020; Sims, 2003, 2010; Tsetsos et al., 2016). Here, we shed new light on the open question of
how such adaptive distortions may arise mechanistically, in terms of the neural signal patterns
evoked by samples of evidence while observers are in the process of reaching a decision. Our
finding of a “default” anti-compression of values in neural responses—regardless of subsequent
behavior—raises the question at which exact processing stage value compression emerges, and
how it leads to, for instance, the well-known “diminishing sensitivity” to larger values in economic
choices (e.g., Tversky & Kahneman, 1992).

Materials and Methods

Participants

Thirty-two healthy volunteers took part in the experiment. We excluded two participants who
reported having misunderstood the task instructions and who performed near chance level (50%
correct choices) in one of the tasks (52% and 53%, respectively; both p>0.4, Binomial tests
against 0.5). Results are reported for the n=30 remaining participants (15 male, 15 female; mean
age 27.4 £ 4.9 years; one left handed). All participants provided written informed consent and
received €10 per hour as compensation, in addition to a €10 flat fee for participation, as well as a
performance-dependent bonus (€7.03 £ 1.08 on average). The study was approved by the ethics
committee of the Max Planck Institute for Human Development.

Experimental design

Each participant performed two variants of a sequential number integration task (Clarmann von
Clarenau et al., 2022; Spitzer et al., 2017). The stimulus protocols in the two task variants were
identical (Fig. 1a). On each trial, participants viewed a sequence of 10 Arabic digits (randomly
drawn from a uniform distribution of numbers 1 to 9) displayed in either red or blue font color
(randomly assigned to each sample, with the restriction that each sequence contained 5 red and
5 blue samples). In the “averaging” (single-stream) task, participants were asked to judge whether
the average of all 10 number samples in the sequence (regardless of their color) was larger or
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smaller than 5. In the “comparison” (dual-stream) task, participants were asked to indicate
whether the red or the blue samples had the higher average value. Past behavioral work has
shown a psychometric compression of number values in the single-stream task, whereas anti-
compression was evident in the latter dual-stream task (Clarmann von Clarenau et al., 2022;
Spitzer et al., 2017).

The experiment was programmed in Python using the PsychoPy package (Peirce et al., 2019)
and run on a Windows 10 PC. The experiment code is available on GitHub
(https://github.com/sappelhoff/ecomp experiment). Throughout the experiment, we additionally
recorded eye-movements using an EyelLink 1000 Plus (SR Research Ltd., Canada), which were
not analyzed in the present study. Participants were informed about the eye-movement recording
and were instructed to keep their gaze at the center of the screen throughout the experiment.

Each trial started with a white central fixation stimulus (a combination of bulls eye and cross hair;
Thaler et al. 2013) on an otherwise black screen. After 500 ms, the fixation stimulus disappeared
and the number sequence was presented at a rate of 350 ms per sample (font Liberation Mono;
height 3° visual angle; see Fig. 1a). Each sample was smoothly faded to black after 270 ms to
improve the visual experience of the stimulus transitions. After the last sample, participants were
prompted to enter a response by pressing the left or right button on a USB response pad (The
Black Box ToolKit Ltd., UK). To avoid left/right motor response preparation during sequence
presentation, in each of the two tasks, we randomized the mapping of responses (“smaller” or
"larger” in the averaging task; “red” or "blue” in the comparison task) onto left/right button presses
trial-by-trial, using a response screen (Fig. 1a, right).

If participants failed to respond within 3 s, the trial was discarded and after a delay of 100 ms, a
message (“too slow!”) was displayed in red color for 1 s. On average, participants responded
within 0.67+0.27 s and timeouts occurred only on 0.03% of trials. On the remaining trials,
performance feedback was displayed (“correct” or “wrong”, in green or orange color, respectively)
for 350 ms. All feedback was displayed centrally in Liberation Mono font with a height of 1° visual
angle. On 4.85% of trials, in which the objective sequence average was precisely 5 (in the single-
stream task) or identical for red and green samples (in the dual-stream task), a random feedback
message was displayed. These trials were excluded from the analysis of accuracy levels, but
were included in the modeling- and EEG analyses (see also Spitzer et al., 2017). After feedback,
the central fixation stimulus re-appeared and after 500 to 1500 ms (randomly varied), the next
trial started.

Each participant first performed 300 trials in one of the tasks (single-stream averaging or dual-
stream comparison), followed by 300 trials in the other task (in counterbalanced serial order
across subjects). Thus, 3000 number samples were presented in each task condition and
participant. Trials were performed in blocks of 50, with summary performance feedback
(percentage correct choices) being provided after each block. After completing all blocks of the
first task, participants received the instructions for the second task. To avoid differences in
stimulus input, the second task was performed on the exact same number sequences as the first
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task. Upon completing the second task, participants received a monetary bonus depending on
their mean accuracy in both tasks.

EEG recording

The experiment was performed in an electrically shielded and soundproof cabin. Scalp EEG was
recorded with 64 active electrodes (actiCap, Brain Products GmbH Munich, Germany) positioned
according to the international 10% system. Electrode FCz was used as the recording reference.
We additionally recorded the horizontal and vertical electrooculogram (EOG) and
electrocardiogram (ECG) using passive electrode pairs with bipolar referencing. All electrodes
were prepared to have an impedance of less than 10 kQ. The data were recorded using a
BrainAmp DC amplifier (Brain Products GmbH Munich, Germany) at a sampling rate of 1000 Hz,
with an RC high-pass filter with a half-amplitude cutoff at 0.016 Hz (roll-off: 6 dB/octave) and low-
pass filtered with an anti-aliasing filter of half-amplitude cutoff 450 Hz (roll-off: 24 dB/octave). The
dataset is available on GIN in source format and formatted according to the Brain Imaging Data
Structure (BIDS) using MNE-BIDS (Appelhoff et al., 2019; Gorgolewski et al., 2016; Pernet et al.,
2019): https://gin.g-node.org/sappelhoff/mpib_ecomp sourcedatal.

Behavioral data analysis

We calculated model-free decision weights to examine how strongly each numerical sample value
(1, 2, ..., 9) contributed to participants’ choices in the two tasks. In the single-stream task, these
weights were computed as the proportion of times a sample value was associated with the
subsequent choice “larger”. Analogously, in the dual-stream task, the weights were computed as
the proportion of times the sample’s color (i.e., red or blue) was subsequently chosen (see also
Spitzer et al., 2017). For comparison with model predictions (see below), we computed decision
weights also from the model-predicted choice probabilities (CP, see Eq. 3) obtained from using
the best fitting parameter estimates in each participant.

Psychometric model

To quantify psychometric distortions (i.e., compression or anti-compression) in behavior, we used
a simple psychometric model that has been used extensively in previous work (Appelhoff et al.,
2022; Clarmann von Clarenau et al., 2022; Li et al., 2017; Luyckx et al., 2019; Spitzer et al., 2017).
The model formalizes the transformation of objective sample values X (here: numbers 1-9,
normalized to the range [-1, 1]) into a subjective decision value dv as a sign-preserving power
function:

_ X+b k
dv—lx+b|x|X+b| , Eq.1

where exponent k (kappa) determines the overall shape of the transformation (k < 1:
compression; k = 1: linear; k > 1: anti-compression). Parameter b (bias) implements an overall
weighting bias towards smaller (b < 0) or larger (b > 0) numbers. Sample-level decision values
(dv) are integrated into a trial-level decision value (DV) by summation over samples:
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DV = 21121 d'l]i X Ci, Eq 2

where c is an indicator variable denoting a sample’s color (red: -1, blue: +1) in the dual-stream
task. In the single-stream task, ¢ was fixed at 1. This way, Eq. 2 effectively implements a
comparison between streams in the dual-stream task, and simple averaging in the single-stream
task. Finally, the trial level decision value (DV) is transformed into a choice probability according
to a logistic function:

1
CP = —p7, Eq. 3

1+e s
where CP denotes the probability of choosing “>5” (in the single-steam task) or “blue>red” (in the

dual-stream task), and parameter s quantifies the level of decision noise, with larger values of s
implying more random choices.

The model was fitted to each participant’s individual choice data using the Nelder-Mead method
as implemented in SciPy (Virtanen et al., 2020), with parameter values restricted to the ranges
(k: [0, 5]; b: [-0.5, 0.5], s: [0.01, 3]). Fitting was performed iteratively using 900 combinations of
different starting values for each task condition, and the solution with the lowest Bayesian
Information Criterion (BIC) was used in the analysis. Statistical analysis of the fitted parameters
proceeded with conventional inferential tests on the group level.

EEG preprocessing

We used functions from MNE-Python (Gramfort et al., 2013) and PyPrep (Appelhoff et al., 2018;
based on Bigdely-Shamlo et al., 2015) to automatically mark noisy segments and bad channels
in the EEG recordings. We additionally screened all recordings visually to reject noisy segments
or bad channels that the automatic procedures had missed. This way, on average, 2.5 £ 1.6
channels were discarded per participant. Next, we corrected ocular and cardiac artifacts using
independent component analysis (ICA). To this end, we high-pass filtered a copy of the raw data
at 1 Hz and downsampled it to 100 Hz. We then ran an extended infomax ICA on all EEG channels
and time points that were not marked as bad in the prior inspection. Using the EOG and ECG
recordings, we identified stereotypical eye blink, eye movement, and heartbeat artifact
components through correlation with the independent component time courses. We visually
inspected and rejected the artifact components before applying the ICA solution to the (Winkler
et al., 2015). We then filtered the ICA-cleaned data between 0.1 and 40 Hz, interpolated bad
channels, and re-referenced each channel to the average of all channels.

Event-related potentials (ERPS)

We epoched the preprocessed data from —-0.1 to 0.9 s relative to each sample stimulus onset.
Remaining bad epochs were rejected using a thresholding approach from the FASTER pipeline
(Step 2; Nolan et al., 2010). On average, n = 5764 clean epochs (96.1%) per participant were
retained for analysis. The epochs were then downsampled to 250 Hz and baseline corrected
relative to the period from -0.1 to 0 s before stimulus onset. Since our analyses focused on
stimulus-specific effects, we subtracted the overall mean waveform from the individual epochs, in
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each of the two task conditions. The mean-subtracted epochs were then averaged into stimulus-
specific ERPs for each sample value (1, 2, ..., 9) in each color (red/blue). Note that the individual
samples in a stream were statistically independent by design, allowing us to examine stimulus-
specific ERP responses in a time window that overlapped with the onset of the next sample
stimulus.

Representational similarity analysis (RSA)

We used representational similarity analysis (RSA; Kriegeskorte & Kievit, 2013) to examine the
encoding of sample information in multivariate ERP patterns. Specifically, we examined the
representational geometry of our stimulus space (numbers 1 to 9, colored red or blue) in terms of
the multivariate (dis-)similarity between the ERP topographies (64 channels) associated with the
18 different stimuli. Representational dissimilarity was computed as the Mahalanobis distance,
between each pair of stimuli, yielding an 18x18 representational dissimilarity matrix (RDM), at
each time point of the peri-sample epoch. To compute the Mahalanobis distance, we fitted a
general linear model to the z-scored trial data, with each stimulus type specified as a condition,
and used the residual trial-by-trial variance for pairwise distance calculation. This procedure
ensured multivariate noise normalization for the RDMs (Guggenmos et al., 2018). Below, we refer
to the thus obtained RDMs as ERP-RDMs.

To examine the information encoded in the ERP-RDM time courses, we used three different
model RDMs (see Fig. 2a) reflecting (i) the unique digit symbols, with minimum dissimilarity
between identical digits, and maximum dissimilarity between distinct digits (“digit” model), (ii) the
samples’ color, with minimum (maximum) dissimilarity between same (different) colors (“color”
model), and (iii) the numerical distance between samples, that is, the arithmetic difference
between their objective number values (“numerical distance” model). To render the three models
fully independent, we recursively orthogonalized each model RDM with respect to all others using
the Gram-Schmidt process (Appelhoff et al., 2022; Spitzer et al., 2017). Finally, we assessed the
match between each model RDM and the empirically observed ERP-RDMs via Pearson
correlation at each time point, using only the lower triangle of the RDMs and omitting the diagonal,
to exclude redundant matrix cells.

For statistical analysis of the RSA time courses, we used t-tests against zero with cluster-based
permutation testing to control for multiple comparisons over time points (Maris & Oostenveld,
2007). To test whether RSA results differed between the single- and dual-stream tasks, we first
computed their difference, followed by cluster-based permutation tests against zero. All
permutation tests were performed over 1000 iterations with a cluster-defining threshold of p =
0.01 and cluster length as the critical statistic (thresholded at p=0.01).

Analysis of neurometric distortions

The theoretical model underlying conventional RSA of numerical distance effects (see above) is
a straight number line, where the numbers (1, 2, ..., 9) are equidistant. The standard numerical
distance model (Fig. 2a, right) is equivalent to a model of dv according to Eq. 1 (see Psychometric
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model) where k=1 and b =0. To examine potential nonlinear distortions of the number
representations in neural signals (“neurometric” distortions), we constructed numerical distance
models based on dv while varying the values of k (from log(k) = -2 to +2, see Fig. 3b) and b
(from -0.5 to 0.5). Varying k on a log scale centered around log(k) = 0 (i.e., k = 1) ensured that
parameter estimates were not biased to show anti-compression (or compression) by chance in
subsequent gridsearch. For each parameter combination, we correlated the resulting model
RDMs with the ERP-RDM, yielding a grid (“neurometric map”) of the parameter space (see Fig.
3b). The parameter combination with the maximum correlation was used as the estimate of the
participant’'s neurometric distortion parameters (see also Spitzer et al., 2017; Appelhoff et al.,
2022). Statistical analysis of the neurometric parameter estimates proceeded with conventional
statistical tests on the group level.

Univariate ERP analysis

For complementary inspection of univariate ERP responses evoked by the number samples, we
examined the stimulus-specific ERP (see above) for each sample value (1-9; collapsed across
red/blue colors). To focus on CPP/P3 responses (see Results), the ERPs were pooled over
centro-parietal channels (CP1, P1, POz, Pz, CPz, CP2, P2) and amplitudes were examined in a
time window from 300 ms to 700 ms based on previous work (Appelhoff et al., 2022; Polich, 2007;
Spitzer et al., 2017; Wyart et al., 2015). The ERP time courses were analyzed statistically using
cluster-based permutation testing (see above). For model-based analysis, we used the same
approach as in our analyses of neurometric distortions in RSA (see above), except that the model
RDMs were constructed from |dv| (i.e., the absolute, unsigned magnitude of dv, see Results) and
correlated with the pairwise differences in univariate ERP amplitude between samples 1-9.

Data availability

All data is available on GIN: https://gin.g-node.org/sappelhoff/mpib ecomp sourcedata/.
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All analysis code is available on GitHub: https://github.com/sappelhoff/ecomp analysis. The
experiment code is available on GitHub: hitps://github.com/sappelhoff/ecomp experiment.
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