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Abstract 

When judging the average value of sample stimuli (e.g., numbers) people tend to either over- or 

underweight extreme sample values, depending on task context. In a context of overweighting, 

recent work has shown that extreme sample values were overly represented also in neural 

signals, in terms of an anti-compressed geometry of number samples in multivariate 

electroencephalography (EEG) patterns. Here, we asked whether neural representational 

geometries may also reflect underweighting of extreme values (i.e., compression) which has been 

observed behaviorally in a great variety of tasks. We used a simple experimental manipulation 

(instructions to average a single-stream or to compare dual-streams of samples) to induce 

compression or anti-compression in behavior when participants judged rapid number sequences. 

Model-based representational similarity analysis (RSA) replicated the previous finding of neural 

anti-compression in the dual-stream task, but failed to provide evidence for neural compression 

in the single-stream task, despite the evidence for compression in behavior. Instead, the results 

suggested enhanced neural processing of extreme values in either task, regardless of whether 

extremes were over- or underweighted in subsequent behavioral choice. We further observed 

more general differences in the neural representation of the sample information between the two 

tasks. The results suggest enhanced processing of extreme values as the brain’s default. Such a 

default raises new questions about the origin of common psychometric distortions, such as 

diminishing sensitivity for larger values. 

 

Keywords: decision making, numerical cognition, electroencephalography, MVPA, computational 

modeling 
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Introduction 

When making decisions about magnitudes such as numbers, people tend to distort sample 

information away from its true value. A commonly observed distortion is a compression of 

magnitude, where extreme (or outlying) samples receive relatively less weight than prescribed by 

a linear and, according to common interpretation, normative transformation of objective into 

psychological or subjective values (Bernoulli, 1954; Fechner, 1860; Juechems et al., 2021; Li et 

al., 2017; Tversky & Kahneman, 1992; Vandormael et al., 2017). However, in some task contexts, 

the opposite type of distortion has been observed, that is, an anti-compression, where extreme 

or outlying samples are overweighted (Clarmann von Clarenau et al., 2022; Kunar et al., 2017; 

Luyckx et al., 2019; Spitzer et al., 2017; Tsetsos et al., 2012; Vanunu et al., 2020). 

Using electroencephalographic (EEG) recordings and multivariate representational similarity 

analysis (RSA), recent work has identified a potential neural signature of such psychometric 

distortions. During processing of symbolic number samples, multivariate EEG patterns have been 

characterized by a “numerical distance effect”, where the representational similarity of, for 

instance, “4” and “5” is larger than that between “4” and ”6”, which in turn is larger than that 

between “3” and “7”, and so forth (Appelhoff et al., 2022; Luyckx et al., 2019; Sheahan et al., 

2021; Spitzer et al., 2017; Teichmann et al., 2018). Intriguingly, in a multi-sample decision task 

that promoted anti-compression of number samples in behavior, the “neural numberline” 

underlying the numerical distance effect was found to be anti-compressed as well (Appelhoff et 

al., 2022; Luyckx et al., 2019; Spitzer et al., 2017). The findings suggested that behaviorally 

relevant distortions in multi-sample decisions may occur already when the individual samples are 

being processed. 

However, such “neurometric” signature of psychometric distortion has thus far only been reported 

in tasks that promoted anti-compression, that is, a selective overweighting of extreme (outlying) 

sample values in behavior. A much more common observation in other task contexts is a 

compression of magnitude, where extreme values are underweighted, for instance, in 

psychophysical tasks (Fechner, 1860; Stevens, 1957; Wyart et al., 2012), in studies of numerical 

cognition (Dehaene, 2003; Longo & Lourenco, 2007; Nieder & Dehaene, 2009; Nieder & Miller, 

2003), and in behavioral economics experiments (Kellen et al., 2016; McAllister & Tarbert, 1999; 

Tversky & Kahneman, 1992). To what extent large-scale neural patterns, as recorded with human 

EEG, may also reflect psychometric compression is still unknown. 

In the present study, we capitalized on recent progress in understanding the experimental factors 

that may mediate whether people compress or anti-compress magnitudes in decision making (see 

also Summerfield & Parpart, 2022). Specifically, in a recent behavioral study, we found 

compression when judging the average of a single stream, but anti-compression when comparing 

dual streams of number samples (Clarmann von Clarenau et al., 2022). Here, we adopted this 

experimental manipulation to examine the neural signatures of compressive (as compared to anti-

compressive) number processing in multivariate EEG patterns. 
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Behaviorally, the results confirmed a compression of numerical values in the single-stream task, 

and an anti-compression of the same values in the dual-stream task. In neural signals, we 

replicated the finding of an anti-compressed number representation in the dual-stream task. 

Surprisingly, however, we found no evidence for neural compression in the single-stream task. 

Instead, we observed more general differences in the neural representation of the sample 

information. Whereas in the dual-stream task, the samples’ neural geometry predominantly 

reflected their abstract magnitude, the single-stream task was associated with a more direct, non-

quantitative representation of the concrete sample stimuli. The results relativize the diagnosticity 

of sample-level EEG-metrics for psychometric distortions. They also suggest a default mode of 

processing, namely, enhanced neural processing of extreme sample values, regardless of 

whether they are over- or underweighted in subsequent behavior. 

Results 

Participants (n=30) performed two different variants of a sequential integration task where they 

observed sequences of ten digits (ranging between 1 and 9, colored in red or blue; Fig. 1a). In 

the single-stream variant (“averaging” task), participants were asked to report whether the 

average of all ten number samples (regardless of color) was larger or smaller than 5. In the dual-

stream variant (“comparison” task), they were asked to indicate whether the red or the blue 

samples had the higher average value. 

Behavioral results 

As expected, mean choice accuracy (Fig. 1b) was higher in the single-stream task (80.5% ± 0.8% 

SE) than in the dual-stream task [76.3% ± 0.7% SE; t(29)=5.51, p<0.001, d=1.02; paired t-test]. 

This suggests that comparing two streams was more difficult than averaging a single-stream (of 

otherwise physically identical inputs; Fig. 1a). 

 

To characterize how the numerical value (1-9) of a sample influenced subsequent choice, we 

calculated model-free decision weights (see Materials and Methods). Descriptively, the weighting 

curve showed a concave shape (indicating compression) in the single-stream task (Fig. 1c, left), 

whereas an convex shape (indicating anti-compression) was evident in the dual-stream task (Fig. 

1c, right). 

 

For quantitative analysis, we fitted a psychometric model (see Materials and Methods), which 

characterizes the transformation of sample values (1-9) as a sign-preserving power function with 

exponent kappa (𝑘; where 𝑘<1 indicates compression and 𝑘>1 anti-compression). The model 

further includes parameters for overall bias (𝑏) towards larger or smaller numbers (𝑏 > or < 0) and 

decision noise (𝑠, see Materials and Methods). 
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Figure 1. Experimental paradigm and behavioral results. a) Each participant performed two variants of 

a sequential number integration task. Left: In both variants, participants viewed a stream of ten rapidly 

presented digits (five in red and five in blue color; in random serial order) drawn from 1 to 9 (uniform 

random). In the single-stream averaging task, participants were asked to judge whether the average value 

of all ten samples was higher or lower than 5 (ignoring the samples’ colors). In the dual-stream comparison 

task, participants were asked to report whether the red or the blue samples had the higher average value. 

Right: In both tasks, the response mapping onto left/right button presses was randomized across trials and 

cued only after sample presentation, in order to avoid motor preparation confounds. b) Mean accuracy 

(proportion correct choices) in the two tasks. c) Decision weights of number values in the single-stream 

(left) and dual-stream (right) tasks. Inset plots illustrate the shape of distortion implied by the best-fitting 𝑘 

(see panel d) according to model Eq. 1, with 𝑏 set to 0 for visual comparison between task conditions. d) 
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Parameter estimates from fitting our psychometric model to the empirical choice data (cf. c). Error bars in 

all panels show SE. 

 

The best-fitting parameter estimates are shown in Fig. 1d. Of main interest was parameter kappa 

(𝑘), which indicates the extent to which a weighting policy is compressed or anti-compressed 

relative to a linear weighting (𝑘 = 1). Indeed, 𝑘 was significantly smaller than 1 in the single-stream 

task [M=0.82, SE=0.07, t(29)=2.43, p=0.02, d=0.44; one-sample t-test against 1] and significantly 

larger than 1 in the dual-stream task [M=1.82, SE=0.16, t(29)=5.21, p<0.001, d=0.95], which 

confirms robust compression in single-stream averaging, and robust anti-compression in dual-

stream comparison. The essential difference in transformation (Eq. 1) implied by these 𝑘-values 

is illustrated in Fig. 1c (insets). While the transformation is concave (i.e., shallower towards the 

extremes) in the single-stream task, it is convex (i.e., steeper towards the extremes) in the dual-

stream task. 

 

Examining bias (𝑏), we found significantly positive values both in the single-stream task [M=0.02, 

SE=0.01, t(29)=3.52, p=0.001, d=0.64] and in the dual-stream task [M=0.21, SE=0.06, t(29)=3.34, 

p=0.002, d=0.61]. Thus, judgments in both tasks were overall biased towards larger numbers, 

which is consistent with previous work (Clarmann von Clarenau et al., 2022; Luyckx et al., 2019; 

Spitzer et al., 2017). Finally, noise (𝑠) was significantly higher in the dual-stream (M=1.23, 

SE=0.07) than in the single-stream task [M=0.98, SE=0.06; t(29)=4.40, p<0.001, d=0.70; paired 

t-test]. This is consistent with the lower level of accuracy in the dual-stream task (see Fig. 1b). 

 

Together, our experimental manipulation was successful in inducing opposite types of 

psychometric distortions, with identical stimulus inputs in the two task conditions. Whereas 

decision weighting was compressed (suggesting relative underweighting of extreme values) in 

the single-stream task, it was anti-compressed (suggesting relative overweighting of extreme 

values) in the dual-stream task. 

EEG results 

Multivariate (RSA) results 

Turning to the EEG data, we first examined the encoding of sample information in multivariate 

ERP patterns using RSA (see Materials and Methods). Specifically, we examined in each of the 

two tasks (single-stream and dual-stream) the extent to which RSA patterns encoded (i) the 

concrete digit that was shown as sample stimulus (e.g., “4” or “8”), (ii) its color (i.e., red or blue), 

and (iii) the numerical magnitude information in a sample (i.e., 1-9, in terms of a numerical 

distance effect; see Materials and Methods and Fig. 2a). 
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Figure 2. RSA results. a) Model RDMs encoding individual sample attributes. Left, “Digit” model encoding 

the unique number symbols; Middle, “Color” model encoding whether a sample was red or blue; Right, 

“Numerical distance” model encoding the samples’ magnitude (1-9). For visual clarity, the model RDMs are 

illustrated before orthogonalization (see Materials and Methods). b) Correlation between orthogonalized 

model RDMs and the empirical ERP-RDMs in the single-stream (left) and dual-stream (right) task. Colored 

shadings show SE. Marker lines on bottom indicate time windows of significant differences from zero. Gray 

shading outlines the time window used in subsequent neurometric analysis (see Fig. 4 below ). c) Difference 

in correlation between the single- and dual-stream tasks. Same conventions as in b. 

 

The visual attributes of a sample (i.e., its color and digit shape) were encoded early on, from 

approximately 100 to 700 ms after sample onset, in both tasks (Fig. 2b all pcluster<0.001). From 

approx. 200 ms on, the RSA patterns also encoded the samples’ numerical magnitude, in terms 

of a significant numerical distance effect (single-stream: pcluster<0.001; dual-stream: pcluster<0.001), 

thus replicating and extending previous work (Appelhoff et al., 2022; Luyckx et al., 2019; Sheahan 

et al., 2021; Spitzer et al., 2017; Teichmann et al., 2018). Descriptively, the numerical distance 
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effect observed in the single-stream task, while robustly significant, appeared weaker than that in 

the dual-stream task. 

 

Comparing the RSA time courses between the two task conditions (Fig. 2c) confirmed that the 

numerical distance effect was significantly stronger in the dual-stream task (pcluster<0.002). 

Surprisingly, we found no difference in color encoding between the two tasks, even though color 

was task-relevant only in the dual-stream task, but not in the single-stream task. Instead, in the 

single-stream task, we observed a relatively stronger representation of the concrete digit (i.e., the 

unique number symbol) that had been displayed (pcluster<0.005). This effect was evident in a 

relatively late time window (approximately 400-600 ms, that is, only after the early visual encoding 

of digits and color). 

 

Together, multivariate ERP patterns in both task conditions robustly encoded information about 

the sample’s color, the number symbol it showed, and its numerical magnitude. The 

representation of samples in the single-stream task, however, showed qualitative differences, in 

terms of a relatively weaker encoding of numerical magnitude, and a relatively stronger encoding 

of the concrete sample stimuli. 

Neurometric RSA results 

Next, we examined potential distortions of the “neural numberline” underlying the neural 

magnitude representation disclosed in the above RSA results. To this end, we parameterized the 

numerical distance model (Fig. 2d, right) to reflect distortions by 𝑘 (compression/ anti-

compression) and 𝑏 (bias towards/against larger numbers), analogously as in our psychometric 

model (see Materials and Methods, Eq. 1). We then used exhaustive gridsearch to determine for 

each participant the parameter combination with which the model fitted the data best. Fig. 3b 

illustrates the improvement in fit (in terms of 𝛥 𝑟 relative to the standard model with 𝑘 = 1 and 𝑏 = 

0; cf. Fig. 2d, right) in a representative time window (0.2-0.6 s; cf Fig.2c and 3a). Note that 

neurometric mapping was performed using a log scale of 𝑘 (where 𝑙𝑜𝑔(𝑘) = 0 corresponds to 𝑘 = 

1, see Fig. 3b) to avoid fitting bias (see Materials and Methods). 

 

The results (Fig. 3b) replicated our previous finding of a significant distortion of the neural 

numberline in the dual-stream task (Fig. 3b right). Specifically, like in our previous work (Appelhoff 

et al., 2022; Spitzer et al., 2017), we observed neurometric estimates of 𝑘 > 1 (i.e., anti-

compression) and of 𝑏 > 0 (i.e., a bias towards larger numbers; p=0.013, FDR-corrected), which 

mirrors the pattern observed in the behavioral data (cf. Fig. 1c-d, orange). However, contrary to 

our expectations, we found no evidence for a neurometric compression in the single-stream task 

(Fig. 3b, left), where the psychometric weighting in behavior was clearly compressed (cf. Fig. 1c-

d, blue). Descriptively, the neurometric map in the single-stream task indicated a pattern similar 

to that in the dual-stream task (i.e., anti-compression 𝑘 > 1, and positive bias, 𝑏 > 0). However, 

the improvement in fit over the linear/unbiased model was weak and statistically non-significant 

(Fig. 3b, left), potentially reflecting that the numerical distance effect in the single-stream task was 

overall weaker (cf. Fig. 2b). 
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Examining the mean neurometric parameter estimates in the two tasks statistically, they showed 

significant anti-compression (𝑘 > 1) both in the dual-stream [M=3.05, SE=0.40; t(29)=5.16, 

p<0.001, d=0.94] and in the single-stream task [M=3.81, SE=0.57; t(29)=4.90, p<0.001, d=0.89, 

t-tests against 1]. Direct comparison of neurometric 𝑘 between the two tasks showed no significant 

difference [t(29)=1.25, p=0.22, d=0.28, paired t-test]. A positive offset bias (𝑏) was evident in the 

dual-stream task [M=0.18, SE=0.04; t(29)=3.97, p<0.001, d=0.73] but not in the single-stream 

task [M=0.04, SE=0.05; t(29)=0.75, p=0.46, d=0.14, t-tests against 0; difference between tasks 

t(29)=2.27, p=0.03, d=0.54, paired t-test]. Together, the neurometric RSA results yielded no 

evidence for a compression of numerical magnitude akin to that observed in behavior in the single-

stream task. If anything, the results were suggestive of anti-compression (𝑘 > 1) in both tasks, 

although it should be noted that the improvement in model fit (relative to a linear model) in the 

single-stream task was small and not statistically significant (Fig. 3b, left). 

 

 
 

Figure 3. Neurometric RSA results. a) Mean ERP-RDMs in the time window of the numerical distance 

effect (see gray shading in Fig. 2b). b) Mean neurometric maps. Left: single-stream task; right: dual-stream 

task. Dashed lines indicate linear (𝑘 = 1) and unbiased (𝑏 = 0) parameterizations. Color scale indicates 

increase in model correlation (Δ r) relative to the standard model where 𝑘 = 1 and 𝑏 = 0. Transparency 
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mask delineates where the increase was statistically significant (p<0.05, FDR corrected). Red markers 

show maxima (diamond, mean map; dots, individual participant maps). 

Univariate ERP results (CPP/P3) 

We complemented our analysis by examining neurometric distortions also in univariate ERP 

signals, specifically in the sample-evoked CPP/P3 response. Previous research has implicated 

the CPP/P3 in decision formation, with its amplitude reflecting the perceived strength of evidence 

(Herding et al., 2019; O’Connell et al., 2012; Pisauro et al., 2017; Spitzer et al., 2016; Twomey et 

al., 2015; Wyart et al., 2015). CPP/P3 amplitudes were previously also found to be modulated by 

numerical sample values in the context of a dual-stream comparison task (Spitzer et al., 2017).  

 

 
 

Figure 4. Univariate CPP/P3 results. a) Centro-parietal ERPs (mean-subtracted) evoked by sample 

values 1-9 in the single- (left) and dual-stream (right) tasks. Marker lines on bottom indicate time windows 

of significant differences between the 9 different sample values (all pcluster<0.001, repeated measures 

analysis of variance). b) Mean CPP/P3 amplitudes averaged over the time window outlined by gray shading 

in a (0.3 - 0.7 s). c) Neurometric model fit of CPP/P3 amplitudes. Line plot shows grand mean fit. Inset bar 

graph shows mean parameter estimates. Error indicators in all panels show SE. 

 

We observed modulations of CPP/P3 amplitude by numerical value both in the single-stream (Fig. 

4a, left; pcluster<0.001) and in the dual-stream task (Fig. 4a, right; pcluster<0.001, repeated measures 

analyses of variance), with the modulation in the dual-stream task appearing descriptively 

stronger. The mean amplitudes showed a U-shaped pattern over numbers 1-9 (Fig. 4b), 

consistent with previous findings that CPP/P3 reflects the strength of decisional evidence in an 

unsigned fashion, that is, a theoretical quantity similar to the absolute |𝑑𝑣| in our psychometric 
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model, which would reflect the strength of evidence for either choice, “<” or “>” (see also Herding 

et al., 2019; O’Connell et al., 2012; Pisauro et al., 2017; Spitzer et al., 2016; Twomey et al., 2015; 

Wyart et al., 2015). Thus, for model-based analysis, we fitted Eq. 1 to the CPP/P3 amplitude data 

(using pairwise distance matrices and gridsearch analogous to our neurometric RSA above), but 

using |𝑑𝑣| to generate the model-predicted pattern. 

 

The best-fitting parameter estimates are shown in Fig. 4c (inset bar graph). Mirroring the RSA 

results, the parameter estimates based on CPP/P3 amplitude showed significant anti-

compression (k > 1) in both tasks [single-stream: M=2.58, SE=0.55; t(29)=2.88, p=0.007, d=0.53, 

dual-stream: M=3.12, SE=0.51; t(29)=4.15, p<0.001, d=0.76, t-tests against 1], with no significant 

difference between tasks [t(29)=0.69, p=0.49, d=0.18, paired t-test]. A positive offset bias was 

again observed in the dual-stream task [M=0.28, SE=0.06; t(29)=5.00, p<0.001, d=0.912], but not 

in the single-stream task [M=0.09, SE=0.05; t(29)=1.78, p=0.09, d=0.33, t-tests against 0; 

difference: t(29)=2.97, p=0.006, d=0.63, paired t-test]. Together, the univariate ERP analysis thus 

corroborates our RSA finding that the neural processing of number samples in single-stream 

averaging was not characterized by compression but—if anything—by anti-compression, despite 

the evidence for compression in subsequent behavioral choice (cf. Fig. 1c-d). 

Discussion 

We observed opposite types of psychometric distortions (compression or anti-compression) in 

behavior when participants were instructed to process an identical stream of numbers in two 

distinct ways, namely, comparing the complete stream against a fixed target value or comparing 

two sub-streams against each other. However, contrary to expectations based on past research, 

the neural signals associated with the processing of the individual number samples showed 

evidence for anti-compression (i.e., enhanced processing of extreme values) under both 

instructions, regardless of whether extreme values were over- or underweighted in subsequent 

behavioral choice. We further observed qualitative differences between the sample 

representations in the two tasks, with a relatively weaker encoding of the samples’ numerical 

magnitude in the single-stream task. 

 

In psychophysical research concerned with the how attributes of a physical stimulus (e.g., size, 

weight, color) relate to their subjective experience or perception, human observers are commonly 

found to underweight extreme values. Such subjective “compression” of magnitude can be 

observed in a great variety of settings, from basic sensory-perceptual judgments (Fechner, 1860; 

Stevens, 1957) to economic decisions (Kellen et al., 2016; McAllister & Tarbert, 1999; Tversky & 

Kahneman, 1992). There exist various theoretical accounts for the origin and potential benefits of 

subjective compression in perception and decision making (Bhui & Gershman, 2018; Ciranka et 

al., 2022; de Gardelle & Summerfield, 2011; Li et al., 2017; Pardo-Vazquez et al., 2019; Stewart 

et al., 2006; Summerfield & Li, 2018; Vandormael et al., 2017). Our present results seem to 

contrast these vast literatures with the finding that human brain signals tended to reflect the 

magnitude of numerical values in an anti-compressed fashion, even when they were compressed 

in later choice. 
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However, while the typical finding in many tasks is compression, there are task contexts where 

observers overweight extreme samples in choice behavior, in line with an anti-compression of 

sample values (Clarmann von Clarenau et al., 2022; Kunar et al., 2017; Ludvig et al., 2014; Luyckx 

et al., 2019; Shevlin et al., 2022; Spitzer et al., 2017; Tsetsos et al., 2012; Vanunu et al., 2020). 

We recently showed that such anti-compression can be beneficial in tasks that are 

computationally challenging (like our dual-stream comparison task), and where capacity-limited 

observers may be forced to selectively focus on a subset of the samples at the expense of others 

(Clarmann von Clarenau et al., 2022; see also Tsetsos et al., 2016). Our present findings may 

suggest that in task contexts in which higher-level processing capacities are exceeded, participant 

behavior might more directly reflect the brain’s default response to extreme values (i.e., privileged 

processing). 

 

Despite the lack of evidence for different neural geometries of numerical magnitude in the two 

tasks, the samples’ overall representation in neural signals yet differed. In the dual-stream task, 

neural signals encoded the numerical magnitude of a sample more strongly than in the single-

stream task. This result was unexpected because nominally, the numerical magnitude of a sample 

was of equal relevance in both tasks. In the single-stream task, in turn, we found relatively 

stronger encoding of which unique number symbol was presented. Further, although the color of 

a sample (red/blue) was task-irrelevant in the single-stream task, the neural encoding of color 

was as strong and as sustained as in the color-based dual-stream task. While these results were 

unexpected, they may suggest more general differences in the role of “abstract” magnitude 

processing (Dehaene, 2003; Nieder, 2005; Nieder & Dehaene, 2009; Piazza & Izard, 2009; 

Walsh, 2003) in the two tasks. Potentially, in the more challenging dual-stream task participants 

relied more directly on an intuitive “sense of magnitude” (Leibovich et al., 2017; Piazza et al., 

2006; Spitzer et al., 2014) to gauge a sample’s decision value. The computationally simpler 

single-stream task, in contrast, may have allowed them to engage in more symbolic-analytic 

processing (e.g., approximate arithmetics and/or verbalization) – processes that might be less 

amenable to EEG-decoding than the numerical distance pattern that prevailed in the dual-stream 

task. 

 

The neural anti-compression of sample values in both of the tasks was also evident in univariate 

CPP/P3 signals which had previously been implicated in the decisional evaluation of stimulus 

information (Herding et al., 2019; O’Connell et al., 2012; Pisauro et al., 2017; Spitzer et al., 2016; 

Twomey et al., 2015; Wyart et al., 2015). Interpreting the amplitude of CPP/P3 signal as an index 

of the perceived strength of evidence, our findings in the single-stream task show a mismatch 

between the pattern observed in sample-by-sample processing (anti-compression, as revealed 

by neural data) and that in eventual judgment of the aggregate stream (compression, as evident 

in behavior). Future work will be required to identify the neural mechanisms underlying the 

eventual downweighting of extreme values in such task contexts, despite enhanced encoding in 

sample-level decision signals. It should be noted that the amplitude of P3 signals is known to be 

modulated by various factors, including how rare or surprising an event is (Donchin, 1981; 

Duncan‐ Johnson & Donchin, 1977). However, the sample values in our experiment were 

uniformly distributed, that is, each value occurred equally often on average, ruling out an 

explanation in terms of stimulus frequency. 
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Whether extreme values are over- or underweighted has major implications for the behavioral 

choices people make. One and the same numerical evidence, as in the present study, may lead 

to opposite choices, depending on how people respond to and process extreme values. For 

instance, anti-compression can explain systematic violations of “rational” axioms, such as 

transitivity, in multi-attribute choice (Summerfield & Tsetsos, 2015; Tsetsos et al., 2016). More 

generally, non-linear distortions of objective data (such as numbers) have often been interpreted 

as paradigmatic manifestations of seemingly “irrational” human behaviors in decision making 

(e.g., non-linear probability weighting in risky choice as assumed in cumulative prospect theory; 

Tversky & Kahneman, 1992). However, over the past years a new literature has evolved that 

recasts these behaviors as well-adapted policies of capacity-limited observers, fostering rather 

than hampering their measurable performance under these constraints (Bhui et al., 2021; 

Gigerenzer et al., 2011; Gigerenzer & Brighton, 2009; Juechems et al., 2021; Lieder & Griffiths, 

2020; Sims, 2003, 2010; Tsetsos et al., 2016). Here, we shed new light on the open question of 

how such adaptive distortions may arise mechanistically, in terms of the neural signal patterns 

evoked by samples of evidence while observers are in the process of reaching a decision. Our 

finding of a “default” anti-compression of values in neural responses—regardless of subsequent 

behavior—raises the question at which exact processing stage value compression emerges, and 

how it leads to, for instance, the well-known “diminishing sensitivity” to larger values in economic 

choices (e.g., Tversky & Kahneman, 1992). 

Materials and Methods 

Participants 

Thirty-two healthy volunteers took part in the experiment. We excluded two participants who 

reported having misunderstood the task instructions and who performed near chance level (50% 

correct choices) in one of the tasks (52% and 53%, respectively; both p>0.4, Binomial tests 

against 0.5). Results are reported for the n=30 remaining participants (15 male, 15 female; mean 

age 27.4 ± 4.9 years; one left handed). All participants provided written informed consent and 

received €10 per hour as compensation, in addition to a €10 flat fee for participation, as well as a 

performance-dependent bonus (€7.03 ± 1.08 on average). The study was approved by the ethics 

committee of the Max Planck Institute for Human Development. 

Experimental design 

Each participant performed two variants of a sequential number integration task (Clarmann von 

Clarenau et al., 2022; Spitzer et al., 2017). The stimulus protocols in the two task variants were 

identical (Fig. 1a). On each trial, participants viewed a sequence of 10 Arabic digits (randomly 

drawn from a uniform distribution of numbers 1 to 9) displayed in either red or blue font color 

(randomly assigned to each sample, with the restriction that each sequence contained 5 red and 

5 blue samples). In the “averaging” (single-stream) task, participants were asked to judge whether 

the average of all 10 number samples in the sequence (regardless of their color) was larger or 
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smaller than 5. In the “comparison” (dual-stream) task, participants were asked to indicate 

whether the red or the blue samples had the higher average value. Past behavioral work has 

shown a psychometric compression of number values in the single-stream task, whereas anti-

compression was evident in the latter dual-stream task (Clarmann von Clarenau et al., 2022; 

Spitzer et al., 2017). 

 

The experiment was programmed in Python using the PsychoPy package (Peirce et al., 2019) 

and run on a Windows 10 PC. The experiment code is available on GitHub 

(https://github.com/sappelhoff/ecomp_experiment). Throughout the experiment, we additionally 

recorded eye-movements using an EyeLink 1000 Plus (SR Research Ltd., Canada), which were 

not analyzed in the present study. Participants were informed about the eye-movement recording 

and were instructed to keep their gaze at the center of the screen throughout the experiment. 

 

Each trial started with a white central fixation stimulus (a combination of bulls eye and cross hair; 

Thaler et al. 2013) on an otherwise black screen. After 500 ms, the fixation stimulus disappeared 

and the number sequence was presented at a rate of 350 ms per sample (font Liberation Mono; 

height 3° visual angle; see Fig. 1a). Each sample was smoothly faded to black after 270 ms to 

improve the visual experience of the stimulus transitions. After the last sample, participants were 

prompted to enter a response by pressing the left or right button on a USB response pad (The 

Black Box ToolKit Ltd., UK). To avoid left/right motor response preparation during sequence 

presentation, in each of the two tasks, we randomized the mapping of responses (“smaller” or 

”larger” in the averaging task; “red” or ”blue” in the comparison task) onto left/right button presses 

trial-by-trial, using a response screen (Fig. 1a, right). 

 

If participants failed to respond within 3 s, the trial was discarded and after a delay of 100 ms, a 

message (“too slow!”) was displayed in red color for 1 s. On average, participants responded 

within 0.67±0.27 s and timeouts occurred only on 0.03% of trials. On the remaining trials, 

performance feedback was displayed (“correct” or “wrong”, in green or orange color, respectively) 

for 350 ms. All feedback was displayed centrally in Liberation Mono font with a height of 1° visual 

angle. On 4.85% of trials, in which the objective sequence average was precisely 5 (in the single-

stream task) or identical for red and green samples (in the dual-stream task), a random feedback 

message was displayed. These trials were excluded from the analysis of accuracy levels, but 

were included in the modeling- and EEG analyses (see also Spitzer et al., 2017). After feedback, 

the central fixation stimulus re-appeared and after 500 to 1500 ms (randomly varied), the next 

trial started. 

 

Each participant first performed 300 trials in one of the tasks (single-stream averaging or dual-

stream comparison), followed by 300 trials in the other task (in counterbalanced serial order 

across subjects). Thus, 3000 number samples were presented in each task condition and 

participant. Trials were performed in blocks of 50, with summary performance feedback 

(percentage correct choices) being provided after each block. After completing all blocks of the 

first task, participants received the instructions for the second task. To avoid differences in 

stimulus input, the second task was performed on the exact same number sequences as the first 
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task. Upon completing the second task, participants received a monetary bonus depending on 

their mean accuracy in both tasks. 

EEG recording 

The experiment was performed in an electrically shielded and soundproof cabin. Scalp EEG was 

recorded with 64 active electrodes (actiCap, Brain Products GmbH Munich, Germany) positioned 

according to the international 10% system. Electrode FCz was used as the recording reference. 

We additionally recorded the horizontal and vertical electrooculogram (EOG) and 

electrocardiogram (ECG) using passive electrode pairs with bipolar referencing. All electrodes 

were prepared to have an impedance of less than 10 kΩ. The data were recorded using a 

BrainAmp DC amplifier (Brain Products GmbH Munich, Germany) at a sampling rate of 1000 Hz, 

with an RC high-pass filter with a half-amplitude cutoff at 0.016 Hz (roll-off: 6 dB/octave) and low-

pass filtered with an anti-aliasing filter of half-amplitude cutoff 450 Hz (roll-off: 24 dB/octave). The 

dataset is available on GIN in source format and formatted according to the Brain Imaging Data 

Structure (BIDS) using MNE-BIDS (Appelhoff et al., 2019; Gorgolewski et al., 2016; Pernet et al., 

2019): https://gin.g-node.org/sappelhoff/mpib_ecomp_sourcedata/. 

Behavioral data analysis 

We calculated model-free decision weights to examine how strongly each numerical sample value 

(1, 2, …, 9) contributed to participants’ choices in the two tasks. In the single-stream task, these 

weights were computed as the proportion of times a sample value was associated with the 

subsequent choice “larger”. Analogously, in the dual-stream task, the weights were computed as 

the proportion of times the sample’s color (i.e., red or blue) was subsequently chosen (see also 

Spitzer et al., 2017). For comparison with model predictions (see below), we computed decision 

weights also from the model-predicted choice probabilities (𝐶𝑃, see Eq. 3) obtained from using 

the best fitting parameter estimates in each participant. 

Psychometric model 

To quantify psychometric distortions (i.e., compression or anti-compression) in behavior, we used 

a simple psychometric model that has been used extensively in previous work (Appelhoff et al., 

2022; Clarmann von Clarenau et al., 2022; Li et al., 2017; Luyckx et al., 2019; Spitzer et al., 2017). 

The model formalizes the transformation of objective sample values 𝑋 (here: numbers 1-9, 

normalized to the range [-1, 1]) into a subjective decision value 𝑑𝑣 as a sign-preserving power 

function: 

 𝑑𝑣 =
𝑋+𝑏

|𝑋+𝑏|
× |𝑋 + 𝑏|𝑘, Eq. 1 

where exponent 𝑘 (kappa) determines the overall shape of the transformation (𝑘 < 1: 

compression; 𝑘 = 1: linear; 𝑘 > 1: anti-compression). Parameter 𝑏 (bias) implements an overall 

weighting bias towards smaller (𝑏 < 0) or larger (𝑏 > 0) numbers. Sample-level decision values 

(𝑑𝑣) are integrated into a trial-level decision value (𝐷𝑉) by summation over samples: 
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 𝐷𝑉 = ∑ 𝑑𝑣𝑖 × 𝑐𝑖
10
𝑖=1 , Eq. 2 

where 𝑐 is an indicator variable denoting a sample’s color (red: -1, blue: +1) in the dual-stream 

task. In the single-stream task, 𝑐 was fixed at 1. This way, Eq. 2 effectively implements a 

comparison between streams in the dual-stream task, and simple averaging in the single-stream 

task. Finally, the trial level decision value (𝐷𝑉) is transformed into a choice probability according 

to a logistic function: 

 𝐶𝑃 =
1

1+𝑒
−𝐷𝑉

𝑠

, Eq. 3 

where 𝐶𝑃 denotes the probability of choosing “>5” (in the single-steam task) or “blue>red” (in the 

dual-stream task), and parameter 𝑠 quantifies the level of decision noise, with larger values of 𝑠 

implying more random choices. 

 

The model was fitted to each participant’s individual choice data using the Nelder-Mead method 

as implemented in SciPy (Virtanen et al., 2020), with parameter values restricted to the ranges 

(𝑘: [0, 5]; 𝑏: [-0.5, 0.5], 𝑠: [0.01, 3]). Fitting was performed iteratively using 900 combinations of 

different starting values for each task condition, and the solution with the lowest Bayesian 

Information Criterion (BIC) was used in the analysis. Statistical analysis of the fitted parameters 

proceeded with conventional inferential tests on the group level. 

EEG preprocessing 

We used functions from MNE-Python (Gramfort et al., 2013) and PyPrep (Appelhoff et al., 2018; 

based on Bigdely-Shamlo et al., 2015) to automatically mark noisy segments and bad channels 

in the EEG recordings. We additionally screened all recordings visually to reject noisy segments 

or bad channels that the automatic procedures had missed. This way, on average, 2.5 ± 1.6 

channels were discarded per participant. Next, we corrected ocular and cardiac artifacts using 

independent component analysis (ICA). To this end, we high-pass filtered a copy of the raw data 

at 1 Hz and downsampled it to 100 Hz. We then ran an extended infomax ICA on all EEG channels 

and time points that were not marked as bad in the prior inspection. Using the EOG and ECG 

recordings, we identified stereotypical eye blink, eye movement, and heartbeat artifact 

components through correlation with the independent component time courses. We visually 

inspected and rejected the artifact components before applying the ICA solution to the (Winkler 

et al., 2015). We then filtered the ICA-cleaned data between 0.1 and 40 Hz, interpolated bad 

channels, and re-referenced each channel to the average of all channels. 

Event-related potentials (ERPs) 

We epoched the preprocessed data from −0.1 to 0.9 s relative to each sample stimulus onset. 

Remaining bad epochs were rejected using a thresholding approach from the FASTER pipeline 

(Step 2; Nolan et al., 2010). On average, n = 5764 clean epochs (96.1%) per participant were 

retained for analysis. The epochs were then downsampled to 250 Hz and baseline corrected 

relative to the period from −0.1 to 0 s before stimulus onset. Since our analyses focused on 

stimulus-specific effects, we subtracted the overall mean waveform from the individual epochs, in 
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each of the two task conditions. The mean-subtracted epochs were then averaged into stimulus-

specific ERPs for each sample value (1, 2, ..., 9) in each color (red/blue). Note that the individual 

samples in a stream were statistically independent by design, allowing us to examine stimulus-

specific ERP responses in a time window that overlapped with the onset of the next sample 

stimulus. 

Representational similarity analysis (RSA) 

We used representational similarity analysis (RSA; Kriegeskorte & Kievit, 2013) to examine the 

encoding of sample information in multivariate ERP patterns. Specifically, we examined the 

representational geometry of our stimulus space (numbers 1 to 9, colored red or blue) in terms of 

the multivariate (dis-)similarity between the ERP topographies (64 channels) associated with the 

18 different stimuli. Representational dissimilarity was computed as the Mahalanobis distance, 

between each pair of stimuli, yielding an 18x18 representational dissimilarity matrix (RDM), at 

each time point of the peri-sample epoch. To compute the Mahalanobis distance, we fitted a 

general linear model to the z-scored trial data, with each stimulus type specified as a condition, 

and used the residual trial-by-trial variance for pairwise distance calculation. This procedure 

ensured multivariate noise normalization for the RDMs (Guggenmos et al., 2018). Below, we refer 

to the thus obtained RDMs as ERP-RDMs. 

 

To examine the information encoded in the ERP-RDM time courses, we used three different 

model RDMs (see Fig. 2a) reflecting (i) the unique digit symbols, with minimum dissimilarity 

between identical digits, and maximum dissimilarity between distinct digits (“digit” model), (ii) the 

samples’ color, with minimum (maximum) dissimilarity between same (different) colors (“color” 

model), and (iii) the numerical distance between samples, that is, the arithmetic difference 

between their objective number values (“numerical distance” model). To render the three models 

fully independent, we recursively orthogonalized each model RDM with respect to all others using 

the Gram-Schmidt process (Appelhoff et al., 2022; Spitzer et al., 2017). Finally, we assessed the 

match between each model RDM and the empirically observed ERP-RDMs via Pearson 

correlation at each time point, using only the lower triangle of the RDMs and omitting the diagonal, 

to exclude redundant matrix cells. 

 

For statistical analysis of the RSA time courses, we used t-tests against zero with cluster-based 

permutation testing to control for multiple comparisons over time points (Maris & Oostenveld, 

2007). To test whether RSA results differed between the single- and dual-stream tasks, we first 

computed their difference, followed by cluster-based permutation tests against zero. All 

permutation tests were performed over 1000 iterations with a cluster-defining threshold of p = 

0.01 and cluster length as the critical statistic (thresholded at p=0.01). 

Analysis of neurometric distortions 

The theoretical model underlying conventional RSA of numerical distance effects (see above) is 

a straight number line, where the numbers (1, 2, ..., 9) are equidistant. The standard numerical 

distance model (Fig. 2a, right) is equivalent to a model of 𝑑𝑣 according to Eq. 1 (see Psychometric 
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model) where 𝑘 = 1 and 𝑏 = 0. To examine potential nonlinear distortions of the number 

representations in neural signals (“neurometric” distortions), we constructed numerical distance 

models based on 𝑑𝑣 while varying the values of 𝑘 (from 𝑙𝑜𝑔(𝑘) = -2 to +2, see Fig. 3b) and 𝑏 

(from -0.5 to 0.5). Varying 𝑘 on a log scale centered around 𝑙𝑜𝑔(𝑘) = 0 (i.e., 𝑘 = 1) ensured that 

parameter estimates were not biased to show anti-compression (or compression) by chance in 

subsequent gridsearch. For each parameter combination, we correlated the resulting model 

RDMs with the ERP-RDM, yielding a grid (“neurometric map”) of the parameter space (see Fig. 

3b). The parameter combination with the maximum correlation was used as the estimate of the 

participant’s neurometric distortion parameters (see also Spitzer et al., 2017; Appelhoff et al., 

2022). Statistical analysis of the neurometric parameter estimates proceeded with conventional 

statistical tests on the group level. 

Univariate ERP analysis 

For complementary inspection of univariate ERP responses evoked by the number samples, we 

examined the stimulus-specific ERP (see above) for each sample value (1-9; collapsed across 

red/blue colors). To focus on CPP/P3 responses (see Results), the ERPs were pooled over 

centro-parietal channels (CP1, P1, POz, Pz, CPz, CP2, P2) and amplitudes were examined in a 

time window from 300 ms to 700 ms based on previous work (Appelhoff et al., 2022; Polich, 2007; 

Spitzer et al., 2017; Wyart et al., 2015). The ERP time courses were analyzed statistically using 

cluster-based permutation testing (see above). For model-based analysis, we used the same 

approach as in our analyses of neurometric distortions in RSA (see above), except that the model 

RDMs were constructed from |𝑑𝑣| (i.e., the absolute, unsigned magnitude of 𝑑𝑣, see Results) and 

correlated with the pairwise differences in univariate ERP amplitude between samples 1-9. 
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