

1 **Title: Antibody evolution to SARS-CoV-2 after single-dose Ad26.COV2.S vaccine**

2

3 **Authors:** Alice Cho^{1,*}, Frauke Muecksch^{2,*}, Zijun Wang^{1,*}, Tarek Ben Tanfous¹, Justin
4 DaSilva², Raphael Raspe¹, Brianna Johnson¹, Eva Bednarski², Victor Ramos¹, Dennis Schaefer-
5 Babajew¹, Irina Shimeliovich¹, Juan Dizon¹, Kai-Hui Yao¹, Fabian Schmidt², Katrina G.
6 Millard¹, Martina Turroja¹, Mila Jankovic¹, Thiago Y. Oliveira¹, Anna Gazumyan¹, Christian
7 Gaebler¹, Marina Caskey¹, Theodora Hatzioannou², Paul D. Bieniasz^{2,3}, and Michel C.
8 Nussenzweig^{1,3}.

9

10 **Affiliations:**

11 ¹Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA

12 ²Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA

13 ³Howard Hughes Medical Institute

14

15 *equal contribution

16 Address correspondence to: Theodora Hatzioannou thatzio@rockefeller.edu; Paul D. Bieniasz
17 pbieniasz@rockefeller.edu; or Michel C. Nussenzweig nussen@rockefeller.edu

18

19

20

21

22

23

24

25

26

27 **Abstract**

28 The single dose Ad.26.COV.2 (Janssen) vaccine elicits lower levels of neutralizing antibodies
29 and shows more limited efficacy in protection against infection than either of the available
30 mRNA vaccines. In addition, the Ad.26.COV.2 has been less effective in protection against
31 severe disease during the Omicron surge. Here, we examined the memory B cell response to
32 single dose Ad.26.COV.2 vaccination. Compared to mRNA vaccines, Ad.26.COV.2 recipients
33 had significantly lower numbers of RBD-specific memory B cells 1.5 or 6 months after
34 vaccination. Memory antibodies elicited by both vaccine types show comparable neutralizing
35 potency against SARS-CoV-2 and Delta. However, the number of memory cells producing
36 Omicron neutralizing antibodies was somewhat lower after Ad.26.COV.2 than mRNA
37 vaccination. The data help explain why boosting Ad.26.COV.2 vaccine recipients with mRNA
38 vaccines is effective, and why the Janssen vaccine appears to have been less protective against
39 severe disease during the Omicron surge than the mRNA vaccine.

40

41

42 **One-Sentence Summary:** Ad.26.COV.2 vaccine results in lower quantity but comparable
43 quality of protective memory B cells compared to mRNA vaccines.

44

45 **Main text:**

46 **Introduction**

47 Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) produced a world-wide
48 pandemic, infecting over 470 million people and is responsible for over 6 million deaths. In the
49 United States, the FDA authorized the use of three vaccines encoding prefusion-stabilized
50 SARS-CoV-2 spike: two mRNA-based, BNT162b2 from Pfizer-BioNTech and mRNA-1273
51 from Moderna, and an adenovirus-based vaccine, Ad26.COV2.S from Janssen (1). While both
52 mRNA-based vaccines were initially approved as two-dose primary vaccine regimens, the
53 replication-incompetent adenovirus (Ad) 26 vector-based Ad26.COV2.S vaccine received FDA
54 emergency authorization as a single-dose vaccine. All three vaccines have since proven effective
55 with substantial protection against COVID-19 infection, hospitalization, and death (2, 3).

56 However, protection against COVID-19 infection appeared to wane over time with
57 Ad26.COV2.S demonstrating the most prominent decrease from 75% to 60% protective efficacy
58 5 months after vaccination, compared to a decrease in vaccine efficacy from 95% to either 67%
59 or 80% after BNT162b2 and mRNA-1273 vaccination, respectively, over a similar period of
60 time (4). Loss of protection against infection was associated with lower overall levels of SARS-
61 CoV-2 spike protein (S)-specific antibodies and plasma neutralizing activity after Ad26.COV2.S
62 immunization compared to mRNA vaccines (5, 6).

63

64 In contrast to protection from infection, Wuhan-Hu-1-based mRNA vaccines maintain
65 effectiveness against hospitalization and death even in the face of infection with SARS-CoV-2
66 antigenic variants (4, 7). Protection from severe disease by mRNA vaccines is attributed in part
67 to a diverse collection of memory B cells that develop cross reactivity against viral variants over

68 time (8). Far less is known about the evolution of the memory B cell response after Ad.26.COV2
69 vaccination. Here, we report on memory B cell evolution over a 6-month period in a cohort of
70 SARS-CoV-2-naïve individuals after Ad.26.COV2 immunization.

71

72 **Results**

73 We studied the immune response to a single dose of the Ad.26.COV2.S (Janssen) vaccine in a
74 cohort of 18 volunteers with no prior history of SARS-CoV-2 infection, recruited between April
75 26, 2021 and August 16, 2021 for sequential blood donations at 1.5 (median 46 days, range 27-
76 72 days) and 6 months after vaccination (median 179 days, range 136-200 days). Volunteers
77 ranged in age from 23-56 years and were 56% female and 44% male (for details, see Methods
78 and table S1).

79

80 **Plasma binding and Neutralization**

81 Plasma antibody binding titers to SARS-CoV-2 RBD were measured by enzyme-linked
82 immunosorbent assays (ELISA) (9, 10). There was a 1.3-fold decrease in geometric mean IgG-
83 binding titers against RBD between 1.5 and 6 months ($p=0.07$, Fig. 1a), which appears more
84 modest than the 4.3-fold decrease reported for mRNA vaccinees at similar time points (9). RBD-
85 binding IgG titers at the 1.5-month time point were comparable to a single dose of the mRNA
86 vaccine and to convalescents 1.3 months after symptom onset (9, 11) (Fig. 1b). After 6 months,
87 Janssen vaccine titers were significantly lower than in individuals who received 2 doses of an
88 mRNA vaccine (9) ($p=0.003$, Fig 1b) but higher than convalescent infected individuals at a
89 similar time after infection (12) ($p=0.003$, Fig. 1b). IgM and IgA-binding titers also decreased
90 over time ($p=0.01$ and $p=0.11$, respectively, fig. S1a and b). IgM responses were comparable to

91 both convalescent individuals and mRNA vaccinees, while IgA responses were significantly
92 lower at both, 1.5- and 6-month time points when compared to mRNA vaccinees and
93 convalescent individuals (fig. S1c and d).

94

95 Neutralizing activity was determined for the same participants, using HIV-1 pseudotyped with
96 Wuhan-Hu-1 SARS-CoV-2 Spike protein (9, 10) (table S1). 1.5 months after vaccination,
97 individuals that received the Janssen vaccine had significantly lower neutralizing titers than
98 either convalescents or vaccinees who received 2 doses of an mRNA vaccine ($p=0.012$ and
99 $p<0.0001$, respectively, Fig. 1d). In contrast to reports that neutralizing titers increase marginally
100 over time in Ad26.COV2.S vaccinees, there was a modest but significant 2.7-fold decrease in
101 geometric mean neutralizing titers after 6 months in this cohort (13-15) ($p=0.0017$, Fig. 1c). As a
102 result, 39% of the participants receiving the Janssen vaccine had neutralizing titers that were
103 below the limit of detection in our assay ($NT_{50}<10$). The neutralizing activity was comparable to
104 convalescents but remained significantly lower than individuals who had received 2 doses of an
105 mRNA vaccine ($p<0.0001$, Fig. 1d).

106

107 Plasma neutralizing activity for 15 randomly selected samples was also assessed against SARS-
108 CoV-2 variants using pseudotype viruses with variant spikes (9, 16). Consistent with other
109 reports (13, 17), at 1.5 months neutralizing titers against Beta, Delta, and Omicron were 6.8-, 3-,
110 and 25-fold lower than Wuhan-Hu-1, respectively. In all cases the neutralizing titers were
111 exceptionally low and did not change after 6 months (Fig. 1e).

112

113 **Memory B cell responses to SARS-CoV-2 RBD and NTD**

114 Memory B cells contribute to long-term immune protection from serious disease by mediating
115 rapid, anamnestic recall antibody responses (18). To examine the development of memory after
116 Ad.26.COV2.S vaccination, we initially enumerated B cells expressing surface receptors binding
117 to the Receptor-Binding Domain (RBD) or the N-Terminal Domain (NTD) of the SARS-CoV-2
118 spike protein using fluorescently labeled proteins (Fig. 2a, fig. S2a-c). The number of RBD-
119 binding memory B cells at 1.5 months after Ad.26.COV2.S vaccination was significantly lower
120 than for mRNA vaccinees 1.3 months after the second mRNA vaccine dose ($p=0.008$, Fig 2b,
121 (9)). Although the number of RBD-binding memory cells increased between 1.5 and 6 months
122 after the single-dose Janssen vaccine, the number remained lower than after mRNA vaccination
123 at a similar time point ($p=0.01$, Fig. 2b). In contrast, the number of NTD binding memory B cells
124 did not change between the 2 time points after Janssen vaccination and was significantly higher
125 than after mRNA 5-6 months post vaccination ($p=0.02$, Fig. 2c). Additional phenotyping showed
126 that RBD-specific memory B cells elicited by the Janssen vaccine showed the expected switch
127 from IgM to IgG (fig. S2d).

128
129 To examine the specificity and neutralizing activity of the antibodies produced by memory cells
130 we purified single antigen-specific B cells, sequenced their antibody genes, and produced the
131 recombinant antibodies *in vitro*. 636 paired anti-RBD antibody sequences were obtained from 6
132 vaccinees sampled at the 2 time points after Janssen vaccination (Fig. 2d, table S2). Clonally
133 expanded RBD-specific B cells represented 6.3% and 13.5% of all memory cells at 1.5 and 6
134 months after vaccination, respectively, similar to mRNA vaccination (Fig. 2d and e). In addition,
135 VH3-30 and VH3-53 genes were overrepresented to comparable degrees (fig. S3). However,
136 there were very few clones that persisted over time (13% of all clonal expansions detected in Fig.

137 2d). The majority of expanded clones were found uniquely at one of the 2 time points (unique
138 clones, 78%), suggesting ongoing memory B cell turnover (Fig. 2d). Continued memory B cell
139 evolution was also evident in the accumulation of somatic mutations between 1.5 and 6 months
140 ($p<0.0001$, Fig. 2f). Thus, although the absolute number of RBD-specific memory B cells 6
141 months after single dose Janssen was lower than after 2 doses of an mRNA vaccine, the two
142 showed indistinguishable proportions of clonally expanded RBD-specific memory B cells that
143 carry equivalent numbers of somatic mutations in their antibody genes.

144

145 To analyze the NTD-specific memory B cell repertoire, we sequenced 463 paired anti-NTD
146 antibodies from the same 6 individuals (Fig. 2g, table S2). The geometric mean number of
147 clonally expanded NTD specific memory cells was 4-fold greater than RBD-specific memory B
148 cells after 1.5 months and remained 2.8-fold higher after 6 months (Fig. 2e and h). Similar to
149 natural infection (19), VH4-39 and VH3-7 genes were over-represented in the NTD-specific
150 memory B cell repertoire elicited by the Janssen vaccine (fig. S3). Expanded clones accounted
151 for an average of 28% and 17% of the IgM and IgG repertoire 1.5 months after vaccination,
152 respectively, and 13% of the IgG repertoire after 6 months. Like the RBD-specific memory B
153 cells, only a minority (25%) of all expanded NTD-specific memory clones persisted between the
154 two time points (Fig. 2g), and continued evolution was evident by accumulation of somatic
155 mutations over time ($p=0.02$, Fig. 2i). In conclusion, the NTD-specific memory B cell
156 compartment elicited by one dose of the Janssen vaccine is moderately larger in size and
157 clonality to its anti-RBD counterpart.

158

159 **Neutralizing activity of monoclonal antibodies**

160 192 anti-RBD monoclonal antibodies were expressed and tested for binding by ELISA. 93%
161 (n=179) bound to the Wuhan-Hu-1 RBD, indicating the high efficiency RBD-specific memory B
162 cell isolation (table S3). At the initial time point, the geometric mean ELISA half-maximal
163 concentration (EC₅₀) of the monoclonal antibodies obtained from Janssen vaccinees was
164 significantly higher than individuals receiving a single dose of an mRNA vaccine (p=0.0001,
165 Fig. 3a, (9)). However, the EC₅₀ of RBD-binding antibodies elicited by the Janssen vaccine
166 improved over time such that the antibodies elicited by the two vaccines had comparable EC₅₀s
167 after 5-6 months (Fig. 3a).

168

169 EC₅₀s represent an indirect measure of affinity. To directly examine anti-RBD antibody affinity
170 we performed biolayer interferometry (BLI) experiments on a subset of the antibodies (n=33
171 from 1.5 and 6 months, each). Affinity was significantly higher among antibodies elicited by the
172 Janssen vaccine compared to those obtained after the mRNA prime and 2nd dose (p<0.0001, and
173 p=0.03, respectively, Fig. 3b, (9)). For both vaccine platforms, antibody affinity improved over
174 time, reaching equivalent levels at the 5-6-month time point (Fig. 3b).

175

176 All 179 RBD-binding antibodies were tested for neutralization (84 and 95 antibodies isolated
177 after 1.5 and 6 months, respectively). Compared to the mRNA prime, memory antibodies elicited
178 by the Janssen vaccine were significantly more potent against viruses pseudotyped with the
179 Wuhan-Hu-1 RBD (IC₅₀ 140 vs 421 ng/ml, p=0.0002, Fig. 3c). However, the neutralizing
180 activity of the anti-RBD memory antibodies elicited by mRNA vaccination improved after the
181 second dose, and the two vaccines generated antibodies of equivalent potency after 5-6 months
182 (IC₅₀ 152 vs. 156, p>0.99, Fig 3c, (9)).

183

184 To examine the repertoire of NTD-specific memory B cells elicited by the Janssen vaccine, we
185 expressed 60 and 20 antibodies obtained 1.5 and 6 months after vaccination, respectively (table
186 S4). 59 bound to NTD with relatively poor EC₅₀s that did not improve over time (Fig. 3d, table
187 S4). When tested for neutralizing activity against Wuhan-Hu-1-pseudotyped virus, only 4 of the
188 59 NTD-binding monoclonal antibodies showed neutralizing activity, with no change over time
189 (Fig. 3e). Thus, the overall frequency of memory B cells producing neutralizing anti-NTD
190 antibodies is significantly lower than those producing anti-RBD (Fig. 3f). We conclude that anti-
191 NTD memory antibodies are likely to make a more modest contribution to protection against
192 subsequent viral challenge than their anti-RBD counterparts.

193

194 **Epitope specificity of RBD-binding antibodies**

195 mRNA vaccination elicits anti-RBD antibodies that target 4 structurally defined classes of
196 epitopes on the RBD (8, 10, 20-22). The relative distribution of epitopes targeted by RBD-
197 binding antibodies can contribute to their potency and breadth. Whereas Class 1 and 2
198 antibodies, that block ACE2 binding directly, tend to be more potent, Class 3 and 4 target more
199 conserved regions and can be broader (8, 10, 12, 21). To define the epitopes recognized by anti-
200 RBD memory antibodies elicited by the Janssen vaccine, we performed BLI competition
201 experiments. A preformed antibody-RBD-complex was exposed to a second antibody targeting
202 one of four classes of structurally defined epitopes (11, 20) (C105 as Class 1; C144 as Class 2;
203 C135 as Class 3; and C118 as Class 1/4). We examined 33 random RBD-binding antibodies
204 obtained from the 1.5- and 6-month time points each, including 18 of 33 with IC₅₀s lower than
205 1000 ng/mL. In contrast to the antibodies elicited after a single dose of an mRNA vaccine that

206 primarily target Class 1 and 2 epitopes, Class 3 and 1/4 specific antibodies dominated the
207 repertoire 1.5 months after Janssen vaccination ($p= 0.016$, Fig. 4a). This difference is particularly
208 striking when considering neutralizing as opposed to non-neutralizing antibodies (Fig. 4b and c).
209 However, shifts in the repertoire of the mRNA vaccinees over time alleviated these differences
210 (Fig. 4a and b, (8, 9)).

211

212 **Neutralizing Breadth**

213 The neutralizing breadth of memory antibodies obtained from convalescent individuals increased
214 significantly after 5 months (10, 12, 21). Memory antibodies elicited by mRNA vaccination
215 show more modest improvement over the same period of time (9), which is further increased by
216 a 3rd dose (8). To determine how neutralizing breadth evolves after Janssen vaccination we
217 analyzed a panel of 34 randomly selected Wuhan-Hu-1-neutralizing antibodies from Janssen
218 vaccinees (n=16 at 1.5 months, and n=18 at 6 months). Neutralizing activity was measured
219 against SARS-CoV-2 pseudoviruses carrying amino acid substitutions found in variants of
220 concern. Neutralizing breadth improved significantly in Janssen vaccinees against pseudoviruses
221 containing single amino acid substitutions found in different SARS-CoV-2 variants (K417N,
222 N440K, and A475V, Fig. 5a, fig. S4a and b). These mutations typically alter the binding and
223 neutralization properties of Class 1 and 3 antibodies (21).

224

225 A larger panel of randomly selected antibodies (n=71) with IC₅₀s below 1000 ng/mL was tested
226 for neutralizing activity against viruses pseudotyped with Wuhan-Hu-1, Delta, and Omicron
227 RBDs (Fig. 5b and fig. S4c). In contrast to natural infection and mRNA vaccination there was no
228 improvement in neutralizing activity against Delta or Omicron between 1.5 and 6 months after

229 Janssen vaccination. Nevertheless, 86% of the 6-month memory antibodies tested neutralized
230 Delta and 31% neutralized Omicron (fig. S4c). Thus, 6 months after vaccination the memory B
231 cell compartment in Ad26.COV2.S recipients is smaller in size than the RBD-specific memory
232 B cell compartment in mRNA vaccinees but contains cells with the ability to produce antibodies
233 with comparable activity against Delta and Omicron.

234

235 **Discussion**

236 Administration of a single dose of the Ad26.COV2.S vaccine results in less effective protection
237 against infection than mRNA vaccination, and also affords lower levels of protection against
238 severe disease and hospitalization from COVID-19 (4, 6, 23). The difference in protective
239 efficacy from infection between the 2 vaccine modalities has been attributed to significantly
240 lower levels of circulating neutralizing antibodies elicited by the Janssen vaccine (14, 24). We
241 find that 5-6 months after vaccination there is a 2.5-fold difference in the number of memory B
242 cells produced by the 2 vaccine modalities. A third mRNA dose further magnifies the difference
243 to nearly 6 fold (8). Nevertheless, the antibodies encoded by the individual memory cells show
244 similar levels of activity against Wuhan-Hu-1, and Delta, and Omicron BA.1. The ability of
245 these cells to respond rapidly to viral challenge may account in part for the partial protection
246 against severe disease by Ad26.COV2.S vaccination.

247

248 Circulating antibodies are produced from plasma cells that are selected in germinal centers and
249 extrafollicular foci from a diverse cohort of follicular B cells based primarily on their affinity for
250 antigen (25, 26). Many of the plasma cells produced during the early stages of the immune
251 response are short-lived resulting in a transient early peak in circulating antibody levels (27).

252 Memory B cells develop in the same two microanatomic compartments, but their development is
253 regulated by an entirely different cellular and molecular program (18, 28-31). As a result,
254 memory B cells are long-lived and express a diverse collection of antibodies with differing
255 affinities, neutralizing activity, and breadth (31, 32).

256

257 The relatively poor plasma binding and neutralizing titers elicited by the Ad26.COV2.S vaccine
258 compared to mRNA vaccines points to more modest elicitation of plasma cell responses by
259 Ad26.COV2.S. In addition, the number of memory B cells elicited by the single dose
260 Ad26.COV2.S vaccine is smaller than 2 doses of the mRNA vaccines at all time points
261 examined. A third mRNA booster vaccination amplifies this difference. However, neutralizing
262 potency and breadth develop rapidly after Ad26.COV2.S vaccination and the memory antibodies
263 elicited by the two vaccine modalities display comparable potency and breadth against Wuhan-
264 Hu-1, and Delta at both, 1.5 and 6 months after vaccination. Activity against Omicron was lower
265 after Ad26.COV2.S but the difference was not statistically significant.

266

267 Class 1 and 2 antibodies develop early after infection or mRNA immunization and are generally
268 more potent than class 3 and 4, because they interfere directly with the interaction between the
269 SARS-CoV-2 RBD and its cellular receptor ACE2 (10, 20, 21). However, this renders Class 1
270 and 2 antibodies highly sensitive to amino acid substitutions within the ACE2 binding ridge of
271 the RBD found in many SARS-CoV-2 variants (10, 21). The epitopes targeted by Class 3 and 4
272 are generally more conserved and antibodies binding to these epitopes may be more broadly
273 reactive. Class 3 and 4 antibodies develop earlier in Ad26.COV2.S than in mRNA vaccinees,
274 leading to a more diverse early B cell memory response. Nevertheless, continued evolution is a

275 feature of memory B cell responses to both vaccine modalities, and they become comparable in
276 this respect after 5-6 months.

277
278 Neutralizing antibodies are the best correlate of protection, and when provided early they are
279 also therapeutic against COVID-19 (33-37). Although memory B cells are quiescent and do not
280 contribute to the pool of circulating antibodies under steady state conditions, they can be recalled
281 rapidly upon challenge to develop into antibody producing cells (38, 39). Our observations show
282 that a diverse memory B cell compartment develops in response to the Ad26.COV2.S vaccine
283 including a subset of cells that express antibodies that potently neutralize antigenically divergent
284 variants. Rapid activation of these cells and antibody production upon SARS-CoV-2 infection
285 may explain why the Ad26.COV2.S vaccine is partially effective at providing protection against
286 severe disease following breakthrough infection, and priming with this vaccine supports robust
287 responses after heterologous boosting with mRNA vaccines (14, 23, 40).

288
289
290
291

292 **References**

293 1. C. L. Hsieh *et al.*, Structure-based Design of Prefusion-stabilized SARS-CoV-2 Spikes.
294 *bioRxiv*, (2020).

295 2. J. Botton *et al.*, Effectiveness of Ad26.COV2.S Vaccine vs BNT162b2 Vaccine for COVID-
296 19 Hospitalizations. *JAMA Netw Open* **5**, e220868 (2022).

297 3. W. H. Self *et al.*, Comparative Effectiveness of Moderna, Pfizer-BioNTech, and Janssen
298 (Johnson & Johnson) Vaccines in Preventing COVID-19 Hospitalizations Among Adults
299 Without Immunocompromising Conditions - United States, March-August 2021. *MMWR*
300 *Morb Mortal Wkly Rep* **70**, 1337-1343 (2021).

301 4. D. Y. Lin *et al.*, Effectiveness of Covid-19 Vaccines over a 9-Month Period in North
302 Carolina. *N Engl J Med* **386**, 933-941 (2022).

303 5. A. Y. Collier *et al.*, Differential Kinetics of Immune Responses Elicited by Covid-19
304 Vaccines. *N Engl J Med* **385**, 2010-2012 (2021).

305 6. J. Sadoff *et al.*, Final Analysis of Efficacy and Safety of Single-Dose Ad26.COV2.S. *N Engl J*
306 *Med* **386**, 847-860 (2022).

307 7. A. Zheutlin *et al.*, Durability of Protection against COVID-19 Breakthrough Infections and
308 Severe Disease by Vaccines in the United States. *medRxiv*, 2022.2001.2005.22268648
309 (2022).

310 8. F. Muecksch *et al.*, Increased Potency and Breadth of SARS-CoV-2 Neutralizing
311 Antibodies After a Third mRNA Vaccine Dose. *bioRxiv*, 2022.2002.2014.480394 (2022).

312 9. A. Cho *et al.*, Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA
313 vaccination. *Nature* **600**, 517-522 (2021).

314 10. Z. Wang *et al.*, Naturally enhanced neutralizing breadth against SARS-CoV-2 one year
315 after infection. *Nature*, (2021).

316 11. D. F. Robbiani *et al.*, Convergent antibody responses to SARS-CoV-2 in convalescent
317 individuals. *Nature* **584**, 437-442 (2020).

318 12. C. Gaebler *et al.*, Evolution of antibody immunity to SARS-CoV-2. *Nature* **591**, 639-644
319 (2021).

320 13. D. H. Barouch *et al.*, Durable Humoral and Cellular Immune Responses 8 Months after
321 Ad26.COV2.S Vaccination. *N Engl J Med* **385**, 951-953 (2021).

322 14. C. H. GeurtsvanKessel *et al.*, Divergent SARS CoV-2 Omicron-reactive T- and B cell
323 responses in COVID-19 vaccine recipients. *Sci Immunol*, eab02202 (2022).

324 15. R. S. G. Sablerolles *et al.*, Immunogenicity and Reactogenicity of Vaccine Boosters after
325 Ad26.COV2.S Priming. *N Engl J Med* **386**, 951-963 (2022).

326 16. Z. Wang *et al.*, mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants.
327 *Nature* **592**, 616-622 (2021).

328 17. J. Liu *et al.*, Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron.
329 *Nature* **603**, 493-496 (2022).

330 18. T. Inoue, R. Shinnakasu, T. Kurosaki, Generation of High Quality Memory B Cells. *Front*
331 *Immunol* **12**, 825813 (2021).

332 19. Z. Wang *et al.*, Conserved Neutralizing Epitopes on the N-Terminal Domain of Variant
333 SARS-CoV-2 Spike Proteins. *bioRxiv*, 2022.2002.2001.478695 (2022).

334 20. C. O. Barnes *et al.*, SARS-CoV-2 neutralizing antibody structures inform therapeutic
335 strategies. *Nature* **588**, 682-687 (2020).

336 21. F. Muecksch *et al.*, Affinity maturation of SARS-CoV-2 neutralizing antibodies confers
337 potency, breadth, and resilience to viral escape mutations. *Immunity* **54**, 1853-1868
338 e1857 (2021).

339 22. M. Yuan *et al.*, Structural basis of a shared antibody response to SARS-CoV-2. *Science*
340 **369**, 1119-1123 (2020).

341 23. K. Natarajan *et al.*, Effectiveness of Homologous and Heterologous COVID-19 Booster
342 Doses Following 1 Ad.26.COV2.S (Janssen [Johnson & Johnson]) Vaccine Dose Against
343 COVID-19-Associated Emergency Department and Urgent Care Encounters and
344 Hospitalizations Among Adults — VISION Network, 10 States, December 2021–March
345 2022. *MMWR Morb Mortal Wkly Rep*, (2022).

346 24. W. F. Garcia-Beltran *et al.*, mRNA-based COVID-19 vaccine boosters induce neutralizing
347 immunity against SARS-CoV-2 Omicron variant. *Cell* **185**, 457-466 e454 (2022).

348 25. T. G. Phan *et al.*, High affinity germinal center B cells are actively selected into the
349 plasma cell compartment. *J Exp Med* **203**, 2419-2424 (2006).

350 26. F. J. Weisel, G. V. Zuccarino-Catania, M. Chikina, M. J. Shlomchik, A Temporal Switch in
351 the Germinal Center Determines Differential Output of Memory B and Plasma Cells.
352 *Immunity* **44**, 116-130 (2016).

353 27. J. Wrammert *et al.*, Rapid cloning of high-affinity human monoclonal antibodies against
354 influenza virus. *Nature* **453**, 667-671 (2008).

355 28. J. Choi, S. Crotty, Bcl6-Mediated Transcriptional Regulation of Follicular Helper T cells
356 (TFH). *Trends Immunol* **42**, 336-349 (2021).

357 29. B. J. Laidlaw, J. G. Cyster, Transcriptional regulation of memory B cell differentiation. *Nat
358 Rev Immunol* **21**, 209-220 (2021).

359 30. I. Papa, C. G. Vinuesa, Synaptic Interactions in Germinal Centers. *Front Immunol* **9**, 1858
360 (2018).

361 31. G. D. Victora, M. C. Nussenzweig, Germinal Centers. *Annu Rev Immunol*, (2022).

362 32. C. Viant *et al.*, Antibody Affinity Shapes the Choice between Memory and Germinal
363 Center B Cell Fates. *Cell* **183**, 1298-1311 e1211 (2020).

364 33. A. Gupta *et al.*, Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody
365 Sotrovimab. *N Engl J Med* **385**, 1941-1950 (2021).

366 34. D. Li, G. D. Sempowski, K. O. Saunders, P. Acharya, B. F. Haynes, SARS-CoV-2 Neutralizing
367 Antibodies for COVID-19 Prevention and Treatment. *Annu Rev Med* **73**, 1-16 (2022).

368 35. M. P. O'Brien, P. Hou, D. M. Weinreich, Subcutaneous REGEN-COV Antibody
369 Combination to Prevent Covid-19. Reply. *N Engl J Med* **385**, e70 (2021).

370 36. P. C. Taylor *et al.*, Neutralizing monoclonal antibodies for treatment of COVID-19. *Nat
371 Rev Immunol* **21**, 382-393 (2021).

372 37. D. M. Weinreich *et al.*, REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with
373 Covid-19. *N Engl J Med* **384**, 238-251 (2021).

374 38. I. J. Amanna, N. E. Carlson, M. K. Slifka, Duration of humoral immunity to common viral
375 and vaccine antigens. *N Engl J Med* **357**, 1903-1915 (2007).

376 39. L. Mesin *et al.*, Restricted Clonality and Limited Germinal Center Reentry Characterize
377 Memory B Cell Reactivation by Boosting. *Cell* **180**, 92-106 e111 (2020).

378 40. R. L. Atmar *et al.*, Homologous and Heterologous Covid-19 Booster Vaccinations. *N Engl J Med* **386**, 1046-1057 (2022).

379 41. F. Wu *et al.*, A new coronavirus associated with human respiratory disease in China. *Nature* **579**, 265-269 (2020).

380 42. F. Schmidt *et al.*, Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. *J Exp Med* **217**, (2020).

381 43. F. Schmidt *et al.*, Plasma Neutralization of the SARS-CoV-2 Omicron Variant. *N Engl J Med*, (2021).

382 44. F. Amanat *et al.*, A serological assay to detect SARS-CoV-2 seroconversion in humans. *Nat Med* **26**, 1033-1036 (2020).

383 45. A. Grifoni *et al.*, Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. *Cell* **181**, 1489-1501 e1415 (2020).

384 46. C. O. Barnes *et al.*, Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. *Cell* **182**, 828-842 e816 (2020).

385 47. Y. Weisblum *et al.*, Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. *Elife* **9**, (2020).

386 48. Z. Wang *et al.*, Enhanced SARS-CoV-2 neutralization by dimeric IgA. *Sci Transl Med* **13**, (2021).

387 49. N. T. Gupta *et al.*, Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. *Bioinformatics* **31**, 3356-3358 (2015).

388 50. C. Soto *et al.*, High frequency of shared clonotypes in human B cell receptor repertoires. *Nature* **566**, 398-402 (2019).

389 51. Y. Guo, K. Chen, P. D. Kwong, L. Shapiro, Z. Sheng, cAb-Rep: A Database of Curated Antibody Repertoires for Exploring Antibody Diversity and Predicting Antibody Prevalence. *Front Immunol* **10**, 2365 (2019).

400

401

402

403

404

405 **Acknowledgements:** We thank all study participants who devoted time to our research, The
406 Rockefeller University Hospital nursing staff and Clinical Research Support Office. We thank all
407 members of the M.C.N. laboratory for helpful discussions, Maša Jankovic and Gabriel Scrivanti
408 for laboratory support and Kristie Gordon for technical assistance with cell-sorting experiments.

409

410 **Funding:** This work was supported by

411 NIH grant P01-AI138398-S1 (M.C.N.)

412 NIH grant 2U19AI111825 (M.C.N.)

413 NIH grant R37-AI64003 (P.D.B.)

414 NIH grant R01AI78788 (T.H.)

415 FM was supported by the Bulgari Women and Science Fellowship for COVID-19 Research. CG

416 was supported by the Robert S. Wennett Post-Doctoral Fellowship, in part by the National

417 Center for Advancing Translational Sciences (National Institutes of Health Clinical and

418 Translational Science Award program, grant UL1 TR001866), and by the Shapiro-Silverberg

419 Fund for the Advancement of Translational Research. PDB and MCN are Howard Hughes

420 Medical Institute Investigators. This article is subject to HHMI's Open Access to Publications

421 policy. HHMI lab heads have previously granted a nonexclusive CC BY 4.0 license to the public

422 and a sublicensable license to HHMI in their research articles. Pursuant to those licenses, the

423 author-accepted manuscript of this article can be made freely available under a CC BY 4.0

424 license immediately upon publication.

425

426 **Author information:** AC, FM, and ZW contributed equally to this work.

427

428 **Author Contributions:** AC, FM, ZW, TH, PDB, and MCN. conceived, designed, and analyzed
429 the experiments. MC and CG designed clinical protocols. AC, FM, ZW, TBT, JD, RR, EB, DS-
430 B, KY, MJ, and FS carried out experiments. BJ and AG produced antibodies. MT, KGM, IS, JD,
431 CG and MC recruited participants, executed clinical protocols, and processed samples. TYO and
432 VR performed bioinformatic analysis. AC, FM, ZW, CG, TH, PDB, and MCN wrote the
433 manuscript with input from all co-authors.

434

435 **Corresponding authors:** Correspondence should be addressed to Theodora Hatzioannou, Paul
436 D. Bieniasz, or Michel C. Nussenzweig.

437

438 **Competing interests:** The Rockefeller University has filed a provisional patent application in
439 connection with this work on which MCN is an inventor (US patent 63/021,387). PDB has
440 received remuneration from Pfizer for consulting services relating to SARS-CoV-2 vaccines.

441

442 **Data and materials availability:** Data are provided in Tables S1-S4. The raw sequencing data
443 and computer scripts associated with Fig. 2 have been deposited at Github
444 (https://github.com/stratust/igpipeline/tree/igpipeline2_timepoint_v2). This study also uses data
445 from “A Public Database of Memory and Naive B-Cell Receptor Sequences”
446 (<https://doi.org/10.5061/dryad.35ks2>), PDB (6VYB and 6NB6), cAb-Rep (<https://cab-rep.c2b2.columbia.edu/>), Sequence Read Archive (accession SRP010970), and from “High
448 frequency of shared clonotypes in human B cell receptor repertoires”
449 (<https://doi.org/10.1038/s41586-019-0934-8>). Computer code to process the antibody sequences
450 is available at GitHub (https://github.com/stratust/igpipeline/tree/igpipeline2_timepoint_v2).

451

459 **Figure Legends**

460

461 **Fig. 1: Plasma ELISAs and neutralizing activity.**

462 **a**, Graph shows area under the curve (AUC) for plasma IgG antibody binding to SARS-CoV-2
463 Wuhan-Hu-1 RBD 1.5 months (m) and 6 m post-vaccination for n=18 samples. Lines connect
464 longitudinal samples. **b**, Graph shows AUC for plasma IgG binding to RBD in convalescent
465 infected individuals 1.3 m post infection (11), and mRNA vaccinees after prime or 1.3 m post-
466 second vaccination (Vax2) (9) compared to Janssen vaccinees 1.5 m post vaccination (left panel),
467 or convalescent infected individuals 6.2 months post infection (12) and mRNA vaccinees 5 m post-
468 Vax2 (9) compared to Janssen vaccinees at 6 m post vaccination (right panel). **c**, Graph shows
469 anti-SARS-CoV-2 NT₅₀s of plasma measured by a SARS-CoV-2 pseudotype virus neutralization
470 assay using wild-type (Wuhan Hu-1 (41)) SARS-CoV-2 pseudovirus (11, 42) in plasma samples
471 shown in panel **a**. **d**, NT₅₀s of plasma measured by pseudotype virus neutralization assay
472 comparing Janssen vaccinees to convalescent infected individuals (11, 12) and mRNA vaccinees
473 (9) at either 1.5 months post-exposure (left panel) or 6 months post exposure (right), similar to
474 plasma samples show in panel **b**. **e**, Plasma neutralizing activity against indicated SARS-CoV-2
475 variants of interest/concern for n=15 randomly selected samples assayed in HT1080Ace2 cl.14
476 cells. Wuhan-Hu-1 and Omicron BA.1 NT₅₀ values are derived from (43). See Methods for a list
477 of all substitutions/deletions/insertions in the spike variants. Deletions/substitutions corresponding
478 to viral variants were incorporated into a spike protein that also includes the R683G substitution,
479 which disrupts the furin cleavage site and increases particle infectivity. A corresponding WT
480 control containing the R683G substitution was used in panel **e**. All experiments were performed
481 at least in duplicate. Red bars and values represent geometric mean values. Statistical significance

482 was determined by Wilcoxon matched-pairs signed rank test (**a** and **c**), two-tailed Kruskal-Wallis
483 test with subsequent Dunn's multiple comparisons (**b** and **d**) or Friedman test with subsequent
484 Dunn's multiple comparisons (**e**).

485

486 **Fig. 2: Anti-SARS-CoV-2 RBD and NTD B cells after vaccination.** **a**, Representative flow
487 cytometry plots showing dual AlexaFluor-647- and PE-Wuhan-Hu-1-RBD-binding (left panel)
488 and BrilliantViolet-711- and BrilliantViolet-421-Wuhan-Hu-1 NTD-binding (right panel), single
489 sorted B cells from 2 individuals at 1.5 months (m) or 6 m after vaccination. Gating strategy shown
490 in fig. S2. Percentage of antigen-specific B cells is indicated. **b**, Graph summarizing the number
491 of Wuhan-Hu-1 RBD-specific B cells per 10 million (M) B cells in Janssen vaccinees at 1.5 m and
492 6 m after vaccination (black dots, n=18) compared to mRNA vaccinees at prime, 1.3- and 5-m
493 after Vax2 (9) (grey dots). **c**, Graph summarizing the number of Wuhan-Hu-1 NTD-specific B
494 cells per 10 M B cells in Janssen vaccinees at 1.5 m and 6 m after vaccination (n=18), compared
495 to mRNA vaccinees at 5 m after Vax2 (grey dots). **d**, Pie charts show the distribution of IgG
496 antibody sequences obtained from Wuhan-Hu-1 RBD-specific memory B cells from 6 individuals
497 after 1.5m and 6m post vaccination. Time points indicated to the left of the charts. The number
498 inside the circle indicates the number of sequences analyzed for the individual denoted above the
499 circle. Pie slice size is proportional to the number of clonally related sequences. The black outline
500 and associated numbers indicate the percentage of clonally expanded sequences detected at each
501 time point. Colored slices indicate persisting clones (same *IGHV* and *IGLV* genes with highly
502 similar CDR3s, see Methods) found at more than one timepoint within the same individual. Grey
503 slices indicate expanded clones unique to the timepoint. White slice represents sequences isolated
504 only once. **e**, Graph shows the number of clonally expanded RBD-specific MBCs per 10 M B cell.

505 Left panel represent clones from mRNA vaccinees after prime, or 1.3m and 5m post-Vax2 (black
506 dots represent persisting clones, grey dots represent unique clones) (8). Right panel show clones
507 from Janssen vaccinees at 1.5m or 6m post vaccination, with each dot representing one clone
508 illustrated in Fig. 2d (color dots represent matched persisting clones, grey dots represent unique
509 clones). **f**, Number of nucleotide somatic hypermutations (SHM) in *IGHV* + *IGLV* in RBD-specific
510 sequences after 1.5- or 6-m post vaccination, compared to mRNA vaccinees (grey) after prime, or
511 1.3- and 5-m post-Vax2 (9). **g**, Pie charts showing distribution of IgM and IgG Wuhan-Hu-1 NTD-
512 specific sequences after 1.5m and 6m post vaccination from same individuals as shown in Fig. 2d.
513 Isotype and time point is indicated to left of graphs. **h**, Graph shows the number of clonally
514 expanded NTD-specific MBCs per 10 M B cell, with each dot representing one clone illustrated
515 in Fig. 2g (color dots represent matched persisting clones, grey dots represent unique clones). **i**,
516 Number of nucleotide somatic hypermutations (SHM) in *IGHV* + *IGLV* in NTD-specific sequences
517 after 1.5- or 6-m post-vaccination. Red bars and numbers in **b**, **c**, **e**, and **h**, represent geometric
518 mean value (**b**, **c**, **e**, and **h**) or median values (**f** and **i**). Statistical difference was determined by
519 two-tailed Kruskal Wallis test with subsequent Dunn's multiple comparisons (**b**, **c**, **e**, **f**, **h**, and **i**).

520
521 **Fig. 3: Anti-SARS-CoV-2 monoclonal antibodies.** **a**, Graph shows half-maximal effective
522 concentration (EC₅₀) of n=179 Wuhan-Hu-1 RBD-binding monoclonal antibodies (mAbs)
523 measured by ELISA against Wuhan-Hu-1 RBD 1.5m and 6m post vaccination, compared to EC50
524 measured in mRNA vaccinees after prime, 1.3- and 5-months post-Vax2 (8, 9). **b**, Graph showing
525 affinity measurements (K_{Ds}) for Wuhan-Hu-1 RBD measured by BLI for antibodies cloned from
526 mRNA vaccinees after prime, 1.3- and 6-months post-Vax2 (8, 9) compared to antibodies cloned
527 from Janssen vaccinees at 1.5 m and 6 m (n=33, each) post vaccination. **c**, Graphs show anti-

528 SARS-CoV-2 neutralizing activity of mAbs measured by a SARS-CoV-2 pseudotype virus
529 neutralization assay using wild-type (Wuhan Hu-1 (41)) SARS-CoV-2 pseudovirus (11, 42) for
530 antibodies cloned from mRNA vaccinees after prime, and 1.3- and 5-m post-Vax2 (8, 9) compared
531 to antibodies cloned from Janssen vaccinees (n=179) at 1.5 m and 6 m post vaccination. Pie charts
532 to the right indicated the frequency of neutralizing ($IC_{50} < 1000$ ng/mL, white) vs. non-neutralizing
533 ($IC_{50} > 1000$ ng/mL, black) antibodies cloned from Janssen vaccinees. **d**, Graph showing EC_{50} of
534 n=80 mAbs measured by ELISA against Wuhan-Hu-1 NTD after 1.5m and 6m post vaccination.
535 Right panel shows pie charts indicating frequency of antibodies determined to bind ($EC_{50} < 10000$
536 ng/mL, white) or not bind ($EC_{50} > 10000$ ng/mL, black). **e**, Graph showing IC_{50} of NTD-specific
537 antibodies at 1.5 m and 6 m post vaccination. Right panel shows pie charts indicating frequency
538 of SARS-CoV-2 WT pseudovirus neutralizing ($IC_{50} < 1000$ ng/mL, white) vs. non-neutralizing
539 ($IC_{50} > 1000$ ng/mL, black) NTD-specific mAbs. **f**, Graph comparing the IC_{50} of all NTD-specific
540 mAbs (n=80) and RBD-specific mAbs (n=179) derived from Janssen vaccinees. Right panel shows
541 pie charts indicating frequency of either NTD or RBD-specific neutralizing ($IC_{50} < 1000$ ng/mL,
542 white) vs. non-neutralizing ($IC_{50} > 1000$ ng/mL, black) mAbs. Red bars and lines indicate geometric
543 mean values. Statistical significance was determined by two-tailed Kruskal Wallis test with
544 subsequent Dunn's multiple comparisons (**a**, **b**, and **c**), or by two-tailed Mann-Whitney test (**d**, **e**,
545 and **f**). Pie charts were compared using a two-tailed Fisher's exact test.

546

547 **Fig. 4: Epitope mapping.** **a-c**, Results of epitope mapping performed by competition BLI,
548 comparing mAbs cloned from Janssen vaccinees at 1.5 m and 6 m (n=33, each) post vaccination,
549 to mAbs cloned from mRNA vaccinees at prime, or 1.3m and 5m post-Vax2 (8, 9). Pie charts show
550 the distribution of the antibody classes among **a**, all RBD-binding antibodies, **b**, Wuhan-Hu-1

551 neutralizing antibodies only, or **c**, non-neutralizing antibodies only. Statistical significance was
552 determined by using a two-tailed Chi-square test.

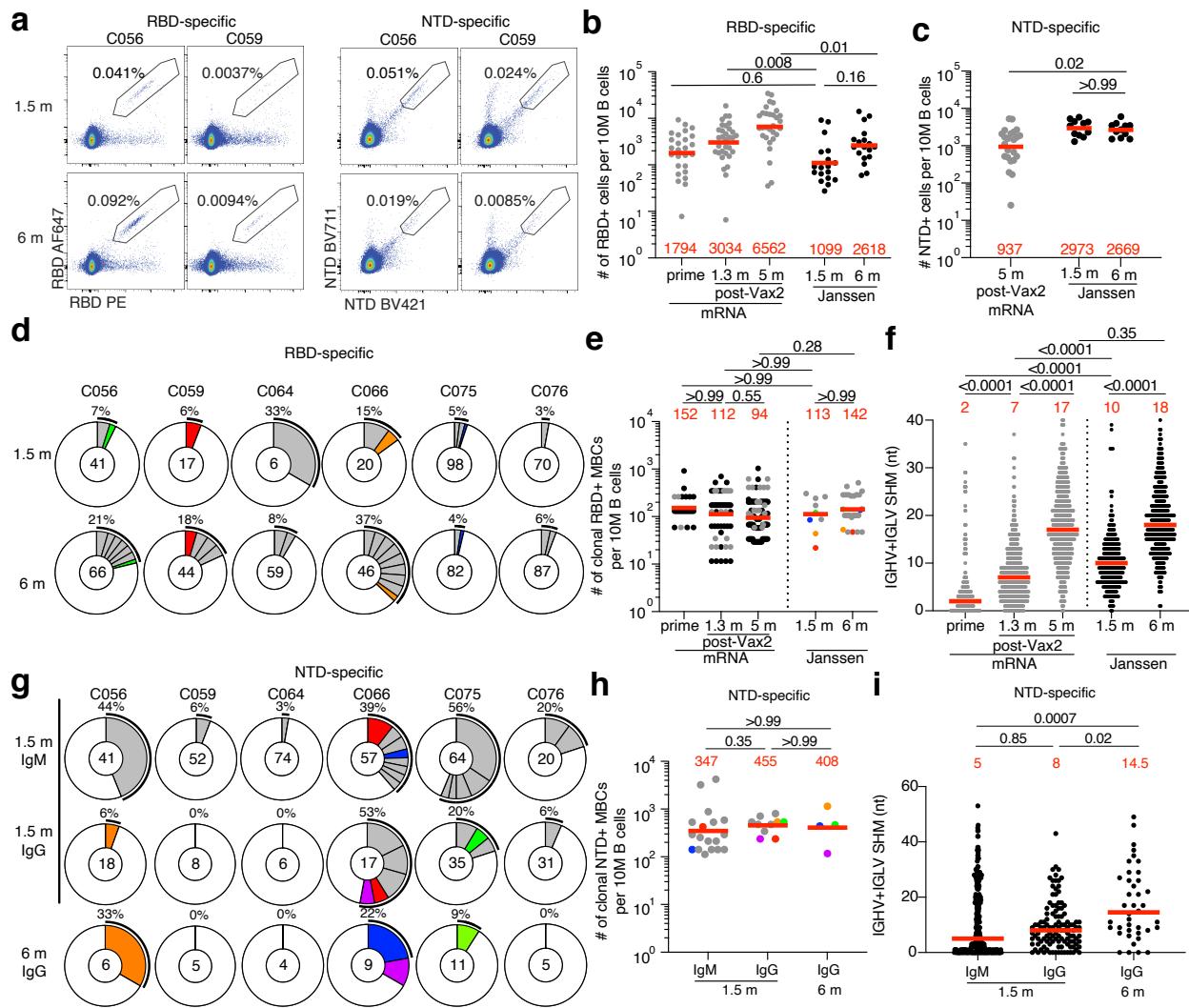
553

554 **Fig. 5: Breadth. a**, Graphs showing IC₅₀ neutralization activity of antibodies detected at 1.5
555 months (n=16) or 6 months (n=18) against indicated mutant SARS-CoV-2. **b**, Graphs showing
556 IC₅₀ neutralization activity of antibodies at 1.5 months (n=35) or 6 months (n=36) against wildtype
557 (Wuhan-Hu-1 WT), Delta-RBD (L452R/T478K), and Omicron BA.1, compared to mRNA
558 vaccinees at prime, and 1.3- and 5-m post-Vax2 (8, 9). The E484K, K417N/E484K/N501Y and
559 L452R/T478K substitution, as well as the deletions/substitutions corresponding to viral variants,
560 were incorporated into a spike protein that also includes the R683G substitution, which disrupts
561 the furin cleavage site and increases particle infectivity. Neutralizing activity against mutant
562 pseudoviruses were compared to a wildtype (WT) SARS-CoV-2 spike sequence (NC_045512),
563 carrying R683G where appropriate. Red bars and lines indicated geometric mean values. Statistical
564 significance in **a** was determined by two-tailed Mann-Whitney test, and in **b** by two-tailed Kruskal
565 Wallis test with subsequent Dunn's multiple comparisons.

566

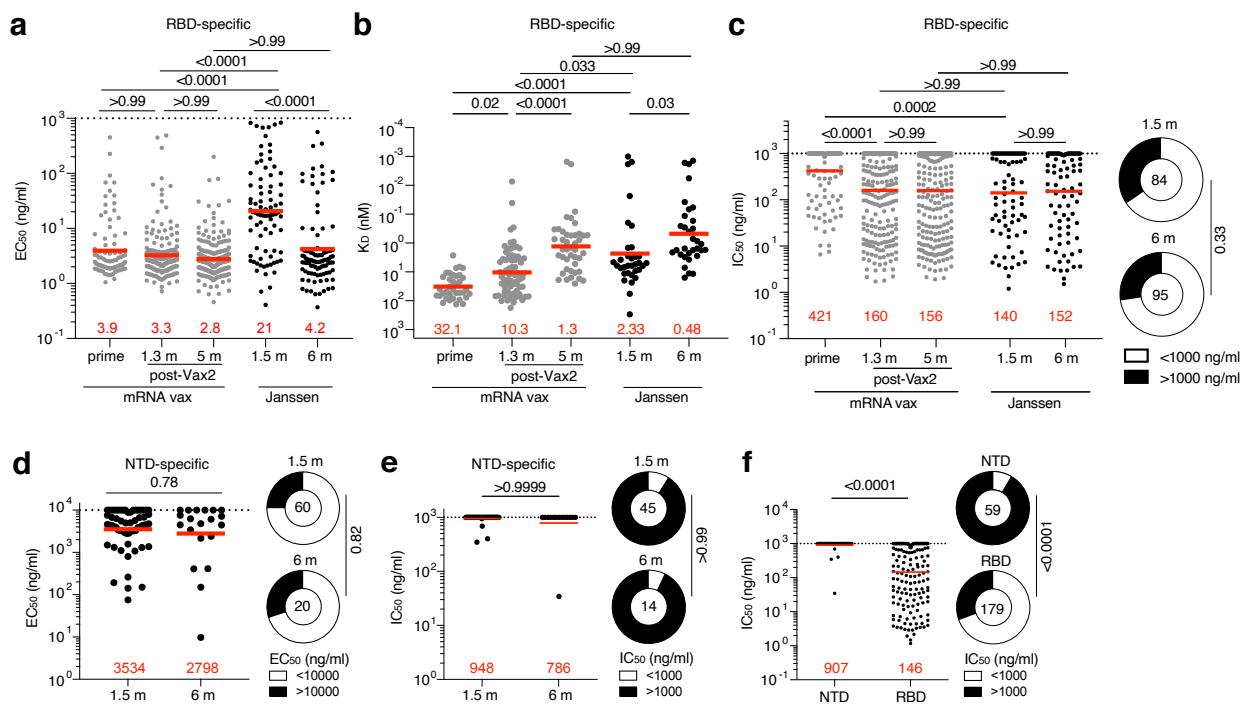
567 **FIGURES**

568


569 **Fig. 1**

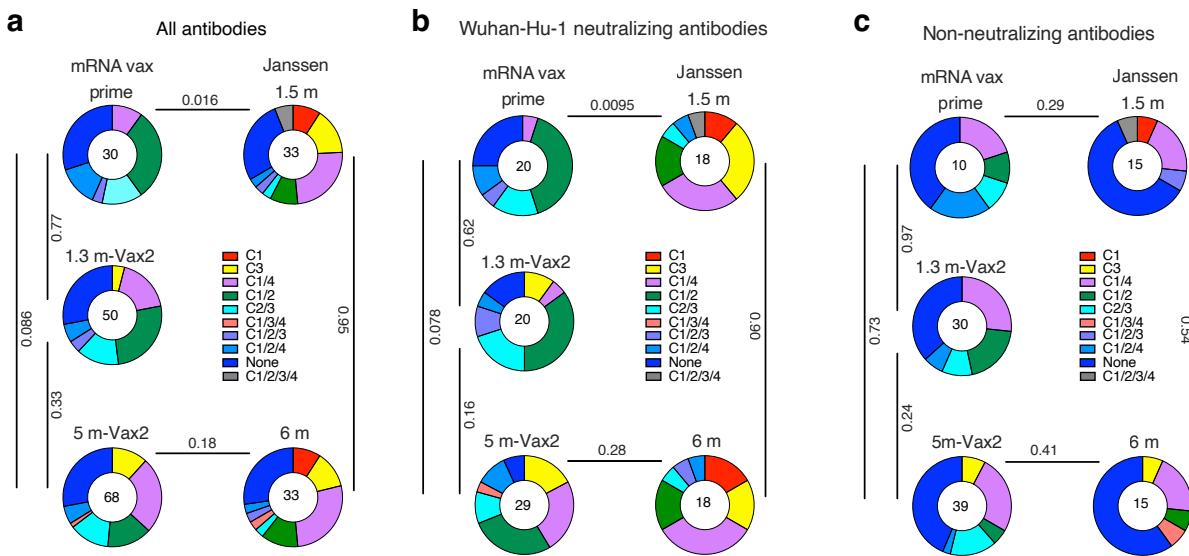
570

571

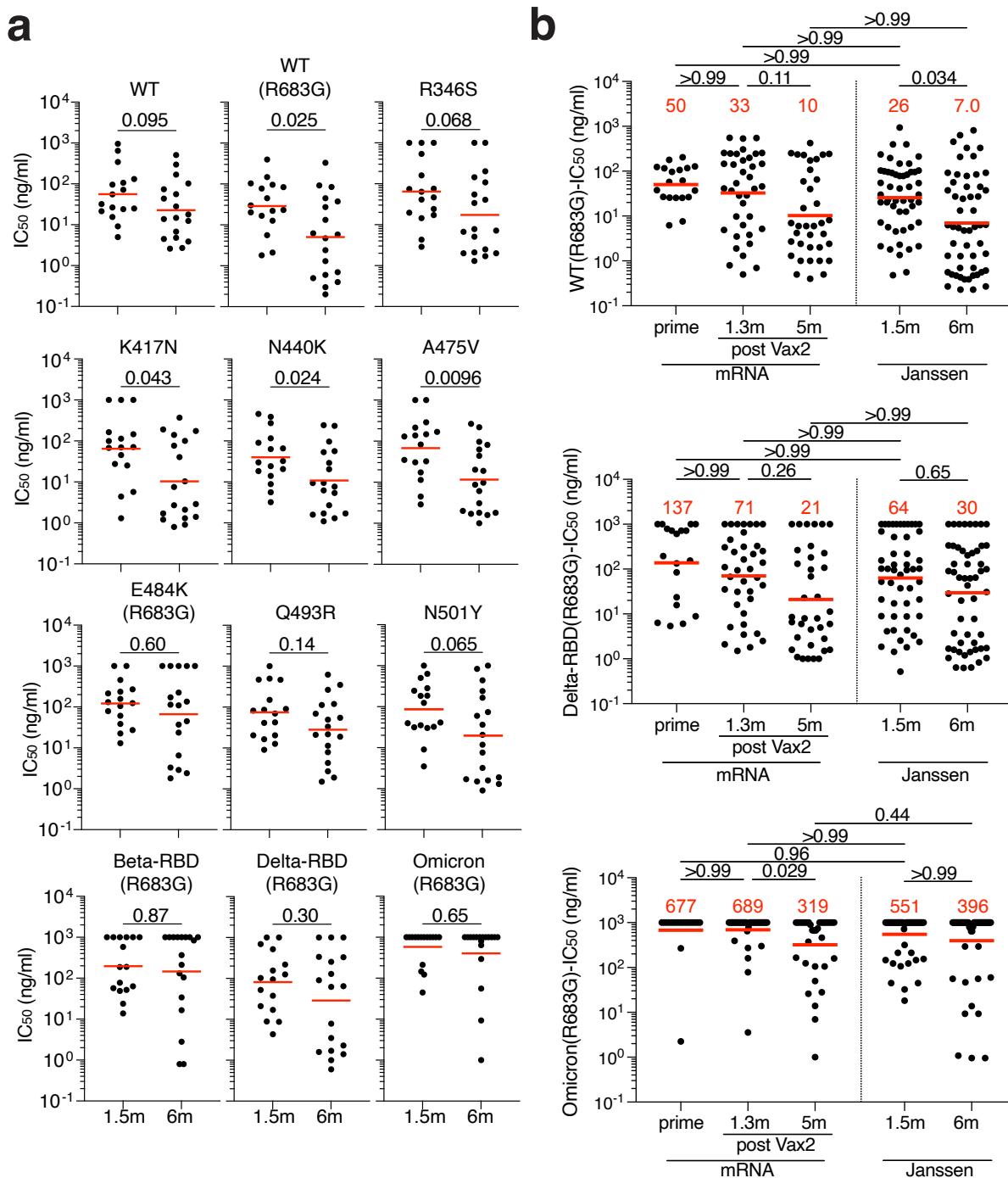

572 **Fig. 2**

573

574


575 **Fig. 3**

576


577

578 **Fig. 4**

579

580 **Fig. 5**

581

582

583

584

30 **Materials and Methods**

31

32 **Study participants.**

33 Participants were healthy volunteers who had previously received one dose of the Janssen
34 (Ad26.COV2.S) vaccine against wildtype (Wuhan-Hu-1) strain of the severe acute respiratory
35 syndrome coronavirus 2 (SARS-CoV-2). For this study, participants were recruited for serial
36 blood donations at the Rockefeller University Hospital in New York between April 26, 2021 and
37 August 16, 2021. Eligible participants (n=18) were healthy adults with no history of infection
38 with SARS-CoV-2 during or prior to the observation period (as determined by clinical history
39 and confirmed through serology testing) who had received only one dose the SARS-CoV-2
40 Janssen Ad26.COV2.S vaccine. Exclusion criteria include presence of clinical signs and
41 symptoms suggestive of acute infection with or a positive reverse transcription polymerase chain
42 reaction (RT-PCR) results for SARS-CoV-2 in saliva, or a positive COVID-19 (coronavirus
43 disease 2019) serology. Participants presented to the Rockefeller University Hospital for blood
44 sample collection and were asked to provide details of their vaccination regimen, possible side
45 effects, comorbidities, and possible COVID-19 history. Clinical data collection and management
46 were carried out using the software iRIS by iMedRIS (v. 11.02). All participants provided
47 written informed consent before participation in the study and the study was conducted in
48 accordance with Good Clinical Practice. The study was performed in compliance with all
49 relevant ethical regulations and the protocol (DRO-1006) for studies with human participants
50 was approved by the Institutional Review Board of the Rockefeller University. For detailed
51 participant characteristics see table S1.

52

53 **Blood samples processing and storage.**

54 Peripheral Blood Mononuclear Cells (PBMCs) obtained from samples collected at Rockefeller
55 University were purified as previously reported by gradient centrifugation and stored in liquid
56 nitrogen in the presence of Fetal Calf Serum (FCS) and Dimethylsulfoxide (DMSO) (11, 12).
57 Heparinized plasma and serum samples were aliquoted and stored at -20°C or less. Prior to
58 experiments, aliquots of plasma samples were heat-inactivated (56°C for 30 minutes) and then
59 stored at 4°C.

60

61 **ELISAs**

62 Enzyme-Linked Immunosorbent Assays (ELISAs) (44, 45) to evaluate antibodies binding to
63 SARS-CoV-2 RBD or NTD were performed by coating of high-binding 96-half-well plates
64 (Corning 3690) with 50 µl per well of a 1µg/ml protein solution in Phosphate-buffered Saline
65 (PBS) overnight at 4°C. Plates were washed 6 times with washing buffer (1× PBS with 0.05%
66 Tween-20 (Sigma-Aldrich)) and incubated with 170 µl per well blocking buffer (1× PBS with
67 2% BSA and 0.05% Tween-20 (Sigma)) for 1 hour at room temperature. Immediately after
68 blocking, monoclonal antibodies or plasma samples were added in PBS and incubated for 1 hour
69 at room temperature. Plasma samples were assayed at a 1:66 starting dilution and 10 additional
70 threefold serial dilutions. Monoclonal antibodies were tested at 10 µg/ml starting concentration
71 and 10 additional fourfold serial dilutions. Plates were washed 6 times with washing buffer and
72 then incubated with anti-human IgG, IgM or IgA secondary antibody conjugated to horseradish
73 peroxidase (HRP) (Jackson ImmunoResearch 109-036-088, 109-035-129, and Sigma A0295) in
74 blocking buffer at a 1:5,000 dilution (IgM and IgG) or 1:3,000 dilution (IgA). Plates were
75 developed by addition of the HRP substrate, 3,3',5,5'-Tetramethylbenzidine (TMB)

76 (ThermoFisher) for 10 minutes (plasma samples) or 4 minutes (monoclonal antibodies). The
77 developing reaction was stopped by adding 50 μ l of 1 M H₂SO₄ and absorbance was measured at
78 450 nm with an ELISA microplate reader (FluoStar Omega, BMG Labtech) with Omega and
79 Omega MARS software for analysis. For plasma samples, a positive control (plasma from
80 participant COV72, diluted 66.6-fold and ten additional threefold serial dilutions in PBS) was
81 added to every assay plate for normalization. The average of its signal was used for
82 normalization of all the other values on the same plate with Excel software before calculating the
83 area under the curve using Prism V9.1 (GraphPad). Negative controls of pre-pandemic plasma
84 samples from healthy donors were used for validation (for more details, please see (11)). For
85 monoclonal antibodies, the ELISA half-maximal concentration (EC₅₀) was determined using
86 four-parameter nonlinear regression (GraphPad Prism V9.1). EC₅₀s above 1000 ng/mL for RBD-
87 binding were considered non-binders; EC₅₀s above 10000 ng/mL for NTD-binding were
88 considered non-binders.

89

90 **Proteins**

91 The mammalian expression vector encoding the Receptor Binding-Domain (RBD) of SARS-
92 CoV-2 (GenBank MN985325.1; Spike (S) protein residues 319-539) was previously described
93 (46). Mammalian expression vector encoding the SARS-CoV-2 Wuhan-Hu-1 NTD (GenBank
94 MN985325.1; S protein residues 14-307) was previously described (19).

95

96 **SARS-CoV-2 pseudotyped reporter virus**

97 A panel of plasmids expressing RBD-mutant SARS-CoV-2 spike proteins in the context of
98 pSARS-CoV-2-S_{Δ19} has been described (9, 16, 21, 47). Variant pseudoviruses resembling

99 SARS-CoV-2 variants Beta (B.1.351), B.1.526, Delta (B.1.617.2) and Omicron BA.1
100 (B.1.1.529) have been described before (9, 10, 43) and were generated by introduction of
101 substitutions using synthetic gene fragments (IDT) or overlap extension PCR mediated
102 mutagenesis and Gibson assembly. Specifically, the variant-specific deletions and substitutions
103 introduced were:
104 Beta: D80A, D215G, L242H, R246I, K417N, E484K, N501Y, D614G, A701V
105 Delta: T19R, Δ156-158, L452R, T478K, D614G, P681R, D950N
106 Omicron BA.1: A67V, Δ69-70, T95I, G142D, Δ143-145, Δ211, L212I, ins214EPE, G339D,
107 S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493K, G496S,
108 Q498R, N501Y, Y505H, T547K, D614G, H655Y, H679K, P681H, N764K, D796Y, N856K,
109 Q954H, N969H, N969K, L981F
110 The E484K, K417N/E484K/N501Y and L452R/T478K substitution, as well as the
111 deletions/substitutions corresponding to variants of concern listed above, were incorporated into
112 a spike protein that also includes the R683G substitution, which disrupts the furin cleavage site
113 and increases particle infectivity. Neutralizing activity against mutant pseudoviruses were
114 compared to a wildtype (WT) SARS-CoV-2 spike sequence (NC_045512), carrying R683G
115 where appropriate.
116
117 SARS-CoV-2 pseudotyped particles were generated as previously described (11, 42). Briefly,
118 293T (CRL-11268) cells were obtained from ATCC, and the cells were transfected with pNL4-
119 3□Env-nanoluc and pSARS-CoV-2-S_{Δ19}. Particles were harvested 48 hours post-transfection,
120 filtered and stored at -80°C.
121

122 **Pseudotyped virus neutralization assay**

123 Four- to five-fold serially diluted pre-pandemic negative control plasma from healthy donors,
124 plasma from individuals who received Ad26.COV2.S vaccines, or monoclonal antibodies were
125 incubated with SARS-CoV-2 pseudotyped virus for 1 hour at 37 °C. The mixture was
126 subsequently incubated with 293T_{Acce2} cells (*11*) (for all WT neutralization assays) or
127 HT1080Acce2 cl14 (for all mutant panels and variant neutralization assays) cells (*16*) for 48 hours
128 after which cells were washed with PBS and lysed with Luciferase Cell Culture Lysis 5× reagent
129 (Promega). Nanoluc Luciferase activity in lysates was measured using the Nano-Glo Luciferase
130 Assay System (Promega) with the Glomax Navigator (Promega) or ClarioStar multi-mode
131 microplate reader (BMG). The relative luminescence units were normalized to those derived
132 from cells infected with SARS-CoV-2 pseudotyped virus in the absence of plasma or
133 monoclonal antibodies. The half-maximal neutralization titers for plasma (NT₅₀) or half-maximal
134 and 90% inhibitory concentrations for monoclonal antibodies (IC₅₀ and IC₉₀) were determined
135 using four-parameter nonlinear regression (least squares regression method without weighting;
136 constraints: top=1, bottom=0) (GraphPad Prism).

137

138 **Biotinylation of viral protein for use in flow cytometry**

139 Purified and Avi-tagged SARS-CoV-2 Wuhan-Hu-1 RBD and NTD were biotinylated using the
140 Biotin-Protein Ligase-BIRA kit according to manufacturer's instructions (Avidity) as described
141 before (*11*). Ovalbumin (Sigma, A5503-1G) was biotinylated using the EZ-Link Sulfo-NHS-LC-
142 Biotinylation kit according to the manufacturer's instructions (Thermo Scientific). Biotinylated
143 ovalbumin was conjugated to streptavidin-BB515 (BD, 564453). RBD was conjugated to
144 streptavidin-PE (BD Biosciences, 554061) and streptavidin-AF647 (Biolegend, 405237) (*11*).

145 NTD was conjugated to streptavidin-BV421 (Biolegend, 405225) and streptavidin-BV711 (BD
146 Biosciences, 563262).

147

148 **Flow cytometry and single cell sorting**

149 Single-cell sorting by flow cytometry was described previously (11). Briefly, peripheral blood
150 mononuclear cells were enriched for B cells by negative selection using a pan-B-cell isolation kit
151 according to the manufacturer's instructions (Miltenyi Biotec, 130-101-638). The enriched B
152 cells were incubated in Flourescence-Activated Cell-sorting (FACS) buffer (1× PBS, 2% FCS, 1
153 mM ethylenediaminetetraacetic acid (EDTA)) with the following anti-human antibodies (all at
154 1:200 dilution): anti-CD20-PECy7 (BD Biosciences, 335793), anti-CD3-APC-eFluro780
155 (Invitrogen, 47-0037-41), anti-CD8-APC-eFluor780 (Invitrogen, 47-0086-42), anti-CD16-APC-
156 eFluor780 (Invitrogen, 47-0168-41), anti-CD14-APC-eFluor780 (Invitrogen, 47-0149-42), as
157 well as Zombie NIR (BioLegend, 423105) and fluorophore-labeled Wuhan-Hu-1 RBD, NTD,
158 and ovalbumin (Ova) for 30 min on ice. AccuCheck Counting Beads (Life Technologies,
159 PCB100) were added to each sample according to manufacturer's instructions. Single CD3-CD8-
160 CD14-CD16-CD20+Ova- B cells that were either RBD-PE+RBD-AF647+ or NTD-
161 BV711+NTD-BV421+ were sorted into individual wells of 96-well plates containing 4 µl of
162 lysis buffer (0.5× PBS, 10 mM Dithiothreitol (DTT), 3,000 units/ml RNasin Ribonuclease
163 Inhibitors (Promega, N2615)) per well using a FACS Aria III and FACSDiva software (Becton
164 Dickinson) for acquisition and FlowJo for analysis. The sorted cells were frozen on dry ice, and
165 then stored at -80 °C or immediately used for subsequent RNA reverse transcription. For B cell
166 phenotype analysis, in addition to above antibodies, B cells were also stained with following
167 anti-human antibodies (all at 1:200 dilution): anti-IgD-BV650 (BD, 740594), anti-CD27-BV786

168 (BD biosciences, 563327), anti-CD19-BV605 (Biolegend, 302244), anti-CD71- PerCP-Cy5.5
169 (Biolegend, 334114), anti- IgG-PECF594 (BD, 562538), anti-IgM-AF700 (Biolegend, 314538),
170 anti-IgA-Viogreen (Miltenyi Biotec, 130-113-481).

171

172 **Antibody sequencing, cloning and expression**

173 Antibodies were identified and sequenced as described previously (11, 48). In brief, RNA from
174 single cells was reverse-transcribed (SuperScript III Reverse Transcriptase, Invitrogen, 18080-
175 044) and the cDNA was stored at –20 °C or used for subsequent amplification of the variable
176 IGH, IGL and IGK genes by nested PCR and Sanger sequencing. Sequence analysis was
177 performed using MacVector. Amplicons from the first PCR reaction were used as templates for
178 sequence- and ligation-independent cloning into antibody expression vectors. Recombinant
179 monoclonal antibodies were produced and purified as previously described (11).

180

181 **Biolayer interferometry**

182 Biolayer interferometry assays were performed as previously described (11). Briefly, we used the
183 Octet Red instrument (ForteBio) at 30°C with shaking at 1,000 r.p.m. Epitope binding assays
184 were performed with protein A biosensor (ForteBio 18-5010), following the manufacturer's
185 protocol “classical sandwich assay” as follows: (1) Sensor check: sensors immersed 30 sec in
186 buffer alone (buffer ForteBio 18-1105), (2) Capture 1st Ab: sensors immersed 10 min with Ab1
187 at 10 µg/mL, (3) Baseline: sensors immersed 30 sec in buffer alone, (4) Blocking: sensors
188 immersed 5 min with IgG isotype control at 10 µg/mL. (5) Baseline: sensors immersed 30 sec in
189 buffer alone, (6) Antigen association: sensors immersed 5 min with RBD at 10 µg/mL. (7)
190 Baseline: sensors immersed 30 sec in buffer alone. (8) Association Ab2: sensors immersed 5 min

191 with Ab2 at 10 µg/mL. Curve fitting was performed using the Fortebio Octet Data analysis
192 software (ForteBio).

193

194 **Computational analyses of antibody sequences**

195 Antibody sequences were trimmed based on quality and annotated using Igblastn v.1.14. with
196 IMGT domain delineation system. Annotation was performed systematically using Change-O
197 toolkit v.0.4.540 (49). Clonality of heavy and light chain was determined using DefineClones.py
198 implemented by Change-O v0.4.5 (49). The script calculates the Hamming distance between
199 each sequence in the data set and its nearest neighbor. Distances are subsequently normalized
200 and to account for differences in junction sequence length, and clonality is determined based on a
201 cut-off threshold of 0.15. Heavy and light chains derived from the same cell were subsequently
202 paired, and clonotypes were assigned based on their V and J genes using in-house R and Perl
203 scripts. All scripts and the data used to process antibody sequences are publicly available on
204 GitHub (https://github.com/stratust/igpipeline/tree/igpipeline2_timepoint_v2).

205 The frequency distributions of human V genes in anti-SARS-CoV-2 antibodies from this study
206 was compared to 131,284,220 IgH and IgL sequences generated by (50) and downloaded from
207 cAb-Rep (51), a database of human shared BCR clonotypes available at [https://cab-
208 rep.c2b2.columbia.edu/](https://cab-rep.c2b2.columbia.edu/). Based on the 150 distinct V genes that make up the 1099 analyzed
209 sequences from Ig repertoire of the 6 participants present in this study, we selected the IgH and
210 IgL sequences from the database that are partially coded by the same V genes and counted them
211 according to the constant region. The frequencies shown in fig. S3 are relative to the source and
212 isotype analyzed. We used the two-sided binomial test to check whether the number of
213 sequences belonging to a specific *IGHV* or *IGLV* gene in the repertoire is different according to

214 the frequency of the same IgV gene in the database. Adjusted p-values were calculated using the
215 false discovery rate (FDR) correction. Significant differences are denoted with stars.

216

217 Nucleotide somatic hypermutation and Complementarity-Determining Region 3 (CDR3) length
218 were determined using in-house R and Perl scripts. For somatic hypermutations (SHM), *IGHV*
219 and *IGLV* nucleotide sequences were aligned against their closest germlines using Igblastn and
220 the number of differences were considered nucleotide mutations. The average number of
221 mutations for V genes was calculated by dividing the sum of all nucleotide mutations across all
222 participants by the number of sequences used for the analysis.

223

224 **Data presentation**

225 Figures arranged in Adobe Illustrator 2022.

226

227

228 **Supplementary Figure Legends**

229 **Fig. S1: Plasma ELISA.** **a-b**, Graph shows area under the curve (AUC) for **a**, plasma IgM and **b**,
230 plasma IgA antibody binding to SARS-CoV-2 Wuhan-Hu-1 RBD after 1.5 months (m) and 6 m
231 post-vaccination for n=18 samples. Lines connect longitudinal samples. **c-d**, Graph shows AUC
232 for **c**, plasma IgM and **d**, plasma IgA binding to RBD in convalescent infected individuals 1.3 m
233 post infection (11), and mRNA vaccinees after prime or 1.3 m post-second vaccination (Vax2) (9)
234 compared to Janssen vaccinees 1.5 m post vaccination (left panel), or convalescent infected
235 individuals 6.2 months post infection (12) and mRNA vaccinees 5 m post-Vax2 (9) compared to
236 Janssen vaccinees at 6 m post vaccination (right panel). Red bars and values represent geometric
237 mean values. Statistical significance in **a**, and **b**, was determined by Wilcoxon matched-pairs
238 signed rank test. **c**, and **d**, was determined by two-tailed Kruskal-Wallis test with subsequent
239 Dunn's multiple comparisons.

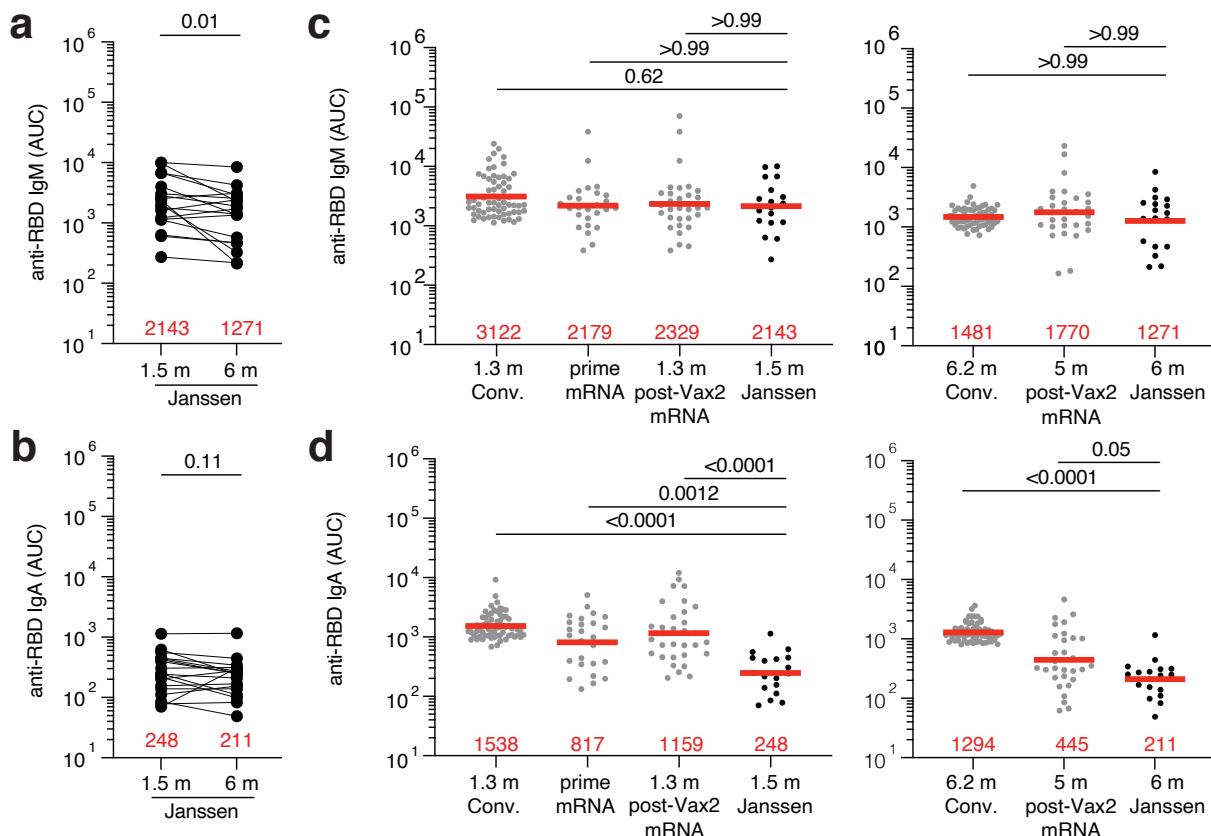
240

241 **Fig. S2: Flow Cytometry.** **a**, Gating strategy for phenotyping. Gating was on lymphocytes singlets
242 that were CD19⁺ or CD20⁺ and CD3-CD8-CD16-Ova-. Anti-IgG, IgM, IgA, IgD, CD71 and CD27
243 antibodies were used for B cell phenotype analysis. Antigen-specific cells were detected based on
244 binding to Wuhan-Hu-1 RBD-PE⁺ and RBD-AF647⁺, or to Wuhan-Hu-1 NTD-BV711⁺ and NTD-
245 BV421⁺. Counting beads were added to each sample and gated based on forward scatter (FSC)
246 and side scatter (SSC) as per manufacturer instructions. **b-c**, Representative flow cytometry plots
247 of **b**, RBD-binding B cells or **c**, NTD-binding B cells in 5 individuals after 1.5- and 6-months post
248 vaccination. **d-e**, Graph showing the frequency of IgM, IgG, and IgA isotype in **d**, RBD-specific
249 B cells and **e**, NTD-specific B cells after 1.5- or 6-months post-vaccination. **f**, Gating strategy for

250 single-cell sorting for CD20+ B cells for Wuhan-Hu-1 RBD-PE and RBD-AF647 or Wuhan-Hu-
251 1 NTD-BV711 and NTD-BV421. **g-h**, Representative flow cytometry plots showing **g**, dual
252 AlexaFluor-647- and PE-Wuhan-Hu-1-RBD binding and **h**, BrilliantViolet-711- and
253 BrilliantViolet-421-Wuhan-Hu-1 NTD binding, single-cell sorted B cells from 4 additional
254 individuals at 1.5 months (m) or 6 m after vaccination. Percentage of antigen-specific B cells is
255 indicated.

256

257 **Fig. S3: Frequency distribution of human V genes in SARS-CoV-2 RBD- and NTD-binding**
258 **B cells. a-b**, Comparison of the frequency distribution of human V genes for heavy chain and
259 light chains of anti-RBD antibodies from this study and from a database of shared clonotypes of
260 human B cell receptor generated by Cinque Soto et al (50). Graph shows relative abundance of
261 human *IGHV* (left panel), *IGKV* (middle panel) and *IGLV* (right panel) genes in Sequence Read
262 Archive accession SRP010970 (orange), Janssen antibodies (green), and mRNA vaccinees (blue),
263 comparing **a**, 1.5 months (m) after Janssen vaccination to 1.3 months after one dose of mRNA
264 vaccine (prime), or **b**, 6m post-Janssen vaccination to 5m after second dose of mRNA vaccine.
265 Statistical significance was determined by two-sided binomial test. * = $p \leq 0.05$, ** = $p \leq 0.01$, ***
266 = $p \leq 0.001$, **** = $p \leq 0.0001$. Color of stars indicates: black – comparing Janssen vaccination vs
267 human database; blue – comparing mRNA vaccination vs human database; red - Janssen
268 vaccination vs mRNA vaccination. **c**, Comparison of the frequency distribution of human V genes
269 for heavy chain and light chains of all anti-NTD antibodies from this study to a database of shared
270 clonotypes of human B cell receptor generated by Cinque Soto et al (50). Graph shows relative
271 abundance of human *IGHV* (left panel), *IGKV* (middle panel) and *IGLV* (right panel) genes in
272 Sequence Read Archive accession SRP010970 (blue), Janssen antibodies (orange). Statistical


273 significance was determined by two-sided binomial test. * = $p \leq 0.05$, ** = $p \leq 0.01$, *** = $p \leq 0.001$,
274 **** = $p \leq 0.0001$.

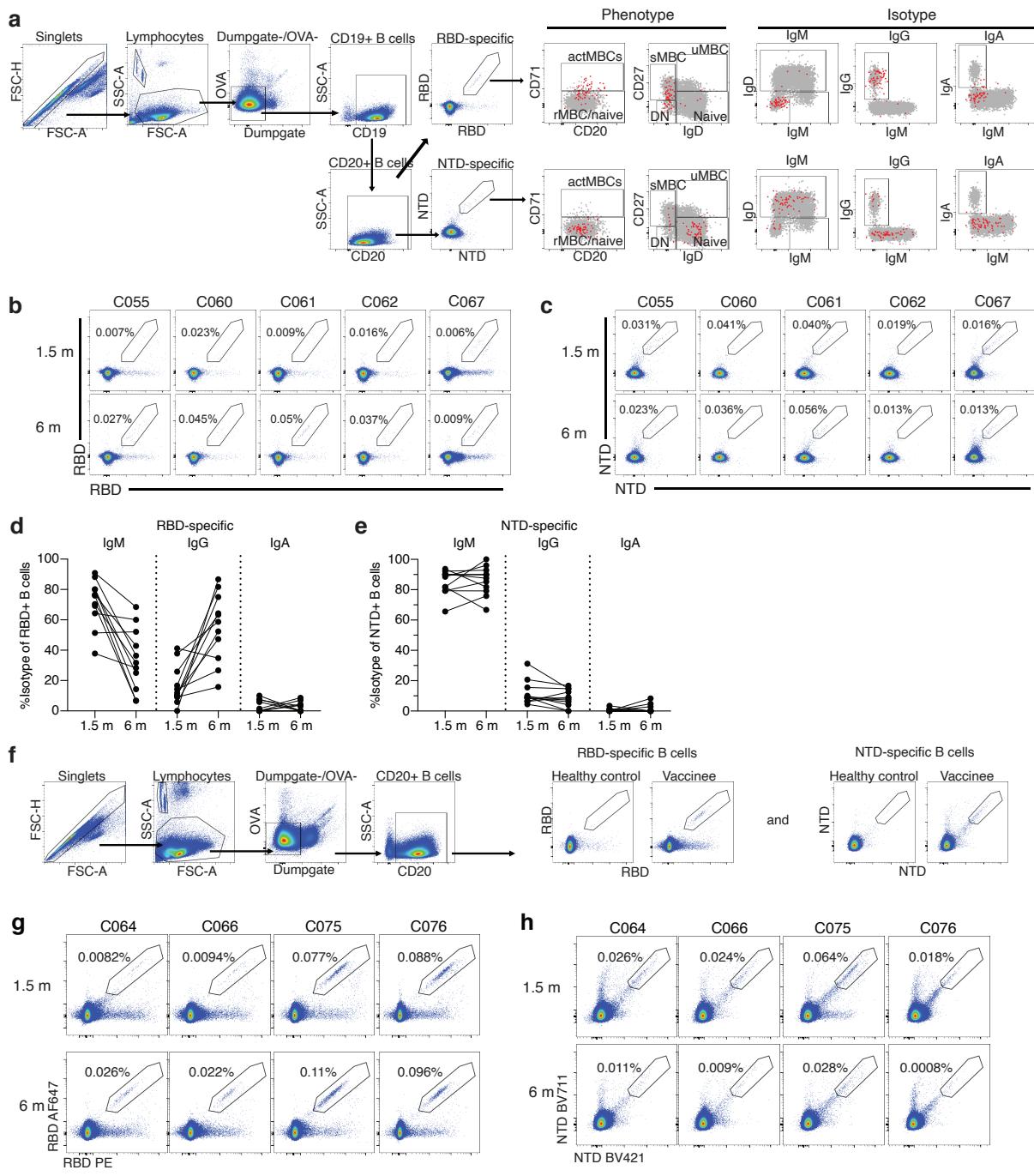
275
276 **Fig. S4: Neutralizing Breadth.** **a**, Heat-maps show IC₅₀s of antibodies shown in Fig. 5a against
277 indicated mutant SARS-CoV-2 pseudoviruses listed across the top. Heatmap ranging from 0.1-
278 1000 ng/ml in white to red. Antibody Classes are listed to the right, and were determined by
279 competition BLI (see Fig. 4). **b**, Ring plots showing fraction of mAbs shown in Fig. 5a determined
280 to be potently neutralizing (IC₅₀ 1-100 ng/mL, white), poorly neutralizing (IC₅₀ 100-1000 ng/mL,
281 grey), or non-neutralizing (IC₅₀>1000 ng/mL, black). Mutant or variant SARS-CoV-2 pseudovirus
282 tested is indicated across the top and time point to the left. The number inside the circle indicated
283 the number of antibodies tested. **c**, Heat map of antibodies shown in Fig. 5b, showing IC₅₀s of
284 antibodies detected at 1.5 months post vaccination (left panel, n=35) or 6 months post vaccination
285 (right panel, n=36), against indicated variant SARS-CoV-2 pseudovirus listed across the top.
286 Heatmap ranging from 0.1-1000 ng/ml in white to red. The E484K, K417N/E484K/N501Y and
287 L452R/T478K substitution, as well as the deletions/substitutions corresponding to viral variants
288 were incorporated into a spike protein that also includes the R683G substitution, which disrupts
289 the furin cleavage site and increases particle infectivity. Neutralizing activity against mutant
290 pseudoviruses were compared to a wildtype (WT) SARS-CoV-2 spike sequence (NC_045512),
291 carrying R683G where appropriate.

292

293 **Supplementary Figures**

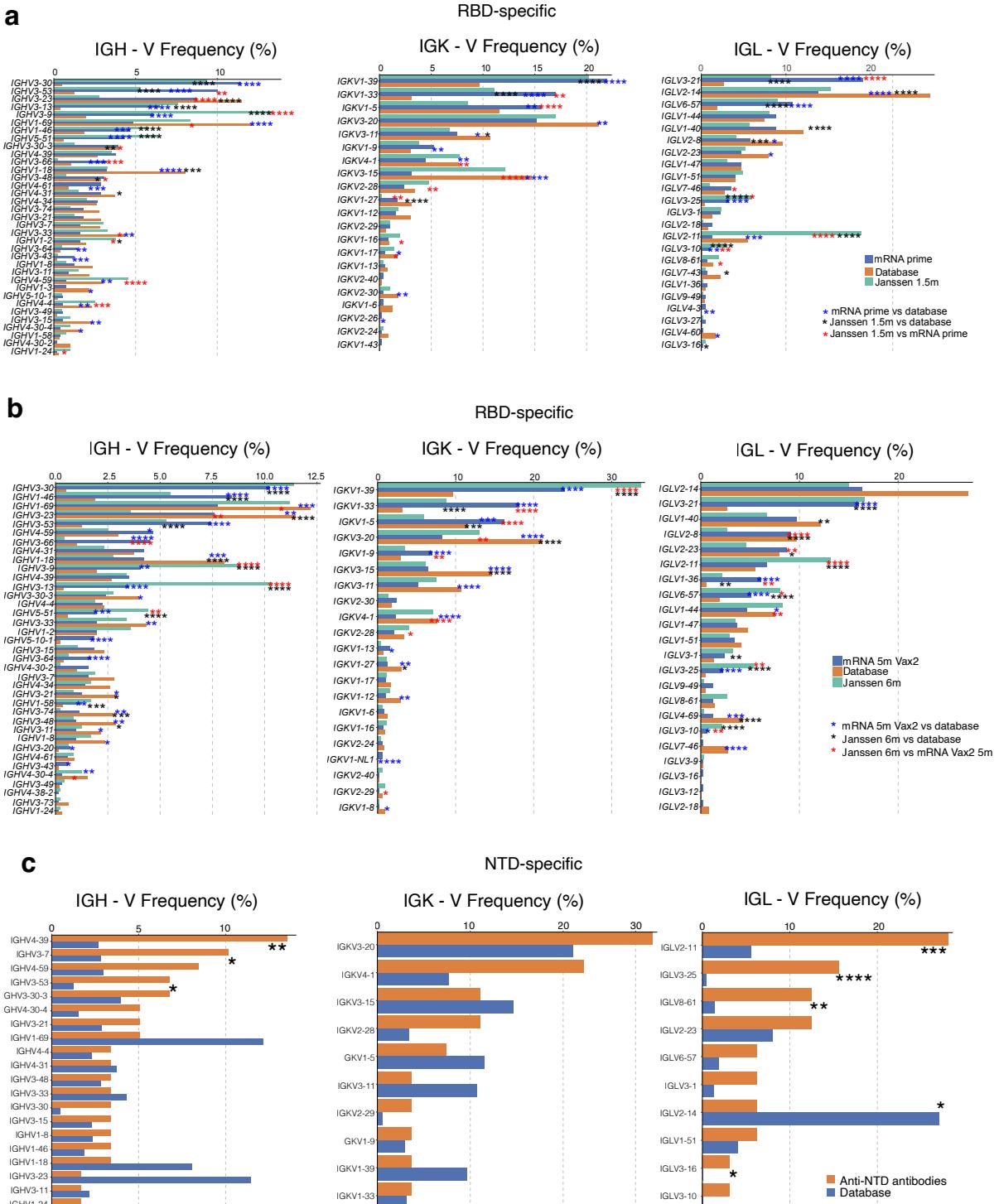
294 **Fig. S1**

295


296

297

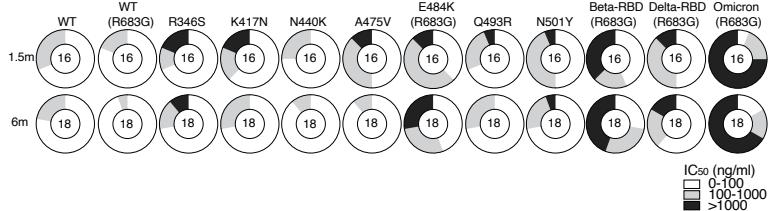
298


299

300 **Fig. S2**

301
302

303 **Fig. S3**



306 **Fig. S4**

a

	WT (R683G)	R346S	K417N	N440K	A475V (R683G)	Q493R	N501Y	Beta-RBD (R683G)	Delta-RBD (R683G)	Omicron (R683G)	Class		
1.5m after vaccination													
JR215	32	22	24	1000	32	1000	39	42	41	1000	38	1000	1
JR086	55	23	41	45	30	130	1000	1000	31	1000	125	1000	
JR233	16	6	1000	4	9	11	158	13	33	188	1000	122	
JR174	344	148	160	70	272	147	214	473	246	63	692	146	3
JR210	961	96	1000	164	390	290	125	466	504	52	519	1000	
JR039	25	17	20	25	21	35	27	20	35	24	17	213	
JR173	27	20	17	28	24	32	13	20	30	14	21	1000	
JR088	72	78	46	71	90	137	79	70	185	57	95	1000	1/4
JR216	96	103	74	99	116	214	131	91	283	190	103	1000	
JR212	132	84	64	114	63	83	105	150	183	77	156	1000	
JR177	5	2	3	1	3	3	1000	82	3	1000	9	1000	
JR042	24	13	14	146	18	31	22	41	633	1000	9	1000	1/2
JR041	106	45	76	68	66	168	236	86	124	582	52	1000	
JR309	22	30	1000	6	14	17	270	16	40	49	1000	45	2/3
JR043	9	2	4	1000	6	4	61	9	9	1000	4	1000	1/2/4
JR310	645	395	538	1000	459	1000	456	497	1000	1000	219	1000	1/2/3/4
6m after vaccination													
JR070	3	1	2	1	1	2	3	11	1	1	1	56	
JR189	15	1	5	1	5	3	24	265	3	1000	2	1000	1
JR328	18	2	7	77	8	6	2	8	12	1000	2	1000	
JR202	4	1	2	1	2	2	45	3	2	17	1000	809	
JR052	28	13	1000	3	9	20	1000	112	21	841	1000	1000	3
JR312	44	6	1000	10	20	19	3	22	36	3	3	9	
JR317	56	27	34	40	29	44	37	33	74	34	62	1000	
JR054	74	38	41	100	57	81	110	55	60	104	64	641	
JR099	103	45	55	141	53	63	114	69	165	131	91	1000	
JR186	168	84	109	192	97	97	135	119	240	212	130	1000	
JR209	296	331	203	369	234	265	225	350	438	367	338	1000	
JR206	508	92	144	175	243	218	171	622	834	1000	255	1000	
JR081	3	0.4	1	1	1	1	1000	21	1	1000	1	1000	
JR062	4	0.5	2	1	2	2	1000	2	2	1000	2	1000	1/2
JR316	7	0.3	2	2	3	2	1000	4	2	1000	1	1	
JR318	14	5	8	3	6	10	1000	49	8	1000	1000	293	2/3
JR162	5	0.2	2	2	2	2	2	2	1	1	331	1000	1/2/3
JR057	12	6	7	8	10	9	7	19	1000	1000	8	1000	1/2/4

b

307
308
309

c

	1.5 month		6 month	
	WT Delta-RBD	Omicron	WT Delta-RBD	Omicron
JR354	0.5	1	1000	
JR348	1	1	721	
JR344	1	2	1000	
JR081	0.4	1	1000	
JR329	0.4	303	1000	
JR062	0.5	2	1000	
JR082	0.5	1	1000	
JR207	0.5	2	1000	
JR202	1	1000	809	
JR056	1	1	1	
JR070	1	1	56	
JR201	1	1000	1000	
JR189	1	2	1000	
JR039	17	17	213	
JR321	1	1	1000	
JR345	20	1000	32	
JR173	20	21	1000	
JR215	22	38	1000	
JR086	23	125	1000	
JR146	5	31	14	
JR312	6	3	9	
JR057	6	8	1000	
JR157	6	4	1000	
JR052	13	1000	1000	
JR196	24	22	1000	
JR332	27	1000	60	
JR317	27	62	1000	
JR054	38	64	641	
JR210	96	519	1000	
JR099	45	91	1000	
JR313	56	28	1000	
JR327	78	43	1000	
JR216	103	103	1000	
JR186	84	130	1000	
JR206	92	255	1000	
JR188	209	99	47	
JR373	213	1000	941	
JR319	217	86	1000	
JR209	331	338	1000	
JR075	454	131	1000	
JR310	395	219	1000	
JR334	634	228	1000	
JR147	816	203	750	