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Abstract

Neural population dynamics are often highly coordinated, allowing task-related
computations to be understood as neural trajectories through low-dimensional subspaces.
How the network connectivity and input structure give rise to such activity can be
investigated with the aid of low-rank recurrent neural networks, a recently-developed
class of computational models which offer a rich theoretical framework linking the
underlying connectivity structure to emergent low-dimensional dynamics. This
framework has so far relied on the assumption of all-to-all connectivity, yet cortical
networks are known to be highly sparse. Here we investigate the dynamics of low-rank
recurrent networks in which the connections are randomly sparsified, which makes the
network connectivity formally full-rank. We first analyse the impact of sparsity on the
eigenvalue spectrum of low-rank connectivity matrices, and use this to examine the
implications for the dynamics. We find that in the presence of sparsity, the eigenspectra
in the complex plane consist of a continuous bulk and isolated outliers, a form
analogous to the eigenspectra of connectivity matrices composed of a low-rank and a
full-rank random component. This analogy allows us to characterise distinct dynamical
regimes of the sparsified low-rank network as a function of key network parameters.
Altogether, we find that the low-dimensional dynamics induced by low-rank connectivity
structure are preserved even at high levels of sparsity, and can therefore support rich
and robust computations even in networks sparsified to a biologically-realistic extent.

Author summary

In large networks of neurons, the activity displayed by the population depends on the
strength of the connections between each neuron. In cortical regions engaged in
cognitive tasks, this population activity is often seen to be highly coordinated and
low-dimensional. A recent line of theoretical work explores how such coordinated
activity can arise in a network of neurons in which the matrix defining the connections
is constrained to be mathematically low-rank. Until now, this connectivity structure has
only been explored in fully-connected networks, in which every neuron is connected to
every other. However, in the brain, network connections are often highly sparse, in the
sense that most neurons do not share direct connections. Here, we test the robustness of
the theoretical framework of low-rank networks to the reality of sparsity present in
biological networks. By mathematically analysing the impact of removing connections,
we find that the low-dimensional dynamics previously found in dense low-rank networks
can in fact persist even at very high levels of sparsity. This has promising implications
for the proposal that complex cortical computations which appear to rely on
low-dimensional dynamics may be underpinned by a network which has a fundamentally
low-rank structure, albeit with only a small fraction of possible connections present.
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Introduction 1

Neural recordings in animals performing cognitive tasks have revealed that individual 2

neurons ubiquitously display a high degree of coordination. When viewed in the activity 3

state space, in which each each axis represents the firing rate of one unit, the 4

trajectories of neural activity are typically confined to low-dimensional subspaces [1–6]. 5

The resulting latent dynamics have been proposed to underpin complex cortical 6

computations [7]. However, how the inputs to the network and the connectivity between 7

the individual units shape such low-dimensional activity remains a prominent question. 8

9

A recently developed class of models, recurrent networks with low-rank connectivity, 10

provide a tractable theoretical framework for addressing this question and unravelling 11

the relationship between connectivity structure, low-dimensional dynamics and the 12

resulting computations [8–17]. One important limitation is, however, that these models 13

often assume a dense connectivity structure in which every neuron shares synapses with 14

every other. In contrast, cortical networks exhibit a high degree of sparsity in their 15

connectivity, meaning that each neuron receives inputs from only a fraction of its 16

neighbors [18–21]. Since sparse matrices are typically full-rank, an important question is 17

whether and how the results obtained in the study of low-rank recurrent networks apply 18

to sparse connectivity structures. 19

20

Here we investigate how the dynamics of low-rank recurrent networks are impacted 21

by increasing degrees of sparsity. We start by analysing the eigenvalue spectra of 22

low-rank connectivity matrices in which sparsity is imposed by removing a random 23

fraction of entries. Such matrices are full rank, but we find that the corresponding 24

eigenspectra consist of a continuous bulk and isolated outliers, and are therefore 25

analogous to low-rank matrices superposed with a random, full rank 26

component [8, 22,23]. We show that both the radius of the eigenvalue bulk and the 27

outliers can be estimated analytically. We then use these results to compare the 28

dynamics of sparsified low-rank networks to those of densely connected low-rank 29

networks with a full rank random component. Altogether we found that the 30

low-dimensional dynamics generated by a low-rank connectivity structure are highly 31

resistant with respect to sparsity and therefore provide a robust substrate for 32

implementing computations in networks with biologically realistic connectivity. 33

March 31, 2022 2/22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.486515doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.31.486515
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 34

Network connectivity 35

We study recurrent networks of N firing rate units, following the classical formalism 36

in [24]. The dynamics of each individual unit i evolve as: 37

τ ẋi(t) = −xi(t) +
N∑
j=1

Jij φ(xj(t)) + Ii u(t), (1)

where xi describes the total input current to each unit, τ is the time constant of the 38

dynamics, Jij is the synaptic weights from unit j to unit i and φ(·) is a non-linear 39

transfer function that we take to be the hyperbolic tangent. Each unit can also receive a 40

time-dependent input current of magnitude u(t) via a feedforward weight vector 41

I = {Ii}i=1...N . The set of synaptic weights Jij are stored in a connectivity matrix J, for 42

which we consider two forms. We begin by considering full-rank Gaussian connectivity, 43

introducing sparsity into the synaptic weights and establishing the ways in which sparse 44

Gaussian networks differ from their fully-connected counterparts. We then constrain the 45

connectivity to be low-rank and sparsify as before, examining how the impact of 46

sparsity in such networks both parallels and contrasts with that of the Gaussian case. 47

48

The full-rank Gaussian networks are defined by a matrix J with entries 49

independently distributed as 50

Jij ∼ N (0, g2/N), (2)

where g controls the variance of the matrix entries and thus the strength of the coupling. 51

52

For the low-rank networks, we consider the simplest case of a rank-one matrix P, 53

constructed as in previous work [8] as a rescaled outer product of two N -dimensional 54

random connectivity vectors m = {mi}i=1...N and n = {ni}i=1...N such that 55

Pij =
minj
N

. (3)

This ensures that all columns of P are linearly dependent and proportional to m. The 56

individual entries mi and ni of the connectivity vectors are drawn independently for 57

each i from a joint Gaussian distribution with mean 0 and covariance matrix Σ: 58

Σ =

[
σ2 σmn

σmn σ2

]
, (4)

where σ2 is the variance of both connectivity vectors which controls the overall strength 59

of the coupling, and σmn is the covariance between them (see Methods). In the large N 60

limit, this covariance becomes equivalent to the degree of overlap between m and n, 61

given by the normalised scalar product: 62

σmn =
mTn

N
. (5)

The covariance σmn plays a critical role in the stability of the dynamics of the rank-one 63

network due to its influence on the matrix eigenvalues, as will be seen in the following 64

sections. The variance σ2 likewise gains a critical influence as soon as the matrix 65

becomes sparse. These two key parameters controlling the connectivity, the variance 66

and covariance of the connectivity vectors, will therefore become paramount in the later 67

analysis of the dynamics. 68
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Eigenvalues of connectivity matrices 69

The dynamics of recurrent networks are strongly influenced by the eigenspectrum of 70

their connectivity matrix. Regardless of network structure, the dynamics always possess 71

a trivial fixed point at zero, since we take the transfer function φ(·) to be the hyperbolic 72

tangent, and tanh(0) = 0. The stability of this zero fixed point is determined by the 73

magnitude of the eigenvalue with largest real part, λmax. Since φ′(0) = 1, the stability 74

matrix at zero reduces to Sij = Jij − δij , so the fixed point at zero becomes unstable 75

when the largest eigenvalue of the connectivity matrix J surpasses unity. As soon as 76

this occurs, non-trivial dynamics can emerge. To understand the impact of sparsity on 77

network dynamics we will therefore analyse the changes in the network eigenspectra, 78

and will place particular focus on λmax, the eigenvalue with maximum real part. 79

Eigenvalues of sparsified full-rank networks 80

We first consider the impact of sparsity on the eigenspectra of the full-rank, random 81

connectivity matrices (Eq. 2). Work in random matrix theory has demonstrated that 82

the eigenspectra of such matrices are described by Girko’s circular law [25]: for a matrix 83

with entries independently distributed with mean zero and variance V ar, the 84

eigenvalues converge in the limit of N →∞ to a uniform distribution within a disk of 85

radius
√
V ar ·N centred at the origin. This result is universal in the sense that it holds 86

for any distribution with finite variance. For the Gaussian networks J introduced in 87

(Eq. 2) with V ar = g2/N , the eigenvalues are therefore uniformly distributed on a 88

circular disk of radius approximated by g. Since the distribution is circular, the radius 89

of this disk is equivalent in the large N limit to λmax, the eigenvalue with maximum 90

real part, so we refer to both by the spectral radius R. 91

92

To sparsify the matrix, we simply choose a fraction s ∈ [0, 1] of connections to set to 93

zero at random. This is achieved by multiplying the original matrix J elementwise with 94

a binary matrix X, where Xij are drawn independently from a Bernouilli distribution 95

B(1, 1− s), forming a sparse matrix J̃ = J�X characterised by a degree of sparsity s 96

(Fig 1A). Due to the presence of zeros, the entries of J̃ have a lower variance than those 97

of J, but remain independently distributed. Because of this property of independence, 98

we expect the universality result of the circular law for iid matrices to hold [25]. Indeed, 99

we find that the eigenvalues of the sparse matrix J̃ continue to distribute uniformly on a 100

disk for which the spectral radius is described by
√
V ar ·N , where V ar is now the 101

variance of the sparse matrix elements J̃ij . This variance can be calculated (see 102

Methods) as (1− s) g2/N , giving a spectral radius of: 103

R = g
√

1− s. (6)

Increasing the degree of sparsity s in a full-rank Gaussian network thus monotonically 104

reduces the radius of the disk on which the eigenvalues distribute. In Fig 1C we 105

demonstrate the correspondence of the prediction in (Eq. 6) to the empirical spectral 106

radius, measured as the largest eigenvalue in the spectrum of a finite-sized Gaussian 107

matrix sparsified in the manner described above. 108

109

An alternative means of sparsifying the matrix is to set to zero a fixed number of 110

outgoing connections C per unit, while increasing the total number of units N , where 111

C ≤ N . This is often a regime of interest in neuroscientific work [26]. The network is 112

now defined by a degree of sparsity s = 1−C/N , where C/N is the fraction of non-zero 113

connections per unit. The impact of sparsifying the matrix in this manner is equivalent 114

to the previous case, where the theoretical spectral radius is now given by g
√
C/N (Fig 115
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Fig 1. Influence of sparsity on the eigenspectra of full-rank networks. A: Illustration of how sparsity
is imposed in the connectivity matrix, where the degree of sparsity is s = 0.5. B: Complex eigenspectra of full
rank, Gaussian connectivity matrices of finite size (N = 300, g = 1) in the dense case (left) and with a sparsity of
0.5 (right). The dashed line plots the unit circle. C, D, E: Reduction of spectral radius R as a function of
sparsity in a full-rank matrix J constructed as in (Eq. 2) with connection strength g = 1. In C, sparsity is
imposed as a fraction of total connections removed (N = 1000). In D and E sparsity is imposed by fixing the
number of outgoing connections to C = 200 and increasing N . Dots: mean empirical spectral radius, measured as
the largest absolute value of all eigenvalues, over 50 instances. Solid lines: theoretical prediction.

1D) and taking the degree of sparsity to one now corresponds to taking the number of 116

units N to infinity (Fig 1E). 117

118

Eigenvalues of sparsified rank-one networks 119

We now turn to the impact of sparsity on the eigenspectra of rank-one matrices. 120

Fully-connected rank-one matrices have only one potentially-nonzero eigenvalue, formed 121

from the scalar product of the corresponding left and right eigenvectors. For the matrix 122

P defined in (Eq. 3), the right and left eigenvectors are the connectivity vectors m and 123

n, and the corresponding eigenvalue is located at mTn/N on the real axis, which is 124

equivalent in the large N limit to the overlap σmn between the connectivity vectors. 125

126

When sparsity is introduced to the rank-one structure, forming a sparse matrix P̃, 127

this matrix is now formally full rank and possesses N potentially-nonzero eigenvalues. 128

However, we empirically observed that the eigenspectrum splits into two distinct 129

components. The eigenvalue associated with the rank-one structure remains distinct in 130

the spectrum, since such structure persists as a backbone to the connectivity. We refer 131

to this structural eigenvalue as the outlier. At the same time, the full-rank perturbation 132

introduced by the sparsity induces additional eigenvalues with nonzero real and 133

imaginary parts which distribute about the origin on a disk with non-uniform density 134

(Fig 2A). We refer to this set of additional non-zero eigenvalues induced by sparsity as 135

the bulk. For the sparsified rank-one matrix P̃, it is now these two components of the 136

spectrum, the bulk and the outlier, that together contribute to the dynamics. 137

Understanding the impact of sparsity on the dynamics therefore reduces to 138

understanding how each component is modified by sparsity. We now address each in 139

turn. 140

141

Firstly, the outlier λ1 is reduced monotonically by sparsity. It can be shown that in 142
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Fig 2. Influence of sparsity on the eigenspectra of rank-one networks. A: Eigenspectra of rank-one
connectivity matrices of finite size, in the dense case (left) and under a sparsity of 0.5 (right). The matrix P is
constructed as in (Eq. 3), with parameters σ2 = 16, σmn = 1.44 and N = 300. Under sparsity, the outlier (gold) is
reduced and the bulk distribution (brown) emerges. The dashed line plots the unit circle. B, C: Impact of sparsity on
two key features of the eigenspectrum of finite-size rank-one networks: B, the outlier λ1, and C, the spectral radius of
the bulk distribution. The outlier is eventually reduced below the instability boundary of λ1 = 1, dashed line. Sparsity
is imposed as a fraction of total connections removed; σ2 = 16, σmn = 4 and N = 1000. D: Same as in C but for
sparsity imposed by fixing C = 200 non-zerro connections and increasing N ; bulk radius is plotted as a function of N .
Dots: empirical measurements of outlier and bulk radius. Solid lines: theoretical prediction.

the large N limit, the right connectivity vector m remains a right-eigenvector of P̃, and 143

yet a fraction s of matrix entries are now zero; this means that the factor by which the 144

outlier is reduced is 1− s (see Methods). The outlier therefore lies at (1− s) mTn/N 145

on the real axis, and is drawn in towards the origin as the degree of sparsity approaches 146

1 (Fig 2B). In the large N limit, this value is equivalent to 147

λ1 = (1− s) σmn. (7)

Secondly, we wish to characterise the radius of the bulk distribution. Although the 148

distribution of eigenvalues in the bulk is non-uniform (Fig 3A), it continues to be 149

circular, and we thus hypothesise that the universality result for the radius [25] still 150

holds. This would allow us to characterise the bulk radius directly using the variance of 151

matrix elements, in a similar manner to the Gaussian matrix. To test this, we derive the 152

variance of the elements not of the entire sparse matrix P̃, but of a new matrix P̃∗ 153

which possesses solely the eigenvalues in the bulk distribution. We remove the 154

eigenvalue outlier from the spectrum as in [22,23,27], constructing a new matrix 155

P̃∗ = P̃− (1− s)P as a linear combination of the dense matrix P and the original 156

sparse matrix P̃. The connectivity vector m is also an eigenvector of P̃∗, but now with 157

a zero eigenvalue. The distribution of the remaining eigenvalues of P̃∗ is identical to 158

those in P̃, but with the outlier λ1 removed. By deriving the variance of the elements of 159

P̃∗ (see Methods), we obtain: 160

V ar(P̃∗) =
σ4

N2
s(1− s). (8)

The theoretical bulk radius given by the circular law is therefore: 161

R = σ2

√
s(1− s)
N

. (9)

162
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OutlierBulk
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A B C D

Data TheoryCσmn Cσ2Outlier Bulk radius

Fig 3. Key features of rank-one eigenspectrum become independent of N in the high sparsity limit.
A: Illustration of the spectral radius R of the bulk distribution induced by sparsity, and the outlier λ1 inherited from the
rank-one structure. Dots: eigenvalues of matrix. Dashed lines: theoretical predictions, with C = 200, N = 2000,
σ2 = 0.09, and σmn = 0.008. B: Bulk radius as a function of sparsity imposed by fixing C = 200 and increasing N , for
the rescaled matrix Pij = minj with σ2 = 0.09 and σmn = 0.008. The outlier Cσmn is now independent of N . The bulk

radius converges towards
√
Cσ2 (grey dashed line) as sparsity increases. D: Outlier and bulk radius as a function of the

variance of the connectivity vectors, while the covariance is fixed (σmn = 0.01). E: Outlier and bulk radius as a function
of the covariance, while the variance is fixed (σ2 = 0.09). Empirical values are displayed as mean (dots) and standard
deviation (bars, 10 repeats) of the eigenvalue with largest absolute magnitude (bulk) and real part (outlier), while the
outlier is still distinguished from the bulk. When the outlier is smaller than the bulk, its location cannot be measured
empirically. Lines: theoretical predictions at empirically measurable (solid) and unmeasurable (dashed) locations.
Parameters: C = 200, N = 1200, resulting in s = 0.8.

We find that this expression accurately describes the radius of the bulk distribution 163

measured empirically in finite-size networks (Fig 2C). When sparsity is imposed by 164

setting a fixed number of connections C and increasing N , these quantities can simply 165

be redefined in terms of C and N by substituting s = 1− C/N . We thus obtain the 166

outlier as: 167

λ1 =
C σmn

N
, (10)

and the radius of the bulk as: 168

R =

√
Cσ2
√
N − C√
N3

. (11)

In contrast to the previous case of Gaussian networks, the radius of the bulk 169

distribution which emerges in rank-one networks therefore scales non-monotonically 170

with sparsity, first increasing to its maximum extent at s = 0.5, then reducing once 171

more into the origin as the degree of sparsity approaches 1 (Fig 2C, D). 172

High sparsity limit 173

With the rank-one connectivity defined with a 1/N scaling as in (Eq. 3), when C is 174

fixed and N is taken to ∞, both the bulk radius R and the outlier λ1 are reduced to 175

zero. In order to have a non-vanishing eigenspectrum and ensure that the bulk radius 176

and the outlier remain finite in the limit of N →∞, we turn to a rescaled version of the 177

connectivity matrix Pij . By removing the weight scaling by N and considering simply 178

the matrix 179

P̃ij = Xijminj , (12)
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the outlier is now constant with respect to sparsity: 180

λ1 = C σmn, (13)

and the radius of the bulk becomes: 181

R =

√
Cσ2
√
N − C√
N

, (14)

which approaches
√
Cσ2 in the limit of high sparsity as N is taken to infinity at finite 182

C (Fig 3B). Thus in this rescaled network, for a given number of connections per 183

neuron C and for a high level of sparsity C � N , the radius of the bulk distribution 184

depends only on the variance σ2 of the connectivity vectors (Fig 3C), and the location 185

of the structural eigenvalue outlier depends only on their covariance σmn (Fig 3D). This 186

decoupling from N allows us to understand the dynamics of networks situated in the 187

high-sparsity regime solely in terms of the two variables characterising the rank-one 188

connectivity, the variance σ2 and the covariance σmn of the connectivity vectors. 189

Dynamics of sparsified rank-one networks 190

Having characterised the eigenspectrum of the sparsified rank-one matrix, we now turn 191

to the insights we can extract about the dynamics. We have shown that the 192

eigenspectrum of the sparse rank-one matrix is comprised of two distinct components, 193

the outlier and the bulk distribution, which are under the independent control of two 194

key parameters defining the network connectivity. Moreover, we have shown that in the 195

large N limit, the spectral radius of the bulk distribution can be characterised by 196

Girko’s circular law, in the same manner as the circular disk of eigenvalues 197

characteristic of a full-rank Gaussian matrix (Fig 1). This leads us to hypothesize an 198

equivalence between the dynamics of a sparsified rank-one network and those of a dense 199

rank-one network with an added full-rank, Gaussian component, which also give rise to 200

an outlier and an eigenvalue disk into the spectrum [8]. In what follows, we therefore 201

explore the extent to which the dynamics of sparsified rank-one networks resemble 202

dense rank-one networks with additional random connectivity, and highlight the aspects 203

in which they are unique. 204

205

To preface our interpretation of the dynamics, we briefly summarise the behaviour of 206

low-rank recurrent networks in the dense case [8,12,13]. In general, a network of rank R 207

gives rise to dynamics embedded in an R-dimensional subspace spanned by the right 208

connectivity vectors, with an additional dimension introduced by each addition of 209

external input along a given vector I. Recent work has demonstrated that the 210

trajectories within this subspace can be reduced to a mean-field description of a small 211

number of interacting latent variables [12,13]. For the rank-one networks that we 212

consider here, the activation of each unit xi can be described by: 213

xi(t) = κr(t) mi + κI(t) Ii, (15)

where I is the vector along which the network receives an external input. The latent 214

variables κr(t) and κI(t) define the projection of the population activity x onto the 215

vectors m and I respectively. The population activity therefore spans the plane formed 216

by the vectors m and I, and reduces to a one-dimensional trajectory along the vector m 217

in the absence of input. Whether or not activity is generated along m is determined by 218

the total recurrent input κrec, given by (see Methods): 219

κrec =
1

N

N∑
j=1

nj φ(xj), (16)
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which represents the overlap of the network activity φ(x) with the left connectivity 220

vector n. A non-zero value of κrec - and thus non-trivial equilibrium dynamics 221

structured along m - can only arise if the connectivity vector n has a non-zero overlap 222

σnI with the input vector I (input-driven dynamics) or a non-zero overlap σnm with the 223

connectivity vector m (autonomous dynamics). 224

225

Here, we address the impact of sparsity on the degree of structure present in the 226

input-driven and autonomous network dynamics. We focus on rank-one networks in the 227

high-sparsity limit (Eq. 12) where the number of non-zero connections C is fixed 228

independently of N , in which case the magnitude of the outlier and bulk distribution 229

become independent of N and remain finite at high sparsities. We first fix both the 230

outlier and the bulk below unity, and consider the network response to an external 231

feedforward input (Fig. 4). We then turn to the autonomous dynamics that arise when 232

both the outlier and bulk are above the instability, and study the dynamical landscape 233

formed from the interaction between the two components (Fig. 5). 234

Input-driven dynamics 235

For dense rank-one connectivity, when both the eigenvalue outlier and the radius of the 236

bulk are fixed below unity, the fixed point at zero is stable, and the network can display 237

only transient dynamics invoked by an external input u(t) along a feedforward input 238

pattern I (Fig. 4A). If the input pattern is orthogonal to the left connectivity vector n, 239

the network activity simply propagates the feedforward input pattern along the 240

one-dimensional axis of I. However, two-dimensional trajectories can emerge if the 241

vector I is given a non-zero overlap with n; in this case, the component of the 242

input-driven activity φ(x) along n results in a non-zero κr, which allows the trajectory 243

to evolve into the m dimension during the course of the input current [8]. This 244

behaviour can be seen by projecting the activity into the m-I plane (Fig. 4B). The 245

input-driven trajectory is confined to the m-I plane, revealing the underlying rank-one 246

structure in the connectivity. 247

248

To understand the manner in which sparsity interferes with these input-driven 249

trajectories, we first consider what happens when we simply add a random, Gaussian 250

component of variance g2/N to an otherwise dense rank-one matrix, which introduces 251

to the eigenspectrum an eigenvalue disk similar in nature to the bulk distribution that 252

arises under sparsity. With such an addition, the input-driven trajectories are subtly 253

modified as the strength g of the random component (Eq. 2) is increased from 0 to 1 254

(Fig. 4B, C). The projection of the population activity in the m-I plane remains 255

unaffected (Fig 4B, left), but the random perturbation to the recurrent inputs causes 256

the population activity to gain additional dimensions (Fig. 4B, right). The dominant 257

dimensions of the activity remain aligned with the axes of I and m, and the degree of 258

activation along the m dimension, as quantified by κr, is not reduced (Fig. 4C, lower). 259

However, the dimensionality of the network activity increases with g (Fig 4C, upper). 260

261

The impact of sparsity is markedly different (Fig. 4D-F). As the degree of sparsity is 262

increased, the increased presence of zeros in the connectivity reduces the overlap of the 263

input-driven activity with the n dimension, reducing κr and leading to a progressive 264

loss of structure along m (Fig. 4E, F). Since the feedforward connections are left 265

untouched, the degree to which the activity spans the I dimension is not affected. The 266

input-driven trajectories of the sparse network are therefore flattened towards the I axis 267

as sparsity is increased (Fig 4E), and the degree of activity along m is progressively 268

decreased to zero (Fig 4F, lower). Moreover, despite an initial increase brought about 269

by the full-rank perturbation to the connectivity, the dimensionality of the population 270
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Fig 4. Impact of sparsity on input-driven dynamics. Network responses to a step input current
along a random vector I. Top row: network consists of a dense rank-one component 1

Nminj and a
full-rank, random component of variance g2/N ; the random strength g is progressively increased. Bottom
row: network consists only of rank-one component Pij = minj ; the sparsity is progressively increased by
decreasing the number of non-zero connections C. Both the bulk and outlier in the eigenspectrum lie
below unity, but the input vector I partially overlaps with n (σnI = 0.2). A, D: Temporal dynamics of the
network during step input (A: g = 0.8; D: s = 0.8). Top: samples of input timeseries Iiu(t). Bottom:
samples of network activations xi. B, E: Left: input-driven population trajectories projected onto the
plane defined by the right connectivity vector m and input vector I, as random strength (resp. sparsity) is
progressively increased. Right: principal component analysis (PCA) of each trajectory, showing the
fraction of variance explained by the first three components (upper panels) and the correlation between
first three principal components and the vectors I and m (lower panels). C, F: Top: Dimensionality of
network trajectories quantified by the participation ratio (

∑
i λi)

2/(
∑

i λ
2
i ), where λi are the eigenvalues of

the covariance matrix of activations. Bottom: Projection κr of network activation x onto right
connectivity vector m. The mean value for both quantities is taken over 50 simulations for each value of C
and g. Parameters for all graphs: N = 2000, σ2 = 0.015, σmn = 0.

activity is ultimately decreased as the gradual pruning of connections weakens the 271

influence of the recurrent inputs (Fig 4F, upper). 272

273

We therefore highlight a key difference between the input-driven dynamics of 274

sparsified rank-one networks and those of a dense rank-one network with an added 275

random component. Sparsity interferes with the structure of input-induced activity in a 276

way that a random component does not: it reduces the component of the dynamics 277

along m otherwise revealed by an appropriate geometric configuration of inputs, and 278

reduces the overall dimensionality of the activity by stripping away the influence of 279

recurrent inputs. In contrast, increasing the random connectivity in dense networks 280

preserves the dynamics along m, and increases the overall dimensionality of the 281

dynamics. 282
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Autonomous dynamics 283

When the outlier and the bulk radius in the eigenspectrum are increased above unity, 284

the fixed point at zero loses stability and non-trivial autonomous dynamics emerge. It is 285

here that the equivalence of the sparse regime to the addition of a random component 286

manifests itself. In previous work [8] investigating the autonomous dynamics that 287

emerge in networks comprised of a rank-one component P plus a full-rank random part, 288

distinct dynamical regimes were identified on the basis of the dominance of each 289

component in the eigenspectrum. The dynamics were described as decaying, if both the 290

outlier of P and the eigenvalue disk of J lie below unity; structured stationary, if the 291

outlier crosses the instability and the disk radius, inducing a non-trivial fixed point 292

along the axis of m; or chaotic, if the radius of the disk belonging to J crosses the 293

instability and the outlier, introducing the higher-dimensional fluctuations classically 294

associated with random networks [24]. 295

296

Due to the similarities in the eigenspectra, our analyses reveal that the autonomous 297

dynamical regimes of sparsified rank-one networks can be mapped directly onto those 298

described above (Fig. 5). The bulk distribution plays a role analogous to the eigenvalue 299

disk of the random part of the connectivity, while the eigenvalue outlier takes the role of 300

the outlier of P. In the rank-one network in the high-sparsity regime (Eq. 12), the 301

location of the bulk and the outlier are independent of N and thus remain present in the 302

eigenspectrum even at high sparsities, at magnitudes described respectively by
√
Cσ2

303

and Cσmn (Fig. 3). As in densely connected networks , the instability can either be 304

lead by the outlier, bringing the network into a heterogenous stationary regime aligned 305

with m (Fig. 5A, top left), or by the bulk, inducing chaotic dynamics (Fig. 5A, bottom 306

right). Since the magnitude of the bulk radius and the outlier are controlled respectively 307

by the variance σ2 and covariance σmn of the connectivity vectors, the regime in which 308

the network is situated is dictated solely by the relative configuration of these key 309

connectivity parameters. The phase diagram of Fig 5A summarises the dynamical 310

landscape that arises; we note that this diagram is equivalent to that in [8], where the 311

variance σ2 takes the place of the coupling strength g of the random component. 312

313

Since the precise location of the outlier and the bulk are a function of C, the form of 314

the phase diagram is modulated by C. Fixing N and modulating C shifts the 315

boundaries of the phase diagram (Fig 5B), which can alter the dynamics displayed by a 316

network for given values of the variance σ2 and covariance σmn. For example, in a 317

network fixed at a given parameter location in the phase diagram (white square), 318

progressively decreasing C to increase the degree of sparsity causes the network activity 319

to lose structure along m (Fig 5C), since the outlier Cσmn decreases as a function of C. 320

321

In contrast, when fixing C and increasing N to sparsify the connections, the degree 322

of structure along m remains unaffected (Fig 5D). This is because the outlier is 323

independent of N , and the bulk radius quickly becomes so as the sparsity 1− C/N is 324

increased. Thus, the rank-one network constructed as in Eq. 12, appropriately 325

parameterised, can preserve its rank-one outlier and sustain a high degree of sparsity 326

while still displaying the structured, one-dimensional dynamics that are the hallmark of 327

its underlying connectivity. 328

329

In summary, sparsified low-rank networks display a wider range of dynamics than 330

their dense counterparts, since the full-rank perturbation to the connectivity introduced 331

by sparsity acts in a manner analogous to the addition of a random component. When 332

the dynamics are purely input-driven, these two cases are not directly equivalent; 333

increasing the degree of sparsity gradually reduces the dimensionality of the dynamics 334
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Fig 5. Dynamical regimes of autonomous network activity at high sparsity. A: Dynamics of a sparsified
rank one network in the high-sparsity regime where Pij = minj and the number of non-zero connections C is fixed.
The variance σ2 and covariance σmn of the connectivity vectors respectively control the bulk radius and outlier of the
eigenvalue distribution. Centre: Phase diagram of dynamical regimes in the variance-covariance plane, for C = 200
and N = 1000. The transition from structured to chaotic activity occurs when the bulk radius surpasses the location
of the outlier. Side panels: samples of autonomous dynamics of simulated networks situated in different dynamical
regimes (coloured squares). Eigenspectra of each network accompany each panel, showing bulk distribution (small
dots) and outlier (large dot) with respect to the instability limit at unity (dashed line). B: Modification of the phase
diagram when N is fixed (N = 1000) and C is reduced to increase the degree of sparsity. C: Projection of activity
along m for a network with fixed variance σ2 and covariance σmn (situated at the white square in phase diagrams in
B) while N is fixed (N = 1000) and C is decreased. The network activity progressively loses structure along m since
the eigenvalue outlier is reduced. D: Same as C, but with C fixed (C = 600) and N increased. The outlier is
independent of N , so structured dynamics can be maintained.
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and erodes the structured component, while imposing a random component expands the 335

dimensionality of the dynamics. However, when the dynamics are autonomous, the 336

dynamical regimes accessible to sparsified low-rank networks can be equated directly to 337

those of a rank-one network with an added Gaussian term. 338

Computations in sparsified networks 339

Low-rank recurrent networks benefit from a simple, transparent relationship between 340

the connectivity and resulting dynamics which can be harnessed to implement a rich 341

repertoire of input-output computations [8, 11–13]. The fact that this relationship is 342

preserved even at high levels of sparsity indicates that such computations can be 343

performed even in the highly-sparse regime. By way of example, here we demonstrate 344

how a non-linear input-integration task can be implemented in a sparse low-rank 345

network by designing the connectivity according to intuitive geometric principles 346

originally developed in the context of dense low-rank networks. 347

348

We consider a simple evidence-accumulation task in the form of a common 349

behavioural paradigm: a given stimulus is assumed to vary continuously along a 350

particular stimulus feature - such as the coherence of a random-dot kinetogram [28] - 351

and the task is to report whether the magnitude of this stimulus feature is greater than 352

a certain threshold. The actual magnitude is subject to noise fluctuations, so the input 353

must be integrated over time. To model the task, we follow [8] and use the network 354

structure of Fig 6A. We provide the network with a time-varying stimulus u(t)I, where 355

the input pattern I represents the stimulus feature of interest and u(t) is its fluctuating 356

magnitude. A readout unit sums the network activity through a set of readout weights 357

w to generate an output z(t). We require the output to be positive if the stimulus 358

magnitude c̄ is above threshold, and negative otherwise. 359

360

In dense networks, the task can be implemented easily with unit rank connectivity, 361

using a solution which relies solely on an appropriate geometric structure of input and 362

readout weights. The details of the solution are given in [8]; here we simply state the 363

requirements. Firstly, the input pattern I must overlap with the left connectivity vector 364

n, in order for the input to be picked up by the recurrent dynamics. Secondly, the 365

readout vector w must overlap with the right connectivity vector m, for the recurrent 366

dynamics to themselves influence the readout. Finally, the connectivity vectors must 367

overlap in a shared dimension orthogonal to the input and the readout, in order to 368

exploit the bistability of the rank-one fixed point and generate the non-linear switch in 369

readout upon integrating the stimulus. To implement the task in a sparse rank-one 370

network, we therefore select connectivity vectors m and n which obey these 371

requirements (Fig 6A, centre) and construct a rank-one matrix P as Pij = minj . We 372

then keep only C non-zero inputs per neuron to form the sparse connectivity matrix P̃ 373

(Fig 6A, right). 374

375

Network simulations confirm that the task can be performed accurately at high 376

sparsities (Fig 6B), generating a positive readout only for high stimulus magnitude c̄. 377

The requirement for success is that the rank-one outlier remains greater than the bulk 378

of the eigenvalue distribution, to keep the network in the structured regime in which the 379

bistability can be maintained. Since the boundaries between regimes shift as C is 380

modified (Fig 5B), the connectivity vector overlap σmn need only be modulated to 381

ensure that the outlier continues to dominate (Fig 6C, phase diagram insets). If σmn is 382

not modulated simultaneously, the psychometric curve for the task simply shifts with C 383

(Fig 6E). At high levels of sparsity, the network units receive little recurrent input and 384
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are therefore more heavily influenced by noise in the input; however, summing the 385

activations through the readout unit has the effect of averaging away individual 386

fluctuations. As a result, the variation in the readout z(t) is only mildly increased as 387

sparsity is increased (Fig 6D), and by no means enough to corrupt performance. 388

Likewise, increasing the variance σ2 of unit-rank connectivity to shift the network 389

towards the chaotic regime has the effect of introducing strong fluctuations into the 390

individual activations, but results in only a small increase in readout variance (Fig 6D), 391

and leaves the task performance unaffected. The implementation of the task is therefore 392

robust to high levels of sparsity and any parameter perturbations which introduce 393

fluctuations to the recurrent dynamics; the key requirement is simply that the bistable 394

structured regime persists, which can be insured by the appropriate relation between 395

input, readout and connectivity vectors. 396

397

The basic principle we demonstrate here is that the structured dynamical regime 398

induced by low-rank connectivity can be preserved even at high sparsity, which means 399

that computations which are designed to exploit this structure can be implemented 400

effectively even in networks which are highly sparse. The implication is that the full 401

repertoire of dynamical computations implementable in a low-rank network can be 402

likewise performed at high degrees of sparsity, provided the network is appropriately 403

parameterised. 404
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Fig 6. Implementation of input integration task in rank-one networks at high
sparsity A: Illustration of recurrent network structure (left), geometrical configuration of
input, readout and connectivity vectors (centre), and construction of sparse rank-one
connectivity matrix (right). B: Implementation of the task in a sparse network (s = 0.9,
C = 200 and N = 2000). Top: sample of fluctuating inputs, with magnitude set by
coherence parameter c̄. Centre: examples of network activations xi(t) for two inputs of
different strengths. Bottom: corresponding readout z(t) for high and low stimulus
strengths. Network is parameterised by variance σ2 = 0.1 and covariance σmn = 0.04,
located at the white square on the phase diagram in the inset. C: Readout dynamics in
networks with differing degrees of sparsity, with C modified while N is fixed to 2000.
Parameters are modified to keep network within the bistable regime (σmn = 0.05 and 0.02
respectively), as seen in the phase diagram insets. D: Variance in readout response z(t) to
high-coherence inputs (c̄ = 0.9) as the variance of the connectivity vectors m and n is
increased. Variance is taken over the final half of the input presentation, for correct
responses only. Mean over 50 trials. E: Psychometric curve for different sparsity levels C,
with other parameters held fixed (σ2 = 0.1, σmn = 0.06 and N = 2000).
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Discussion 405

In this study, we investigated the dynamics of recurrent neural networks in which the 406

connectivity matrices are sparse but possess an underlying low-rank structure. We 407

showed that the resulting full-rank connectivity matrices have eigenspectra which consist 408

of two distinct components, a continuous bulk distribution and isolated outliers. Such 409

eigenspectra are directly analogous to those of a fully-connected unit rank structure plus 410

a full-rank random component [8, 22,23]. Analytically estimating the magnitude of the 411

outlier and the radius of the continuous bulk in the large N limit allowed us to predict 412

the dynamics of the sparsified networks. In particular, the relative magnitude of the two 413

major eigenspectrum components delineates boundaries between decaying, structured 414

and chaotic dynamical regimes. The similarity in the eigenspectra implies that the 415

regimes of autonomous dynamics in sparsified unit-rank networks are analogous to those 416

of dense unit-rank networks with a random connectivity component [8]. Notable 417

differences however appear when the dynamics are purely input-driven. Altogether, we 418

found that computations designed to harness key dynamical properties of low-rank 419

networks are highly robust with respect to sparsity. This identifies sparsified low-rank 420

networks as a biologically-plausible network structure through which to implement 421

computation through low-dimensional population dynamics [7]. 422

423

The sparse networks examined here were generated by directly removing connections 424

in a fully-connected low-rank structure. The resulting connectivity matrices are directly 425

analogous to those obtained by learning a single pattern through Hebbian plasticity on 426

a sparse subset of connections [9, 29], and therefore are of potential biological relevance. 427

Our analyses can be directly extended to connectivity which consists of a sparsified 428

low-rank structure superposed with a random sparse component with independent 429

entries. As with randomly-connected networks, the results depend on assumptions 430

regarding how the synaptic weights scale with the number of connections [10, 26, 30–33]. 431

Here we considered two cases, and ultimately focused on the situation in which both the 432

number C of non-zero connections per neuron and the strength of the connections are 433

fixed as the total number of neurons N is increased [26]. Under these assumptions, the 434

radius of continuous bulk of the eigenspectrum remains finite for large N [27], as does 435

the value of the outlier. For alternative choices of scaling, our analyses suggest that the 436

expected behaviour of the eigenvalue bulk ultimately depends on the scaling of the 437

variance of the connectivity matrix adjusted by removing the mean low-rank component. 438

439

Given its extreme ubiquity in the brain, a question of interest is whether sparsity 440

confers any direct benefit to cortical networks aside from the evident reduction in 441

metabolic and wiring costs. From our analysis, it is not directly clear whether sparsified 442

low-rank networks possess direct computational advantages over their dense 443

counterparts. Insights into the potential computational benefit of sparsity are however 444

rife in the related field of deep learning. Research indicates that the performance of 445

deep networks is remarkably robust to sparsity, and that a large majority of parameters 446

can be pruned without significant loss in accuracy [34,35]. This makes sparsity a 447

natural regulariser, often employed in combatting over-parameterisation and 448

overfitting [36]. Computational advantages are observed as a consequence, including an 449

improvement in the ability of the trained network to generalise [37, 38] and an increased 450

robustness to adversarial attacks [39,40], on top of significant savings in memory 451

storage, training time and energy efficiency [35, 41]. Nonetheless, such benefits are most 452

often the result of a highly selective, rule-based pruning process, as opposed to the 453

random weight selection employed in this study. An important avenue of future work 454

will be to explore different forms of structure in the sparsity imposed, and its relation to 455

the training process and the dynamic rules under which the connectivity evolves. 456
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Methods 457

Connectivity vectors 458

The right and left connectivity vectors m and n are constructed from three independent 459

normal random vectors x, y and z in the following manner: 460

m =
√
σ2 − σmn x +

√
σmn z (17)

n =
√
σ2 − σmn y +

√
σmn z (18)

where the components of x, y and z are generated independently from N (0, 1). The 461

elements of m and n are therefore Gaussian-distributed as ∼ N (0, σ2) and their degree 462

of overlap onto the z direction is controlled by scaling
√
σmn in the interval [0, σ]. 463

Spectral radius of sparsified full-rank matrix 464

The sparsified full-rank matrix J̃ is generated as the elementwise product of the original 465

matrix J with an independent random binary matrix X whose elements are 0 with 466

probability s and 1 with probability 1− s. In other words: 467

J̃ = J�X where Xij ∼ B(1, 1− s). (19)

The entries of J have a variance of g2/N and a mean of 0, while the entries of X 468

have a variance of (1− s). The variance of the entries of J̃ can therefore be derived as: 469

V ar(J̃) = E [J̃2]− E [J̃]2 (20)

= E [J2] E [X2]− (E [J] E [X])2

=
g2

N
(1− s). (21)

The spectral radius is then given by the circular law: 470

R =

√
V ar (J̃) ·N = g

√
1− s. (22)

When sparsity is imposed by setting the number of connections per unit C, the radius is 471

given by substituting s = 1− C/N as: 472

R = g

√
C

N
. (23)

Eigenvalue spectrum of sparsified rank-one matrix 473

The elements of the sparsified rank-one matrix P̃ are generated in an equivalent manner 474

as P̃ij = PijXij . Its eigenspectrum is comprised of a continuous bulk and an isolated 475

outlier. We here derive the location of the outlier λ1 and the radius R of the bulk 476

distribution individually. 477

Outlier 478

We proceed by showing that, for N →∞, the right connectivity vector m is an 479

eigenvector v of P̃, and derive the corresponding eigenvalue λ. By writing the 480

individual matrix elements of P̃ as: 481

P̃ij =
minjXij

N
(24)
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the ith element of P̃ applied to m is: 482

(P̃m)i = mi

∑
j

mjnjXij

N
(25)

As N →∞, the sum over j in the right-hand side converges to an expectation due to 483

the central limit theorem, and we may write: 484

(P̃m)i = E [njmjXij ] mi (26)

= E [njmj ] E [Xij ] mi

= σmn (1− s) mi

It therefore holds that: 485

P̃m = σmn(1− s) m (27)

so that m is a right eigenvector of P̃ with eigenvalue 486

λ1 = σmn(1− s) (28)

Bulk 487

To determine the radius of the bulk distribution, we derive the variance of the elements 488

of the matrix with the outlier eigenvalue removed, P̃∗ = P̃− (1− s)P. We first rewrite 489

X as 1−B, where B is a Bernoulli matrix with entries Bij ∼ B(1, s), in order to 490

rewrite the individual matrix entries P̃ ∗ij as follows: 491

P̃ ∗ij = P̃ij − (1− s) Pij (29)

= Pij ·Xij − (1− s) Pij

= Pij · (1−Bij)− (1− s)Pij

= Pij (s−Bij)

We can then derive the variance of the entries P̃ ∗ij as 492

V ar (P̃ ∗ij ) = E [P̃ ∗2ij ]− E [P̃ ∗ij ]2 (30)

= E [(Pij (s−Bij))
2]− 0

= E [P 2
ij ] E [(s−Bij)

2]

= E [(
mi nj
N

)2] E [(s−Bij)
2]

=
1

N2
E [m2

i ] E [n2
j ] E [s2 − 2sBij +B2

ij ]

=
σ4

N2
· (s2 − 2s2 + E[B2

ij ])

=
σ4

N2
· s (1− s)

given that Pij =
minj

N , and mi and ni each have variance σ2. As before, we may 493

substitute s = 1− C/N when sparsity is imposed by setting the number of connections 494

per unit, to give: 495

V ar(P̃ ∗) =
Cσ4(N − C)

N4
. (31)

The bulk radius is then obtained via the circular law R =
√
V ar ·N as in the Gaussian 496

case. 497
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Latent dynamics in low-rank networks 498

Here we summarize the description of low-dimensional dynamics in low-rank 499

networks [12,13]. 500

501

The low-rank network of Eq. 3, with connectivity matrix Pij =
minj

N , is governed by 502

the dynamics introduced in the main text (Eq. 1): 503

τ ẋi(t) = −xi(t) +
1

N

N∑
j=1

minj φ(xj(t)) + Ii u(t), (32)

At the level of the population, the collective trajectory x(t) is embedded in a 504

low-dimensional linear subspace [12,13]. The total dimensionality of this subspace is the 505

sum of the rank of the connectivity matrix P plus the dimensionality of external inputs. 506

For a rank-one network with one external input vector, the dynamics are constrained to 507

the two-dimensional plane spanned by the left connectivity vector m and the input 508

vector I. The dynamics can then be represented in a new basis by projecting the activity 509

trajectory x(t) onto these two axes. The individual unit activations thus read as: 510

xi(t) = κr(t) mi + κI(t) Ii, (33)

where κr(t) and κI(t) are projections of the activity x(t) onto the m and I axes 511

respectively: 512

κr(t) =
1

‖m‖2
mTx(t) (34)

κI(t) =
1

‖I‖2
ITx(t). (35)

The projection onto the m axis, κr(t), is then governed by its own dynamical equation: 513

τ κ̇r(t) = −κr + κrec, (36)

where: 514

κrec =
1

N

N∑
j=1

nj φ(xj). (37)

At equilibrium, we therefore have κr = κrec. 515

516
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