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Abstract

Neural population dynamics are often highly coordinated, allowing task-related
computations to be understood as neural trajectories through low-dimensional subspaces.
How the network connectivity and input structure give rise to such activity can be
investigated with the aid of low-rank recurrent neural networks, a recently-developed
class of computational models which offer a rich theoretical framework linking the
underlying connectivity structure to emergent low-dimensional dynamics. This
framework has so far relied on the assumption of all-to-all connectivity, yet cortical
networks are known to be highly sparse. Here we investigate the dynamics of low-rank
recurrent networks in which the connections are randomly sparsified, which makes the
network connectivity formally full-rank. We first analyse the impact of sparsity on the
eigenvalue spectrum of low-rank connectivity matrices, and use this to examine the
implications for the dynamics. We find that in the presence of sparsity, the eigenspectra
in the complex plane consist of a continuous bulk and isolated outliers, a form
analogous to the eigenspectra of connectivity matrices composed of a low-rank and a
full-rank random component. This analogy allows us to characterise distinct dynamical
regimes of the sparsified low-rank network as a function of key network parameters.
Altogether, we find that the low-dimensional dynamics induced by low-rank connectivity
structure are preserved even at high levels of sparsity, and can therefore support rich
and robust computations even in networks sparsified to a biologically-realistic extent.

Author summary

In large networks of neurons, the activity displayed by the population depends on the
strength of the connections between each neuron. In cortical regions engaged in
cognitive tasks, this population activity is often seen to be highly coordinated and
low-dimensional. A recent line of theoretical work explores how such coordinated
activity can arise in a network of neurons in which the matrix defining the connections
is constrained to be mathematically low-rank. Until now, this connectivity structure has
only been explored in fully-connected networks, in which every neuron is connected to
every other. However, in the brain, network connections are often highly sparse, in the
sense that most neurons do not share direct connections. Here, we test the robustness of
the theoretical framework of low-rank networks to the reality of sparsity present in
biological networks. By mathematically analysing the impact of removing connections,
we find that the low-dimensional dynamics previously found in dense low-rank networks
can in fact persist even at very high levels of sparsity. This has promising implications
for the proposal that complex cortical computations which appear to rely on
low-dimensional dynamics may be underpinned by a network which has a fundamentally
low-rank structure, albeit with only a small fraction of possible connections present.
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Introduction

Neural recordings in animals performing cognitive tasks have revealed that individual
neurons ubiquitously display a high degree of coordination. When viewed in the activity
state space, in which each each axis represents the firing rate of one unit, the
trajectories of neural activity are typically confined to low-dimensional subspaces [1-6].
The resulting latent dynamics have been proposed to underpin complex cortical
computations |7]. However, how the inputs to the network and the connectivity between
the individual units shape such low-dimensional activity remains a prominent question.

A recently developed class of models, recurrent networks with low-rank connectivity,
provide a tractable theoretical framework for addressing this question and unravelling
the relationship between connectivity structure, low-dimensional dynamics and the
resulting computations [8H17]. One important limitation is, however, that these models
often assume a dense connectivity structure in which every neuron shares synapses with
every other. In contrast, cortical networks exhibit a high degree of sparsity in their
connectivity, meaning that each neuron receives inputs from only a fraction of its
neighbors [1821]. Since sparse matrices are typically full-rank, an important question is
whether and how the results obtained in the study of low-rank recurrent networks apply
to sparse connectivity structures.

Here we investigate how the dynamics of low-rank recurrent networks are impacted
by increasing degrees of sparsity. We start by analysing the eigenvalue spectra of
low-rank connectivity matrices in which sparsity is imposed by removing a random
fraction of entries. Such matrices are full rank, but we find that the corresponding
eigenspectra consist of a continuous bulk and isolated outliers, and are therefore
analogous to low-rank matrices superposed with a random, full rank
component [8,22,23]. We show that both the radius of the eigenvalue bulk and the
outliers can be estimated analytically. We then use these results to compare the
dynamics of sparsified low-rank networks to those of densely connected low-rank
networks with a full rank random component. Altogether we found that the
low-dimensional dynamics generated by a low-rank connectivity structure are highly
resistant with respect to sparsity and therefore provide a robust substrate for
implementing computations in networks with biologically realistic connectivity.
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Results

Network connectivity

We study recurrent networks of IV firing rate units, following the classical formalism
in [24]. The dynamics of each individual unit ¢ evolve as:

N
T @(t) = —wi(t) + Z Jij ¢(x;(t)) + I; u(t), (1)

Jj=1

where z; describes the total input current to each unit, 7 is the time constant of the
dynamics, J;; is the synaptic weights from unit j to unit ¢ and ¢(-) is a non-linear
transfer function that we take to be the hyperbolic tangent. Each unit can also receive a
time-dependent input current of magnitude u(t) via a feedforward weight vector
I={I;}i=1.. ~. The set of synaptic weights .J;; are stored in a connectivity matrix J, for
which we consider two forms. We begin by considering full-rank Gaussian connectivity,
introducing sparsity into the synaptic weights and establishing the ways in which sparse
Gaussian networks differ from their fully-connected counterparts. We then constrain the
connectivity to be low-rank and sparsify as before, examining how the impact of
sparsity in such networks both parallels and contrasts with that of the Gaussian case.

The full-rank Gaussian networks are defined by a matrix J with entries
independently distributed as

Jij ~ N(ngQ/N)a (2)

where g controls the variance of the matrix entries and thus the strength of the coupling.

For the low-rank networks, we consider the simplest case of a rank-one matrix P,
constructed as in previous work [§] as a rescaled outer product of two N-dimensional
random connectivity vectors m = {m;},=1..n and n = {n;};=1. n such that

m;n;

Py = (3)

This ensures that all columns of P are linearly dependent and proportional to m. The
individual entries m; and n; of the connectivity vectors are drawn independently for
each 7 from a joint Gaussian distribution with mean 0 and covariance matrix X:

2= o), (@)

Omn g

where o2 is the variance of both connectivity vectors which controls the overall strength
of the coupling, and o, is the covariance between them (see Methods). In the large N
limit, this covariance becomes equivalent to the degree of overlap between m and n,
given by the normalised scalar product:

Ormn = : ()

The covariance o,,, plays a critical role in the stability of the dynamics of the rank-one
network due to its influence on the matrix eigenvalues, as will be seen in the following
sections. The variance o2 likewise gains a critical influence as soon as the matrix
becomes sparse. These two key parameters controlling the connectivity, the variance
and covariance of the connectivity vectors, will therefore become paramount in the later
analysis of the dynamics.
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Eigenvalues of connectivity matrices

The dynamics of recurrent networks are strongly influenced by the eigenspectrum of
their connectivity matrix. Regardless of network structure, the dynamics always possess
a trivial fixed point at zero, since we take the transfer function ¢(-) to be the hyperbolic
tangent, and tanh(0) = 0. The stability of this zero fixed point is determined by the
magnitude of the eigenvalue with largest real part, A™*. Since ¢’(0) = 1, the stability
matrix at zero reduces to S;; = Jj; — d;;, so the fixed point at zero becomes unstable
when the largest eigenvalue of the connectivity matrix J surpasses unity. As soon as
this occurs, non-trivial dynamics can emerge. To understand the impact of sparsity on
network dynamics we will therefore analyse the changes in the network eigenspectra,
and will place particular focus on A% the eigenvalue with maximum real part.

Eigenvalues of sparsified full-rank networks

We first consider the impact of sparsity on the eigenspectra of the full-rank, random
connectivity matrices (Eq. . Work in random matrix theory has demonstrated that
the eigenspectra of such matrices are described by Girko’s circular law [25]: for a matrix
with entries independently distributed with mean zero and variance Var, the
eigenvalues converge in the limit of N — oo to a uniform distribution within a disk of
radius vVar - N centred at the origin. This result is universal in the sense that it holds
for any distribution with finite variance. For the Gaussian networks J introduced in
(Eq. [2) with Var = g?/N, the eigenvalues are therefore uniformly distributed on a
circular disk of radius approximated by g. Since the distribution is circular, the radius
of this disk is equivalent in the large N limit to A% the eigenvalue with maximum
real part, so we refer to both by the spectral radius R.

To sparsify the matrix, we simply choose a fraction s € [0, 1] of connections to set to
zero at random. This is achieved by multiplying the original matrix J elementwise with
a binary matrix X, where X;; are drawn independently from a Bernouilli distribution
B(1,1 — s), forming a sparse matrix J=JoX characterised by a degree of sparsity s
(Fig 1A). Due to the presence of zeros, the entries of J have a lower variance than those
of J, but remain independently distributed. Because of this property of independence,
we expect the universality result of the circular law for iid matrices to hold [25]. Indeed,
we find that the eigenvalues of the sparse matrix J continue to distribute uniformly on a
disk for which the spectral radius is described by vVar - N, where Var is now the
variance of the sparse matrix elements .J;;. This variance can be calculated (see
Methods) as (1 — s) g?/N, giving a spectral radius of:

R=gV1-s. (6)

Increasing the degree of sparsity s in a full-rank Gaussian network thus monotonically
reduces the radius of the disk on which the eigenvalues distribute. In Fig 1C we
demonstrate the correspondence of the prediction in (Eq. @ to the empirical spectral
radius, measured as the largest eigenvalue in the spectrum of a finite-sized Gaussian
matrix sparsified in the manner described above.

An alternative means of sparsifying the matrix is to set to zero a fixed number of
outgoing connections C' per unit, while increasing the total number of units N, where
C < N. This is often a regime of interest in neuroscientific work [26]. The network is
now defined by a degree of sparsity s = 1 — C/N, where C'/N is the fraction of non-zero
connections per unit. The impact of sparsifying the matrix in this manner is equivalent
to the previous case, where the theoretical spectral radius is now given by g1/C/N (Fig
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Fig 1. Influence of sparsity on the eigenspectra of full-rank networks. A: Illustration of how sparsity
is imposed in the connectivity matrix, where the degree of sparsity is s = 0.5. B: Complex eigenspectra of full
rank, Gaussian connectivity matrices of finite size (N = 300, g = 1) in the dense case (left) and with a sparsity of
0.5 (right). The dashed line plots the unit circle. C, D, E: Reduction of spectral radius R as a function of
sparsity in a full-rank matrix J constructed as in (Eq. [2)) with connection strength g = 1. In C, sparsity is
imposed as a fraction of total connections removed (N = 1000). In D and E sparsity is imposed by fixing the
number of outgoing connections to C' = 200 and increasing N. Dots: mean empirical spectral radius, measured as
the largest absolute value of all eigenvalues, over 50 instances. Solid lines: theoretical prediction.

1D) and taking the degree of sparsity to one now corresponds to taking the number of
units N to infinity (Fig 1E).

Eigenvalues of sparsified rank-one networks

We now turn to the impact of sparsity on the eigenspectra of rank-one matrices.
Fully-connected rank-one matrices have only one potentially-nonzero eigenvalue, formed
from the scalar product of the corresponding left and right eigenvectors. For the matrix
P defined in (Eq. , the right and left eigenvectors are the connectivity vectors m and
n, and the corresponding eigenvalue is located at m”n/N on the real axis, which is
equivalent in the large N limit to the overlap ¢,,, between the connectivity vectors.

When sparsity is introduced to the rank-one structure, forming a sparse matrix P,
this matrix is now formally full rank and possesses N potentially-nonzero eigenvalues.
However, we empirically observed that the eigenspectrum splits into two distinct
components. The eigenvalue associated with the rank-one structure remains distinct in
the spectrum, since such structure persists as a backbone to the connectivity. We refer
to this structural eigenvalue as the outlier. At the same time, the full-rank perturbation
introduced by the sparsity induces additional eigenvalues with nonzero real and
imaginary parts which distribute about the origin on a disk with non-uniform density
(Fig 2A). We refer to this set of additional non-zero eigenvalues induced by sparsity as
the bulk. For the sparsified rank-one matrix P, it is now these two components of the
spectrum, the bulk and the outlier, that together contribute to the dynamics.
Understanding the impact of sparsity on the dynamics therefore reduces to
understanding how each component is modified by sparsity. We now address each in
turn.

Firstly, the outlier A\; is reduced monotonically by sparsity. It can be shown that in
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Fig 2. Influence of sparsity on the eigenspectra of rank-one networks. A: Eigenspectra of rank-one
connectivity matrices of finite size, in the dense case (left) and under a sparsity of 0.5 (right). The matrix P is
constructed as in (Eq. 7 with parameters 02 = 16, 0,,,, = 1.44 and N = 300. Under sparsity, the outlier (gold) is
reduced and the bulk distribution (brown) emerges. The dashed line plots the unit circle. B, C: Impact of sparsity on
two key features of the eigenspectrum of finite-size rank-one networks: B, the outlier A1, and C, the spectral radius of
the bulk distribution. The outlier is eventually reduced below the instability boundary of A\; = 1, dashed line. Sparsity
is imposed as a fraction of total connections removed; 02 = 16, 0,,, = 4 and N = 1000. D: Same as in C but for

sparsity imposed by fixing C' = 200 non-zerro connections and increasing NN; bulk radius is plotted as a function of V.

Dots: empirical measurements of outlier and bulk radius. Solid lines: theoretical prediction.

the large N limit, the right connectivity vector m remains a right-eigenvector of P, and
yet a fraction s of matrix entries are now zero; this means that the factor by which the
outlier is reduced is 1 — s (see Methods). The outlier therefore lies at (1 — s) m?’n/N
on the real axis, and is drawn in towards the origin as the degree of sparsity approaches
1 (Fig 2B). In the large N limit, this value is equivalent to

A1 = (1—8) Omn. (7)

Secondly, we wish to characterise the radius of the bulk distribution. Although the
distribution of eigenvalues in the bulk is non-uniform (Fig 3A), it continues to be
circular, and we thus hypothesise that the universality result for the radius [25] still
holds. This would allow us to characterise the bulk radius directly using the variance of
matrix elements, in a similar manner to the Gaussian matrix. To test this, we derive the
variance of the elements not of the entire sparse matrix P, but of a new matrix P*
which possesses solely the eigenvalues in the bulk distribution. We remove the
eigenvalue outlier from the spectrum as in |22}[23}27], constructing a new matrix
P* = P — (1 — )P as a linear combination of the dense matrix P and the original
sparse matrix P. The connectivity vector m is also an eigenvector of 15*, but now with
a zero eigenvalue. The distribution of the remaining eigenvalues of P* is identical to
those in P, but with the outlier A\; removed. By deriving the variance of the elements of
P* (see Methods), we obtain:

~ « 0'4
Var(P*) = ms(l —3). (8)
The theoretical bulk radius given by the circular law is therefore:

s(1—s)

R =o? N (9)
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Fig 3. Key features of rank-one eigenspectrum become independent of NV in the high sparsity limit.

A Tllustration of the spectral radius R of the bulk distribution induced by sparsity, and the outlier A\ inherited from the
rank-one structure. Dots: eigenvalues of matrix. Dashed lines: theoretical predictions, with C' = 200, N = 2000,

02 =0.09, and o,,, = 0.008. B: Bulk radius as a function of sparsity imposed by fixing C' = 200 and increasing N, for
the rescaled matrix P;; = m;n; with 02 =0.09 and o,,, = 0.008. The outlier Co,,,, is now independent of N. The bulk
radius converges towards v/Co? (grey dashed line) as sparsity increases. D: Outlier and bulk radius as a function of the
variance of the connectivity vectors, while the covariance is fixed (0., = 0.01). E: Outlier and bulk radius as a function
of the covariance, while the variance is fixed (02 = 0.09). Empirical values are displayed as mean (dots) and standard
deviation (bars, 10 repeats) of the eigenvalue with largest absolute magnitude (bulk) and real part (outlier), while the
outlier is still distinguished from the bulk. When the outlier is smaller than the bulk, its location cannot be measured
empirically. Lines: theoretical predictions at empirically measurable (solid) and unmeasurable (dashed) locations.
Parameters: C' =200, N = 1200, resulting in s = 0.8.

We find that this expression accurately describes the radius of the bulk distribution
measured empirically in finite-size networks (Fig 2C). When sparsity is imposed by
setting a fixed number of connections C' and increasing NN, these quantities can simply
be redefined in terms of C' and N by substituting s = 1 — C'/N. We thus obtain the

outlier as:
C
A= % (10)
and the radius of the bulk as:
VCo?\/N =C

(11)

In contrast to the previous case of Gaussian networks, the radius of the bulk
distribution which emerges in rank-one networks therefore scales non-monotonically
with sparsity, first increasing to its maximum extent at s = 0.5, then reducing once
more into the origin as the degree of sparsity approaches 1 (Fig 2C, D).

High sparsity limit

With the rank-one connectivity defined with a 1/N scaling as in (Eq. , when C'is
fixed and N is taken to oo, both the bulk radius R and the outlier A\; are reduced to
zero. In order to have a non-vanishing eigenspectrum and ensure that the bulk radius
and the outlier remain finite in the limit of N — oo, we turn to a rescaled version of the
connectivity matrix P;;. By removing the weight scaling by N and considering simply
the matrix

Pij = Xijminj, (12)
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the outlier is now constant with respect to sparsity:
)\1 = C Ommns (13)
and the radius of the bulk becomes:

= W (14)

which approaches v/Co? in the limit of high sparsity as N is taken to infinity at finite
C (Fig 3B). Thus in this rescaled network, for a given number of connections per
neuron C' and for a high level of sparsity C' < N, the radius of the bulk distribution
depends only on the variance 0% of the connectivity vectors (Fig 3C), and the location
of the structural eigenvalue outlier depends only on their covariance o,,,, (Fig 3D). This
decoupling from N allows us to understand the dynamics of networks situated in the
high-sparsity regime solely in terms of the two variables characterising the rank-one
connectivity, the variance o2 and the covariance o,,, of the connectivity vectors.

Dynamics of sparsified rank-one networks

Having characterised the eigenspectrum of the sparsified rank-one matrix, we now turn
to the insights we can extract about the dynamics. We have shown that the
eigenspectrum of the sparse rank-one matrix is comprised of two distinct components,
the outlier and the bulk distribution, which are under the independent control of two
key parameters defining the network connectivity. Moreover, we have shown that in the
large N limit, the spectral radius of the bulk distribution can be characterised by
Girko’s circular law, in the same manner as the circular disk of eigenvalues
characteristic of a full-rank Gaussian matrix (Fig 1). This leads us to hypothesize an
equivalence between the dynamics of a sparsified rank-one network and those of a dense
rank-one network with an added full-rank, Gaussian component, which also give rise to
an outlier and an eigenvalue disk into the spectrum [8]. In what follows, we therefore
explore the extent to which the dynamics of sparsified rank-one networks resemble
dense rank-one networks with additional random connectivity, and highlight the aspects
in which they are unique.

To preface our interpretation of the dynamics, we briefly summarise the behaviour of
low-rank recurrent networks in the dense case [8,/12,/13|. In general, a network of rank R
gives rise to dynamics embedded in an R-dimensional subspace spanned by the right
connectivity vectors, with an additional dimension introduced by each addition of
external input along a given vector I. Recent work has demonstrated that the
trajectories within this subspace can be reduced to a mean-field description of a small
number of interacting latent variables [12[13]. For the rank-one networks that we
consider here, the activation of each unit x; can be described by:

zi(t) = ke (t) mi + w1 (t) L, (15)

where I is the vector along which the network receives an external input. The latent
variables k,.(t) and x;(t) define the projection of the population activity x onto the
vectors m and I respectively. The population activity therefore spans the plane formed
by the vectors m and I, and reduces to a one-dimensional trajectory along the vector m
in the absence of input. Whether or not activity is generated along m is determined by
the total recurrent input k.., given by (see Methods):

1 N
Rrec = N an ¢(Ij)a (16)
j=1
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which represents the overlap of the network activity ¢(x) with the left connectivity
vector n. A non-zero value of K., - and thus non-trivial equilibrium dynamics
structured along m - can only arise if the connectivity vector n has a non-zero overlap
01 with the input vector I (input-driven dynamics) or a non-zero overlap oy, with the
connectivity vector m (autonomous dynamics).

Here, we address the impact of sparsity on the degree of structure present in the
input-driven and autonomous network dynamics. We focus on rank-one networks in the
high-sparsity limit (Eq. where the number of non-zero connections C'is fixed
independently of N, in which case the magnitude of the outlier and bulk distribution
become independent of N and remain finite at high sparsities. We first fix both the
outlier and the bulk below unity, and consider the network response to an external
feedforward input (Fig. 4). We then turn to the autonomous dynamics that arise when
both the outlier and bulk are above the instability, and study the dynamical landscape
formed from the interaction between the two components (Fig. 5).

Input-driven dynamics

For dense rank-one connectivity, when both the eigenvalue outlier and the radius of the
bulk are fixed below unity, the fixed point at zero is stable, and the network can display
only transient dynamics invoked by an external input w(t) along a feedforward input
pattern I (Fig. 4A). If the input pattern is orthogonal to the left connectivity vector n,
the network activity simply propagates the feedforward input pattern along the
one-dimensional axis of I. However, two-dimensional trajectories can emerge if the
vector I is given a non-zero overlap with n; in this case, the component of the
input-driven activity ¢(x) along n results in a non-zero k.., which allows the trajectory
to evolve into the m dimension during the course of the input current [8]. This
behaviour can be seen by projecting the activity into the m-I plane (Fig. 4B). The
input-driven trajectory is confined to the m-I plane, revealing the underlying rank-one
structure in the connectivity.

To understand the manner in which sparsity interferes with these input-driven
trajectories, we first consider what happens when we simply add a random, Gaussian
component of variance g?/N to an otherwise dense rank-one matrix, which introduces
to the eigenspectrum an eigenvalue disk similar in nature to the bulk distribution that
arises under sparsity. With such an addition, the input-driven trajectories are subtly
modified as the strength g of the random component (Eq. [2]) is increased from 0 to 1
(Fig. 4B, C). The projection of the population activity in the m-I plane remains
unaffected (Fig 4B, left), but the random perturbation to the recurrent inputs causes
the population activity to gain additional dimensions (Fig. 4B, right). The dominant
dimensions of the activity remain aligned with the axes of I and m, and the degree of
activation along the m dimension, as quantified by &, is not reduced (Fig. 4C, lower).
However, the dimensionality of the network activity increases with g (Fig 4C, upper).

The impact of sparsity is markedly different (Fig. 4D-F). As the degree of sparsity is
increased, the increased presence of zeros in the connectivity reduces the overlap of the
input-driven activity with the n dimension, reducing k, and leading to a progressive
loss of structure along m (Fig. 4E, F). Since the feedforward connections are left
untouched, the degree to which the activity spans the I dimension is not affected. The
input-driven trajectories of the sparse network are therefore flattened towards the I axis
as sparsity is increased (Fig 4E), and the degree of activity along m is progressively
decreased to zero (Fig 4F, lower). Moreover, despite an initial increase brought about
by the full-rank perturbation to the connectivity, the dimensionality of the population
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Fig 4. Impact of sparsity on input-driven dynamics. Network responses to a step input current
along a random vector I. Top row: network consists of a dense rank-one component %mmj and a
full-rank, random component of variance g?/N; the random strength g is progressively increased. Bottom
row: network consists only of rank-one component P;; = m;n;; the sparsity is progressively increased by
decreasing the number of non-zero connections C'. Both the bulk and outlier in the eigenspectrum lie
below unity, but the input vector I partially overlaps with n (o,,; = 0.2). A, D: Temporal dynamics of the
network during step input (A: g = 0.8; D: s = 0.8). Top: samples of input timeseries I;u(t). Bottom:
samples of network activations x;. B, E: Left: input-driven population trajectories projected onto the
plane defined by the right connectivity vector m and input vector I, as random strength (resp. sparsity) is
progressively increased. Right: principal component analysis (PCA) of each trajectory, showing the
fraction of variance explained by the first three components (upper panels) and the correlation between
first three principal components and the vectors I and m (lower panels). C, F: Top: Dimensionality of
network trajectories quantified by the participation ratio (3°, A;)2/(>°; \?), where \; are the eigenvalues of
the covariance matrix of activations. Bottom: Projection &, of network activation x onto right
connectivity vector m. The mean value for both quantities is taken over 50 simulations for each value of C'
and g. Parameters for all graphs: N = 2000, 02 = 0.015, 0, = 0.

activity is ultimately decreased as the gradual pruning of connections weakens the o
influence of the recurrent inputs (Fig 4F, upper). 2
273

We therefore highlight a key difference between the input-driven dynamics of 274
sparsified rank-one networks and those of a dense rank-one network with an added 215
random component. Sparsity interferes with the structure of input-induced activity in a 27
way that a random component does not: it reduces the component of the dynamics 217
along m otherwise revealed by an appropriate geometric configuration of inputs, and 218
reduces the overall dimensionality of the activity by stripping away the influence of 279
recurrent inputs. In contrast, increasing the random connectivity in dense networks 280
preserves the dynamics along m, and increases the overall dimensionality of the 281
dynamics. 28
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Autonomous dynamics

When the outlier and the bulk radius in the eigenspectrum are increased above unity,
the fixed point at zero loses stability and non-trivial autonomous dynamics emerge. It is
here that the equivalence of the sparse regime to the addition of a random component
manifests itself. In previous work [§] investigating the autonomous dynamics that
emerge in networks comprised of a rank-one component P plus a full-rank random part,
distinct dynamical regimes were identified on the basis of the dominance of each
component in the eigenspectrum. The dynamics were described as decaying, if both the
outlier of P and the eigenvalue disk of J lie below unity; structured stationary, if the
outlier crosses the instability and the disk radius, inducing a non-trivial fixed point
along the axis of m; or chaotic, if the radius of the disk belonging to J crosses the
instability and the outlier, introducing the higher-dimensional fluctuations classically
associated with random networks [24].

Due to the similarities in the eigenspectra, our analyses reveal that the autonomous
dynamical regimes of sparsified rank-one networks can be mapped directly onto those
described above (Fig. 5). The bulk distribution plays a role analogous to the eigenvalue
disk of the random part of the connectivity, while the eigenvalue outlier takes the role of
the outlier of P. In the rank-one network in the high-sparsity regime (Eq. , the
location of the bulk and the outlier are independent of N and thus remain present in the
eigenspectrum even at high sparsities, at magnitudes described respectively by v/Co?
and Coy,, (Fig. 3). As in densely connected networks , the instability can either be
lead by the outlier, bringing the network into a heterogenous stationary regime aligned
with m (Fig. 5A, top left), or by the bulk, inducing chaotic dynamics (Fig. 5A, bottom
right). Since the magnitude of the bulk radius and the outlier are controlled respectively
by the variance o2 and covariance o,,, of the connectivity vectors, the regime in which
the network is situated is dictated solely by the relative configuration of these key
connectivity parameters. The phase diagram of Fig 5A summarises the dynamical
landscape that arises; we note that this diagram is equivalent to that in [8], where the
variance o2 takes the place of the coupling strength g of the random component.

Since the precise location of the outlier and the bulk are a function of C', the form of
the phase diagram is modulated by C. Fixing N and modulating C' shifts the
boundaries of the phase diagram (Fig 5B), which can alter the dynamics displayed by a
network for given values of the variance 02 and covariance o,,,. For example, in a
network fixed at a given parameter location in the phase diagram (white square),
progressively decreasing C' to increase the degree of sparsity causes the network activity

to lose structure along m (Fig 5C), since the outlier C'o,y,,, decreases as a function of C.

In contrast, when fixing C' and increasing N to sparsify the connections, the degree
of structure along m remains unaffected (Fig 5D). This is because the outlier is
independent of N, and the bulk radius quickly becomes so as the sparsity 1 — C'/N is
increased. Thus, the rank-one network constructed as in Eq. appropriately
parameterised, can preserve its rank-one outlier and sustain a high degree of sparsity
while still displaying the structured, one-dimensional dynamics that are the hallmark of
its underlying connectivity.

In summary, sparsified low-rank networks display a wider range of dynamics than
their dense counterparts, since the full-rank perturbation to the connectivity introduced
by sparsity acts in a manner analogous to the addition of a random component. When
the dynamics are purely input-driven, these two cases are not directly equivalent;
increasing the degree of sparsity gradually reduces the dimensionality of the dynamics
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Fig 5. Dynamical regimes of autonomous network activity at high sparsity. A: Dynamics of a sparsified
rank one network in the high-sparsity regime where FP;; = m;n; and the number of non-zero connections C' is fixed.
The variance o2 and covariance o,,, of the connectivity vectors respectively control the bulk radius and outlier of the
eigenvalue distribution. Centre: Phase diagram of dynamical regimes in the variance-covariance plane, for C' = 200
and N = 1000. The transition from structured to chaotic activity occurs when the bulk radius surpasses the location
of the outlier. Side panels: samples of autonomous dynamics of simulated networks situated in different dynamical
regimes (coloured squares). Eigenspectra of each network accompany each panel, showing bulk distribution (small
dots) and outlier (large dot) with respect to the instability limit at unity (dashed line). B: Modification of the phase
diagram when N is fixed (N = 1000) and C is reduced to increase the degree of sparsity. C: Projection of activity
along m for a network with fixed variance o and covariance o,,, (situated at the white square in phase diagrams in
B) while N is fixed (N = 1000) and C' is decreased. The network activity progressively loses structure along m since
the eigenvalue outlier is reduced. D: Same as C, but with C' fixed (C = 600) and N increased. The outlier is
independent of N, so structured dynamics can be maintained.
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and erodes the structured component, while imposing a random component expands the
dimensionality of the dynamics. However, when the dynamics are autonomous, the
dynamical regimes accessible to sparsified low-rank networks can be equated directly to
those of a rank-one network with an added Gaussian term.

Computations in sparsified networks

Low-rank recurrent networks benefit from a simple, transparent relationship between
the connectivity and resulting dynamics which can be harnessed to implement a rich
repertoire of input-output computations [8,[I11H13]. The fact that this relationship is
preserved even at high levels of sparsity indicates that such computations can be
performed even in the highly-sparse regime. By way of example, here we demonstrate
how a non-linear input-integration task can be implemented in a sparse low-rank
network by designing the connectivity according to intuitive geometric principles
originally developed in the context of dense low-rank networks.

We consider a simple evidence-accumulation task in the form of a common
behavioural paradigm: a given stimulus is assumed to vary continuously along a
particular stimulus feature - such as the coherence of a random-dot kinetogram [28] -
and the task is to report whether the magnitude of this stimulus feature is greater than
a certain threshold. The actual magnitude is subject to noise fluctuations, so the input
must be integrated over time. To model the task, we follow [8] and use the network
structure of Fig 6A. We provide the network with a time-varying stimulus u(¢)I, where
the input pattern I represents the stimulus feature of interest and w(t) is its fluctuating
magnitude. A readout unit sums the network activity through a set of readout weights
w to generate an output z(t). We require the output to be positive if the stimulus
magnitude ¢ is above threshold, and negative otherwise.

In dense networks, the task can be implemented easily with unit rank connectivity,
using a solution which relies solely on an appropriate geometric structure of input and
readout weights. The details of the solution are given in [§]; here we simply state the
requirements. Firstly, the input pattern I must overlap with the left connectivity vector
n, in order for the input to be picked up by the recurrent dynamics. Secondly, the
readout vector w must overlap with the right connectivity vector m, for the recurrent
dynamics to themselves influence the readout. Finally, the connectivity vectors must
overlap in a shared dimension orthogonal to the input and the readout, in order to
exploit the bistability of the rank-one fixed point and generate the non-linear switch in
readout upon integrating the stimulus. To implement the task in a sparse rank-one
network, we therefore select connectivity vectors m and n which obey these
requirements (Fig 6A, centre) and construct a rank-one matrix P as P;; = m;n;. We
then keep only C' non-zero inputs per neuron to form the sparse connectivity matrix P
(Fig 6A, right).

Network simulations confirm that the task can be performed accurately at high
sparsities (Fig 6B), generating a positive readout only for high stimulus magnitude ¢.
The requirement for success is that the rank-one outlier remains greater than the bulk
of the eigenvalue distribution, to keep the network in the structured regime in which the
bistability can be maintained. Since the boundaries between regimes shift as C' is
modified (Fig 5B), the connectivity vector overlap ¢, need only be modulated to
ensure that the outlier continues to dominate (Fig 6C, phase diagram insets). If 0,y is
not modulated simultaneously, the psychometric curve for the task simply shifts with C
(Fig 6E). At high levels of sparsity, the network units receive little recurrent input and
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are therefore more heavily influenced by noise in the input; however, summing the
activations through the readout unit has the effect of averaging away individual
fluctuations. As a result, the variation in the readout z(t) is only mildly increased as
sparsity is increased (Fig 6D), and by no means enough to corrupt performance.
Likewise, increasing the variance o2 of unit-rank connectivity to shift the network
towards the chaotic regime has the effect of introducing strong fluctuations into the
individual activations, but results in only a small increase in readout variance (Fig 6D),
and leaves the task performance unaffected. The implementation of the task is therefore
robust to high levels of sparsity and any parameter perturbations which introduce
fluctuations to the recurrent dynamics; the key requirement is simply that the bistable
structured regime persists, which can be insured by the appropriate relation between
input, readout and connectivity vectors.

The basic principle we demonstrate here is that the structured dynamical regime
induced by low-rank connectivity can be preserved even at high sparsity, which means
that computations which are designed to exploit this structure can be implemented
effectively even in networks which are highly sparse. The implication is that the full
repertoire of dynamical computations implementable in a low-rank network can be
likewise performed at high degrees of sparsity, provided the network is appropriately
parameterised.
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Fig 6. Implementation of input integration task in rank-one networks at high
sparsity A: Illustration of recurrent network structure (left), geometrical configuration of
input, readout and connectivity vectors (centre), and construction of sparse rank-one
connectivity matrix (right). B: Implementation of the task in a sparse network (s = 0.9,
C =200 and N = 2000). Top: sample of fluctuating inputs, with magnitude set by
coherence parameter ¢. Centre: examples of network activations x;(t) for two inputs of
different strengths. Bottom: corresponding readout z(¢) for high and low stimulus
strengths. Network is parameterised by variance o2 = 0.1 and covariance o,,, = 0.04,
located at the white square on the phase diagram in the inset. C: Readout dynamics in
networks with differing degrees of sparsity, with C' modified while N is fixed to 2000.
Parameters are modified to keep network within the bistable regime (,,, = 0.05 and 0.02
respectively), as seen in the phase diagram insets. D: Variance in readout response z(t) to
high-coherence inputs (¢ = 0.9) as the variance of the connectivity vectors m and n is
increased. Variance is taken over the final half of the input presentation, for correct
responses only. Mean over 50 trials. E: Psychometric curve for different sparsity levels C,
with other parameters held fixed (0% = 0.1, 0, = 0.06 and N = 2000).

March 31, 2022 15


https://doi.org/10.1101/2022.03.31.486515
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.31.486515; this version posted April 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Discussion

In this study, we investigated the dynamics of recurrent neural networks in which the
connectivity matrices are sparse but possess an underlying low-rank structure. We
showed that the resulting full-rank connectivity matrices have eigenspectra which consist
of two distinct components, a continuous bulk distribution and isolated outliers. Such
eigenspectra are directly analogous to those of a fully-connected unit rank structure plus
a full-rank random component [8},22,/23]. Analytically estimating the magnitude of the
outlier and the radius of the continuous bulk in the large N limit allowed us to predict
the dynamics of the sparsified networks. In particular, the relative magnitude of the two
major eigenspectrum components delineates boundaries between decaying, structured
and chaotic dynamical regimes. The similarity in the eigenspectra implies that the
regimes of autonomous dynamics in sparsified unit-rank networks are analogous to those
of dense unit-rank networks with a random connectivity component [8]. Notable
differences however appear when the dynamics are purely input-driven. Altogether, we
found that computations designed to harness key dynamical properties of low-rank
networks are highly robust with respect to sparsity. This identifies sparsified low-rank
networks as a biologically-plausible network structure through which to implement
computation through low-dimensional population dynamics [7].

The sparse networks examined here were generated by directly removing connections
in a fully-connected low-rank structure. The resulting connectivity matrices are directly
analogous to those obtained by learning a single pattern through Hebbian plasticity on

a sparse subset of connections [9,29], and therefore are of potential biological relevance.

Our analyses can be directly extended to connectivity which consists of a sparsified
low-rank structure superposed with a random sparse component with independent
entries. As with randomly-connected networks, the results depend on assumptions

regarding how the synaptic weights scale with the number of connections [10,/26,:30H33].

Here we considered two cases, and ultimately focused on the situation in which both the
number C' of non-zero connections per neuron and the strength of the connections are
fixed as the total number of neurons N is increased [26]. Under these assumptions, the
radius of continuous bulk of the eigenspectrum remains finite for large N [27], as does
the value of the outlier. For alternative choices of scaling, our analyses suggest that the
expected behaviour of the eigenvalue bulk ultimately depends on the scaling of the

variance of the connectivity matrix adjusted by removing the mean low-rank component.

Given its extreme ubiquity in the brain, a question of interest is whether sparsity
confers any direct benefit to cortical networks aside from the evident reduction in
metabolic and wiring costs. From our analysis, it is not directly clear whether sparsified
low-rank networks possess direct computational advantages over their dense
counterparts. Insights into the potential computational benefit of sparsity are however
rife in the related field of deep learning. Research indicates that the performance of
deep networks is remarkably robust to sparsity, and that a large majority of parameters
can be pruned without significant loss in accuracy [34,35]. This makes sparsity a
natural regulariser, often employed in combatting over-parameterisation and
overfitting [36]. Computational advantages are observed as a consequence, including an
improvement in the ability of the trained network to generalise [37,[38] and an increased
robustness to adversarial attacks [39/40], on top of significant savings in memory
storage, training time and energy efficiency [35,|41]. Nonetheless, such benefits are most
often the result of a highly selective, rule-based pruning process, as opposed to the
random weight selection employed in this study. An important avenue of future work
will be to explore different forms of structure in the sparsity imposed, and its relation to
the training process and the dynamic rules under which the connectivity evolves.
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Methods

Connectivity vectors

The right and left connectivity vectors m and n are constructed from three independent
normal random vectors x, y and z in the following manner:

m=1/02—0pn X+ Omn Z (17)
Nn=+v02—0mny+VOmn 2 (18)

where the components of x, y and z are generated independently from N'(0,1). The
elements of m and n are therefore Gaussian-distributed as ~ N(0,0?) and their degree
of overlap onto the z direction is controlled by scaling /0., in the interval [0, o].

Spectral radius of sparsified full-rank matrix

The sparsified full-rank matrix Jis generated as the elementwise product of the original
matrix J with an independent random binary matrix X whose elements are 0 with
probability s and 1 with probability 1 — s. In other words:

J=JOX where X;;~B(1,1-5s). (19)

The entries of J have a variance of /N and a mean of 0, while the entries of X
have a variance of (1 — s). The variance of the entries of J can therefore be derived as:

Var(J) = E[J}-E[J)? (20)
— E[J?E[X? - (E[J]E [X])?
r

The spectral radius is then given by the circular law:

R = Var (J)- N =gV1—s. (22)

When sparsity is imposed by setting the number of connections per unit C', the radius is
given by substituting s =1 — C/N as:

R=g¢§. (23)

Eigenvalue spectrum of sparsified rank-one matrix

The elements of the sparsified rank-one matrix P are generated in an equivalent manner
as Pij = P;;X;;. Its eigenspectrum is comprised of a continuous bulk and an isolated
outlier. We here derive the location of the outlier A\; and the radius R of the bulk
distribution individually.

Outlier

We proceed by showing that, for N — oo, the right connectivity vector m is an
eigenvector v of P, and derive the corresponding eigenvalue A. By writing the
individual matrix elements of P as:

~ mij”

Pij=—— (24)
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the i'" element of P applied to m is:
_ Mits X
Pm); = m; L1 25
(Bam), = m, Y2 " )
J
As N — oo, the sum over j in the right-hand side converges to an expectation due to
the central limit theorem, and we may write:
(Pm); = E [njm;X;;] m; (26)
= E[nym;] E [Xi;] m;
= Omn (1 - 5) m;
It therefore holds that:
Pm = Omn(l —8) m (27)

so that m is a right eigenvector of P with eigenvalue

AL = Omn(1 — 8) (28)

Bulk

To determine the radius of the bulk distribution, we derive the variance of the elements
of the matrix with the outlier eigenvalue removed, P* = P — (1 — s)P. We first rewrite
X as 1 — B, where B is a Bernoulli matrix with entries B;; ~ B(1, s), in order to

rewrite the individual matrix entries f’;} as follows:

P; = Pj—(1-s)Py (29)
Pij'XZ‘jf(l*S) Pz

sz(l—B”)—(l—S)Pl

Pij (s — Bij)

We can then derive the variance of the entries P;; as

Var (P}) = E[P}*]-E[P])? (30)

min;

given that P;; = —*, and m; and n; each have variance o2. As before, we may
substitute s = 1 — C//N when sparsity is imposed by setting the number of connections
per unit, to give:

Co*(N - O)
N4

The bulk radius is then obtained via the circular law R = v/Var - N as in the Gaussian
case.

Var(P*) = . (31)
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Latent dynamics in low-rank networks

Here we summarize the description of low-dimensional dynamics in low-rank
networks [12,/13].

The low-rank network of Eq. |3, with connectivity matrix P;; = ™, is governed by
the dynamics introduced in the main text (Eq. :

N
() = —na(t) + xS man; 0 (1)) + T ult), (32)
j=1

At the level of the population, the collective trajectory x(¢) is embedded in a
low-dimensional linear subspace [12}/13]. The total dimensionality of this subspace is the
sum of the rank of the connectivity matrix P plus the dimensionality of external inputs.
For a rank-one network with one external input vector, the dynamics are constrained to
the two-dimensional plane spanned by the left connectivity vector m and the input
vector I. The dynamics can then be represented in a new basis by projecting the activity
trajectory x(¢) onto these two axes. The individual unit activations thus read as:

i (t) = kp () my + K1(t) I, (33)

where k. (t) and £;(t) are projections of the activity x(¢) onto the m and I axes
respectively:

(1) = m m”x(1) (34)
ko (t) = ﬁ 7x(0). (35)

The projection onto the m axis, x,-(t), is then governed by its own dynamical equation:

Thr(t) = =Ky + Kree, (36)
where:
| X
Bree = N Zlnj o(z;). (37)
J:

At equilibrium, we therefore have x, = Kycc.
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