

## Characterization of EDS1-independent plant defense responses against bacterial pathogens using Duckweed/*Pseudomonas* pathosystems

Baggs E.L<sup>1</sup>, Tiersma M.B<sup>1</sup>, Abramson B.W<sup>2</sup>, Michael T.P<sup>2</sup> and Krasileva K.V<sup>1</sup>

1. Department of Plant and Microbial Biology, University of California Berkeley, USA
2. Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, USA.

### Abstract

ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) mediates the induction of defense responses against pathogens in most land plants. However, it has recently been shown that a few species have lost EDS1. It is unknown how defense against disease unfolds and evolves in the absence of EDS1. Here we utilize duckweeds; a collection of aquatic species that lack EDS1, to investigate this question. We successfully established duckweed-*Pseudomonas* pathosystems and were able to characterize pathogen-induced responses in an immune system that lacks the EDS1 signaling pathway. We show that the copy number of infection-associated genes and the infection-induced transcriptional responses of duckweeds differ from that of other model species. Moreover, we show that the conservation of canonical Microbe Triggered Immunity and Effector Triggered Immunity pathways varies between duckweed species. This work shows that pathogen defense has evolved along different trajectories and uncovers alternative genomic and transcriptional reprogramming. Specifically, the miAMP1 domain containing proteins, which are absent in *Arabidopsis*, show pathogen responsive upregulation in duckweeds. Despite such divergence between *Arabidopsis* and duckweed species, we find evidence for the conservation of upregulation of certain genes and the role of hormones in response to disease. Our work highlights the importance of expanding the pool of model species to study defense responses that have evolved in the plant kingdom, including those independent of EDS1.

### Introduction

Receptors and signaling components of the plant immune signal network likely evolved before the divergence of flowering plants 181 million years ago (MYA) (Kumar et al. 2017). The two primary layers of plant innate immunity, Microbe Triggered Immunity (MTI) and Effector Triggered Immunity (ETI) (Alhoraibi et al. 2019), form an intricate network of cross-amplifying pathways (Ngou et al. 2021; Yuan, Jiang, et al. 2021; Tian et al. 2020). The shared evolutionary history of MTI and ETI suggests that they

intricately co-evolved and are foundational for immunity in flowering plants. ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) is a central hub in MTI and ETI signal transduction and amplification. Mutations abolishing activity of EDS1 compromise ETI and MTI (Pruitt et al. 2021; Cui et al. 2017; Wagner et al. 2013). Surprisingly, genomic studies have revealed a number of land plants that thrive in their natural environments without EDS1, including the Lemnaceae (E. L. Baggs et al. 2020). It is unknown how the response to bacterial pathogens would proceed or evolve in the absence of a functional EDS1.

Lemnaceae diverged from other monocots 128 MYA (Kumar et al. 2017). The common ancestor of the Lemnaceae was present in a freshwater aquatic environment and had a reduced body plan of a frond (a fused stem and leaf) and root (Acosta et al. 2021). Genera within the Lemnaceae include *Spirodela*, *Landoltia*, *Lemna*, *Wolffia* and *Wolfiella*, all of which primarily reproduce through asexual budding (Bog, Appenroth, and Sree 2019). The small genome and body plan is conducive to the Lemnaceae's rapid lifecycle with a doubling time of as little as 34 hours (Michael et al. 2020). Lemnaceae are very easy to grow in the laboratory which has stimulated research into their use as biofuels (Van Hoeck et al. 2015; Y.-L. Xu et al. 2018; Su et al. 2014) and enabled the growth of genomic resources for the species, including multiple genomes and transcriptomic datasets (Michael et al. 2020; P. T. N. Hoang et al. 2020; W. Wang et al. 2014; Michael et al. 2017; Wenguo Wang et al. 2016; Abramson et al. 2021). *Spirodela polyrhiza* has a relatively small genome of 158 Mb with less than 20,000 protein coding genes and has lost members of expansin and cellulose biosynthesis (W. Wang et al. 2014; Michael et al. 2017). *Wolffia australiana* has ~15,000 protein coding genes having lost light signaling pathways and root development pathways, which is not surprising given the absence of roots in *Wolffia* (Michael et al. 2020). In addition to developmental pathways lost in other Lemnaceae, *S. polyrhiza* was previously shown to have lost *EDS1* (E. L. Baggs et al. 2020), however the extent of immune pathway loss in other Lemnaceae remained unclear.

Given the absence of the EDS1 pathway in *S. polyrhiza* (E. L. Baggs et al. 2020), we hypothesized that duckweeds could be used as a model for understanding EDS1-independent innate immunity. Lemnaceae are globally distributed and only absent from the Arctic and Antarctica (Landolt 1992; Crawford et al. 2006); several Lemnaceae species are even noted in the invasive species compendium ("Invasive Species Compendium" n.d.) (Abramson et al. 2021). The wide distribution of duckweeds means their range overlaps that of a number of model plant pathogens. These include *Pseudomonas syringae* pv. *tomato* DC3000, *Pseudomonas syringae* pv. *syringae*, *Xanthomonas perforans*, *Xanthomonas euvesicatoria* (Potnis et al. 2015; Cai et al.

2011; Gutiérrez-Barranquero, Cazorla, and de Vicente 2019), and many others for which genomic and genetic resources are available. These pathogens often have devastating effects on crop plants yield and value (Martins et al. 2018).

MTI immune signaling is triggered by the recognition of conserved molecular patterns through Pattern Recognition Receptors (PRR) and their respective co-receptors. There are two main types of PRRs: Receptor-Like Kinases (RLKs) and Receptor-Like Proteins (RLPs), that lack an intracellular kinase domain (Offor, Dubery, and Piater 2020; Yuan, Ngou, et al. 2021; Lolle, Stevens, and Coaker 2020). Substantial differences exist between RLP and RLK signaling pathways: immune signaling through the RLP and Suppressor of BIR1 (SOBIR1) co-receptor pathway genetically requires EDS1, Phytoalexin Deficient 4 (PAD4) and Resistance to Powdery Mildew 8 NLRs (RNLs) and results in higher levels of ethylene and phytoalexins production, as well as Pathogenesis Related 1 gene expression (Tian et al. 2021; Pruitt et al. 2021). Pathogenesis Related (PR) genes are characterized by their rapid upregulation after pathogen infection, they include a number of antimicrobial genes with different modes of action (glucanase, thaumatin, chitinase, thionin and defensin) (Ali et al. 2018). There are many antimicrobial peptides that are not classed as PR genes such as proteins typified by the presence of the MiAMP1 domain (McManus et al. 1999; Marcus et al. 1997; Stephens et al. 2005), but the diversity and modes of action of these antimicrobials remains poorly understood.

RLP and RLK activation primes the cell to initiate a stronger immune response upon Nucleotide-binding Leucine-rich repeat Receptors (NLRs) perception of intracellular changes caused by pathogen-derived effectors (Tian et al. 2020). Conserved domain architecture and signaling specificities of NB-ARC domain containing proteins allow their sub-categorisation into RNLs, coiled-coil NLRs (CNLs), Toll/interleukin-1 receptor NLRs (TNLs) and TIR-NB-ARC-like- $\beta$ -propeller (TNP) (Nandety et al. 2013; E. Baggs, Dagdas, and Krasileva 2017; Shao et al. 2019, 2016; Johannndrees et al. 2021). Disease resistance mediated by TNLs and some CNLs is genetically dependent on RNLs and the lipase-like proteins EDS1, PAD4 and SAG101. The recognition of pathogen presence by an NLR typically leads to qualitative resistance where the plant shows a discrete resistant phenotype.

In the absence of NLR triggered ETI plants are not necessarily susceptible to a pathogen instead quantitative resistance may be observed where extent of resistance is more variable and in some cases underpinned by hundreds of loci (Corwin and Kliebenstein 2017). Mechanisms implicated in quantitative resistance include Defensins,

pathogenesis-related proteins, secondary metabolite enzymes and pathogen-induced phytohormones accumulation (Corwin and Kliebenstein 2017).

Qualitative disease resistance results in mendelian patterns of inheritance of discrete resistant and susceptible individuals when investigating a given pathogen genotype. Typically the mechanism of qualitative resistance involves MTI and ETI. In contrast, quantitative resistance underpins a continuous distribution in the response among related individuals to a pathogen genotype, in this case resistance is governed by a number of small effect loci and doesn't necessarily require MTI/ETI pathways. The dynamics of plant-pathogen interactions are complex and can be manipulated by both the plant and pathogen to their own benefit

In this study, we investigated the phenotypic, genomic and transcriptomic characteristics of duckweeds in response to *Pseudomonas* plant pathogens. We found a stepwise reduction of conserved ETI pathways within the Lemnaceae and loss of MTI immune pathway components in *W. australiana*. On the other hand, we observed a shared expansion of the MiAMP1 protein family across Lemnaceae. Additionally, we observed species specific responses to pathogen treatments among duckweed species. We investigated the transcriptional response to pathogens of duckweed species, a system which is adapted to the absence of EDS1-mediated immune signaling cascades. Our study highlights duckweeds as a rapid growth, high throughput, minimalist MTI-ETI model organism. As such, it could be utilized to expedite our understanding of EDS1-independent MTI-ETI mechanisms of immunity as well as to dissect mechanisms of quantitative resistance.

## Results

### **Lemnaceae retained most conventional MTI signaling components and expanded the MiAMP protein family**

To understand how the repertoire of immune genes has diverged within the Lemnaceae, we utilized publicly available genomes of *S. polystachya* and *W. australiana*. Additionally, we assembled and annotated the genome of *Landoltia punctata* clone 5635, which allowed us to catalog the presence and absence variation of immunity genes across the 3 duckweed genera (Fig 1a, S.table 1). We found that *EDS1*, *PAD4*, and *RNLs* were absent across the Lemnaceae, consistent with previous findings (Lapin et al. 2019; E. L. Baggs et al. 2020; Michael et al. 2020). To estimate the timing of the EDS1 pathway loss, we leveraged giant Taro (*Colocasia esculenta*), which is the closest related species to duckweeds with an available genome (Yin et al. 2021). Taro has retained the

*EDS1* pathway genes, suggesting that the loss of these genes in Lemnaceae occurred after divergence of Lemnaceae and Taro 104-117 MYA (Kumar et al. 2017).

To understand the extent to which immune signaling pathways diverged across Lemnaceae, we surveyed the presence of 24 additional protein families with a known role in plant disease defense and which arose prior to monocot and dicot divergence. All of the 24 additional protein families we selected were present in *S. polyrhiza* (S.table 1,2, Sfig 1-3). Though gene families associated with immunity were often retained in the Lemnaceae, we noticed a reduction in copy number similar to the reduced copy number of NLRs (Fig 1b, Sfig 1, S.table 1). *W. australiana* has only 3 NB-ARC domain-containing proteins (Michael et al. 2020): two of which consists of only the NB-ARC domain and the other is a TNP and its conservation is consistent with the finding that TNPs are *EDS1* independent (Johannndrees et al. 2021). Despite this, *W. australiana* has retained many other immune components that we investigated (Fig 1b). While we identified no orthologs of *Pathogenesis related 4 (PR4)*, *SOBIR1* and *BAK1 interacting receptor 1 (BIR1)* in *W. australiana*, they were present in *L. punctata* and *S. polyrhiza* (Fig 1b). Our observations indicate that immune pathways have undergone varying degrees of gene loss across the duckweed genera.

Despite the general trend of reductionism of immune signaling components in the Lemnaceae, we identified the striking expansion of the MiAMP1 type antimicrobial proteins. It has previously been shown that antimicrobial proteins in general expanded in *S. polyrhiza* 7498 (An et al. 2019). Phylogenies of proteins from the MiAMP1 family show lineage specific expansions and rapid birth and death among the Lemnaceae (Sfig 4) suggesting that selection pressures may be favoring the expansion and diversification of MiAMP1 proteins in the duckweed lineage.

### **Duckweed species show variable symptoms upon *Pseudomonas* and *Xanthomonas* challenge**

Since Lemnaceae species lack the *EDS1* pathway, it was unclear how they would respond to bacterial pathogen infection. We therefore challenged *S. polyrhiza*, *L. punctata*, and *W. australiana* to a panel of common *Pseudomonas* and *Xanthomonas* plant pathogens with a standard high bacterial inoculum ( $1 \times 10^8$ CFU/ml) (Fig 2a) to assess their susceptibility and disease phenotypes. We observed variability among replicates in the susceptibility and resistant phenotypes (Fig 2b, S.table 3, Sdataset 1) which is consistent with quantitative resistance. We identified a few virulent pathogens that produced similar symptoms across all hosts (*Xanthomonas gardneri*, *Pseudomonas syringae* pv. *tabaci*) while others caused distinct symptoms on a given host species. The

most common disease symptoms we observed were chlorosis and reduced growth rate. Surprisingly, despite having fewer NLRs and lacking SOBIR1 and BIR1, the growth of *W. australiana* upon pathogen infection was often less affected than that of other duckweed species.

For further experiments, we focused on *P. syringae* pv. *tomato* DC3000 (*Pst* DC3000) and *P. syringae* pv. *syringae* B728a (*Pss* B728a) as there is detailed knowledge about their virulence factors, large resources of mutants, and the severity of disease symptoms that they caused varied across duckweeds.

### ***P. syringae* colonizes the substomatal cavity in *S. polyrhiza* but infection is slowed in T3SS mutants**

To further characterize the pathology of *Pseudomonas* on duckweed, we used microscopy and bacterial genetics, taking advantage of the type III secretion deficient mutant *Pst* DC3000 *hrcC*<sup>-</sup>.

Microscopy of flood inoculated *S. polyrhiza* fronds with standard high bacterial inoculum at 5 days post inoculation (5 dpi) showed the accumulation of GFP expressing *Pst* DC3000 concentrated at the node where the root and frond join and budding pockets were daughter fronds emerge (Sfig 5). By 7 dpi *Pst* DC3000 populations were observed at the stomata and within the substomatal cavity and mesophyll (Fig 3a, Sdataset 2). We also observed *Pst* DC3000 populations on root tissue at 7 dpi (Fig 3b). Together, our observations suggest that the visual symptoms of *Pseudomonas* on duckweed are a result of active bacterial infection. Therefore, the duckweed-*Pseudomonas* pathosystem constitutes a valuable model for understanding disease progression and EDS1-independent immune responses.

To advance our understanding of this pathosystem, we infiltrated *S. polyrhiza* plants with *Pst* DC3000 and *Pst* DC3000 *hrcC*<sup>-</sup> with a low bacterial inoculum ( $1 \times 10^5$  CFU/ml), and monitored bacterial population growth overtime (Fig 3c/d). The first black lesions were macroscopically visible at 3 days post inoculation with *Pst* DC3000 and by day 5 we observed an increase in the size, number of lesions and proportion of affected fronds (Fig 3c). Consistent with the dense populations at the budding pocket and node observed by microscopy, the macroscopic black lesions observed were initially localized at the budding pocket and node. We observed no black lesions upon inoculation with *Pst* DC3000 *hrcC*<sup>-</sup> at 3 or 5 dpi, although the frond edges appeared shriveled at 5 dpi. In contrast, *Pst* DC3000 or *Pss* B728a infiltrated *L. punctata* even 5 days post inoculation

showed no macroscopically visible lesions (Fig 4a/b). 3 weeks post inoculation, 5/8 replicates of *L. punctata* inoculated with *Pss* B728a had turned white and produced fewer daughter fronds than in other treatments. However, even at 3 weeks post inoculation we observed no severe symptoms for *Pst* DC3000, although the fronds showed slight dark discoloration and clumping. *Pst* DC3000 *hrcC*<sup>-</sup> did not cause any symptoms on *L. punctata* throughout the 3 weeks post inoculation (Sfig 6).

In addition to causing visible disease symptoms, *Pst* DC3000 and *Pst* DC3000 *hrcC*<sup>-</sup> were able to proliferate within *S. polyrhiza* (Fig 3d). *Pst* DC3000 multiplied to similar levels as in previously described compatible interactions with wild type *A. thaliana* (Ishiga et al. 2011; Velásquez et al. 2017; Katagiri, Thilmony, and He 2002). However, we observed significantly fewer colony forming units of *Pst* DC3000 *hrcC*<sup>-</sup> compared to *Pst* DC3000. This suggests that the virulence of *Pst* DC3000 on *S. polyrhiza* relies on the presence of effectors and the type III secretion system. In contrast, consistent with the lack of disease symptoms in *L. punctata* neither *Pst* DC3000 nor *Pst* DC3000 *hrcC*<sup>-</sup> showed significantly different CFU counts at 5 dpi. Instead, both bacterial numbers remained at a level similar to those of *Pst* DC3000 *hrcC*<sup>-</sup> in *S. polyrhiza* (Fig 4c). Interestingly, although we saw no visible lesions on *L. punctata* with *Pss* B728a 5 days after inoculation, the CFU counts were significantly higher than those of *Pst* DC3000 after 5 days but were similar to those of *Pst* DC3000 in *S. polyrhiza*. Our results show that *Pseudomonas* pathogens *Pst* DC3000 and *Pss* B728a are able to proliferate in duckweed host and bacterial multiplication is affected by unknown host factors and for *S. polyrhiza* / *Pst* DC3000 interaction the type III secretion system.

### **Lemnaceae spp. and pathogen treatment affect outcome of hormone treatment**

In response to biotrophy, plants upregulate the phytohormones salicylic acid (SA) (Cao et al. 1994; Clarke et al. 1998) and N-hydroxy pipecolic (NHP) through pathways dependent and independent of EDS1 which amplifies defense response signaling cascades (Chen et al. 2018). To suppress phytohormone responses, *Pst* DC3000 produces the toxin coronatine (Moore et al. 1989; Mittal and Davis 1995), a structural mimic of jasmonic acid which counteracts SA upregulation (Fonseca et al. 2009; Wasternack and Xie 2010). Since *Pst* DC3000 was virulent on *S. polyrhiza*, we investigated the role of phytohormones and toxins in the absence of EDS1 through our duckweed pathosystem. The *Pst* DC3000 *cma*<sup>-</sup> mutant is deficient in coronatine biosynthesis and causes mild symptoms on *S. polyrhiza*, marked by the absence of black lesions (Fig 5a, Sfig 7,8). Addition of coronatine alone (0.3  $\mu$ M) was sufficient to disfigure fronds, reduce growth, and sometimes induced the formation of turion resting

bodies. The effect on growth and turion formation was stronger at higher concentrations of coronatine (3  $\mu$ M). However, addition of coronatine on its own was not sufficient to recover symptoms of black lesions and white bleaching of fronds comparable to *Pst* DC3000 infection. The treatment of fronds with coronatine at the time of *Pst* DC3000 *cma*<sup>-</sup> infection restored the black lesions to some extent, but the strain still did not induce white bleaching. Our results show that coronatine has a conserved role in promoting pathogen virulence in duckweeds despite the absence of the SA promoting EDS1 pathway.

Given that a core function of the EDS1 pathway is to reinforce SA signaling by inducing expression of several SA responsive genes (Jirage et al. 1999; Bonardi et al. 2011; Cui et al. 2017; Roberts et al. 2013); we were interested in how exogenous SA treatment of Lemnaceae would affect *Pst* symptoms. It has been observed in other model plants that amplification of SA can be protective against symptomatic *Pst* DC3000 infection (Tsai et al. 2011). Additionally, SA is perceived and regulated by members of the NPR gene family. Lemnaceae, however, have fewer *NPR* genes than most other species which makes their SA-associated response to phytopathogens of interest. Treatment of Lemnaceae with high levels of SA (2 mM) that are tolerated in *Arabidopsis* were phytotoxic to *S. polyrhiza* (Sfig 9). We therefore carried out experiments using lower levels of SA of 0.4 mM and 0.2 mM. Even at these lower concentrations, we observed dose-dependent frond disfigurement and growth reduction (Fig 5b, Sfig 10-12). As mentioned before, in the absence of SA we observed variation in the virulence of *Pst* DC3000 on duckweed (Fig 2) and this variation translated to the ability of SA to provide pathogen protection. *S. polyrhiza* co-treated with SA and *Pst* DC3000 showed typical *Pst* DC3000-induced symptoms (Fig 5b, Sfig 10-12). However, a small protective effect of SA was observed when *Pst* DC3000 appeared to be less virulent (Sfig 13). We hypothesize that the variation in virulence of *Pst* DC3000 affects the ability of SA to restrict pathogen growth below a critical threshold. In contrast, in the *L. punctata* / *Pss* B728a pathosystem, there was a clearer protective effect of SA. Priming of *L. punctata* with SA resulted in complete loss of the chlorotic symptoms characteristic of the *Pss* B728a treated fronds (Fig 5c, Sfig 14,15). The effect of SA priming on the outcome of duckweed pathogen interactions appears to be specific to pathogen strain and plant genotype and further complicated by the strong endogenous effect of SA on duckweed physiology.

### ***S. polyrhiza* and *L. punctata* mount transcriptional responses to *Pst* DC3000**

Next, we decided to investigate the transcriptional response of duckweeds to *Pseudomonas* infection. Despite the absence of *EDS1*, RNA-seq for both *S. polyrhiza*

and *L. punctata* revealed a substantial transcriptional response as early as 30 minutes post infection (Fig 6a, Sfig 16, Sdataset 3, 4). We first examined gene families that are differentially expressed upon pathogen treatment in other plant species: WRKY (Dong, Chen, and Chen 2003), MiAMP1 (Fig 6b) (Adomas and Asiegbu 2006; Adomas et al. 2007), NB-ARC (Richard et al. 2018), and JAZ domain-containing genes (Ishiga et al. 2013) (Sfig 17, S.table 4-11). While we did not observe consistent upregulation Log<sub>2</sub>FC >1 of NB-ARC and WRKY domain-containing genes, MiAMP1 domain-containing genes were consistently upregulated over time in both duckweed species after pathogen treatment.

We hypothesized that there may be some orthologs of *A. thaliana* bacterial-response genes that are also upregulated in response to bacterial infection in duckweed species. Among the 33 *S. polyrhiza* and 32 *L. punctata* genes considered homologous to *A. thaliana* bacterial-responsive genes (Bjornson et al. 2021; Salguero-Linares et al. 2021; Boudsocq et al. 2010) (S.table 12,13, Sfig 18), we were able to identify 5 *S. polyrhiza* and 5 *L. punctata* gene orthogroups that were significantly upregulated upon pathogen treatment ((Log<sub>2</sub>FC > 1, FDR < 0.05) S.table 14). To investigate whether this conservation extends further we used orthofinder (Emms and Kelly 2019) to create interspecific orthogroups. We then identified orthogroups with members that were significantly differentially expressed in both duckweed species after *Pst* DC3000 treatment (Fig 6c, S.table 15, Sdataset 5). For orthogroups with conserved upregulation in both duckweed species, we investigated if the *A. thaliana* homologs were similarly upregulated upon *Pst* DC3000 infection, using publicly available RNAseq datasets (Fig 6d). Among the *A. thaliana* homologs, 8 genes showed consistent upregulation after *Pst* DC3000 treatment, including a superoxide dismutase *GERMIN-LIKE PROTEIN 5* (*GLP5*). In contrast, *PATHOGENESIS RELATED 9* (*PR9*) showed conserved upregulation in duckweed but was not upregulated in *A. thaliana* upon *Pst* DC3000 treatment. There appears to be limited overlap in the transcriptional response to *Pst* DC3000 between *A. thaliana* and duckweeds. Interestingly, half of the orthogroups with conserved upregulation in response to bacterial infection were hormone-regulated or biosynthetic genes suggesting a conserved role of hormones in duckweeds and *Arabidopsis*.

Finally, our analysis allowed the identification of genes whose upregulation was unique to duckweed. Four orthogroups which showed conserved differential expression in both duckweed species do not have homologs in *A. thaliana* (S.table 15). Two of these orthogroups were cytochrome P450 domain-containing genes and a third orthogroup contained enzymes involved in secondary metabolite modifications. Cytochrome P450s are present in *A. thaliana*; however, clades of these proteins appear to have diversified

further since the divergence of monocots and dicots (Nelson et al. 2004). MiAMP1 domain-containing genes are not present in *A. thaliana* and although they were upregulated across timepoints in both duckweed species. However, no orthogroup containing these proteins met the criteria for conserved Lemnaceae upregulation. Duckweed species do not show a qualitative but a quantitative resistance phenotype against *Pseudomonas* pathogens and MiAMP and cytochrome P450s proteins could contribute towards this observed quantitative resistance.

## Discussion

Plant immune systems are complex networks of signaling cascades; the crosstalk within the network can mask underlying nodes and their interdependencies. EDS1 is a hub for such signaling and crosstalk. In this study, we investigated the immune response of Lemnaceae species whose immune pathways have evolved for ~110 million years in the absence of *EDS1*. Whilst the loss of *EDS1* predates the divergence of the Lemnaceae, we show that only *W. australiana* has also lost the MTI signaling components SOBIR1-BIR1 (Gao et al. 2009; Liebrand et al. 2013; Albert et al. 2015; van der Burgh et al. 2019). Previous work has shown RLP-SOBIR1 signaling depends on EDS1 and PAD4 in *A. thaliana* (Pruitt et al. 2021). Despite the loss of *SOBIR1*, *W. australiana* did not appear to have enhanced susceptibility to the bacterial pathogens tested when compared to other Lemnaceae. Given available resources, we focused on developing and characterizing the pathosystem of *S. polystachya* and *L. punctata* interactions with *Pst* DC3000 and *Pss* B728a. Transcriptional and bacterial mutant assays revealed the importance of phytohormones in the response of Lemnaceae species to pathogens; however, differential expression of typical marker gene orthologs was rarely observed. Furthermore, we show that MiAMP1 domain containing proteins are expanded in Lemnaceae and differentially expressed upon pathogen infection.

Duckweeds are known to exist with complex bacterial communities similar to those of the terrestrial leaf microbiome (Acosta et al. 2020), and a number of bacteria co-occurring with duckweeds have been shown to have growth promoting effects on duckweeds (O'Brien et al. 2020). To understand how the disease resistance of Lemnaceae to pathogenic bacteria is affected by the varying copy number of immune components, we screened a range of bacterial pathogens to identify a model pathosystem for further analysis. Our data demonstrate disease phenotypes upon inoculation with multiple bacterial pathogens. In addition, there were differences in macroscopic symptoms across Lemnaceae species upon treatment with the same

pathogen. There was notable variability in the symptoms displayed by fronds within the same well with a given treatment, suggesting there may be environmental and population level factors that affect the outcome of infection. This variability in susceptibility across time points is consistent with the concept of quantitative resistance. The invasive nature of duckweeds and numerous healthy populations in the environment raises the question of how environmental factors in natural populations may contribute to duckweeds' quantitative disease resistance. Furthermore, because duckweeds primarily reproduce clonally and have low mutation (Sandler et al. 2020) and effective recombination rates (Ho et al. 2019), there is limited opportunity for immune proteins to diversify, which has been shown to be important for generating new resistance specificities in other species. The rather unique combination of life-history traits of duckweeds including their fast-growth, clonal reproduction, reduced morphological complexity and aquatic habitat could theoretically all play a role in favoring quantitative means of resistance. For instance in a freshwater habitat the frequency of contact with PAMPs and microbes likely differs from soil and could therefore affect the balances between growth and defense; as energy spent on cell priming upon pathogen molecule perception reduces energy available for growth (Huot et al. 2014).

The reduced ability of *Pst* DC3000 *hrcC*<sup>-</sup> to proliferate compared to wildtype suggests that the type-III secretion system and or the effectors it delivers can actively promote virulence in *S. polyrhiza* as well as in *A. thaliana* (Xin et al. 2016; Huot et al. 2017; Hauck, Thilmony, and He 2003). Furthermore, our results suggest that virulence of *Pst* DC3000 on *S. polyrhiza* relies on manipulation of host phytohormone pathways through the production of the JA mimic coronatine, similar to the interaction with *A. thaliana* (Moore et al. 1989; Mittal and Davis 1995). In contrast, *L. punctata* appears to have a stronger quantitative resistance response to *Pst* DC300 even in the presence of coronatine. Our data suggests that, despite the lack of conservation of the EDS1 pathway in *S. polyrhiza* and *L. punctata*, phytohormones and bacterial toxins remain key mediators of plant-bacterial infection. The reduction of MTI and ETI components in duckweeds opens up questions of how duckweed pathogens evolve; would reduction in effector repertoire be selected for due to a reduced pressure for MTI/ ETI suppression or would effectors further expand without an ETI system to keep them in check.

Consistent with the variation in phenotypes seen in bacterial inoculations, there was a lot of variation that was not explained by pathogen treatment between transcriptomes of duckweed biological replicates. The high variability could be a result of the asynchronous developmental stage of fronds, the quantitative nature of the resistance that we observed within the same population of duckweed or a combination of both of

these factors. The use of whole plant tissues likely diluted the signal of differential gene expression. In the future, single cell transcriptomes might be more informative for interactions that involve quantitative resistance phenotypes. Despite the variability, our transcriptomic analysis revealed that the genes most consistently and differentially expressed after *Pseudomonas* treatment included MiAMP1 proteins. This suggests that the upregulation of MiAMP1 domain containing protein expression was consistent enough to be detected despite the overall variability. Such strong upregulation invites the speculation that they could provide alternative means of defense against invading pathogens similar to AMPs in Macadamia (McManus et al. 1999; Stephens et al. 2005) and Citrus (Huang et al. 2021). Other commonly differentially expressed protein families were associated with cytochrome P450s and phytohormones, indicating that specialized metabolites may have an important role in the infection response of *S. polystachya* and *L. punctata*. Together, our data highlights that, despite the absence of EDS1, there are conserved areas of immune response pathways, such as phytohormones and secondary metabolism. We also identified MiAMP1 proteins as strong candidate members of an alternative host immune response. Perhaps the reduced reliance on NLR - EDS1 pathways has released selective constraints allowing duckweeds to avoid the typical land plant NLR - pathogen effector arms races that are burdening other plant species and facilitated amplification of alternate immune strategies.

Duckweeds are an exciting system for future research into the plant immune system. They provide a reduced redundancy system in terms of both gene copy number and pathways present. In addition, their rapid lifecycle of just 34 hrs (Michael et al. 2020), small size and susceptibility to model pathogens make them the perfect system for high-throughput experimentation. The genomic and genetic resources are also developing at a rapid pace, with multiple genomes available (Michael et al. 2017; An et al. 2019; Harkess et al. 2021; Ho et al. 2019; P. N. T. Hoang et al. 2018; W. Wang et al. 2014; S. Xu et al. 2019; Michael et al. 2020) and a range of transformation protocols (Chanroj, Jaiprasert, and Issaro 2021; Acosta et al. 2021; Liu et al. 2019; J. Yang et al. 2018; G.-L. Yang et al. 2018; Ko et al. 2011). Many interesting questions remain to be answered including how duckweed plants are able to thrive in a wide range of environments despite being highly susceptible to bacterial phytopathogens in the laboratory setting. A hypothesis is that duckweeds may be using means of disease protection that are inherently absent in the laboratory due to the way duckweeds are propagated. This may include microbiome-mediated disease protection, small peptide defense molecules such as MiAMP1s or chemical defense strategies. A combination of genetics, molecular biology and metabolomic approaches will be needed to address such hypotheses.

## Materials and Methods:

### ***Landoltia punctata* clone 5635 DNA isolation and sequencing**

*L. punctata* clone 5635 (Lp5635, formerly DWC138) was received from the Rutgers Duckweed Stock Collective (RDSC; <http://www.ruduckweed.org/>). Lp5635 was collected, patted dry to remove excess water and flash frozen in liquid nitrogen. Frozen tissue was ground in a mortar and pestle under liquid nitrogen. High Molecular Weight (HMW) DNA was isolated using a modified Bomb protocol (<https://doi.org/10.1371/journal.pbio.3000107>). DNA quality was assessed on a Bioanalyzer and HMW status was confirmed on an agarose gel. Libraries were prepared from HMW DNA using NEBnext (NEB, Beverly, MA) and 2x150 bp paired end reads were generated on the Illumina NovaSeq (San Diego, CA). Resulting raw sequence was only trimmed for adaptors, resulting > 60x coverage of the diploid *L. punctata* genome (350 Mb).

### ***Landoltia punctata* clone 5635 genome assembly, gene prediction and annotation**

Illumina paired end reads were assembled with Spades (v3.14.0) with the default settings (Bankevich et al. 2012). Resulting contigs were annotated using a pipeline consisting of four major steps: repeat masking, transcript assembly, gene model prediction, and functional annotation as described (Abramson et al. 2021). Repeats were identified using EDTA (v1.9.8) (Ou et al. 2019) and these repeats were used for softmasking. RNAseq reads were aligned to the genomes using minimap2 and assembled into transcript models using Stringtie (v1.3.6). The soft-masked genome and Stringtie models were then processed by Funannotate (v1.6) (<https://github.com/nextgenusfs/funannotate>) to produce gene models. Predicted proteins were then functionally annotated using Eggnog-mapper (v2) (Huerta-Cepas et al. 2017).

### **Pathway ortholog identification**

To estimate the date of the loss of *EDS1*, *PAD4*, *ADR1* and *NDR1*, we looked for species closely related to the Lemnaceae with available genome sequence. We then ran a BLASTP search using the *Oryza sativa* and *Arabidopsis thaliana* *EDS1*, *PAD4*, *ADR1* and *NDR1* proteins as queries against the Taro genome (<https://doi.org/10.1111/1755-0998.13239>). To check orthology, the subject sequence identified in the Taro proteome was then blasted back to the *Oryza sativa* and

*Arabidopsis thaliana* proteomes using the Phytozome BLAST tool. Upon confirming the presence of EDS1, PAD4, ADR1 and NDR1 in Taro, we then utilized TimeTree.org to estimate the time window during which EDS1, PAD4, ADR1 and NDR1 were lost.

To identify orthologous gene groups, Orthofinder (v2.5.4) (Emms and Kelly 2019) was used on the proteomes of *Spirodela polyrhiza* 7498 (W. Wang et al. 2014), *Landoltia punctata* 5635, *Wolffia australiana* 8730 (Michael et al. 2020) and *A. thaliana* TAIR 10 (Lamesch et al. 2012). Pathway gene clusters were identified from a literature search of *A. thaliana* effector triggered immune responses and EDS1/PAD4 interacting proteins (S.table 8). These *Arabidopsis* proteins were then used to pull out corresponding orthogroups containing Lemnaceae species which were cross checked using Phytozome for presence in *S. polyrhiza*. For instances of absence, gene loss was verified using tBLASTn (Camacho et al. 2009). For large gene family analysis of MiAMP1, RLK, RLP and NLRs, pfamscan (Madeira et al. 2019; Sarris et al. 2016) was used to identify proteins with domains of interest (e-value = 10; MiAMP1, RLK, RLP and NB-ARC domains) (S.table1). RLK, RLP and MiAMP1 protein sequences were aligned with MUSCLE v3.8.1551 (Madeira et al. 2019) and NB-ARC domains were aligned with hmmpalign from HMMER3 (Wheeler and Eddy 2013) to NB-ARC1-ARC2 (Bailey et al. 2018). Alignments were manually curated using BELVU (Barson and Griffiths 2016) and Jalview (Waterhouse et al. 2009). Maximum likelihood phylogenies were calculated utilizing MPI version of RAxML (v8.2.9) (-f a, -x 12345, -p 12345, -# 100, -m PROTCATJTT).

### **Plant growth conditions**

Duckweed fronds were propagated by transferring 3 mother fronds to a new well containing fresh media at a frequency of 3-4 weeks. Plants were grown on Schenk and Hildebrandt basal salt media (Sigma-Aldrich, S6765-10L) (0.8% agarose, pH 6.5) in 6- or 12-well plates and then placed in a growth chamber set to 23°C with a diurnal cycle of 16 hr light (75 µmol) / 8 hr dark.

### **Pathogen inoculation**

Bacterial colonies were grown in Luria Broth (LB) media supplemented with the following antibiotics: [10 µg/ml; kanamycin (Km), 50 µg/ml; rifampicin (Rif), 50 µg/ml; spectinomycin (Sp)] overnight at 28°C in a shaking incubator (20.5 g). Pathogens used in this study included: *Pseudomonas syringae* pv. tomato DC3000 GFP (Matthysse et al. 1996; Mudgett and Staskawicz 1999), *P. syringae* pv. tomato DC3000 cma<sup>-</sup> (Sreedharan et al. 2006), *P. syringae* pv. tomato DC3000 hrcC<sup>-</sup> (Mudgett and

Staskawicz 1999), *P. fluorescens* N2C3 (DSM 106121) (Parte et al. 2020), *P. syringae* B7281 (Feil et al. 2005), *P. syringae* pv. glycinea race 4 (Staskawicz et al. 1987), *P. syringae* pv tabaci 11528 (Institute of Medicine (US) Committee on Resource Sharing et al. 1996), *P. syringae* pv. maculicola (Davis, Schott, and Ausubel, n.d.), *Xanthomonas euvesicatoria* (Roden et al. 2004), *X. gardneri* (Schwartz et al. 2017), *X. perforans* (Bophela et al. 2019), and *X. translucens* (Peng et al. 2016). All strains were plated on Rif; *P. syringae* pv. *tomato* DC3000 on Rif/Km and *P. syringae* pv. *tomato* DC3000  $\Delta$ cmfa on Rif/Km/Sp. Liquid culture was spun down on a benchtop centrifuge at 3,000 g for 15 minutes. The pellet was then resuspended in 10 mM MgCl<sub>2</sub>, OD<sub>600</sub> was determined and the infiltration solution was diluted to a final standard high inoculum of OD<sub>600</sub>=0.1, equivalent to 1x10<sup>8</sup> cells of *Pst* DC3000. A total of 500  $\mu$ L of OD<sub>600</sub>=0.1 bacterial inoculation solution was pipetted on to 3 duckweed fronds per well. The plate was then either placed straight into the incubator or placed under vacuum (0.8 PSI) for 10 minutes.

For growth curves, bacterial cells were resuspended at 1x10<sup>8</sup> CFU/ml, OD<sub>600</sub>=0.1 in 10 mM MgCl<sub>2</sub>. The inoculum was further diluted to a standard low inoculum with a final concentration of 1x10<sup>5</sup>CFU/ml. Each well was then inoculated with 500  $\mu$ L of treatment, followed by vacuum infiltration (0.8 PSI) for 10 minutes. For each timepoint 1 cm<sup>2</sup> of fronds was sampled in 150  $\mu$ L MgCl<sub>2</sub> and glass beads, and homogenized in a biospec mini-beadbeater at 2000 rpm with vital distance 1.25 inch. Serial dilutions were made and plated on appropriate selective media. Two days after plating, colonies were counted.

## Microscopy

For microscopy, flood inoculation with 500  $\mu$ L solutions OD<sub>600</sub>=0.1 were used. Whole fronds were staged in water on slides and covered with a glass coverslip. The slides were imaged on a Zeiss 710 LSM confocal microscope with either the 20x (water), 63x (oil) or 100x (oil) objectives. To image bacteria on duckweed fronds, they were stained with 10 $\mu$ L of 1x Syto<sup>TM</sup> BC Green Fluorescent Nucleic Acid Stain (Thermo Scientific, S34855).

## Hormone supplementation

Coronatine (Sigma-Aldrich, C8115-1MG) powder was dissolved in 100% DMSO to create a 200  $\mu$ M/ml stock that was then diluted to 3  $\mu$ M and 0.3  $\mu$ M in ddH<sub>2</sub>O. Salicylic acid BioXtra  $\geq$ 99.0% (Sigma-Aldrich, S5922-100G) was diluted in water to concentrations of 2mM, 0.4mM and 0.2mM. Buffer solution used was the same as the

solvent for the treatment. Individual wells of 6 or 12 well plates containing 3 duckweed fronds were inoculated with 500  $\mu$ L or 250  $\mu$ L of phytohormone solution, respectively. Phytohormone treatments were applied just prior to pathogen treatment.

## RNAseq analysis

Inoculations were conducted as outlined above using standard high bacterial inoculum  $1 \times 10^8$  CFU/ml. At 30 minutes, 1 hr, 6 hrs and 12 hrs after inoculation, fronds from the same well and the same treatment were transferred to microcentrifuge tubes containing 1.5 ml RNAlater and frozen in liquid nitrogen. RNA was extracted using Qiagen RNAeasy plant kit (74903) and only samples with a RIN score of >8.0 from Agilent Bioanalyzer 2100 performed by QB3-UC Berkeley were used for library preparation. Library construction and sequencing were performed by Novogene using NEBNext Ultra II RNA library prep by Illumina (E7770) and an Illumina Novaseq 6000 S4 instrument. After sequencing, we demultiplexed reads using Illumina indices and then ran a QC check involving filtering N containing, low quality, and adapter-related reads. Upon receiving the data from Novogene, an initial quality check of reads was performed with fastqc (“Babraham Bioinformatics - FastQC A Quality Control Tool for High Throughput Sequence Data” n.d.). Reads were then mapped to the *S. polyrhiza* v2 genome using HISAT2 (Kim, Langmead, and Salzberg 2015). Read coverage tables were computed using stringtie (Pertea et al. 2015) and differential gene expression analysis was carried out using EdgeR (Dai et al. 2014). Genes were considered differentially expressed if they met the criteria of  $|\text{Log}_2\text{FC}| > 1$ ,  $\text{FDR} < 0.05$ . For a detailed list of commands see: <https://github.com/erin-baggs/DuckweedRNA>. Outliers were removed by visual inspection; the edgeR count tables were plotted as PlotMDS method Log<sub>2</sub>FC and BCV (Sfig 16-19). Samples were removed if they alone were causing most of the variance on a dimension leading to all other samples clustered into a corner. Then, if one sample of a treatment was grouping with samples of an opposing treatment, marker gene expression was analysed to check whether the sample's expression pattern may have been the result of cross contamination. If the expression was inconsistent with at least 3 other replicates from the treatment group it belonged to, the sample was removed. Replicates removed from *S. polyrhiza* analysis included B3, B20, B19, P21, B34, P114. The replicates B15, B20, P39, P70, H80, B94, P103 and H115 were removed from *L. punctata* analysis.

## Data availability

Sequencing reads for *S. polystachya* and *L. punctata* RNAseq can be found at the respective NCBI BioProjects PRJNA808038 and PRJNA801691. The *L. punctata* 5635 genome can be found on CoGe accession ID: 63585. Scripts for analysis presented in the manuscript can be found on the github repository <https://github.com/erin-baggs/DuckweedRNA>. Z-stack of *Pst* DC3000 infection of *S. polystachya* is available from Zenodo doi: 10.5281/zenodo.5639580 .

## Acknowledgements

We would like to thank Dr. Denise Schichnes and Dr. Steven Ruzin for their expert advice and help with confocal microscopy. Many thanks to China Lunde for propagation of duckweed during the pandemic and to Dr. Wilfied Haerty and the members of the Krasileva lab for helpful discussions. We acknowledge funding from the Biotechnology and Biological Sciences Research Council (BBSRC), part of UK Research and Innovation, Core Capability Grant BB/CCG1720/1 and the work delivered via the Scientific Computing group, as well as support for the physical HPC infrastructure and data centre delivered via the NBI Computing infrastructure for Science (CiS) group. KVK has been funded by the Gordon and Betty Moore Foundation, Innovative Genomics Institute, and the NIH Director's Award.

## Author contributions

E.L.B. performed genomic/transcriptomic presence absence analysis, growth curves, hormone assays, microscopy and RNAseq analysis. M.B.T and E.L.B. performed the screen of phytopathogens across duckweed species and RNA extractions. B.W.A and T.P.M performed DNA extraction, genome assembly and annotation of *Landoltia punctata* DWC138 genome. E.L.B and K.V.K designed the study. E.L.B prepared figures and wrote the full manuscript draft; all authors have read and approved the final version of the manuscript.

## References

Abramson, Bradley W., Mark Novotny, Nolan T. Hartwick, Kelly Colt, Brian D. Aevermann, Richard H. Scheuermann, and Todd P. Michael. 2021. "The Genome and Preliminary Single-Nuclei Transcriptome of *Lemna Minuta* Reveals Mechanisms of Invasiveness." *Plant Physiology*, December. <https://doi.org/10.1093/plphys/kiab564>.

Acosta, Kenneth, Klaus J. Appenroth, Ljudmilla Borisjuk, Marvin Edelman, Uwe Heinig, Marcel A. K. Jansen, Tokitaka Oyama, et al. 2021. "Return of the Lemnaceae: Duckweed as a Model Plant System in the Genomics and Postgenomics Era." *The Plant Cell* 33 (10): 3207–34.

Acosta, Kenneth, Jenny Xu, Sarah Gilbert, Elizabeth Denison, Thomas Brinkman, Sarah Lebeis, and Eric Lam. 2020. "Duckweed Hosts a Taxonomically Similar Bacterial Assemblage as the Terrestrial Leaf Microbiome." *PLoS One* 15 (2): e0228560.

Adomas, Aleksandra, and Frederick O. Asiegbu. 2006. "Analysis of Organ-Specific Responses of *Pinus Sylvestris* to Shoot (*Gremmeniella Abietina*) and Root (*Heterobasidion Annosum*) Pathogens." *Physiological and Molecular Plant Pathology* 69 (4): 140–52.

Adomas, Aleksandra, Gregory Heller, Guosheng Li, Ake Olson, Tzu-Ming Chu, Jason Osborne, Deborah Craig, et al. 2007. "Transcript Profiling of a Conifer Pathosystem: Response of *Pinus Sylvestris* Root Tissues to Pathogen (*Heterobasidion Annosum*) Invasion." *Tree Physiology* 27 (10): 1441–58.

Albert, Isabell, Hannah Böhm, Markus Albert, Christina E. Feiler, Julia Imkampe, Niklas Wallmeroth, Caterina Brancato, et al. 2015. "An RLP23-SOBIR1-BAK1 Complex Mediates NLP-Triggered Immunity." *Nature Plants* 1 (October): 15140.

Alhoraibi, Hanna, Jean Bigeard, Naganand Rayapuram, Jean Colcombet, and Heribert Hirt. 2019. "Plant Immunity: The MTI-ETI Model and Beyond." *Current Issues in Molecular Biology* 30: 39–58.

Ali, Sajad, Bashir Ahmad Ganai, Azra N. Kamili, Ajaz Ali Bhat, Zahoor Ahmad Mir, Javaid Akhter Bhat, Anshika Tyagi, et al. 2018. "Pathogenesis-Related Proteins and Peptides as Promising Tools for Engineering Plants with Multiple Stress Tolerance." *Microbiological Research* 212-213 (July): 29–37.

An, Dong, Yong Zhou, Changsheng Li, Qiao Xiao, Tao Wang, Yating Zhang, Yongrui Wu, et al. 2019. "Plant Evolution and Environmental Adaptation Unveiled by Long-Read Whole-Genome Sequencing of *Spirodela*." *Proceedings of the National Academy of Sciences of the United States of America* 116 (38): 18893–99.

"Babraham Bioinformatics - FastQC A Quality Control Tool for High Throughput Sequence Data." n.d. Accessed November 8, 2021. <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

Baggs, E., G. Dagdas, and K. V. Krasileva. 2017. "NLR Diversity, Helpers and Integrated Domains: Making Sense of the NLR IDentity." *Current Opinion in Plant Biology* 38 (August): 59–67.

Baggs, Erin L., J. Grey Monroe, Anil S. Thanki, Ruby O'Grady, Christian Schudoma, Wilfried Haerty, and Ksenia V. Krasileva. 2020. "Convergent Loss of an EDS1/PAD4 Signaling Pathway in Several Plant Lineages Reveals Coevolved Components of Plant Immunity and Drought Response." *The Plant Cell* 32 (7): 2158–77.

Bailey, Paul C., Christian Schudoma, William Jackson, Erin Baggs, Gulay Dagdas, Wilfried Haerty, Matthew Moscou, and Ksenia V. Krasileva. 2018. "Dominant Integration Locus Drives Continuous Diversification of Plant Immune Receptors with Exogenous Domain Fusions." *Genome Biology* 19 (1): 23.

Bankevich, Anton, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail Dvorkin, Alexander S. Kulikov, Valery M. Lesin, et al. 2012. "SPADEs: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing." *Journal of Computational Biology: A Journal of Computational Molecular Cell Biology* 19 (5): 455–77.

Barson, Gemma, and Ed Griffiths. 2016. "SeqTools: Visual Tools for Manual Analysis of Sequence Alignments." *BMC Research Notes* 9 (1): 39.

Bjornson, Marta, Priya Pimprikar, Thorsten Nürnberg, and Cyril Zipfel. 2021. "The Transcriptional Landscape of *Arabidopsis Thaliana* Pattern-Triggered Immunity." *Nature Plants* 7 (5): 579–86.

Bog, Manuela, Klaus-J Appenroth, and K. Sowjanya Sree. 2019. "Duckweed (Lemnaceae): Its Molecular Taxonomy." *Frontiers in Sustainable Food Systems* 3: 117.

Bonardi, Vera, Sajjun Tang, Anna Stallmann, Melinda Roberts, Karen Cherkis, and Jeffery L. Dangl. 2011. "Expanded Functions for a Family of Plant Intracellular Immune Receptors beyond Specific Recognition of Pathogen Effectors." *Proceedings of the National Academy of Sciences of the United States of America* 108 (39): 16463–68.

Bophela, K. N., S. N. Venter, M. J. Wingfield, A. Duran, M. Tarigan, and T. A. Coutinho. 2019. "Xanthomonas Perforans: A Tomato and Pepper Pathogen Associated with Bacterial Blight and Dieback of *Eucalyptus* *Pellita* Seedlings in Indonesia." *Australasian Plant Pathology: APP* 48 (6): 543–51.

Boudsocq, Marie, Matthew R. Willmann, Matthew McCormack, Horim Lee, Libo Shan, Ping He, Jenifer Bush, Shu-Hua Cheng, and Jen Sheen. 2010. "Differential Innate Immune Signalling via  $Ca^{2+}$  Sensor Protein Kinases." *Nature* 464 (7287): 418–22.

Burgh, Aranka M. van der, Jelle Postma, Silke Robatzek, and Matthieu H. A. J. Joosten. 2019. "Kinase Activity of SOBIR1 and BAK1 Is Required for Immune Signalling." *Molecular Plant Pathology* 20 (3): 410–22.

Cai, Rongman, James Lewis, Shuangchun Yan, Haijie Liu, Christopher R. Clarke, Francesco Campanile, Nalvo F. Almeida, et al. 2011. "The Plant Pathogen *Pseudomonas Syringae* Pv. Tomato Is Genetically Monomorphic and under Strong Selection to Evade Tomato Immunity." *PLoS Pathogens* 7 (8): e1002130.

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden. 2009. "BLAST+: Architecture and Applications." *BMC Bioinformatics* 10: 42–421.

Cao, H., S. A. Bowling, A. S. Gordon, and X. Dong. 1994. "Characterization of an *Arabidopsis* Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance." *The Plant Cell* 6 (11): 1583–92.

Chanroj, Salil, Aompilin Jaiprasert, and Nipatha Issaro. 2021. "A Novel Technique for Recombinant Protein Expression in Duckweed (*Spirodela Polyrhiza*) Turions." *Journal of Plant Biotechnology* 48 (3): 156–64.

Chen, Yun-Chu, Eric C. Holmes, Jakub Rajniak, Jung-Gun Kim, Sandy Tang, Curt R. Fischer, Mary Beth Mudgett, and Elizabeth S. Sattely. 2018. "N-Hydroxy-Pipecolic Acid Is a Mobile Metabolite That Induces Systemic Disease Resistance in

Arabidopsis." *Proceedings of the National Academy of Sciences of the United States of America* 115 (21): E4920–29.

Clarke, Jose, Yidong Liu, Daniel F. Klessig, and Xinnian Dong. 1998. "Uncoupling PR Gene Expression from NPR1 and Bacterial Resistance: Characterization of the Dominant Arabidopsis cpr6-1 Mutant." *The Plant Cell* 10 (4): 557–69.

Corwin, Jason A., and Daniel J. Kliebenstein. 2017. "Quantitative Resistance: More Than Just Perception of a Pathogen." *The Plant Cell* 29 (4): 655–65.

Crawford, Daniel J., Elias Landolt, Donald H. Les, and Rebecca T. Kimball. 2006. "Speciation in Duckweeds (Lemnaceae): Phylogenetic and Ecological Inferences." *Also: A Journal of Systematic and Evolutionary Botany* 22 (1): 231–42.

Cui, Haitao, Enrico Gobbato, Barbara Kracher, Jingde Qiu, Jaqueline Bautor, and Jane E. Parker. 2017. "A Core Function of EDS1 with PAD4 Is to Protect the Salicylic Acid Defense Sector in Arabidopsis Immunity." *The New Phytologist* 213 (4): 1802–17.

Dai, Zhiyin, Julie M. Sheridan, Linden J. Gearing, Darcy L. Moore, Shian Su, Sam Wormald, Stephen Wilcox, et al. 2014. "edgeR: A Versatile Tool for the Analysis of shRNA-Seq and CRISPR-Cas9 Genetic Screens." *F1000Research* 3 (April): 95.

Davis, Keith R., Eric Schott, and Frederick M. Ausubel. n.d. "Virulence of Selected Phytopathogenic Pseudomonads in Arabidopsis Thaliana." *Academia.edu*. <https://www.academia.edu/download/64239945/Davis%20et%20al%201991%20MPMI.pdf>.

Dong, Jixin, Chunhong Chen, and Zhixiang Chen. 2003. "Expression Profiles of the Arabidopsis WRKY Gene Superfamily during Plant Defense Response." *Plant Molecular Biology* 51 (1): 21–37.

Emms, David M., and Steven Kelly. 2019. "OrthoFinder: Phylogenetic Orthology Inference for Comparative Genomics." *Genome Biology* 20 (1): 238.

Feil, Helene, William S. Feil, Patrick Chain, Frank Larimer, Genevieve DiBartolo, Alex Copeland, Athanasios Lykidis, et al. 2005. "Comparison of the Complete Genome Sequences of Pseudomonas Syringae Pv. Syringae B728a and Pv. Tomato DC3000." *Proceedings of the National Academy of Sciences of the United States of America* 102 (31): 11064–69.

Fonseca, Sandra, Andrea Chini, Mats Hamberg, Bruce Adie, Andrea Porzel, Robert Kramell, Otto Miersch, Claus Wasternack, and Roberto Solano. 2009. "(+)-7-Iso-Jasmonoyl-L-Isoleucine Is the Endogenous Bioactive Jasmonate." *Nature Chemical Biology* 5 (5): 344–50.

Gao, Minghui, Xia Wang, Dongmei Wang, Fang Xu, Xiaojun Ding, Zhibin Zhang, Dongling Bi, et al. 2009. "Regulation of Cell Death and Innate Immunity by Two Receptor-like Kinases in Arabidopsis." *Cell Host & Microbe* 6 (1): 34–44.

Gutiérrez-Barranquero, José A., Francisco M. Cazorla, and Antonio de Vicente. 2019. "Pseudomonas Syringae Pv. Syringae Associated With Mango Trees, a Particular Pathogen Within the 'Hodgepodge' of the Pseudomonas Syringae Complex." *Frontiers in Plant Science* 10 (May): 570.

Harkess, Alex, Fionn McLoughlin, Natasha Bilkey, Kiona Elliott, Ryan Emenecker, Erin Mattoon, Kari Miller, et al. 2021. "Improved *Spirodela Polyrhiza* Genome and Proteomic Analyses Reveal a Conserved Chromosomal Structure with High

Abundance of Chloroplastic Proteins Favoring Energy Production.” *Journal of Experimental Botany* 72 (7): 2491–2500.

Hauck, Paula, Roger Thilmony, and Sheng Yang He. 2003. “A *Pseudomonas Syringae* Type III Effector Suppresses Cell Wall-Based Extracellular Defense in Susceptible *Arabidopsis* Plants.” *Proceedings of the National Academy of Sciences of the United States of America* 100 (14): 8577–82.

Hoang, Phuong N. T., Todd P. Michael, Sarah Gilbert, Philomena Chu, S. Timothy Motley, Klaus J. Appenroth, Ingo Schubert, and Eric Lam. 2018. “Generating a High-confidence Reference Genome Map of the Greater Duckweed by Integration of Cytogenomic, Optical Mapping, and Oxford Nanopore Technologies.” *The Plant Journal: For Cell and Molecular Biology* 96 (3): 670–84.

Hoang, Phuong T. N., Anne Fiebig, Petr Novák, Jiří Macas, Hieu X. Cao, Anton Stepanenko, Guimin Chen, Nikolai Borisjuk, Uwe Scholz, and Ingo Schubert. 2020. “Chromosome-Scale Genome Assembly for the Duckweed *Spirodela Intermedia*, Integrating Cytogenetic Maps, PacBio and Oxford Nanopore Libraries.” *Scientific Reports* 10 (1): 19230.

Ho, Eddie K. H., Magdalena Bartkowska, Stephen I. Wright, and Aneil F. Agrawal. 2019. “Population Genomics of the Facultatively Asexual Duckweed *Spirodela Polyrhiza*.” *The New Phytologist* 224 (3): 1361–71.

Huang, Chien-Yu, Karla Araujo, Jonatan Niño Sánchez, Gregory Kund, John Trumble, Caroline Roper, Kristine Elvin Godfrey, and Hailing Jin. 2021. “A S.table Antimicrobial Peptide with Dual Functions of Treating and Preventing Citrus Huanglongbing.” *Proceedings of the National Academy of Sciences of the United States of America* 118 (6). <https://doi.org/10.1073/pnas.2019628118>.

Huerta-Cepas, Jaime, Kristoffer Forslund, Luis Pedro Coelho, Damian Szklarczyk, Lars Juhl Jensen, Christian von Mering, and Peer Bork. 2017. “Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper.” *Molecular Biology and Evolution* 34 (8): 2115–22.

Huot, Bethany, Christian Danve M. Castroverde, André C. Velásquez, Emily Hubbard, Jane A. Pulman, Jian Yao, Kevin L. Childs, Kenichi Tsuda, Beronda L. Montgomery, and Sheng Yang He. 2017. “Dual Impact of Elevated Temperature on Plant Defence and Bacterial Virulence in *Arabidopsis*.” *Nature Communications* 8 (1): 1808.

Huot, Bethany, Jian Yao, Beronda L. Montgomery, and Sheng Yang He. 2014. “Growth-Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness.” *Molecular Plant* 7 (8): 1267–87.

Institute of Medicine (US) Committee on Resource Sharing, Kenneth I. Berns, Enriqueta C. Bond, and Frederick J. Manning. 1996. *The American Type Culture Collection*. National Academies Press (US).

“Invasive Species Compendium.” n.d. Accessed November 2, 2021. <https://www.cabi.org/isc>.

Ishiga, Yasuhiro, Takako Ishiga, Srinivasa Rao Uppalapati, and Kirankumar S. Mysore. 2013. “Jasmonate ZIM-Domain (JAZ) Protein Regulates Host and Nonhost Pathogen-Induced Cell Death in Tomato and *Nicotiana Benthamiana*.” *PloS One* 8 (9): e75728.

Ishiga, Yasuhiro, Takako Ishiga, Srinivasa R. Uppalapati, and Kirankumar S. Mysore. 2011. "Arabidopsis Seedling Flood-Inoculation Technique: A Rapid and Reliable Assay for Studying Plant-Bacterial Interactions." *Plant Methods* 7 (October): 32.

Jirage, D., T. L. Tootle, T. L. Reuber, L. N. Frost, B. J. Feys, J. E. Parker, F. M. Ausubel, and J. Glazebrook. 1999. "Arabidopsis Thaliana PAD4 Encodes a Lipase-like Gene That Is Important for Salicylic Acid Signaling." *Proceedings of the National Academy of Sciences of the United States of America* 96 (23): 13583–88.

Johannndrees, Oliver, Erin L. Baggs, Charles Uhlmann, Federica Locci, Henriette L. Läßle, Katharina Melkonian, Kiara Käufer, et al. 2021. "Differential EDS1 Requirement for Cell Death Activities of Plant TIR-Domain Proteins." *bioRxiv*. <https://doi.org/10.1101/2021.11.29.470438>.

Katagiri, Fumiaki, Roger Thilmony, and Sheng Yang He. 2002. "The Arabidopsis Thaliana-Pseudomonas Syringae Interaction." *The Arabidopsis Book / American Society of Plant Biologists* 1 (March): e0039.

Kim, Daehwan, Ben Langmead, and Steven L. Salzberg. 2015. "HISAT: A Fast Spliced Aligner with Low Memory Requirements." *Nature Methods* 12 (4): 357–60.

Ko, Suk-Min, Hyeon-Jin Sun, Myung Jin Oh, In-Ja Song, Min-Jae Kim, Hyun-Sook Sin, Chang-Hyo Goh, et al. 2011. "Expression of the Protective Antigen for PEDV in Transgenic Duckweed, *Lemna Minor*." *Horticulture, Environment, and Biotechnology*. <https://doi.org/10.1007/s13580-011-0007-x>.

Kumar, Sudhir, Glen Stecher, Michael Suleski, and S. Blair Hedges. 2017. "TimeTree: A Resource for Timelines, Timetrees, and Divergence Times." *Molecular Biology and Evolution* 34 (7): 1812–19.

Lamesch, Philippe, Tanya Z. Berardini, Donghui Li, David Swarbreck, Christopher Wilks, Rajkumar Sasidharan, Robert Muller, et al. 2012. "The Arabidopsis Information Resource (TAIR): Improved Gene Annotation and New Tools." *Nucleic Acids Research* 40 (Database issue): D1202–10.

Landolt, Elias. 1992. "Lemnaceae Duckweed Family." *Journal of the Arizona-Nevada Academy of Science* 26 (1): 10–14.

Lapin, Dmitry, Viera Kovacova, Xinhua Sun, Joram A. Dongus, Deepak Bhandari, Patrick von Born, Jacqueline Bautor, et al. 2019. "A Coevolved EDS1-SAG101-NRG1 Module Mediates Cell Death Signaling by TIR-Domain Immune Receptors." *The Plant Cell* 31 (10): 2430.

Liebrand, Thomas W. H., Grardy C. M. van den Berg, Zhao Zhang, Patrick Smit, Jan H. G. Cordewener, Antoine H. P. America, Jan Sklenar, et al. 2013. "Receptor-like Kinase SOBIR1/EVR Interacts with Receptor-like Proteins in Plant Immunity against Fungal Infection." *Proceedings of the National Academy of Sciences of the United States of America* 110 (24): 10010–15.

Liu, Yu, Yu Wang, Shuqing Xu, Xianfeng Tang, Jinshan Zhao, Changjiang Yu, Guo He, et al. 2019. "Efficient Genetic Transformation and CRISPR/Cas9-Mediated Genome Editing in *Lemna Aequinoctialis*." *Plant Biotechnology Journal* 17 (11): 2143–52.

Lolle, Signe, Danielle Stevens, and Gitta Coaker. 2020. "Plant NLR-Triggered Immunity: From Receptor Activation to Downstream Signaling." *Current Opinion in Immunology* 62 (February): 99–105.

Madeira, Fábio, Young Mi Park, Joon Lee, Nicola Buso, Tamer Gur, Nandana

Madhusoodanan, Prasad Basutkar, et al. 2019. "The EMBL-EBI Search and Sequence Analysis Tools APIs in 2019." *Nucleic Acids Research* 47 (W1): W636–41.

Marcus, J. P., K. C. Goulter, J. L. Green, S. J. Harrison, and J. M. Manners. 1997. "Purification, Characterisation and cDNA Cloning of an Antimicrobial Peptide from Macadamia Integrifolia." *European Journal of Biochemistry / FEBS* 244 (3): 743–49.

Martins, Paula M. M., Marcus V. Merfa, Marco A. Takita, and Alessandra A. De Souza. 2018. "Persistence in Phytopathogenic Bacteria: Do We Know Enough?" *Frontiers in Microbiology* 9 (May): 1099.

Matthysse, A. G., S. Stretton, C. Dandie, N. C. McClure, and A. E. Goodman. 1996. "Construction of GFP Vectors for Use in Gram-Negative Bacteria Other than *Escherichia Coli*." *FEMS Microbiology Letters* 145 (1): 87–94.

McManus, Ailsa M., Katherine J. Nielsen, John P. Marcus, Stuart J. Harrison, Jodie L. Green, John M. Manners, and David J. Craik. 1999. "MiAMP1, a Novel Protein from Macadamia Integrifolia Adopts a Greek Key  $\beta$ -Barrel Fold Unique amongst Plant Antimicrobial Proteins 11Edited by P. E. Wright." *Journal of Molecular Biology* 293 (3): 629–38.

Michael, Todd P., Douglas Bryant, Ryan Gutierrez, Nikolai Borisjuk, Philomena Chu, Hanzhong Zhang, Jing Xia, et al. 2017. "Comprehensive Definition of Genome Features in Spirodela Polyrhiza by High-Depth Physical Mapping and Short-Read DNA Sequencing Strategies." *The Plant Journal: For Cell and Molecular Biology* 89 (3): 617–35.

Michael, Todd P., Evan Ernst, Nolan Hartwick, Philomena Chu, Douglas Bryant, Sarah Gilbert, Stefan Ortleb, et al. 2020. "Genome and Time-of-Day Transcriptome of Wolffia Australiana Link Morphological Minimization with Gene Loss and Less Growth Control." *Genome Research*, December. <https://doi.org/10.1101/gr.266429.120>.

Mittal, Shalu, and Keith R. Davis. 1995. "Role of the Phytotoxin Coronatine in the Infection of *Arabidopsis Thaliana* by *Pseudomonas Syringae* Pv. Tomato." *MPMI-Molecular Plant Microbe Interactions* 8 (1): 165–71.

Moore, R. A., A. N. Starratt, S-W Ma, V. L. Morris, and D. A. Cuppels. 1989. "Identification of a Chromosomal Region Required for Biosynthesis of the Phytotoxin Coronatine by *Pseudomonas Syringae* Pv. Tomato." *Canadian Journal of Microbiology* 35 (10): 910–17.

Mudgett, M. B., and B. J. Staskawicz. 1999. "Characterization of the *Pseudomonas Syringae* Pv. Tomato AvrRpt2 Protein: Demonstration of Secretion and Processing during Bacterial Pathogenesis." *Molecular Microbiology* 32 (5): 927–41.

Nandety, Raja Sekhar, Jeffery L. Caplan, Keri Cavanaugh, Bertrand Perroud, Tadeusz Wroblewski, Richard W. Michelmore, and Blake C. Meyers. 2013. "The Role of TIR-NBS and TIR-X Proteins in Plant Basal Defense Responses." *Plant Physiology* 162 (3): 1459–72.

Nelson, David R., Mary A. Schuler, Suzanne M. Paquette, Daniele Werck-Reichhart, and Søren Bak. 2004. "Comparative Genomics of Rice and *Arabidopsis*. Analysis of 727 Cytochrome P450 Genes and Pseudogenes from a Monocot and a Dicot."

*Plant Physiology* 135 (2): 756–72.

Ngou, Bruno Pok Man, Hee-Kyung Ahn, Pingtao Ding, and Jonathan D. G. Jones. 2021. “Mutual Potentiation of Plant Immunity by Cell-Surface and Intracellular Receptors.” *Nature* 592 (7852): 110–15.

O’Brien, Anna M., Jason Laurich, Emma Lash, and Megan E. Frederickson. 2020. “Mutualistic Outcomes Across Plant Populations, Microbes, and Environments in the Duckweed *Lemna Minor*.” *Microbial Ecology* 80 (2): 384–97.

Offor, Benedict C., Ian A. Dubery, and Lizelle A. Piater. 2020. “Prospects of Gene Knockouts in the Functional Study of MAMP-Triggered Immunity: A Review.” *International Journal of Molecular Sciences* 21 (7). <https://doi.org/10.3390/ijms21072540>.

Ou, Shujun, Weija Su, Yi Liao, Kapeel Chougule, Jireh R. A. Agda, Adam J. Hellinga, Carlos Santiago Blanco Lugo, et al. 2019. “Benchmarking Transposable Element Annotation Methods for Creation of a Streamlined, Comprehensive Pipeline.” *Genome Biology* 20 (1): 275.

Parte, Aidan C., Joaquim Sardà Carbasse, Jan P. Meier-Kolthoff, Lorenz C. Reimer, and Markus Göker. 2020. “List of Prokaryotic Names with Standing in Nomenclature (LPSN) Moves to the DSMZ.” *International Journal of Systematic and Evolutionary Microbiology* 70 (11): 5607–12.

Peng, Zhao, Ying Hu, Jingzhong Xie, Neha Potnis, Alina Akhunova, Jeffrey Jones, Zhaohui Liu, Frank F. White, and Sanzhen Liu. 2016. “Long Read and Single Molecule DNA Sequencing Simplifies Genome Assembly and TAL Effector Gene Analysis of *Xanthomonas Translucens*.” *BMC Genomics* 17 (January): 21.

Pertea, Mihaela, Geo M. Pertea, Corina M. Antonescu, Tsung-Cheng Chang, Joshua T. Mendell, and Steven L. Salzberg. 2015. “StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads.” *Nature Biotechnology* 33 (3): 290–95.

Potnis, Neha, Sujan Timilsina, Amanda Strayer, Deepak Shantharaj, Jeri D. Barak, Mathews L. Paret, Gary E. Vallad, and Jeffrey B. Jones. 2015. “Bacterial Spot of Tomato and Pepper: Diverse *Xanthomonas* Species with a Wide Variety of Virulence Factors Posing a Worldwide Challenge.” *Molecular Plant Pathology* 16 (9): 907–20.

Pruitt, Rory N., Federica Locci, Friederike Wanke, Lisha Zhang, Svenja C. Saile, Anna Joe, Darya Karelina, et al. 2021. “The EDS1-PAD4-ADR1 Node Mediates *Arabidopsis* Pattern-Triggered Immunity.” *Nature*, September. <https://doi.org/10.1038/s41586-021-03829-0>.

Richard, Manon M. S., Ariane Gratias, Blake C. Meyers, and Valérie Geffroy. 2018. “Molecular Mechanisms That Limit the Costs of NLR-Mediated Resistance in Plants.” *Molecular Plant Pathology* 19 (11): 2516–23.

Roberts, Melinda, Sajjun Tang, Anna Stallmann, Jeffery L. Dangl, and Vera Bonardi. 2013. “Genetic Requirements for Signaling from an Autoactive Plant NB-LRR Intracellular Innate Immune Receptor.” *PLoS Genetics* 9 (4): e1003465.

Roden, Julie Anne, Brandis Belt, Jason Barzel Ross, Thomas Tachibana, Joe Vargas, and Mary Beth Mudgett. 2004. “A Genetic Screen to Isolate Type III Effectors Translocated into Pepper Cells during *Xanthomonas* Infection.” *Proceedings of the*

*National Academy of Sciences of the United States of America* 101 (47): 16624–29.

Salguero-Linares, Jose, Irene Serrano, Nerea Ruiz-Solani, Marta Salas-Gómez, Ujjal Jyoti Phukan, Victor Manuel González, Martí Bernardo-Faura, Marc Valls, David Rengel, and Nuria S. Coll. 2021. “Robust Transcriptional Indicators of Plant Immune Cell Death Revealed by Spatio-Temporal Transcriptome Analyses.” *bioRxiv*. <https://doi.org/10.1101/2021.10.06.463031>.

Sandler, George, Magdalena Bartkowska, Aneil F. Agrawal, and Stephen I. Wright. 2020. “Estimation of the SNP Mutation Rate in Two Vegetatively Propagating Species of Duckweed.” *G3* 10 (11): 4191–4200.

Sarris, Panagiotis F., Volkan Cevik, Gulay Dagdas, Jonathan D. G. Jones, and Ksenia V. Krasileva. 2016. “Comparative Analysis of Plant Immune Receptor Architectures Uncovers Host Proteins Likely Targeted by Pathogens.” *BMC Biology* 14 (1): 8.

Schwartz, Allison R., Robert Morbitzer, Thomas Lahaye, and Brian J. Staskawicz. 2017. “TALE-Induced bHLH Transcription Factors That Activate a Pectate Lyase Contribute to Water Soaking in Bacterial Spot of Tomato.” *Proceedings of the National Academy of Sciences of the United States of America* 114 (5): E897–903.

Shao, Zhu-Qing, Jia-Yu Xue, Qiang Wang, Bin Wang, and Jian-Qun Chen. 2019. “Revisiting the Origin of Plant NBS-LRR Genes.” *Trends in Plant Science* 24 (1): 9–12.

Shao, Zhu-Qing, Jia-Yu Xue, Ping Wu, Yan-Mei Zhang, Yue Wu, Yue-Yu Hang, Bin Wang, and Jian-Qun Chen. 2016. “Large-Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal Three Anciently Diverged Classes with Distinct Evolutionary Patterns.” *Plant Physiology* 170 (4): 2095–2109.

Sreedharan, Aswathy, Alejandro Penalosa-Vazquez, Barbara N. Kunkel, and Carol L. Bender. 2006. “CorR Regulates Multiple Components of Virulence in *Pseudomonas Syringae* Pv. Tomato DC3000.” *Molecular Plant-Microbe Interactions: MPMI* 19 (7): 768–79.

Staskawicz, B., D. Dahlbeck, N. Keen, and C. Napoli. 1987. “Molecular Characterization of Cloned Avirulence Genes from Race 0 and Race 1 of *Pseudomonas Syringae* Pv. *Glycinea*.” *Journal of Bacteriology* 169 (12): 5789–94.

Stephens, Camilla, Kemal Kazan, Ken C. Goulter, Donald J. Maclean, and John M. Manners. 2005. “The Mode of Action of the Plant Antimicrobial Peptide MiAMP1 Differs from that of Its Structural Homologue, the Yeast Killer Toxin WmKT.” *FEMS Microbiology Letters* 243 (1): 205–10.

Su, Haifeng, Yun Zhao, Juan Jiang, Qiuli Lu, Qing Li, Yao Luo, Hai Zhao, and Maolin Wang. 2014. “Use of Duckweed (*Landoltia Punctata*) as a Fermentation Substrate for the Production of Higher Alcohols as Biofuels.” *Energy & Fuels: An American Chemical Society Journal* 28 (5): 3206–16.

Tian, Hainan, Siyu Chen, Zhongshou Wu, Kevin Ao, Hoda Yaghmaiean, Tongjun Sun, Weijie Huang, et al. 2020. “Activation of TIR Signaling Is Required for Pattern-Triggered Immunity.” *bioRxiv*. <https://doi.org/10.1101/2020.12.27.424494>.

Tian, Hainan, Zhongshou Wu, Siyu Chen, Kevin Ao, Weijie Huang, Hoda Yaghmaiean, Tongjun Sun, et al. 2021. “Activation of TIR Signalling Boosts Pattern-Triggered Immunity.” *Nature*, September. <https://doi.org/10.1038/s41586-021-03987-1>.

Tsai, Chia-Hong, Prashant Singh, Ching-Wei Chen, Jerome Thomas, Johann Weber, Brigitte Mauch-Mani, and Laurent Zimmerli. 2011. "Priming for Enhanced Defence Responses by Specific Inhibition of the *Arabidopsis* Response to Coronatine." *The Plant Journal: For Cell and Molecular Biology* 65 (3): 469–79.

Van Hoeck, Arne, Nele Horemans, Pieter Monsieurs, Hieu Xuan Cao, Hildegarde Vandenhoeve, and Ronny Blust. 2015. "The First Draft Genome of the Aquatic Model Plant *Lemna Minor* Opens the Route for Future Stress Physiology Research and Biotechnological Applications." *Biotechnology for Biofuels* 8 (November): 188.

Velásquez, André C., Matthew Oney, Bethany Huot, Shu Xu, and Sheng Yang He. 2017. "Diverse Mechanisms of Resistance to *Pseudomonas Syringae* in a Thousand Natural Accessions of *Arabidopsis Thaliana*." *The New Phytologist* 214 (4): 1673–87.

Wagner, Stephan, Johannes Stuttmann, Steffen Rietz, Raphael Guerois, Elena Brunstein, Jacqueline Bautor, Karsten Niefind, and Jane E. Parker. 2013. "Structural Basis for Signaling by Exclusive EDS1 Heteromeric Complexes with SAG101 or PAD4 in Plant Innate Immunity." *Cell Host & Microbe* 14 (6): 619–30.

Wang, Wenguo, Rui Li, Qili Zhu, Xiaoyu Tang, and Qi Zhao. 2016. "Transcriptomic and Physiological Analysis of Common Duckweed *Lemna Minor* Responses to NH<sub>4</sub><sup>+</sup> Toxicity." *BMC Plant Biology* 16 (1): 92.

Wang, W., G. Haberer, H. Gundlach, C. Gläßer, T. Nussbaumer, M. C. Luo, A. Lomsadze, et al. 2014. "The *Spirodela Polyrhiza* Genome Reveals Insights into Its Neotenous Reduction Fast Growth and Aquatic Lifestyle." *Nature Communications* 5: 3311.

Wasternack, Claus, and Daoxin Xie. 2010. "The Genuine Ligand of a Jasmonic Acid Receptor: Improved Analysis of Jasmonates Is Now Required." *Plant Signaling & Behavior* 5 (4): 337–40.

Waterhouse, Andrew M., James B. Procter, David M. A. Martin, Michèle Clamp, and Geoffrey J. Barton. 2009. "Jalview Version 2—a Multiple Sequence Alignment Editor and Analysis Workbench." *Bioinformatics* 25 (9): 1189–91.

Wheeler, Travis J., and Sean R. Eddy. 2013. "Nhmmer: DNA Homology Search with Profile HMMs." *Bioinformatics* 29 (19): 2487–89.

Xin, Xiu-Fang, Kinya Nomura, Kyaw Aung, André C. Velásquez, Jian Yao, Freddy Boutrot, Jeff H. Chang, Cyril Zipfel, and Sheng Yang He. 2016. "Bacteria Establish an Aqueous Living Space in Plants Crucial for Virulence." *Nature* 539 (7630): 524–29.

Xu, Shuqing, Jessica Stapley, Saskia Gablenz, Justin Boyer, Klaus J. Appenroth, K. Sowjanya Sree, Jonathan Gershenzon, Alex Widmer, and Meret Huber. 2019. "Low Genetic Variation Is Associated with Low Mutation Rate in the Giant Duckweed." *Nature Communications* 10 (1): 1243.

Xu, Ya-Liang, Yang Fang, Qi Li, Gui-Li Yang, Ling Guo, Guo-Ke Chen, Li Tan, Kai-Ze He, Yan-Ling Jin, and Hai Zhao. 2018. "Turion, an Innovative Duckweed-Based Starch Production System for Economical Biofuel Manufacture." *Industrial Crops and Products* 124 (November): 108–14.

Yang, Gui-Li, Yang Fang, Ya-Liang Xu, Li Tan, Qi Li, Yang Liu, Fan Lai, et al. 2018. "Frond Transformation System Mediated by *Agrobacterium tumefaciens* for *Lemna*

Minor." *Plant Molecular Biology* 98 (4-5): 319–31.

Yang, Jingjing, Gaojie Li, Shiqi Hu, Antony Bishopp, P. P. M. Heenatigala, Sunjeet Kumar, Pengfei Duan, Luguang Yao, and Hongwei Hou. 2018. "A Protocol for Efficient Callus Induction and S.table Transformation of *Spirodela Polyrhiza* (L.) Schleiden Using *Agrobacterium Tumefaciens*." *Aquatic Botany* 151 (December): 80–86.

Yin, Jianmei, Lu Jiang, Li Wang, Xiaoyong Han, Wenqi Guo, Chunhong Li, Yi Zhou, Matthew Denton, and Peitong Zhang. 2021. "A High-Quality Genome of Taro (*Colocasia Esculenta* (L.) Schott), One of the World's Oldest Crops." *Molecular Ecology Resources* 21 (1): 68–77.

Yuan, Minhang, Zeyu Jiang, Guozhi Bi, Kinya Nomura, Menghui Liu, Yiping Wang, Boying Cai, Jian-Min Zhou, Sheng Yang He, and Xiu-Fang Xin. 2021. "Pattern-Recognition Receptors Are Required for NLR-Mediated Plant Immunity." *Nature* 592 (7852): 105–9.

Yuan, Minhang, Bruno Pok Man Ngou, Pingtao Ding, and Xiu-Fang Xin. 2021. "PTI-ETI Crosstalk: An Integrative View of Plant Immunity." *Current Opinion in Plant Biology* 62 (March): 102030.

Manners, John M. 2009. "Primitive Defence: The MiAMP1 Antimicrobial Peptide Family." *Plant Molecular Biology Reporter / ISPMB* 27 (3): 237–42.

Marcus, J. P., K. C. Goulter, J. L. Green, S. J. Harrison, and J. M. Manners. 1997. "Purification, Characterisation and cDNA Cloning of an Antimicrobial Peptide from *Macadamia Integrifolia*." *European Journal of Biochemistry / FEBS* 244 (3): 743–49.

## Supplemental datasets

### Supplemental tables

S.table 1 - Copy number of orthologs/homologs of immune associated genes.

S.table 2 - Table of *Spirodela polyrhiza* homologs to *Arabidopsis* immunity genes.

S.table 3 - Syndrome prevalence upon pathogen treatment of *Lemnaceae* species.

S.table 4 - Log2FC of JAZ domain containing *S. polyrhiza* genes.

S.table 5 - Log2FC of WRKY domain containing *S. polyrhiza* genes.

S.table 6 - Log2FC of MiAMP1 domain containing *S. polyrhiza* genes.

S.table 7 - Log2FC of NB-ARC domain containing *S. polyrhiza* genes.

S.table 8 - Log2FC of JAZ domain containing *L. punctata* genes.

S.table 9 - Log2FC of WRKY domain containing *L. punctata* genes.

S.table 10 - Log2FC NBARC domain containing genes *L. punctata*.

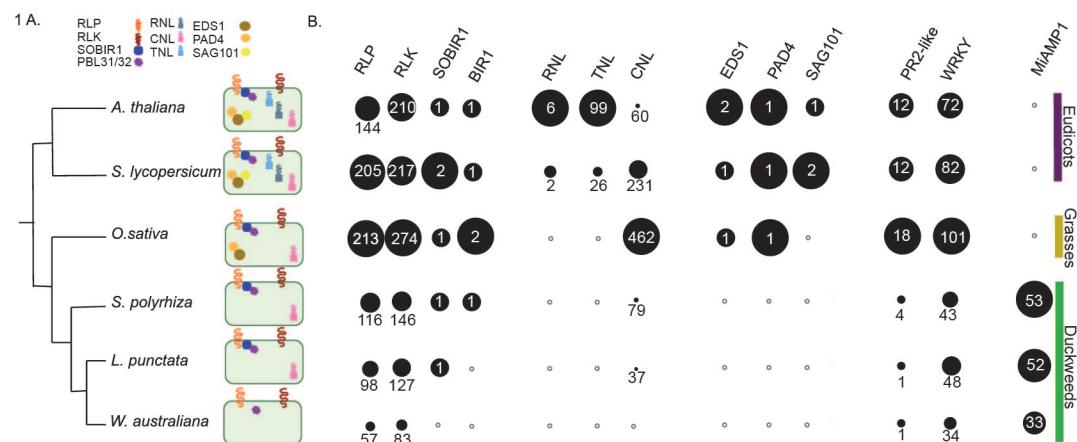
S.table 11- Log2FC MiAMP1 domain containing genes *L. punctata*.

S.table 12 - Identification of homologs for transcriptomic analysis between *A. thaliana*, *S. polyrhiza* and *L. punctata*.

S.table 13 - Orthologs to *A. thaliana* marker genes that are significantly upregulated upon *Pst* treatment Log2FC >0.75 FDR<0.05 in either *S. polyrhiza* or *L. punctata*.

## Supplemental datasets

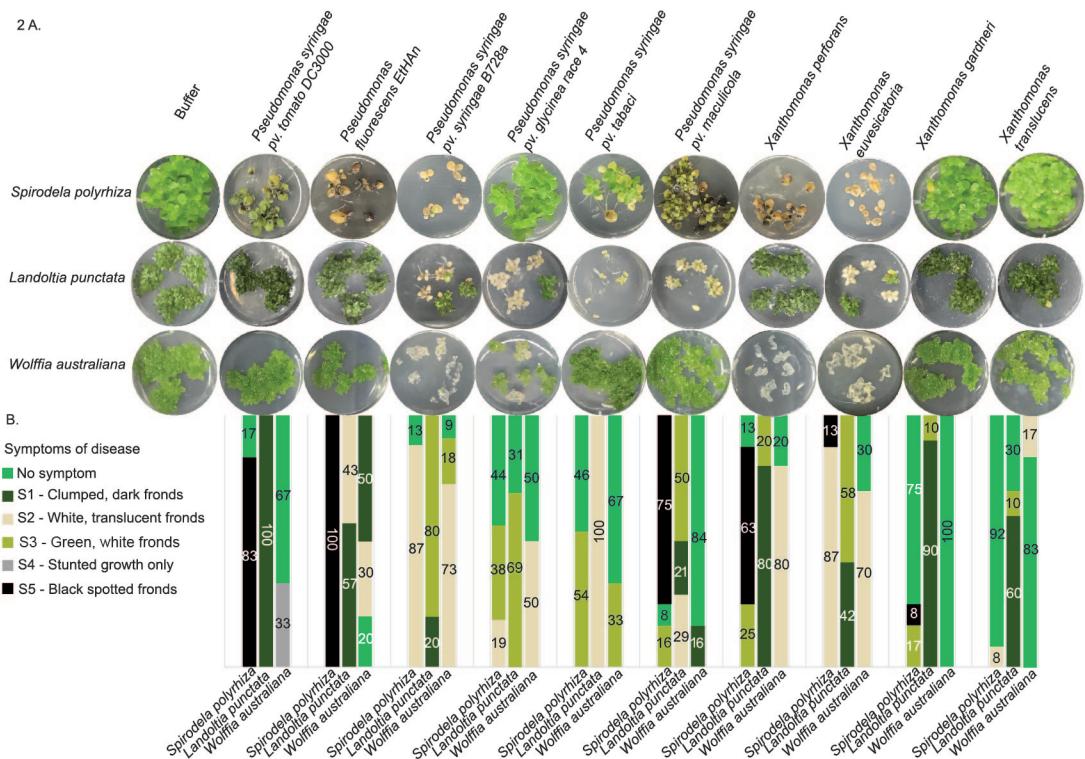
Supplemental datasets are available at github  
(<https://github.com/krasileva-group/Thesis-Scripts>) or zenodo.


Sdataset 1 - Powerpoint presentation of pathogen inoculation symptoms - doi : 10.5281/zenodo.5733456

Sdataset 2 - Zstack microscopy - doi: 10.5281/zenodo.5639580

Sdataset 3 - Differentially expressed gene tables *S. polystachya* - github

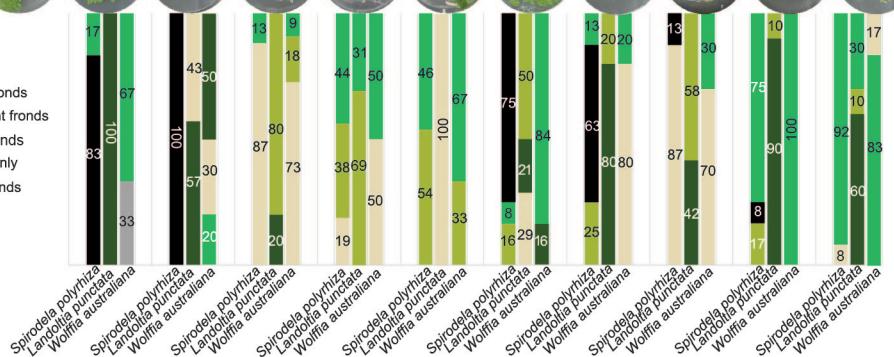
Sdataset 4 - Differentially expressed gene tables *L. punctata* - github


Sdataset 5 - Orthogroup assignment and overlap across pathogen treatments and species - github



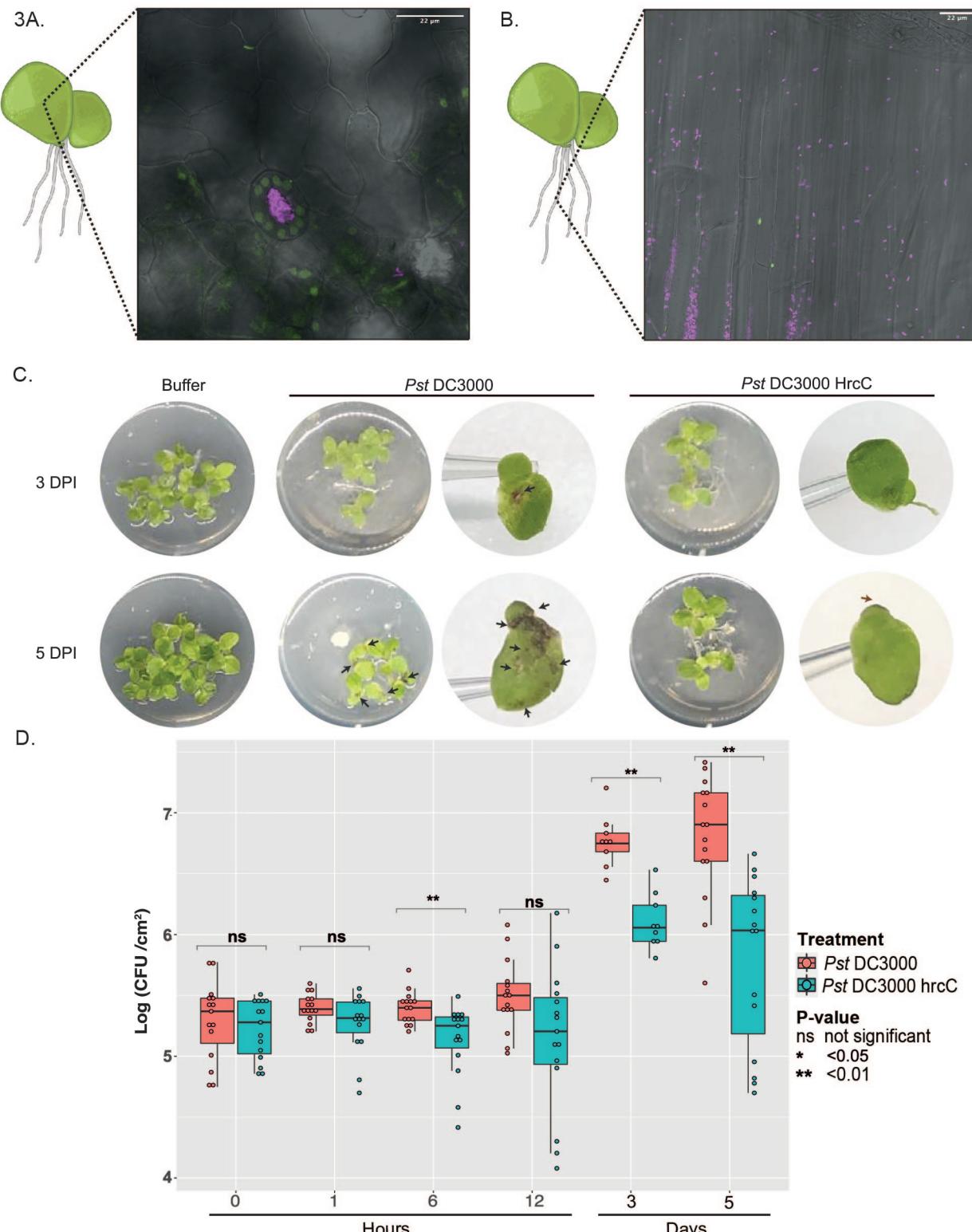
**Figure 1 Copy number variation of conserved angiosperm immune signaling components.**

A. Phylogenetic relationship of duckweeds to other representative angiosperms and depiction of presence of signaling components. If components were not identified by Orthofinder, reciprocal BLASTP, and TBLASTN, the representative symbol was not displayed in the cell. B. The size of circles within each column are proportional to the highest copy number of that gene family in a given species, the copy number is denoted in white text. White circles with a gray outline indicate no members of that gene family were identified.


A.

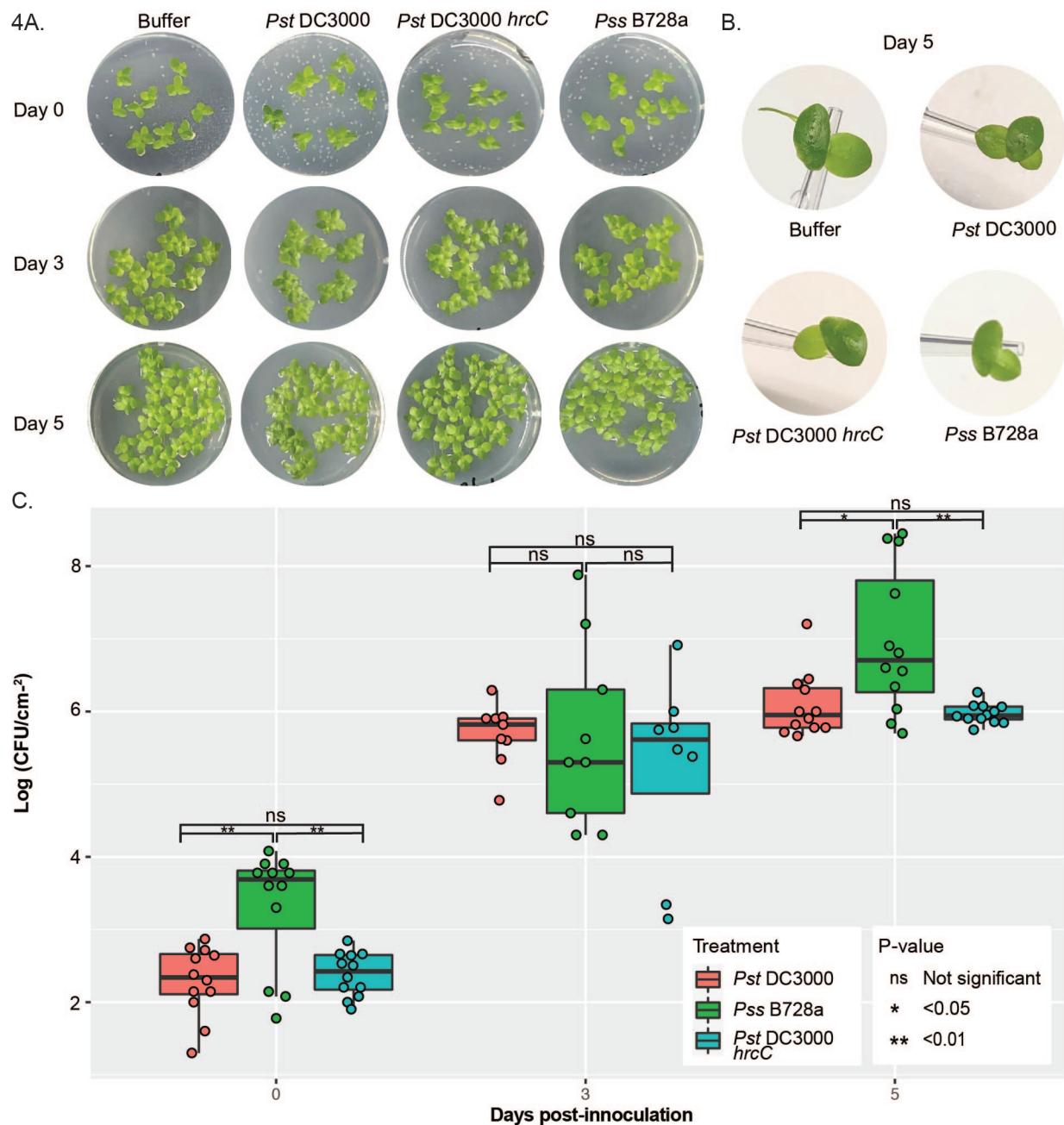


B.


Symptoms of disease

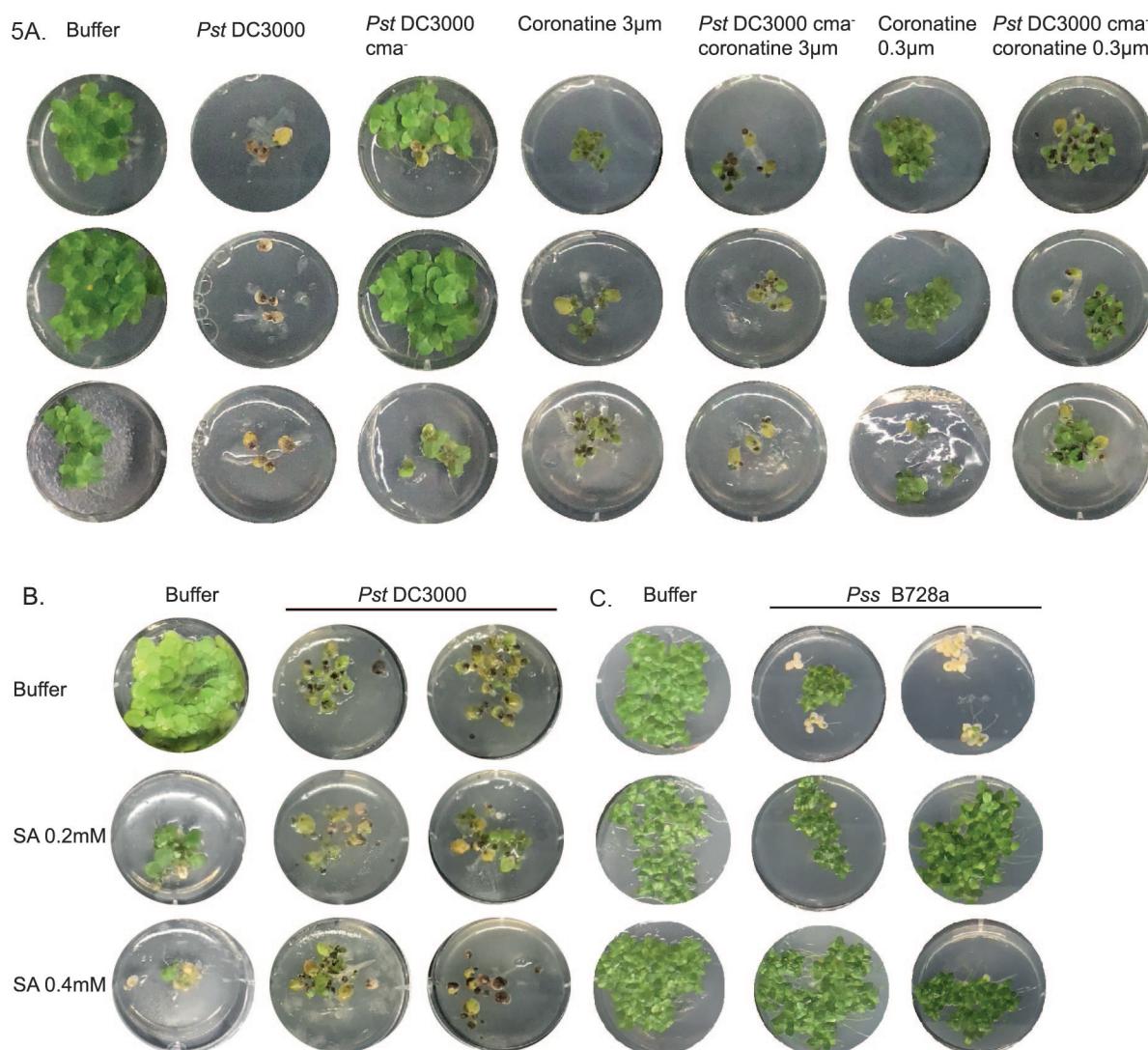
- No symptom
- S1 - Clumped, dark fronds
- S2 - White, translucent fronds
- S3 - Green, white fronds
- S4 - Stunted growth only
- S5 - Black spotted fronds




**Figure 2 Phenotypic response of duckweed species to bacterial pathogen treatments.**

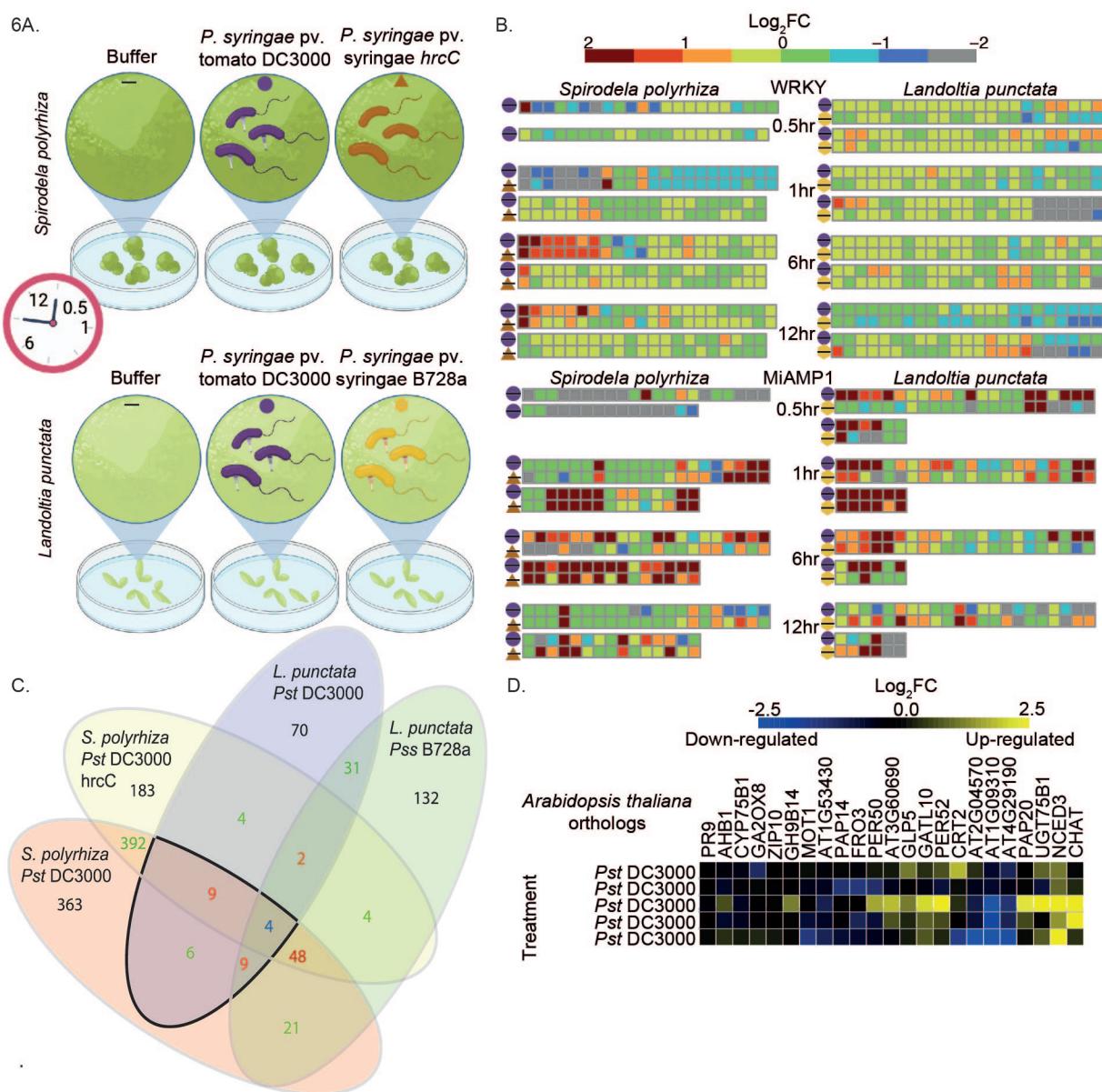
A. One replicate is shown per treatment (full experiment has been independently replicated 3 times, see S dataset 1, S table 3). Each well displays the most prevalent visual symptom of infection three weeks after pathogen treatment of five frond clusters. B. Bar graph showing the percentages of wells displaying each symptom among all replicates (S table 3). Colors of bars correspond to color legend of disease symptoms.




**Figure 3** *Pst* DC3000 infection of *Spirodesa polyrhiza*.

Confocal 100x microscopy of *S. polyrhiza* inoculated with *Pst* DC3000. False colors: pink - *Pst* DC3000, green - plastids, gray - transmitted light. A. Frond surface with stomata in the center of frame B. Root tissue. C. Images of duckweed fronds and symptoms during *Pst* DC3000 and *Pst* DC3000 *hrcC*. The *Pst* DC3000 *hrcC* mutant lacks the type III secretion system used for deployment of effectors to the plant. Individual fronds were photographed on a 10μl tip to indicate size of fronds. D. Box plot showing the number of colony forming units of *Pst* DC3000 and *Pst* DC3000 *hrcC* at different time points on *S. polyrhiza* fronds. Dots indicate individual replicates.




**Figure 4** *Pst* DC3000 infection of *Landoltia punctata*.

A. Images of *L. punctata* fronds and symptoms during *Pst* DC3000, *Pst* DC3000 *hrcC* and *Pss* B728a.B. Individual fronds were photographed on a 10ul tip to indicate size of fronds. C. Box plot showing the number of colony forming units of *Pst* DC3000, *Pst* DC3000 *hrcC* and *Pss* B728a at different time points on *L. punctata* fronds. Dots indicate individual replicates. Mean-T statistic with holm adjustment used to asses statistical difference between treatments.



**Figure 5 The effects of hormone treatments on *Pst* DC3000 and *Pss* B728a disease symptoms.**

A. Images of disease progression 3 weeks after the treatment of 3S. *polyrhiza* fronds with different concentrations and combinations of coronatine and *Pst* DC3000 mutants (full experiment has been independently replicated 3 times, see Sfig 7 and Sfig 8). B. Images of disease progression 3 weeks after the treatment of 5 S. *polyrhiza* fronds with different concentrations and combinations of salicylic acid and *Pst* DC3000 (full experiment has been independently replicated 4 times, see Sfig 10-12). C. Images of disease progression 3 weeks after the treatment of five L. *punctata* fronds with different concentrations and combinations of salicylic acid and *Pss* B728a treatment, *Pss* B728a was used rather than *Pst* DC3000 as it gives clearer visual symptoms in L. *punctata*. (full experiment has been independently replicated 3 times, see Sfig 14 and Sfig 15).



**Figure 6 Log<sub>2</sub> fold change of selected gene families following bacterial pathogen exposure of duckweeds.**

A. Schematic of the sampling regime for RNAseq study. B. Each square represents a gene with a given domain, the differential expression of the gene is shown by the color of the square. The treatment comparison is indicated by the shapes shown in A. C. Venn diagram of numbers of orthologous groups that show differential expression (Log<sub>2</sub> FC >1, FDR < 0.05) in multiple combinations of pathogen treatments and or across different species at any time point. D. Microarray differential expression analysis of representatives from *Arabidopsis thaliana* Col-0 of those orthologous groups with conserved upregulation upon *Pst* DC3000 in *S. polyrhiza* and *L. punctata*.