

1 **Screening the Pathogen Box Compounds for Activity Against *Plasmodium***
2 ***falciparum* Sporozoite Motility**

3
4 Sachie Kanatani*, Rubayet Elahi, Sukanat Kanchanabhogin, Natasha Vartek, Abhai K. Tripathi,
5 Sean T. Prigge and Photini Sinnis*
6
7 W. Harry Feinstone Department of Molecular Microbiology and Immunology, and Johns
8 Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health,
9 Baltimore, Maryland, USA

10
11
12 *corresponding authors:
13 Sachie Kanatani: skanata1@jhu.edu
14 Photini Sinnis: psinnis1@jhu.edu
15
16
17

18
19
20
21
22
23
24

25 **Abstract**

26 As the malaria parasite becomes resistant to every drug that we develop, identification and
27 development of novel drug candidates is essential. Many studies have screened compounds
28 designed to target the clinically important blood stages. However, if we are to shrink the malaria
29 map, new drugs that block transmission of the parasite are needed. Sporozoites are the infective
30 stage of the malaria parasite, transmitted to the mammalian host as mosquitoes probe for blood.
31 Sporozoite motility is critical to their ability to exit the inoculation site and establish infection
32 and drug-like compounds targeting motility are effective in blocking infection in the rodent
33 malaria model. In this study, we established a moderate throughput motility assay for sporozoites
34 of the human malaria parasite *Plasmodium falciparum*, enabling us to screen the 400 drug-like
35 compounds from the Pathogen box provided by Medicines for Malaria Venture for their
36 activity. Compounds exhibiting inhibitory effects on *P. falciparum* sporozoite motility were
37 further assessed against transmission-blocking activity and asexual stage growth. Five
38 compounds had a significant inhibitory effect on *P. falciparum* sporozoite motility at 1 μ M
39 concentration and four of these compounds also showed significant inhibition on transmission of
40 *P. falciparum* gametocytes to the mosquito and of these four, three had previously been shown to
41 have inhibitory activity on asexual blood stage parasites. Our findings provide new antimalarial
42 drug candidates that have multi-stage activity.

43

44 **Introduction**

45 Malaria is caused by parasites of the genus *Plasmodium*, transmitted to humans by
46 *Anopheles* mosquitoes. *Plasmodium falciparum* is responsible for the majority of malaria-
47 induced deaths with over 400,000 deaths and more than 200 million people affected

48 annually (1). As *P. falciparum* is increasingly becoming resistant to artemisinin-based
49 combination therapies (2), new drugs are essential. Drugs used to treat malaria target the
50 asexual blood stages of the parasite, which are responsible for all clinical manifestations of
51 malaria. The majority of these drugs have no impact on the transmission stages of the
52 malaria parasite, and in some cases have been found to increase transmission to the
53 mosquito host (3–5). Recently there has been some focus on developing drugs that target
54 both blood stages and transmission stages, a goal that would enable us to work towards
55 malaria elimination as we treat clinical malaria cases.

56 Malaria parasites cycle between mosquito and mammalian hosts. Infection in the
57 mammalian host is initiated when mosquitoes inoculate sporozoites as they probe blood.
58 Sporozoites are actively motile, migrating through the dermis to enter the blood circulation
59 (6), which carries them to the liver. Here they develop into exoerythrocytic stages, which
60 produce thousands of hepatic merozoites that initiate the blood stage of infection. Some
61 blood stage parasites differentiate to gametocytes, which are responsible for transmission
62 back to the mosquito. Upon being ingested during blood feeding, gametocytes develop into
63 gametes, fuse, and ultimately form ookinetes, which migrate across the mosquito gut
64 epithelium and develop into oocysts, where sporozoites are produced. These sporozoites
65 migrate to salivary glands and wait to be inoculated into the next mammalian host. Both
66 transmission to the mammalian host and back to the mosquito are severe bottlenecks for
67 the parasite (7). Thus, targeting these stages with drugs could have significant
68 transmission-blocking potential.

69 Sporozoites move by gliding motility, a substrate-based form of locomotion that does not
70 involve a change in cell shape and is powered by an actin-myosin motor beneath the

71 sporozoite plasma membrane (8). Gliding motility involves the rapid turnover of surface
72 adhesion sites with secretion of adhesins from the apical end followed by their
73 translocation posteriorly via the actin-myosin motor and their shedding via the activity of a
74 surface rhomboid protease (9, 10). Motility is required for sporozoite exit from the dermal
75 inoculation site and entry into hepatocytes, and thus is an excellent target for intervention.
76 Motility studies have largely been performed using the rodent malaria model (11, 12) since
77 to date, it has been difficult to perform live gliding assays with sporozoites of the human
78 malaria parasite *P. falciparum*. In this study, we developed a moderate-throughput *in vitro*
79 *P. falciparum* sporozoite motility assay and screened the 400 Pathogen Box compounds
80 available from Medicines for Malaria Venture (MMV), which demonstrate activity against a
81 range of different pathogens, predominantly *Mycobacterium* and two groups of eukaryotic
82 protists, the Apicomplexans and Kinetoplastids. Active compounds were further screened
83 against gametocyte transmission to the mosquito and blood stage parasites to identify
84 multi-stage active compounds (Fig. 1A).

85

86 **Results**

87 **Moderate throughput *Plasmodium falciparum* sporozoite motility assay**

88 We began by establishing a motility assay for *P. falciparum* sporozoites. We found that if wells
89 of a 96-well plate were coated with mAb 2A10, specific for the repeat region of the sporozoite's
90 major surface protein, the circumsporozoite protein (CSP), *P. falciparum* sporozoites would
91 adhere to the wells and initiate motility. Unlike rodent malaria sporozoites which will initiate
92 gliding motility on uncoated glass slides, *P. falciparum* sporozoites appear to need the additional
93 adhesive force provided by binding of its surface protein to immobilized antibody in order to glide

94 in two-dimensional spaces. Sporozoites and the CSP trails they leave behind as they move were
95 visualized by staining for CSP, using biotinylated mAb 2A10 followed by avidin conjugated to a
96 fluorophore. Plates were imaged with a high content imaging system and the area occupied by
97 the trails was quantified using cell profiler software (Fig. 1B). This assay was validated by
98 quantification of motility in the presence of known inhibitors, soluble mAb 2A10 (13)
99 and cytochalasin D, an actin polymerization inhibitor (14). Sporozoites were pre-incubated with
100 1 μ M of each compound and then allowed to move in wells of a glass-bottom plate for 1 h.
101 Treatment with either mAb 2A10 or cytochalasin D inhibited sporozoite motility in a dose-
102 dependent manner (Fig. 1C-F), indicating that this assay allows for moderate-throughput
103 measurement of sporozoite motility.

104

105 **Screening of pathogen box compounds on *Plasmodium falciparum* sporozoite motility**

106 The pathogen box contains 400 drug-like molecules active against neglected diseases including
107 125 compounds targeting the blood stages of malaria (<https://www.mmv.org/mmv-open/pathogen-box/about-pathogen-box>). Screening of the compounds at 1 μ M in our sporozoite
108 motility assay demonstrated that five compounds displayed greater than or equal to 50 %
109 inhibition of motility (Sup Fig. 1). We confirmed these results by re-testing the active
110 compounds in 3 biological replicates (Fig. 2A&B). The potency of each compound was then
111 assessed by treating sporozoites with serially diluted compounds from 1 μ M to 0.0039 μ M.
112 MMV688703 showed the highest potency with significant inhibition at 0.0156 μ M and
113 MMV030734 showed second highest potency with significant inhibition at 0.0625 μ M (Fig. 2C).
114 The three remaining compounds (MMV688854, MMV687800, and MMV687807) had
115 significant inhibition at 0.25 μ M but not at lower concentrations (Fig. 2C). Importantly, the
116

117 hepatocyte cytotoxicity data provided by MMV showed that 4 of the 5 compounds did not have
118 significant toxicity to HepG2 cells, while MMV687807 showed some toxicity to HepG2 cells
119 (Table 1). We then determined whether these compounds were directly toxic to parasites, using a
120 viability assay based on a live/dead dye that binds to free amines, resulting in dead cells
121 becoming brightly fluorescent (Fig. 3A). Similar to the motility assay, sporozoites were pre-
122 incubated with compounds at 1 μ M and the live/dead dye for 30 minutes followed by a 1 h
123 incubation at 37 °C. Sporozoites were then stained for CSP for visualization purposes.
124 Sporozoites treated with any of the 5 motility-inhibiting compounds were > 90 % viable (Fig.
125 3B), suggesting that these compounds did not have a direct cytotoxic effect on sporozoites.

126

127 **Testing the pathogen box inhibitory compounds on *Plasmodium berghei* sporozoite motility**
128 A previous study from the Frischknecht group screened the 400 compounds in the MMV Malaria
129 Box for their impact on sporozoite motility of the rodent malaria parasite *Plasmodium berghei*
130 (11). These compounds are different from those in the MMV Pathogen Box. They found that
131 three of the Malaria Box compounds, MMV665953, MMV665852, and MMV007224, inhibited
132 motility by > 75 %, however, due to toxic effects on hepatocytes, these compounds were not
133 pursued further. To determine if there was cross-species activity of our hits, we tested the active
134 Pathogen Box compounds on *P. berghei* sporozoites. These sporozoites make tighter circles than
135 *P. falciparum* sporozoites complicating quantification of the area occupied by the trails using
136 high content imaging. Thus, we optimized the screening method for *P. berghei* by quantifying
137 stained trails using fluorescence microscopy, measuring total fluorescence intensity using Image
138 J. We verified this assay with mAb 3D11, an inhibitory antibody specific for the *P. berghei* CSP
139 repeats, and cytochalasin D (Fig. 4A&B). As shown, treatment with mAb 3D11 and cytochalasin

140 D inhibited sporozoite motility in a dose-dependent manner. We then assessed the 5 inhibitory
141 Pathogen Box compounds and all of them showed significant inhibitory effect on *P. berghei*
142 sporozoite motility (Fig. 4C&D). MMV030734 and MMV688703 showed > 70 % inhibition
143 while MMV688854, MMV687807, and MMV687800 were less potent. These findings are
144 similar to the inhibitory activity of these compounds on *P. falciparum* sporozoite motility at 1
145 μ M, with MMV030734 and MMV688703 being the most potent and MMV687800
146 demonstrating the least inhibitory activity (Fig. 2B). Thus, the rodent model can be used for
147 screening compounds targeting motility, though ultimately compounds need to be screened on
148 human malaria parasites.

149

150 **Testing the pathogen box inhibitory compounds in transmission blocking assays**

151 We next determined whether any of our active compounds had inhibitory activity on
152 transmission of *Plasmodium* parasites to the mosquito. To do this we added each of the 5
153 compounds at 1 μ M to the *P. falciparum* gametocyte-blood meal fed to mosquitoes. Nine days
154 later, mosquito midguts were dissected and oocyst numbers were counted (Fig. 5A&B).
155 We performed this assay using two different gametocyte concentrations, 0.1% and 0.03% of total
156 erythrocytes. As shown in Fig. 5C, when fed on blood containing low gametocyte counts, there
157 was a significant reduction in oocyst number in mosquitoes fed with four of the compounds,
158 MMV030734, MMV688854, MMV687800, and MMV688703. By contrast, when mosquitoes
159 were fed on blood with higher gametocyte counts, only MMV030734 and MMV68854 had
160 inhibitory activity on transmission. One compound, MMV687807 had no effect on transmission
161 even when blood contained low gametocyte numbers (Fig. 5C and 5D).

162

163 **Asexual blood stage parasites treated with MMV030734 exhibit egress defects**

164 Though these compounds had been previously tested against asexual blood stage parasites of *P.*
165 *falciparum* in a high-throughput assay (15), we wanted to confirm these results for the two
166 compounds (MMV030734 and MMV688854) that had strong inhibitory activity on both
167 transmission stages (Fig. 6A). Synchronized *P. falciparum* ring stage parasites were grown in the
168 presence of 1 μ M MMV030734 or MMV688854 or 0.1% DMSO for 60 hours. At the end of the
169 experiment, Giemsa-stained blood smears were made and ring stage parasites were
170 counted. MMV688854 had no impact on parasite growth, however, no ring stage parasites were
171 observed in the culture treated with MMV030734 (Fig. 6B). Interestingly, the Giemsa-stained
172 slides from the MMV030734-treated culture showed that parasite growth was halted at the
173 schizont stage, suggesting an egress defect (Fig. 6C). To confirm this we counted ring,
174 trophozoite, and schizont stage of parasites in infected cells. As shown in Fig. 6D, all parasites
175 were at the schizont stage in the culture treated with MMV030734 while majority of the
176 population in the culture treated with MMV688854 and the DMSO control was ring stage
177 parasites. To further characterize MMV030734, we determined its half-maximal effective
178 concentration (EC₅₀) and found that its inhibitory activity on blood stage parasite growth was in
179 the nanomolar range (Fig. 6E).

180

181 **Discussion**

182 In this study, we have established a quantitative, moderate-throughput assay of *P.*
183 *falciparum* sporozoite motility and used it to screen 400 drug-like compounds targeting
184 neglected diseases. Five compounds had a significant inhibitory effect on *P. falciparum*
185 sporozoite motility: MMV688854, MMV687800, MMV687807, MMV688703, and

186 MMV030734 (Sup Fig. 1 and Fig. 2). These 5 compounds were further assessed in *P.*
187 *falciparum* transmission blocking assays and two of them, MMV030734 and MMV688854,
188 had strong inhibitory activity on transmission to the mosquito while two others,
189 MMV687800 and MMV688703, had moderate activity in this assay (Fig. 5). Three of the
190 compounds that had dual transmission-blocking activity, MMV030734, MMV687800,
191 MMV688703, had been previously shown to inhibit growth of *P. falciparum* asexual stage
192 parasites (15), with our study extending the findings with MMV030734 demonstrating an
193 effect on egress from infected erythrocytes (Fig. 6). When the 5 motility-inhibitory
194 compounds were tested in motility assays with the rodent malaria parasite *P. berghei*, all 5
195 compounds demonstrated inhibitory activity, with MMV030734 and MMV688703 having
196 the greatest inhibitory activity in both species, highlighting the conservation of the gliding
197 motility machinery across the genus, and the usefulness of the rodent model in testing
198 compounds targeting motility.

199
200 Interestingly, three of the compounds, MMV688703, MV030734, and MMV688854, are
201 known to target protein kinases (Table 1). MMV688703, a substituted pyrrole, is also
202 known as Compound 1, a cGMP-dependent protein kinase (PKG) inhibitor in *Toxoplasma*
203 *gondii* and *Eimeria tenella* (16, 17), MMV030734, a trisubstituted imidazole, binds to *P.*
204 *falciparum* calcium-dependent protein kinase 1 (PfCDPK1) (18) and inhibits blood stage
205 parasites, and MMV688854, a pyrazolopyrimidine bumped kinase inhibitor derivative, is a
206 known inhibitor of *Toxoplasma gondii* CDPK1 (TgCDPK1) (19, 20). The other compounds
207 that had inhibitory effect on sporozoite motility were MMV687800 and MMV687807, both
208 of which have anti-mycobacterial activity. MMV687800 is Clofazimine, which is used

209 together with dapsone to treat leprosy. Though its precise mechanism of action is unclear,
210 clofazimine interacts with bacterial membrane phospholipids and interferes with K⁺ uptake
211 and ATP production (21). MMV687807 is a salicylanilide-derivative with significant
212 cytotoxicity (22). There are also 26 reference compounds in the pathogen box and of these,
213 doxycycline, primaquine, amphotericin B, and bedaquiline had significant inhibitory
214 activity against asexual blood stages (15), however they had no impact on sporozoite
215 motility (Sup Fig. 1).

216

217 Among the five compounds that inhibited sporozoite motility, MMV688703 or Compound 1,
218 had the greatest potency, with activity in the low nanomolar range. This inhibitor also had
219 activity in blocking parasite transmission to the mosquito. The compound's target molecule,
220 PKG, is likely the sole mediator of cGMP signaling in *Plasmodium* parasites with
221 phosphoproteomic studies showing hundreds of downstream substrates (23 and reviewed
222 in 22). Thus it is not surprising that PKG regulates many cellular processes in *Plasmodium*,
223 including egress from red blood cells, gamete formation, and motility (25–28). The critical
224 role of PKG in cellular pathways occurring across the life cycle in both mosquito and
225 mammalian hosts, can be explained by the recent demonstration that PKG controls
226 cytosolic Ca²⁺ levels which in turn regulate a variety of stage-specific effector pathways. Its
227 role in motility has been demonstrated in *P. berghei*, where its been shown to inhibit the
228 regulated secretion of micronemes, a calcium-dependent process necessary for gliding
229 motility, and phosphorylation of central components of the actin-myosin motor (28, 29).
230 Our current findings demonstrate that PKG signaling is critical for motility in *P. falciparum*.
231 Additionally, the modest but significant transmission blocking activity of MMV688703

232 extends previous findings with this compound on gametogenesis and ookinete motility to
233 show that these defects impact mosquito transmission. Taken together these data, covering
234 a wide range of phenotypic assays in both human and rodent malaria parasites, make a
235 compelling case that targeting PKG could have potent multi-stage activity.

236

237 Interestingly, the two compounds that had strong transmission-blocking activity in
238 addition to their inhibitory activity on sporozoite motility were MMV688854 and
239 MMV030734, which target kinases of the CDPK family (18–20). CDPKs are
240 serine/threonine protein kinases that are mediators of calcium signaling in *Plasmodium*
241 and other Apicomplexa (30, 31), containing calcium-binding EF hand domains that when
242 bound to Ca^{2+} led to conformational changes, which enable them to rapidly respond to Ca^{2+}
243 fluxes. Apicomplexan parasites have multiple CDPK family members, with *P. falciparum*
244 having 7 CDPKs and the rodent malaria parasites having orthologs to all but one of these.
245 Toxoplasma CDPK1, the target of MMV688854, has been shown to regulate microneme
246 secretion and inhibition of TgCDPK1 results in blockade of parasite motility, host cell
247 invasion, and egress from host cells (32). The *Plasmodium* ortholog of TgCDPK1 is CDPK4.
248 Studies with *P. berghei* demonstrated a role for CDPK4 in sporozoite gliding motility and
249 hepatocyte invasion (29, 33) and in both *P. berghei* and *P. falciparum*, CDPK4 controls
250 microgametocyte activation and exflagellation (34–36). MMV030734 has been shown to
251 target PfCDPK1 which is expressed throughout the *Plasmodium* life cycle, phosphorylates
252 motor complex proteins such as myosin A tail domain-interacting protein (MTIP) and
253 glideosome associated protein 45 (GAP45) (37) consistent with the recent demonstration
254 in *P. berghei* that it plays a critical role in sporozoite motility and invasion (33).

255 Furthermore, deletion of PfCDPK1 results in slower growth of asexual blood stages and the
256 formation of gametocytes that are not infectious to mosquitoes (38). Recently, the
257 trisubstituted imidazole MMV030084, which is an analogue of MMV030734, has been
258 identified as multi-stage targeting compound, inhibiting *P. berghei* liver stage, *P. falciparum*
259 asexual blood stage development, and male gamete activity (39). Using a chemoproteomics
260 approach, they found that MMV030084 targeted both PfCDPK1 and PKG, however,
261 conditional knockdown and molecular modeling studies pointed to PKG as being the
262 primary target (39).

263

264 Our finding that three of the dual-transmission blocking compounds target either PKG or
265 the CDPK family of kinases highlight the central role of calcium signaling as *Plasmodium*
266 parasites move between their mammalian and mosquito hosts and support the idea that
267 PKG, the master regulator of parasite Ca^{2+} levels, and the CDPKs, the effectors of calcium
268 signaling (24, 29, 40), are excellent targets for multi-stage inhibitory drugs. Our new
269 moderate-throughput screening strategy for sporozoite motility facilitates compound
270 testing on *P. falciparum* pre-erythrocytic stages and future work on identifying
271 transmission-blocking compounds and pre-erythrocytic stage vaccine candidates.

272

273 **Materials and Methods**

274 **Ethics statement**

275 All animal work was conducted in accordance with the recommendations in the Guide for the
276 Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was
277 approved by the Johns Hopkins University Animal Care and Use Committee (Protocol

278 #M017H325), which is fully accredited by Association for Assessment and Accreditation of
279 Laboratory Animal Care.

280

281 **Mosquito infection with *P. falciparum* NF54**

282 Mosquito infection with *P. falciparum* NF54 was performed as previously described (41).
283 Asexual cultures were maintained *in vitro* in O⁺ erythrocytes at 4% hematocrit in RPMI 1640
284 (Corning) supplemented with 74 µM hypoxanthine (Sigma), 0.21% sodium bicarbonate (Sigma),
285 and 10% v/v heat inactivated human serum. Cultures were maintained at 37°C in a candle jar
286 made from glass desiccators. Gametocyte cultures were initiated at 0.5% parasitemia and at 4%
287 hematocrit. Medium was changed daily for up to 15 to 18 days without the addition of fresh
288 blood to promote gametocytogenesis. Adult *Anopheles stephensi* mosquitoes (3-7 days post-
289 emergence) were allowed to feed through a glass membrane feeder for up to 30 minutes
290 on gametocyte cultures in 40% hematocrit containing fresh O⁺ human serum and O⁺ erythrocytes.
291 Infected mosquitoes were maintained for up to 19 days at 25°C and 80% humidity and were
292 provided with 10% sucrose solution.

293

294 **Mosquito infection with *P. berghei* WT-ANKA**

295 Mosquito infection with *P. berghei* WT-ANKA was performed as previously described (42).
296 Swiss Webster mice (Taconic) were infected with *P. berghei* ANKA wild-type parasites and
297 once abundant gametocyte stage parasites were observed, *An. stephensi* mosquitoes (3-7 days
298 post-emergence) were allowed to feed on infected mice. Infected mosquitoes were maintained
299 for up to 25 days at 18°C and 80% humidity and were provided with 10% sucrose solution.

300

301 **Pathogen box compounds**

302 Pathogen box compounds were obtained from the Medicines for Malaria Venture (MMV) and
303 consisted of 400 compounds at 10 mM concentration, dissolved in dimethyl sulfoxide (DMSO,
304 Sigma). Compounds were diluted to 1 mM in DMSO and aliquoted into 96 well storage micro-
305 plates (Sigma, CLS3363) and stored at -80°C.

306

307 ***P. falciparum* moderate-throughput sporozoite motility assay**

308 15,000 freshly dissected *P. falciparum* salivary gland sporozoites in 60 µl of 2% bovine serum
309 albumin (BSA) in Hank's Balanced Salt Solution (HBSS) at pH 7.4 were mixed with 60 µl of
310 each pathogen box compound at 2 µM which and added to a well of a U-bottom 96 well plate
311 (Falcon, 353077). The final concentration of each pathogen box compound was at 1 µM in 1%
312 BSA in HBSS. The plate was incubated for 30 minutes at 20°C and sporozoites and compound
313 mixture were transferred to a 96 well glass bottom plate (Griner, 655892) coated with 5 µg/ml of
314 mAb 2A10 in PBS. The plate was centrifuged for 3 minutes at 300 × g and incubated for 1 h at
315 37°C. Wells were fixed in 4% paraformaldehyde in PBS, blocked with 1% BSA in PBS (pH 7.4)
316 and stained with biotinylated mAb 2A10 in 1% BSA in PBS (pH 7.4) for 1 h at room
317 temperature, followed by detection with Alexa Fluor 488 streptavidin (Invitrogen, S11223)
318 diluted at 1:500 in PBS for 1 h at room temperature. Samples were preserved in a glycerol / PBS
319 solution (ratio, 9:1) at 4°C and the plate was imaged within one week. Imaging was performed
320 on 25 positions per well (5 x 5, 500 µm apart) by using ImageXpress Micro XLS Widefield
321 high-content analysis system (Molecular Devices) with 40X Plan fluor objective.

322

323 **Quantification of area occupied by trails using Cell Profiler software**

324 Image analysis was automated with the open source Cell Profiler software (version 3.0.0) (43).
325 All images were run through a pipeline designed to threshold the images and quantify area
326 occupied by trails. Image intensity was rescaled from 0 - 0.007 to 0 – 1 and the rescaled image
327 was used to set the threshold which was set automatically by using the minimum cross entropy
328 set up in the Cell Profiler pipeline. Following this, object pixel diameter size between 5 to 1,000
329 was counted and exported to an excel file.

330

331 **Testing pathogen box compounds on *P. berghei* sporozoite motility**

332 Coverslips were placed in 24-well plates and coated with 5 µg/ml of mAb 3D11 in PBS for 1 h at
333 room temperature and then washed. A total of 50,000 sporozoites in HBSS with 2% BSA (pH
334 7.4) were mixed with pathogen box compounds, cytochalasin D or mAb 3D11 in a low retention
335 1.5 ml tube (Axygen, MCT-175-L-C) and pre-incubated for 30 minutes at 20°C. Each sporozoite
336 and compound mixture was then added to an mAb 3D11-coated well, centrifuged onto the
337 coverslip for 3 minutes at 300 × g and incubated for 1 h at 37°C. Wells were fixed in 4%
338 paraformaldehyde in PBS, blocked in 1% BSA in PBS (pH 7.4) and stained with biotinylated
339 mAb 3D11 diluted at 1:500 in 1% BSA in PBS (pH 7.4) for 1 h at room temperature, followed
340 by detection with Alexa Fluor 488 streptavidin (Invitrogen) diluted at 1:500 in PBS for 1 h at
341 room temperature. Samples were mounted in gold antifade mountant (Invitrogen, P36935) and
342 imaged with fluorescence microscopy (Nikon E600) using 40X objective. Twenty-five positions
343 per slide were acquired using identical exposure settings and acquired images were batch
344 processed using Fiji (<https://fiji.sc/>) to measure total fluorescence intensity.

345

346 **Sporozoite viability assessment**

347 20,000 freshly dissected sporozoites were pre-incubated with pathogen box compounds at 1 μ M
348 concentration and 1:1,000 diluted live/dead fixable green stain (Invitrogen, L23101) in HBSS
349 with 1% BSA (pH 7.4) at 20°C for 30 minutes and then transferred to 48 well plate containing a
350 coverslip, centrifuged at 300 \times g for 3 minutes and further incubated at 37°C for 1 h, to replicate
351 the treatment of sporozoites in the gliding assay. After incubation, sporozoites were fixed with
352 4% PFA, blocked with 1% BSA in PBS (pH 7.4) and stained with 1 μ g/ml of mAb 2A10 in 1%
353 BSA in PBS (pH 7.4) followed by detection with Alexa fluor 594 goat anti-mouse secondary
354 antibody (Invitrogen, A11032). Samples were mounted in gold antifade mountant (Invitrogen)
355 and observed by fluorescence microscopy. For each condition, 100 sporozoites were identified
356 by CSP staining (red) and dead sporozoites were counted by live/dead stain (green) to quantify
357 viability.

358

359 **Testing pathogen box compounds using the standard membrane feeding assay (SMFA)**

360 The pathogen box compounds (MMV030734, MMV688854, MMV687800, MMV687807,
361 MMV688703) or DMSO in HBSS were mixed with gametocyte cultures such that compound
362 final concentration was at 1 μ M and DMSO was at 0.1% and fed to adult female *An. stephensi*
363 mosquitoes (3-7 days post-emergence). Cultures with final gametocytomas of 0.3% and 0.01%
364 were used for feeding. *An. stephensi* mosquitoes were allowed to feed for up to 30 minutes.
365 Infected mosquitoes were maintained at 25°C and 80% humidity and were provided with 10%
366 sucrose solution. Oocyst development was quantified on day 9 post blood feeding by staining
367 mosquito midguts with 0.1% mercurochrome (Sigma, M7011) in PBS and counting by bright-
368 field microscopy with a 10X objective.

369

370 **Testing pathogen box compounds on *Plasmodium falciparum* asexual stages**

371 The *P. falciparum* transgenic NF54^{attB} line (44) which has similar EC₅₀ of chloroquine to NF54
372 wild type (45, 46) were cultured in O⁺ erythrocytes at 2% hematocrit and maintained in 25 cm²
373 gassed flasks (94% N₂, 3% O₂, and 3% CO₂) at 37°C. The cultures were kept in RPMI 1640
374 medium with L-glutamine (US Biological, R8999) supplemented with 20 mM HEPES, 0.2%
375 sodium bicarbonate, 12.5 µg/mL hypoxanthine, 5 g/L Albumax II (Life Technologies, S7563),
376 and 25 µg/mL gentamicin. Cultures were synchronized using 5% (wt/vol) sorbitol as previously
377 outlined (47) and synchronized ring parasites were seeded at 1% parasitemia and 1% hematocrit
378 and treated with 1 µM of the indicated pathogen box compounds or 0.1% DMSO or 1 µM
379 chloroquine for 60 hours. After incubation at 37°C for 60 h, parasite growth was quantified by
380 Giemsa-stained blood smear. To determine the half-maximal effective concentration (EC₅₀) of
381 MMV030734, sorbitol-synchronized ring parasites were seeded at 3% parasitemia and 2%
382 hematocrit in a 96-well flat bottom plate and grown in the presence of inhibitor at 37°C for 72 h.
383 A concentration series for MMV030734 (17 pM to 3 µM) and chloroquine (487 pM to 250 nM)
384 was tested. After 72 h, parasite growth was quantified using SYBR Green I (Invitrogen) to stain
385 DNA and an Attune NxT Flow Cytometer as described previously (48, 49). Parasitemia from
386 the MMV030734 and chloroquine samples were normalized to the 0.1% DMSO control. Data
387 from two independent biological replicates, each with four technical replicates, were fit to a four-
388 parameter sigmoidal dose-response curve using Prism V8.4 (version 8.4, GraphPad).

389

390 **Statistical analysis**

391 All statistical analyses were performed with Graphpad Prism (Version 7 or 8.4).

392

393 **Acknowledgements**

394 We would like to thank the team of the parasitology and insectary core facilities at the Johns
395 Hopkins Malaria Research Institute, the Johns Hopkins School of Medicine Microscopy Facility
396 (MicFac) and Hoku West-Foyle for invaluable assistance. This work was supported by the
397 National Institutes of Health (R01 AI132359 to PS, R01 AI065853 to STP), Johns Hopkins
398 Malaria Research Institute postdoctoral fellowships (SK and RE), Bloomberg Family
399 Philanthropies, and NIH grants that funded the MicFac high content imager (R01GM28007-S1
400 and R01GM66817-S1).

401

402 **References**

- 403 1. World Health Organization. World Malaria Report 2020.
- 404 2. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V,
405 Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM,
406 Ménard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le Bras J, Berry A,
407 Barale JC, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Ménard D. 2014. A
408 molecular marker of artemisinin-resistant *Plasmodium falciparum* malaria. *Nature*
409 505:50–55.
- 410 3. Bousema T, Okell L, Shekalaghe S, Griffin JT, Omar S, Sawa P, Sutherland C, Sauerwein
411 R, Ghani AC, Drakeley C. 2010. Revisiting the circulation time of *Plasmodium*
412 *falciparum* gametocytes: molecular detection methods to estimate the duration of
413 gametocyte carriage and the effect of gametocytocidal drugs. *Malar J* 9:136.
- 414 4. Hogh B, Gamage-Mendis A, Butcher GA, Thompson R, Begtrup K, Mendis C, Enosse
415 SM, Dgedge M, Barreto J, Eling W, Sinden RE. 1998. The differing impact of
416 chloroquine and pyrimethamine/sulfadoxine upon the infectivity of malaria species to the
417 mosquito vector. *Am J Trop Med Hyg* 58:176–182.
- 418 5. Buckling A, Ranford-cartwright LC, Miles A, Read AF. 1999. Chloroquine increases
419 *Plasmodium falciparum* gametocytogenesis in Vitro. *Parasitology* 118:339–346.
- 420 6. Hopp CS, Chiou K, Ragheb DRT, Salman AM, Khan SM, Liu AJ, Sinnis P. 2015.
421 Longitudinal analysis of *Plasmodium* sporozoite motility in the dermis reveals component
422 of blood vessel recognition. *Elife* 4.
- 423 7. Graumans W, Jacobs E, Bousema T, Sinnis P. 2020. When Is a *Plasmodium*-Infected
424 Mosquito an Infectious Mosquito? *Trends Parasitol* 36:705–716.
- 425 8. Baum J, Papenfuss AT, Baum B, Speed TP, Cowman AF. 2006. Regulation of
426 apicomplexan actin-based motility. *Nat Rev Microbiol* 4:621–628.
- 427 9. Ejigiri I, Ragheb DRT, Pino P, Coppi A, Bennett BL, Soldati-Favre D, Sinnis P. 2012.
428 Sheding of TRAP by a Rhomboid Protease from the Malaria Sporozoite Surface Is

429 10. Essential for Gliding Motility and Sporozoite Infectivity. PLoS Pathog 8:e1002725.
430 11. Münter S, Sabass B, Selhuber-Unkel C, Kudryashev M, Hegge S, Engel U, Spatz JP,
431 Matuschewski K, Schwarz US, Frischknecht F. 2009. Plasmodium Sporozoite Motility Is
432 Modulated by the Turnover of Discrete Adhesion Sites. Cell Host Microbe 6:551–562.
433 12. Douglas RG, Reinig M, Neale M, Frischknecht F. 2018. Screening for potential
434 prophylactics targeting sporozoite motility through the skin. Malar J 17:1–10.
435 13. Kortagere S, Welsh WJ, Morrisey JM, Daly T, Ejigiri I, Sinnis P, Vaidya AB, Bergman
436 LW. 2010. Structure-based Design of Novel Small-Molecule Inhibitors of Plasmodium
437 falciparum. J Chem Inf Model 50:840–849.
438 14. Stewart MJ, Nawrot RJ, Schulman S, Vanderberg JP. 1986. Plasmodium berghei
439 sporozoite invasion is blocked in vitro by sporozoite-immobilizing antibodies. Infect
440 Immun 51:859–864.
441 15. Dobrowolski JM, Sibley LD. 1996. Toxoplasma invasion of mammalian cells is powered
442 by the actin cytoskeleton of the parasite. Cell 84:933–939.
443 16. Duffy S, Sykes ML, Jones AJ, Shelper TB, Simpson M, Lang R, Poulsen SA, Sleebs BE,
444 Avery VM. 2017. Screening the medicines for malaria venture pathogen box across
445 multiple pathogens reclassifies starting points for open-source drug discovery. Antimicrob
446 Agents Chemother 61:1–22.
447 17. Diaz CA, Allocco J, Powles MA, Yeung L, Donald RGK, Anderson JW, Liberator PA.
448 2006. Characterization of Plasmodium falciparum cGMP-dependent protein kinase
449 (PfPKG): Antiparasitic activity of a PKG inhibitor. Mol Biochem Parasitol 146:78–88.
450 18. Gurnett AM, Liberator PA, Dulski PM, Salowe SP, Donald RGK, Anderson JW, Wiltsie J,
451 Diaz CA, Harris G, Chang B, Darkin-Rattray SJ, Nare B, Crumley T, Blum PS, Misura
452 AS, Tamas T, Sardana MK, Yuan J, Biftu T, Schmatz DM. 2002. Purification and
453 molecular characterization of cGMP-dependent protein kinase from Apicomplexan
454 parasites. A novel chemotherapeutic target. J Biol Chem 277:15913–15922.
455 19. Crowther GJ, Hillesland HK, Keyloun KR, Reid MC, Lafuente-Monasterio MJ, Ghidelli-
456 Disse S, Leonard SE, He P, Jones JC, Krahn MM, Mo JS, Dasari KS, Fox AMW, Boesche
457 M, Bakkouri M El, Rivas KL, Leroy D, Hui R, Drewes G, Maly DJ, Van Voorhis WC,
458 Ojo KK. 2016. Biochemical screening of five protein kinases from plasmodium
459 falciparum against 14,000 Cell-Active compounds. PLoS One 11:1–16.
460 20. Johnson SM, Murphy RC, Geiger JA, Derocher AE, Zhang Z, Ojo KK, Larson ET, Perera
461 BGK, Dale EJ, He P, Reid MC, Fox AMW, Mueller NR, Merritt EA, Fan E, Parsons M,
462 Van Voorhis WC, Maly DJ. 2012. Development of Toxoplasma gondii calcium-dependent
463 protein kinase 1 (Tg CDPK1) inhibitors with potent anti- toxoplasma activity. J Med
464 Chem 55:2416–2426.
465 21. Zhang Z, Ojo KK, Vidadala R, Huang W, Geiger JA, Scheele S, Choi R, Reid MC,
466 Keyloun KR, Rivas K, Kallur Siddaramaiah L, Comess KM, Robinson KP, Merta PJ,
467 Kifle L, Hol WGJ, Parsons M, Merritt EA, Maly DJ, Verlinde CLMJ, Van Voorhis WC,
468 Fan E. 2014. Potent and selective inhibitors of CDPK1 from *T. Gondii* and *C. Parvum*
469 based on a 5-aminopyrazole-4-carboxamide scaffold. ACS Med Chem Lett 5:40–44.
470 22. Cholo MC, Steel HC, Fourie PB, Germishuizen WA, Anderson R. 2012. Clofazimine:
471 Current status and future prospects. J Antimicrob Chemother 67:290–298.
472 23. Lee IY, Gruber TD, Samuels A, Yun M, Nam B, Kang M, Crowley K, Winterroth B,
473 Boshoff HI, Barry CE. 2013. Structure-activity relationships of antitubercular
474 salicylanilides consistent with disruption of the proton gradient via proton shuttling.

475 Bioorganic Med Chem 21:114–126.

476 23. Rotella D, Siekierka J, Bhanot P. 2021. Plasmodium falciparum cGMP-Dependent Protein
477 Kinase – A Novel Chemotherapeutic Target. *Front Microbiol* 11:1–7.

478 24. Alam MM, Solyakov L, Bottrill AR, Flueck C, Siddiqui FA, Singh S, Mistry S,
479 Viskaduraki M, Lee K, Hopp CS, Chitnis CE, Doerig C, Moon RW, Green JL, Holder AA,
480 Baker DA, Tobin AB. 2015. Phosphoproteomics reveals malaria parasite Protein Kinase G
481 as a signalling hub regulating egress and invasion. *Nat Commun* 6.

482 25. Dvorin JD, Martyn DC, Patel SD, Grimley JS, Collins CR, Hopp CS, Bright AT,
483 Westenberger S, Winzeler E, Blackman MJ, Baker DA, Wandless TJ, Duraisingham MT.
484 2010. A plant-like kinase in plasmodium falciparum regulates parasite egress from
485 erythrocytes. *Science* (80-) 328:910–912.

486 26. Taylor HM, McRobert L, Grainger M, Sicard A, Dluzewski AR, Hopp CS, Holder AA,
487 Baker DA. 2010. The malaria parasite cyclic GMP-dependent protein kinase plays a
488 central role in blood-stage schizogony. *Eukaryot Cell* 9:37–45.

489 27. McRobert L, Taylor CJ, Deng W, Fivelman QL, Cummings RM, Polley SD, Billker O,
490 Baker DA. 2008. Gametogenesis in malaria parasites is mediated by the cGMP-dependent
491 protein kinase. *PLoS Biol* 6:1243–1252.

492 28. Moon RW, Taylor CJ, Bex C, Schepers R, Goulding D, Janse CJ, Waters AP, Baker DA,
493 Billker O. 2009. A cyclic GMP signalling module that regulates gliding motility in a
494 malaria parasite. *PLoS Pathog* 5.

495 29. Govindasamy K, Jebiwott S, Jaijyan DK, Davidow A, Ojo KK, Van Voorhis WC, Brochet
496 M, Billker O, Bhanot P. 2016. Invasion of hepatocytes by Plasmodium sporozoites
497 requires cGMP-dependent protein kinase and calcium dependent protein kinase 4. *Mol
498 Microbiol* 102:349–363.

499 30. Ward P, Equinet L, Packer J, Doerig C. 2004. Protein kinases of the human malaria
500 parasite Plasmodium falciparum: The kinome of a divergent eukaryote. *BMC Genomics*
501 5:1–19.

502 31. Harper JF, Harmon A. 2005. Plants, symbiosis and parasites: A calcium signalling
503 connection. *Nat Rev Mol Cell Biol* 6:555–566.

504 32. Lourido S, Shuman J, Zhang C, Shokat KM, Hui R, Sibley LD. 2010. Calcium-dependent
505 protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. *Nature* 465:359–
506 362.

507 33. Govindasamy K, Bhanot P. 2020. Overlapping and distinct roles of CDPK family
508 members in the pre-erythrocytic stages of the rodent malaria parasite, *Plasmodium berghei*.
509 *PLoS Pathog* 16:1–22.

510 34. Billker O, Dechamps S, Tewari R, Wenig G, Franke-Fayard B, Brinkmann V. 2004.
511 Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito
512 transmission in a malaria parasite. *Cell* 117:503–514.

513 35. Ojo KK, Pfander C, Mueller NR, Burstroem C, Larson ET, Bryan CM, Fox AMW, Reid
514 MC, Johnson SM, Murphy RC, Kennedy M, Mann H, Leiby DJ, Hewitt SN, Verlinde
515 CLMJ, Kappe S, Merritt EA, Maly DJ, Billker O, Van Voorhis WC. 2012. Transmission
516 of malaria to mosquitoes blocked by bumped kinase inhibitors. *J Clin Invest* 122:2301–
517 2305.

518 36. Fang H, Klages N, Baechler B, Hillner E, Yu L, Pardo M, Choudhary J, Brochet M. 2017.
519 Multiple short windows of calcium-dependent protein kinase 4 activity coordinate distinct
520 cell cycle events during *Plasmodium* gametogenesis. *Elife* 6:1–23.

521 37. Green JL, Rees-Channer RR, Howell SA, Martin SR, Knuepfer E, Taylor HM, Grainger
522 M, Holder AA. 2008. The motor complex of *Plasmodium falciparum*: Phosphorylation by
523 a calcium-dependent protein kinase. *J Biol Chem* 283:30980–30989.

524 38. Bansal A, Molina-Cruz A, Brzostowski J, Liu P, Luo Y, Gunalan K, Li Y, Ribeiro JMC,
525 Miller LH. 2018. PfCDPK1 is critical for malaria parasite gametogenesis and mosquito
526 infection. *Proc Natl Acad Sci U S A* 115:774–779.

527 39. Vanaerschot M, Murithi JM, Pasaje CFA, Ghidelli-Disse S, Dwomoh L, Bird M,
528 Spottiswoode N, Mittal N, Arendse LB, Owen ES, Wicht KJ, Siciliano G, Bösche M, Yeo
529 T, Kumar TRS, Mok S, Carpenter EF, Giddins MJ, Sanz O, Otilie S, Alano P, Chibale K,
530 Llinás M, Uhlemann AC, Delves M, Tobin AB, Doerig C, Winzeler EA, Lee MCS, Niles
531 JC, Fidock DA. 2020. Inhibition of Resistance-Refractory *P. falciparum* Kinase PKG
532 Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity.
533 *Cell Chem Biol* 27:806-816.e8.

534 40. Fang H, Gomes AR, Klages N, Pino P, Maco B, Walker EM, Zenenos ZA, Angrisano F,
535 Baum J, Doerig C, Baker DA, Billker O, Brochet M. 2018. Epistasis studies reveal
536 redundancy among calcium-dependent protein kinases in motility and invasion of malaria
537 parasites. *Nat Commun* 9:1–14.

538 41. Tripathi AK, Mlambo G, Kanatani S, Sinnis P, Dimopoulos G. 2020. *Plasmodium*
539 *falciparum* gametocyte culture and mosquito infection through artificial membrane
540 feeding. *J Vis Exp* 2020:1–23.

541 42. Vanderberg JP, Gwadz RW. 1980. The Transmission by Mosquitoes of Plasmodia in the
542 Laboratory. Pathology, Vector Studies, and Culture. Academic Press, New York.

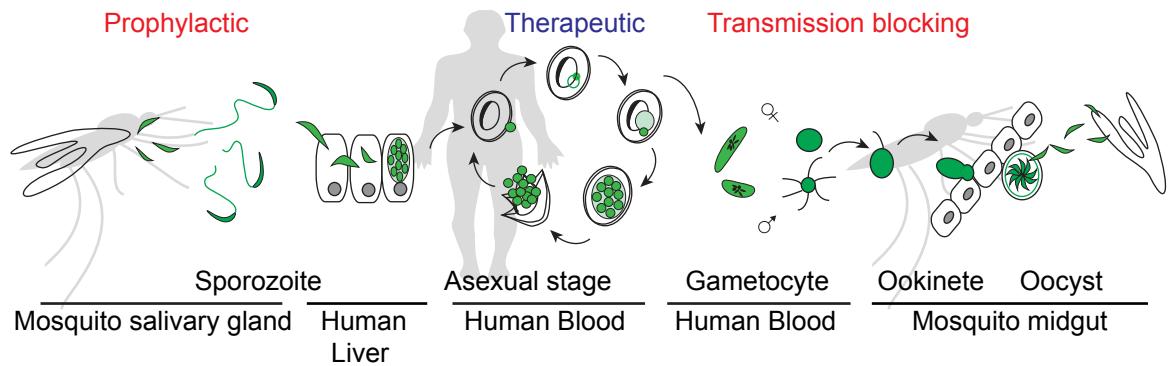
543 43. Lamprecht MR, Sabatini DM, Carpenter AE. 2007. CellProfilerTM: Free, versatile
544 software for automated biological image analysis. *Biotechniques* 42:71–75.

545 44. Adjalley SH, Johnston GL, Li T, Eastman RT, Ekland EH, Eappen AG, Richman A, Sim
546 BKL, Lee MCS, Hoffman SL, Fidock DA. 2011. Quantitative assessment of *Plasmodium*
547 *falciparum* sexual development reveals potent transmissionblocking activity by methylene
548 blue. *Proc Natl Acad Sci U S A* 108.

549 45. Wittlin S, Ekland E, Craft JC, Lotharius J, Bathurst I, Fidock DA, Fernandes P. 2012. in
550 vitro and in vivo activity of solithromycin (CEM-101) against plasmodium species.
551 *Antimicrob Agents Chemother* 56:703–707.

552 46. Rahbari M, Rahlfs S, Przyborski JM, Schuh AK, Hunt NH, Fidock DA, Grau GE, Becker
553 K. 2017. Hydrogen peroxide dynamics in subcellular compartments of malaria parasites
554 using genetically encoded redox probes. *Sci Rep* 7:1–13.

555 47. Lambros C, Vandenberg JP. 1979. Synchronization of *Plasmodium falciparum*
556 Erythrocytic Stages in Culture. *J Parasitol* 65:418–420.


557 48. Swift RP, Rajaram K, Liu HB, Dziedzic A, Jedlicka AE, Roberts AD, Matthews KA, Jhun
558 H, Bumpus NN, Tewari SG, Wallqvist A, Prigge ST. 2020. A mevalonate bypass system
559 facilitates elucidation of plastid biology in malaria parasites. *PLoS Pathog* 16:1–26.

560 49. Tewari SG, Kwan B, Elahi R, Rajaram K, Reifman J, Prigge ST, Vaidya AB, Wallqvist A.
561 2022. Metabolic adjustments of blood-stage *Plasmodium falciparum* in response to
562 sublethal pyrazoleamide exposure. *Sci Rep* 12:1–14.

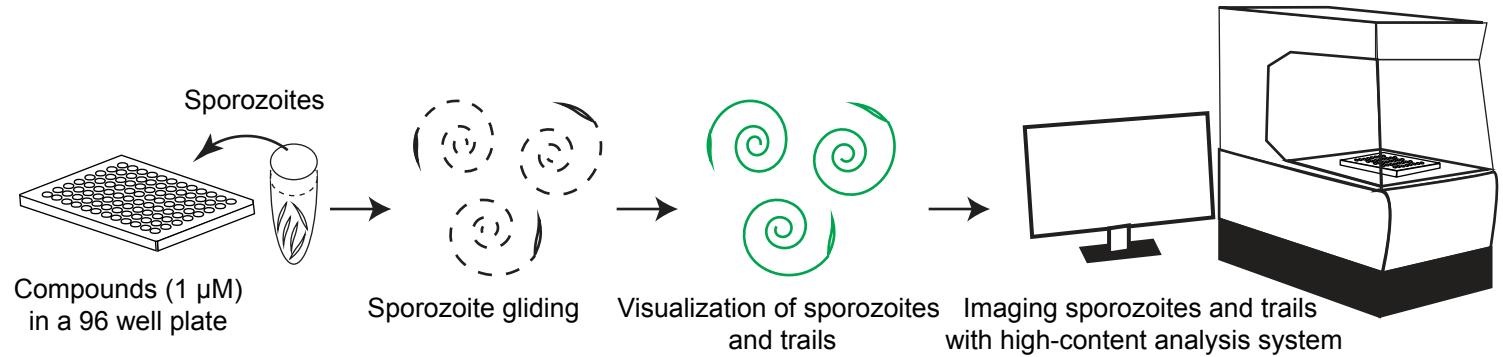
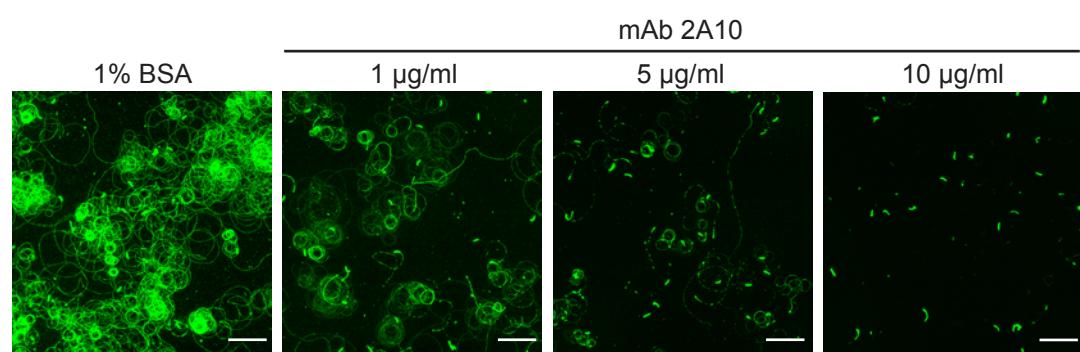
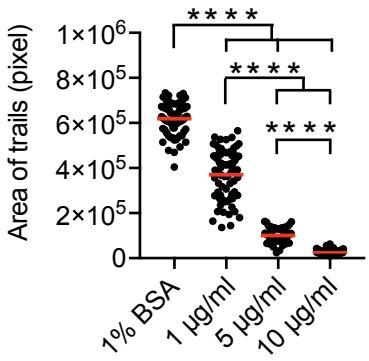
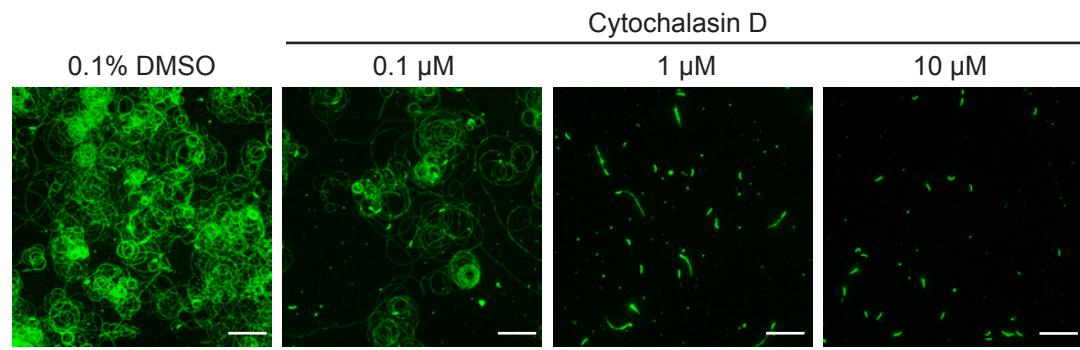
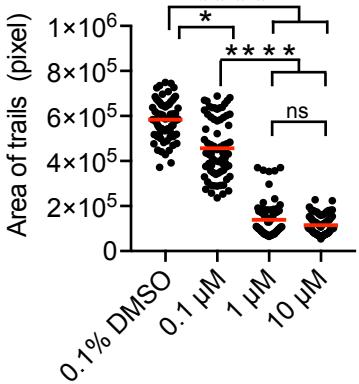

563

Figure 1

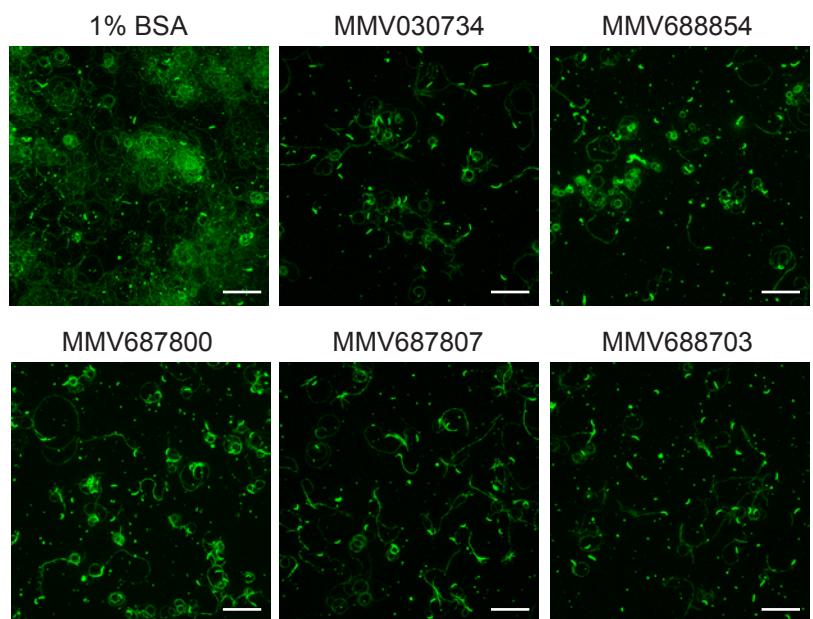

A

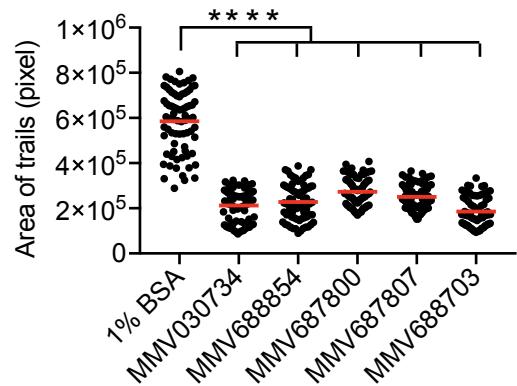

B


C


D

E


F


Figure 1. Pathogen box screening strategy and validation.

(A) Pathogen box screening on different *Plasmodium* life cycle stages. Pathogen box compounds were initially screened for their impact on *P. falciparum* sporozoite motility, which is essential for establishing infection in a human host. Compounds with inhibitory effect on sporozoite motility were further assessed on gametocyte to oocyst development to determine mosquito transmission blocking activity. Finally, compounds with a strong inhibitory effect on both transmission stages were assessed on asexual stage parasite growth. **(B)** Screening strategy of pathogen box compounds on *P. falciparum* sporozoite motility. Freshly isolated *P. falciparum* sporozoites were pre-incubated with pathogen box compounds at 1 μ M for 30 minutes, then added to plates and allowed to glide for 1 h in the continued presence of the compound. Trails were visualized by immunofluorescence staining of the circumsporozoite protein (CSP) trails left behind on plates and quantified by high-content imaging of 25 positions in each well. **(C-F)** Validation of the *P. falciparum* motility assay. *P. falciparum* sporozoites were pre-incubated with 0.1 to 10 μ g/ml of mAb 2A10 (C&D) or 0.1 to 10 μ M Cytochalasin D (E&F) for 30 minutes and added to wells for 1 h in the continued presence of the inhibitor. Sporozoites and trails were then stained for CSP and quantification of the area occupied by fluorescent staining was performed. Panels C&E: Representative images of CSP-stained sporozoites and trails when sporozoites are pre-incubated with the indicated concentrations of mAb 2A10 (C) or Cytochalasin D (E). Scale bars, 50 μ m. Panel D&F: Quantification of the area occupied by CSP-stained sporozoites and trails in the indicated treatment groups. Imaging was performed on 25 positions per well with each dot representing the area occupied by fluorescent trails in one image. Data were pooled from 3 independent experiments and all conditions were compared to each other (Kruskal-Wallis test followed by Dunn's test, **** P < 0.0001, * P < 0.05, ns P > 0.05). Red bars indicate the mean.

A

B

C

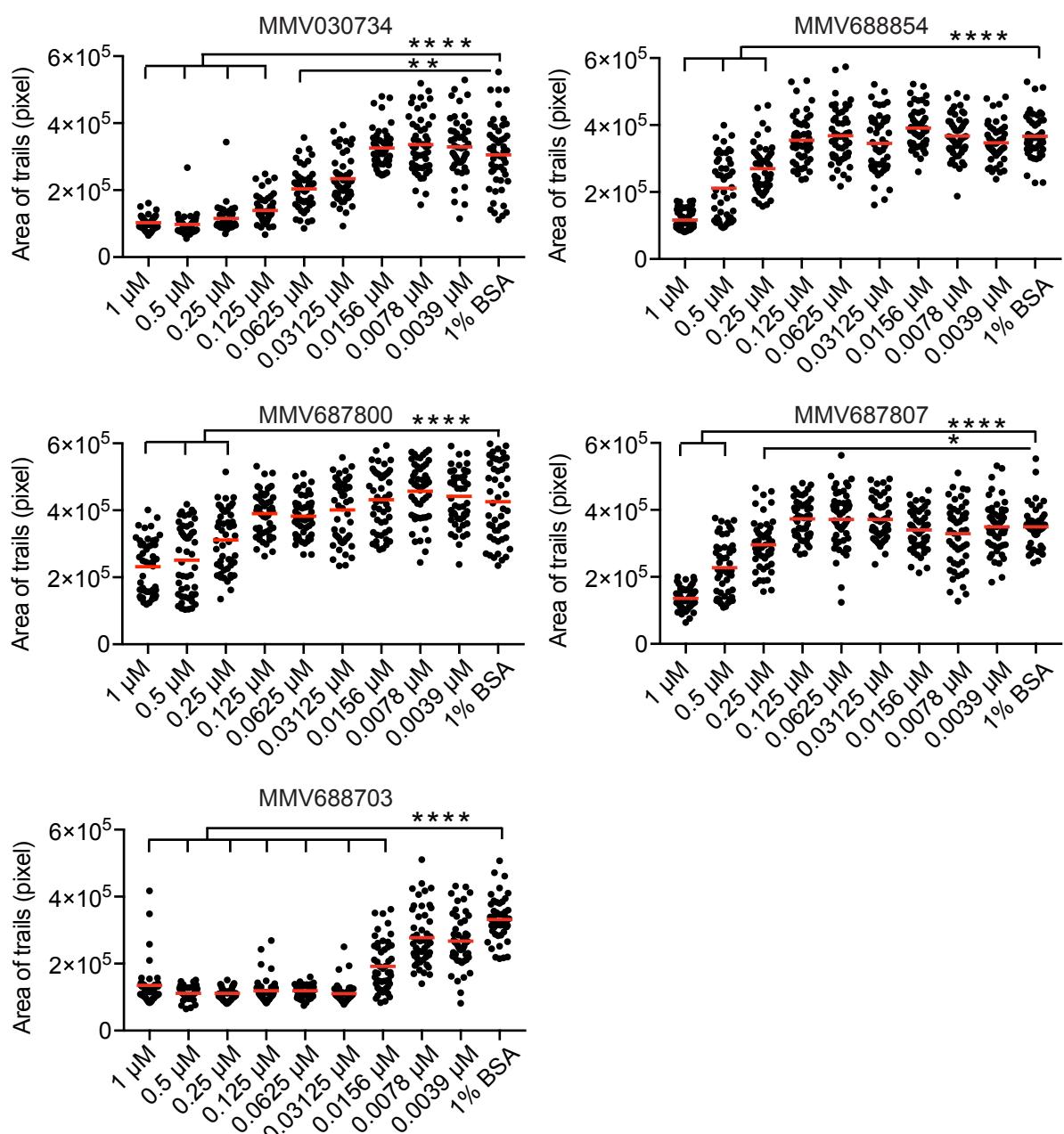
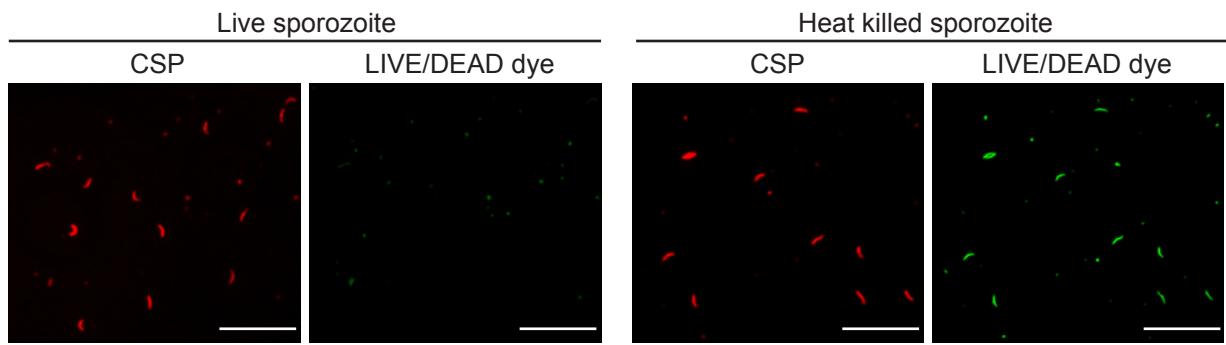
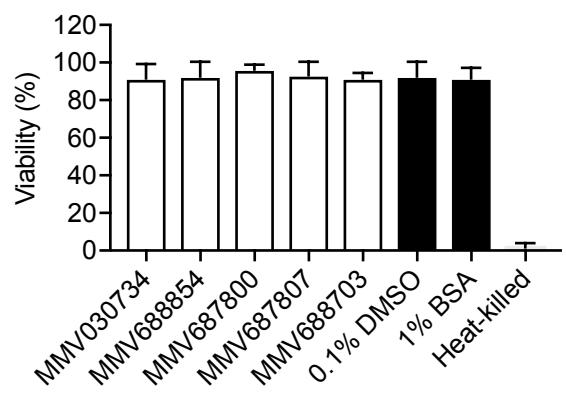
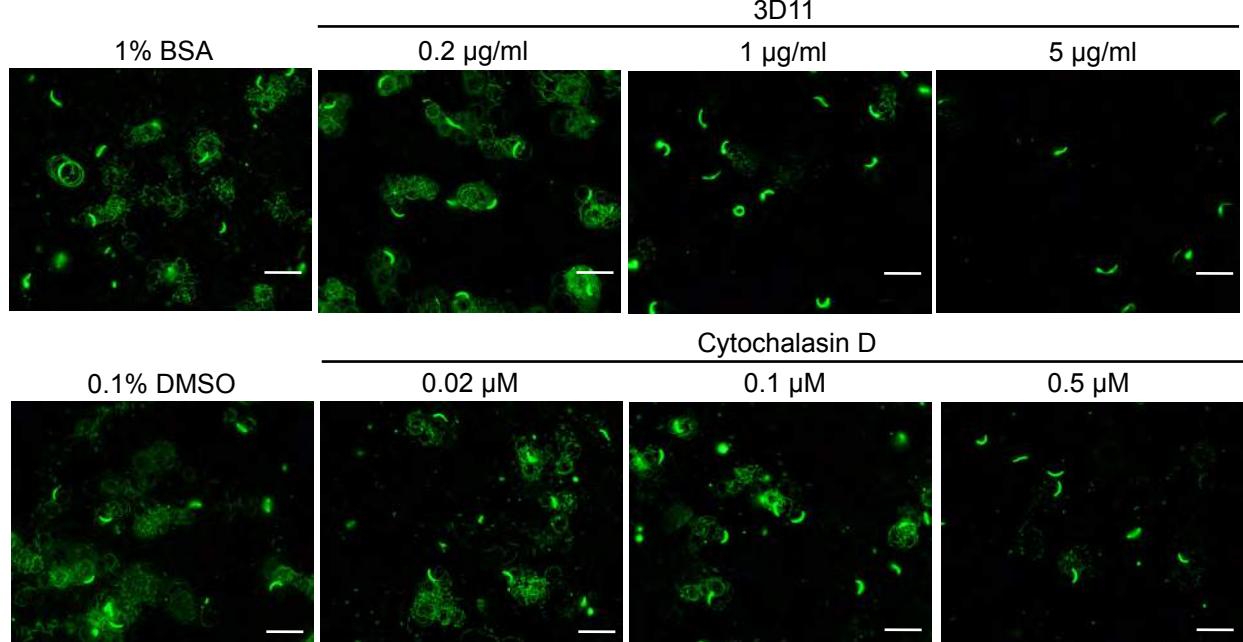



Figure 2


Figure 2. Five pathogen box compounds significantly reduce *P. falciparum* sporozoite motility

P. falciparum sporozoites were pre-incubated with the indicated compounds (MMV030734, MMV688854, MMV687800, MMV687807, MMV688703) for 30 minutes and allowed to glide in the continued presence of the compound for 1 h. Following this, sporozoites and trails were stained for CSP and the area occupied by fluorescent sporozoite and trails was quantified by high content imaging. **(A)** Representative images of CSP stained sporozoites and trails in the presence of each of the 5 inhibitory compounds. Scale bars, 50 μ m **(B)** Quantification of area occupied by CSP-stained sporozoites and trails in the gliding assays. 25 images per well were analyzed with each dot representing data from one image. Data were pooled from 3 independent experiments and each inhibitor is compared to 1% BSA (Kruskal-Wallis test followed by Dunn's test, **** $P < 0.0001$). Red bars indicate the mean. **(C)** Dose-Response of the inhibitory pathogen box compounds. *P. falciparum* sporozoites were incubated with the indicated serially-diluted compounds MMV030734, MMV688854, MMV687800, MMV687807, or MMV688703 and the area occupied by CSP stained trails was quantified. 25 images per well were analyzed with each dot representing data from one image. Data were pooled from 2 independent experiments and serially-diluted compounds were compared to 1% BSA (Kruskal-Wallis test followed by Dunn's test, **** $P < 0.0001$, ** $P < 0.005$, * $P < 0.05$). Red bars indicate the mean.

A


B

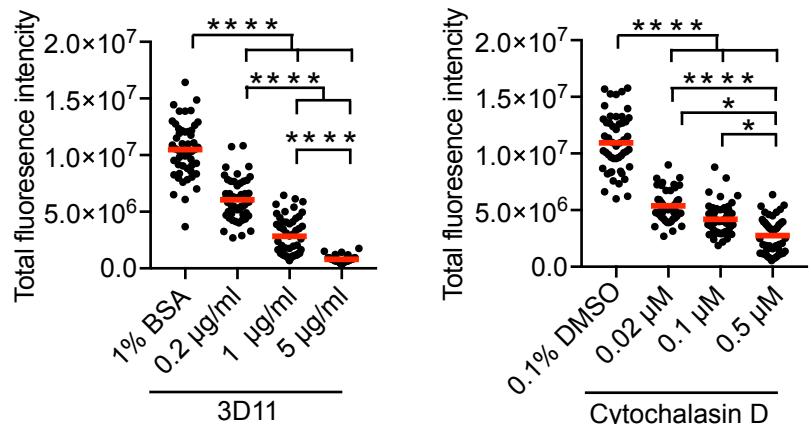
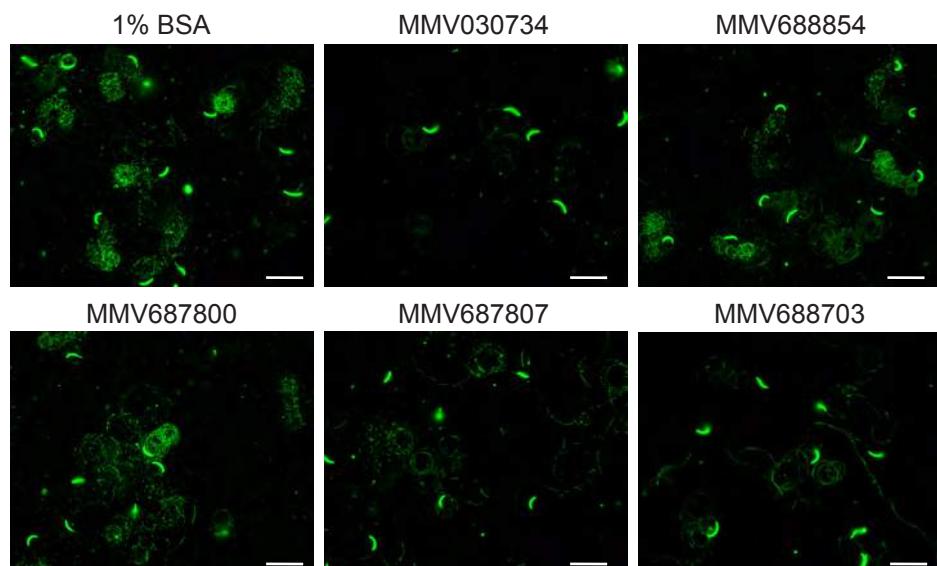
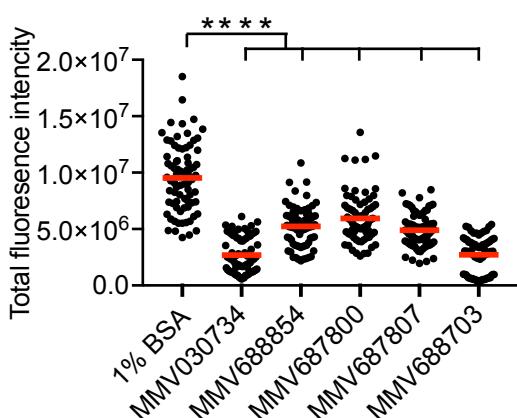

Figure 3. *P. falciparum* sporozoite viability after treatment with each of the five active pathogen box compounds. *P. falciparum* sporozoites were incubated with a fixable live/dead stain and the indicated pathogen box compound for 30 minutes at 20 °C and then moved to 37 °C for 1 h in the continued presence of the stain and compound. Following this, sporozoites were fixed, stained with antibodies specific for CSP, and quantified by immunofluorescence microscopy. **(A)** Representative images of sporozoite stained for CSP (red) and live/dead stain (green). Scale bars, 50 µm. **(B)** Quantification of sporozoite viability after treatment with compounds. Total sporozoites (CSP, red) and those that stained with the live/dead stain (green) were counted to determine percent viability (n ≥ 100 sporozoites per condition). Bars representing control samples are shown in black. Shown is the mean +/- standard deviation of two independent experiments.

Figure 4


A


B

C

D

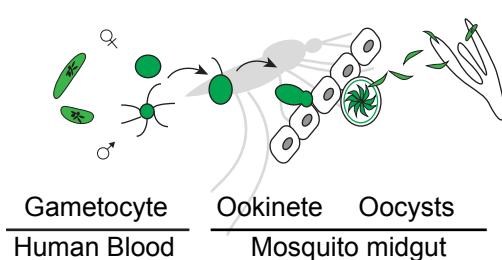


Figure 4. Testing the pathogen box inhibitory compounds on *Plasmodium berghei* sporozoite motility

(A&B) Validation of the *P. berghei* sporozoite motility assay. Sporozoites were pre-incubated with the indicated concentration of mAb 3D11 or Cytochalasin D for 30 minutes and then allowed to glide for 1 h in the continued presence of antibody or Cytochalasin D. Sporozoites and trails were stained for CSP and total fluorescence intensity of sporozoites and trails were quantified by Image J. Representative images of CSP-stained sporozoites and trails are shown in panel A. Scale bars, 20 μ m. Panel B shows quantification of the total fluorescence intensity of CSP-stained sporozoites and trails for each treatment group. 25 images were acquired per well with each dot representing fluorescence intensity from one image. Data are pooled from 2 independent experiments and all conditions were compared to each other (Kruskal-Wallis test followed by Dunn's test, **** P < 0.0001, * P < 0.05). Red bars indicate the mean. **(C&D)** Testing of inhibitory pathogen box compounds on *P. berghei* sporozoites. Sporozoites were pre-incubated with 1 μ M of each of the five inhibitory pathogen box compounds (MMV030734, MMV688854, MMV687800, MMV687807, MMV688703) for 30 minutes, then added to plates and allowed to glide for 1 h in the continued presence of the compound. Sporozoites and trails were stained for CSP and fluorescence intensity of sporozoites and trails were quantified by Image J. Representative images of CSP stained sporozoites and trails incubated with the indicated pathogen box compound are shown in panel C. Scale bars, 20 μ m. Shown in panel D is quantification of the fluorescence intensity of CSP-stained sporozoites and trails in the presence of the indicated compound. 25 images per well were acquired with each dot representing the fluorescence intensity of one image. Data were pooled from 3 independent experiments and each inhibitor is compared to 1% BSA (Kruskal-Wallis test followed by Dunn's test, **** P < 0.0001). Red bars indicate the mean.

A

Transmission blocking

B

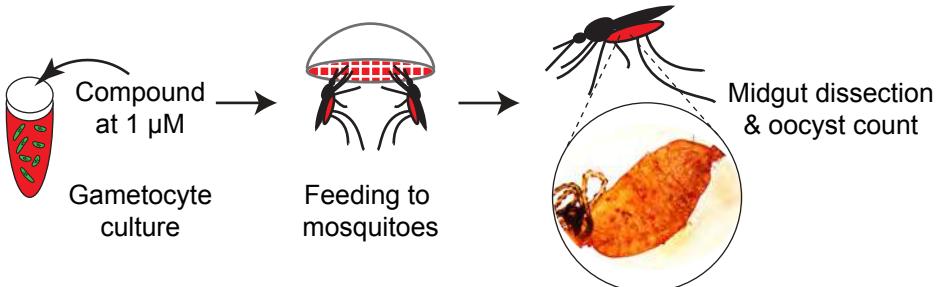
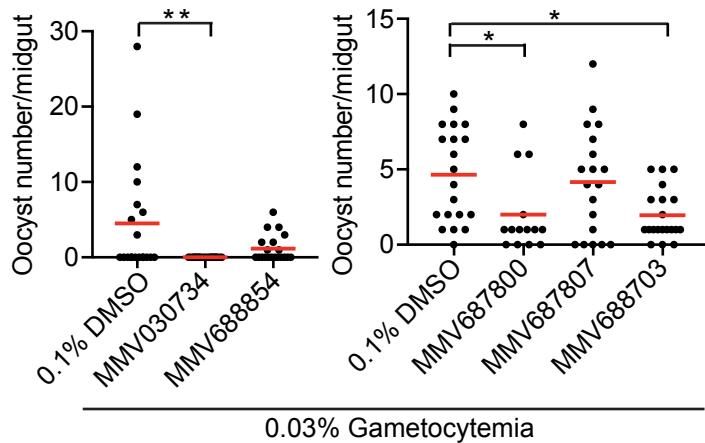
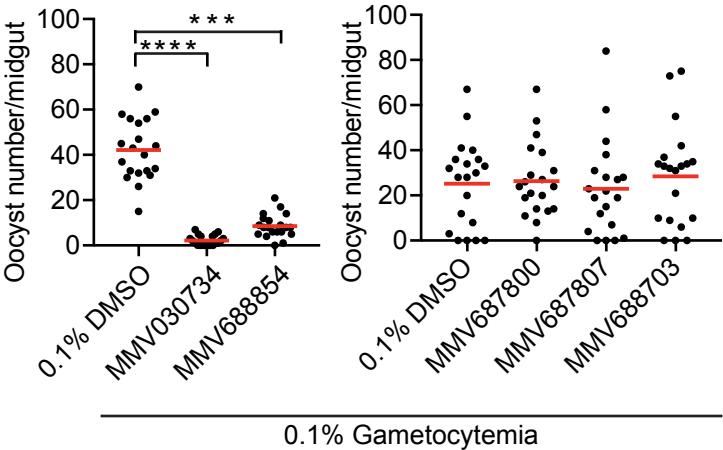
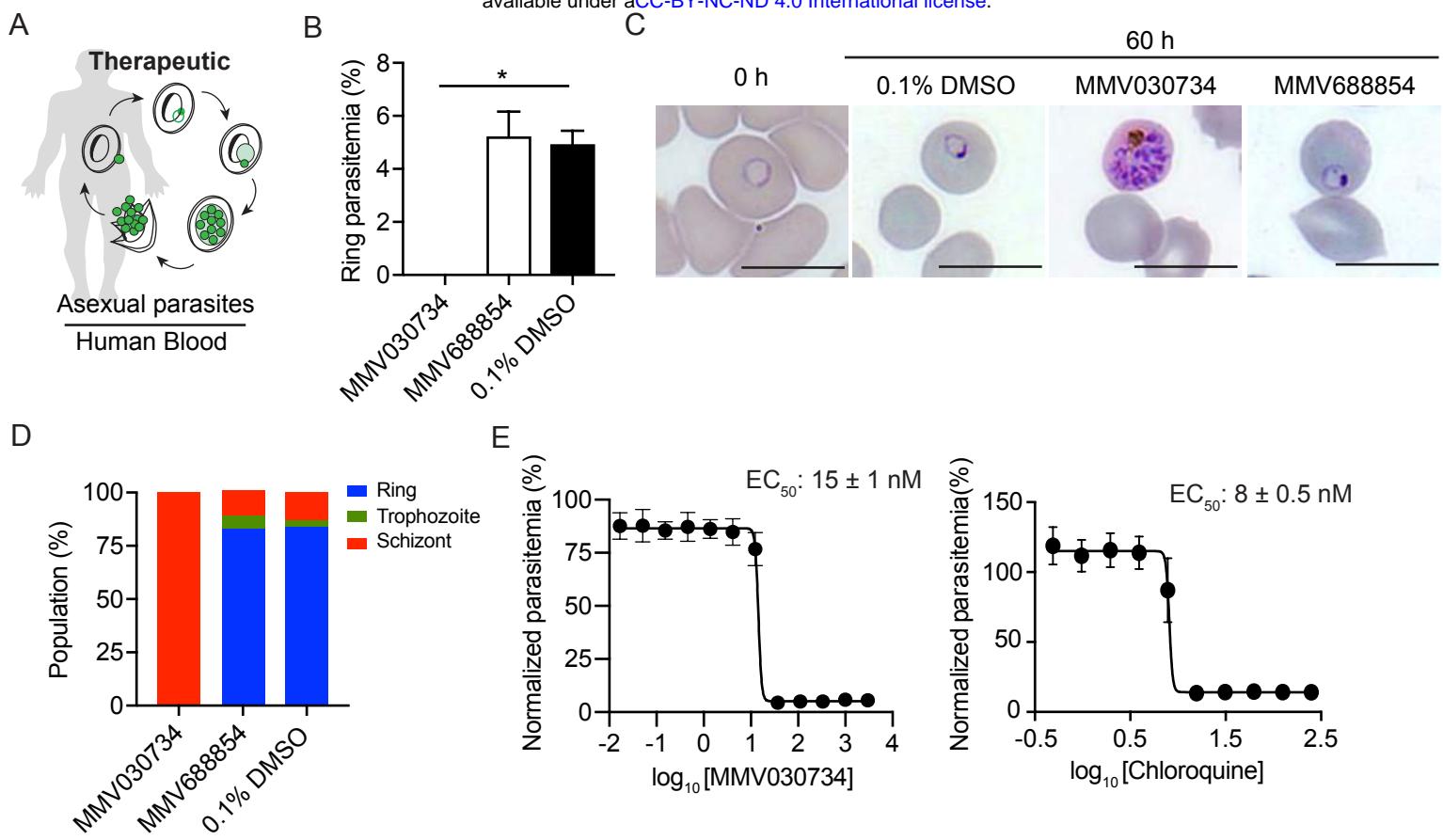




Figure 5

C



D

Figure 5. Testing the pathogen box inhibitory compounds for mosquito transmission blocking activity

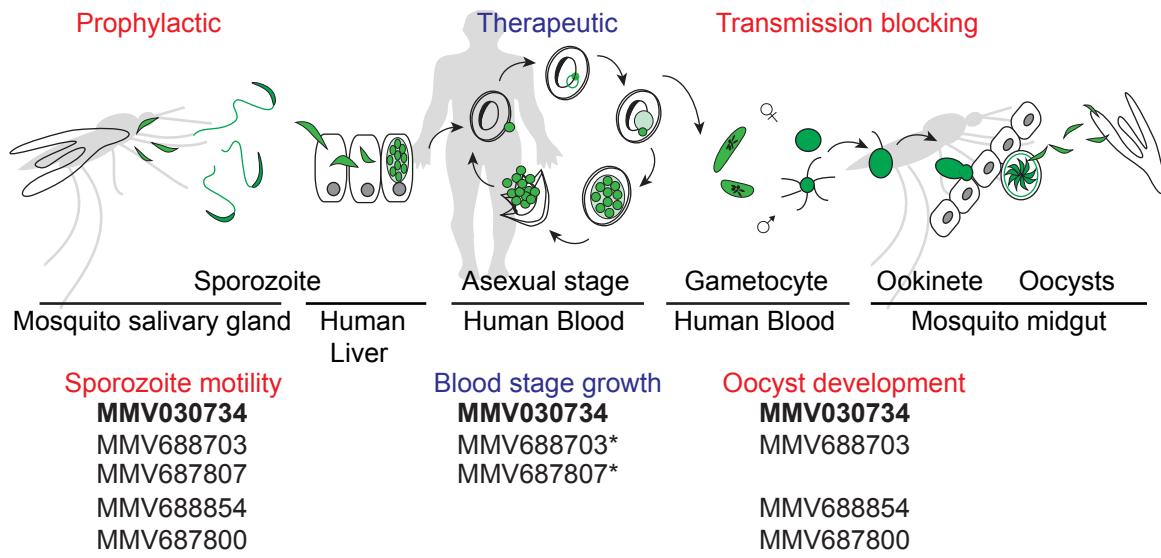
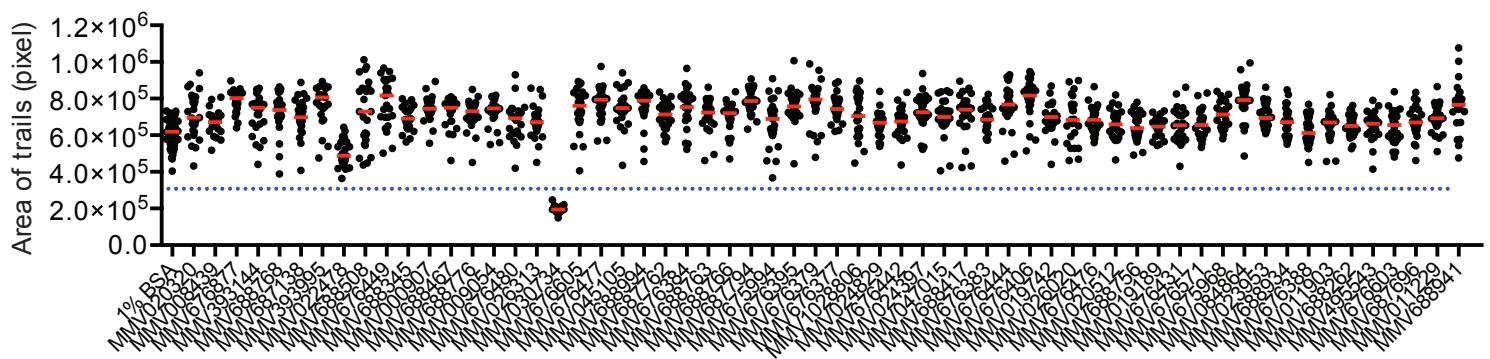
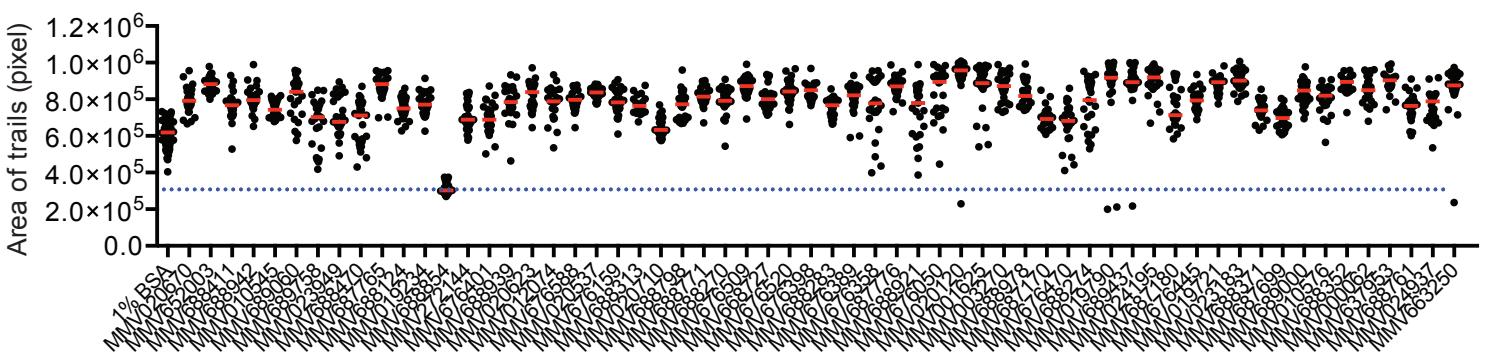

(A) Schematic representation of *Plasmodium* transmission to the mosquito. **(B)** Schematic representation of assay set up. The mature gametocyte culture is mixed with each compound to a final concentration of 1 μ M and fed to *An. stephensi* mosquitoes. Nine days later, mosquito midguts were dissected and oocysts were counted. **(C&D)** *An. stephensi* mosquitoes were fed a blood meal of either 0.03% (C) or 0.1% (D) gametocytemia in the presence of the indicated compound or DMSO control. On day 8 post-blood meal, individual mosquitoes were dissected and oocysts were counted for 15 to 20 mosquitos per group. Each group is compared to DMSO control (Kruskal-Wallis test followed by Dunn's test, **** P < 0.0001, *** P < 0.0005, ** P < 0.005, * P < 0.05). Red bars indicate the mean.

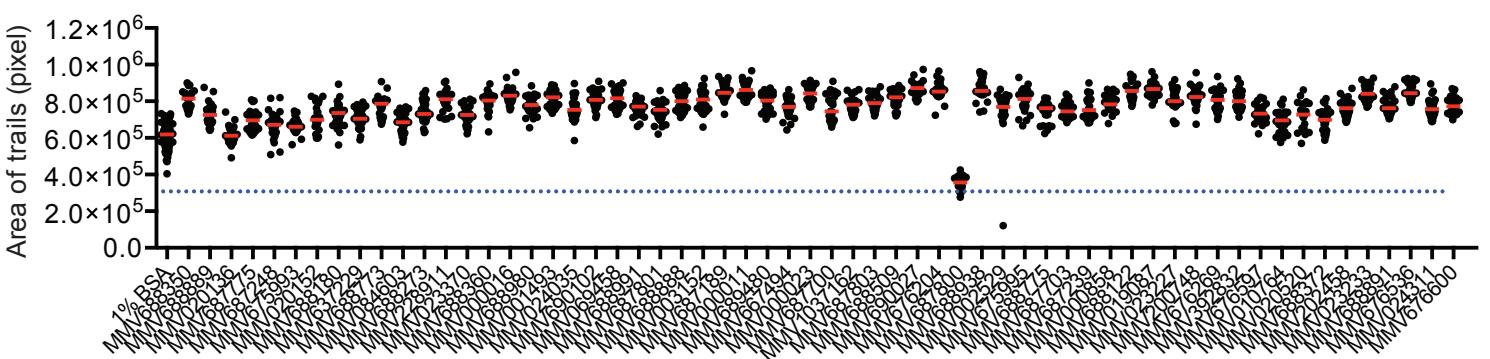
Figure 6. Pathogen box compound MMV030734 reduces asexual stage parasite growth and inhibits egress.

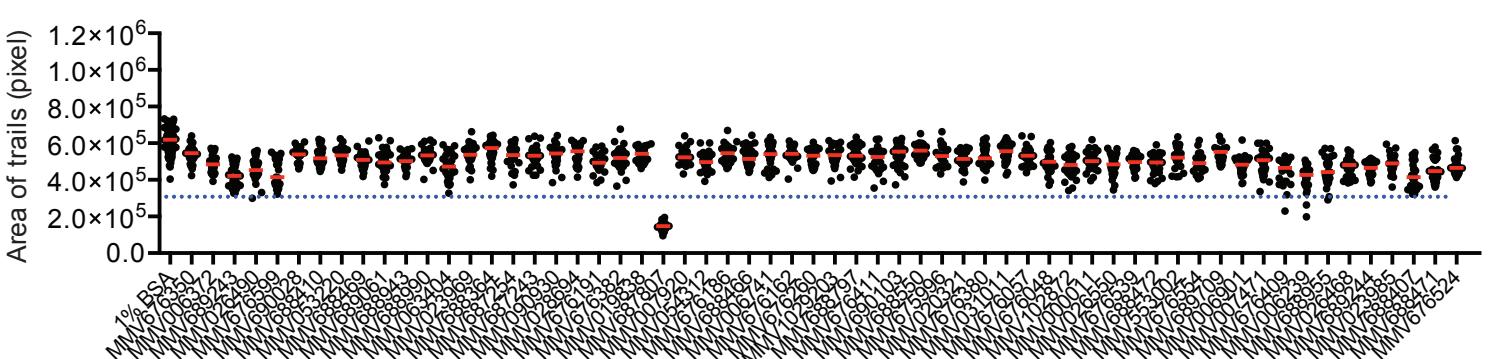
(A) Schematic representation of *Plasmodium* asexual blood stage cycle. **(B)** Quantification of ring stage parasitemia. Synchronized *P. falciparum* ring stage parasites were incubated with compound MMV030734 or MMV688854 at 1 μ M or 0.1% DMSO for 60 h at which point Giemsa-stained blood smears were made and ring stage parasites were counted. The mean +/- standard deviation is shown from two technical replicates. ANOVA multiple comparisons, *P<0.01. **(C)** Representative images of Giemsa-stained asexual stage parasites at 0 h and at 60 h in the indicated treatment group. Scale bar, 10 μ m. **(D)** Giemsa-stained blood smears taken at 60 h were scored based on the number of ring, trophozoite, and schizont stage parasites. The percentage of each lifecycle stage is shown for one hundred infected erythrocytes from each treatment group. **(E)** Dose-response plot for parasites grown in presence of MMV030734 or Chloroquine for 72 h. Data were pooled from two biological replicates each with four technical replicates. The mean parasitemias \pm standard deviation (SD) are shown normalized to the DMSO control. Half maximal effective concentration (EC₅₀) is represented as mean \pm SD.

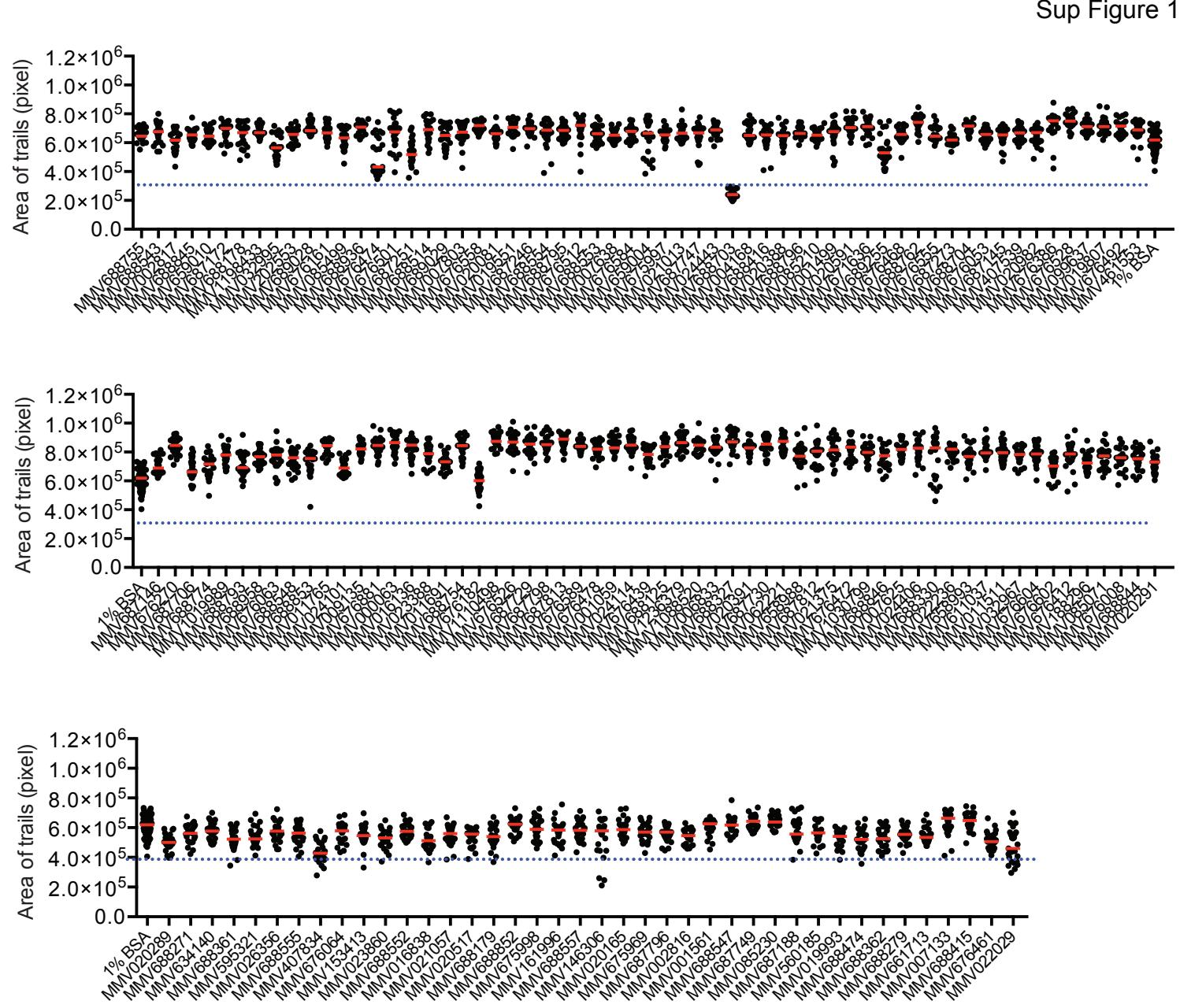

Figure 7


Figure 7. Summary of the five motility-inhibitory compounds across the *Plasmodium* life cycle

Pathogen box compounds were screened for their impact on *P. falciparum* sporozoite motility and 5 compounds (MMV030734, MMV688854, MMV687800, MMV687807, MMV688703) showed significant inhibition in this assay. Of these compounds, MMV030734 and MMV68854 inhibited transmission of *P. falciparum* gametocytes to the mosquito at high gametocytemia and MMV687800 and MMV688703 inhibited transmission only at low gametocytemia. MMV030734, MMV687807 and MMV688703 had a significant inhibitory effect on asexual blood stage growth. Thus, two compounds, MMV030734 and MMV688703 inhibited all three *P. falciparum* life cycle stages. *Blood stage inhibitory effect of MMV688703 and MMV687807 was confirmed by Duffy. S et al (15).


A


B


C

D

Sup Figure 1

Supplemental Figure 1. Screening of pathogen box compounds on *P. falciparum* sporozoite motility

Freshly isolated *P. falciparum* sporozoites were incubated with each of the 400 pathogen box compounds at 1 μ M and allowed to glide for 1 h. CSP trails were stained and quantification of the area occupied by the trails was performed. Red bars indicate the mean area occupied by trails. Each panel shows a different subset of the 400 compounds. Inhibition of motility was observed in sporozoites treated with MMV030734 (panel A), MMV688854 (panel B), MMV687800 (panel C), MMV687807 (panel D), MMV688703 (panel E). The dotted line in each graph indicates the threshold for identifying a compound hit. The threshold is half of the mean area occupied by the trails of parasites in 1% BSA.

Table 1. Effect of five compounds in Plasmodium life cycle and potential targets

	MMV030734	MMV688854	MMV687800	MMV687807	MMV688703
Target organism in the Pathogen box	Malaria	Cryptosporidium	Reference compound: Clofazimine	Mycobacterium Tuberculosis	Toxoplasma
Potential target	PfCDPK1	TgCDPK1 (PfCDPK4)			cGMP dependent protein kinase
Results (from this study)					
<i>P. falciparum</i> sporozoite motility	Significant inhibition at 0.0625 μ M	Significant inhibition at 0.25 μ M	Significant inhibition at 0.25 μ M	Significant inhibition at 0.25 μ M	Significant inhibition at 0.0156 μ M
<i>P. berghei</i> sporozoite motility	72% inhibition at 1 μ M	45% inhibition at 1 μ M	38% inhibition at 1 μ M	49% inhibition at 1 μ M	71% inhibition at 1 μ M
<i>P. falciparum</i> oocyst formation	Significant inhibition at 1 μ M with 0.1% gametocytemia	Significant inhibition at 1 μ M with 0.1% gametocytemia	Significant inhibition at 1 μ M with 0.03% gametocytemia	No effect on Oocyst development	Significant inhibition at 1 μ M with 0.03% gametocytemia
<i>P. falciparum</i> asexual stage growth	EC ₅₀ : 15±1 nM Schizont egress defect was observed	Inactive	No data	No data	No data
MMV data sheet					
<i>P. berghei</i> liver stage development, IC ₅₀ determination by luciferase assay	100% inhibition at 10 μ M IC ₅₀ : 0.32 μ M	No data	No data	No data	No data
<i>P. falciparum</i> asexual stage growth	3D7: IC ₅₀ 0.41 μ M DD2: IC ₅₀ 0.2 μ M W2: IC ₅₀ 1.1 μ M	No data	No data	No data	No data
<i>P. falciparum</i> (NF54) inhibition of late-stage gametocyte (IV-V) development	9% inhibition at 10 μ M	No data	No data	No data	No data
Cytotoxicity CC ₂₀ and CC ₅₀ : Cytotoxic concentration of the compounds to cause death of 20% and 50% of viable cells	HepG2 CC ₂₀ : 5.8 μ M CC ₅₀ : >10 μ M	HepG2 CC ₂₀ : 22.6 μ M	HepG2 CC ₂₀ : 6.6 μ M	HepG2 CC ₅₀ : 0.7 μ M	HepG2 CC ₂₀ : 2.7 μ M HL60 CC ₅₀ : > 50 μ M
S. Duffy et al, 2017					
<i>P. falciparum</i> asexual stage growth	3D7: IC ₅₀ < 5 μ M	3D7: IC ₅₀ > 20 μ M	84% inhibition at 20 μ M (3D7) Inactive (NF54)	3D7: IC ₅₀ 1.82 μ M	3D7: IC ₅₀ 3.16 μ M
<i>P. falciparum</i> inhibition of late-stage gametocyte (IV-V) development	IC ₅₀ 5-10 μ M	IC ₅₀ 5-10 μ M	Inactive	IC ₅₀ 5.07 μ M	IC ₅₀ >20 μ M