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Abstract: Infant microbiome assembly is intensely studied in infants from industrialized nations, 

but little is known about this process in populations living non-industrialized lifestyles. In this 

study we deeply sequenced infant stool samples from the Hadza hunter-gatherers of Tanzania 

and analyzed them in a global meta-analysis. Infant microbiomes develop along lifestyle-

associated trajectories, with over twenty percent of genomes detected in the Hadza infant gut 

representing phylogenetically diverse novel species. Industrialized infants, even those who are 

breastfed, have microbiomes characterized by a paucity of Bifidobacterium infantis and gene 

cassettes involved in human milk utilization. Strains within lifestyle-associated taxonomic 

groups are shared between mother-infant dyads, consistent with early-life inheritance of lifestyle-

shaped microbiomes. The population-specific differences in infant microbiome composition and 

function underscore the importance of studying microbiomes from people outside of wealthy, 

industrialized nations. 

 

Recognition of work on indigenous communities 

Research involving indigenous communities is needed for a variety of reasons including to 

ensure that scientific discoveries and understanding appropriately represent all populations and 

do not only benefit those living in industrialized nations. Special considerations must be made to 

ensure that this research is conducted ethically and in a non-exploitative manner. In this study we 

performed deep metagenomic sequencing on fecal samples that were collected from Hadza 

hunter-gatherers in 2013/2014 and were analyzed in previous publications using different 

methods (1, 2). A material transfer agreement with the National Institute for Medical Research in 

Tanzania ensures that stool samples collected are used solely for academic purposes, permission 

for the study was obtained from the National Institute of Medical Research (MR/53i 100/83, 

NIMR/HQ/R.8a/Vol.IX/1542) and the Tanzania Commission for Science and Technology, and 

verbal consent was obtained from the Hadza after the study’s intent and scope was described 

with the help of a translator. The publications that first described these samples included several 

scientists and Tanzanian field-guides as co-authors for the critical roles they played in sample 

collection, but as no new samples were collected in this study, only scientists who contributed to 

the analyses described here were included as co-authors in this publication. It is currently not 

possible for us to travel to Tanzania and present our results to the Hadza people, however we 

intend to do so once the conditions of the COVID-19 pandemic allow it. 
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Main Text: 

The human gut microbiome undergoes a complex process of assembly beginning 

immediately after birth (3). New microbes attempting to engraft within this community often 

depend upon niches established by previous colonizing species, and thus the final adult 

microbiome composition may be contingent upon the species acquired early in life. The 

microbiome assembly process of infants living in industrialized nations is well-studied, and tends 

to follow a series of characterized steps that lead to the low-diversity gut microbiome 

composition characteristic of industrialized adults (4). The microbiome assembly process that 

occurs in infants living non-industrialized lifestyles (which results in the characteristically 

diverse adult microbiomes of non-industrialized adults (2)) is largely unknown (5). Of particular 

interest are the timing at which the microbiomes of infants from different lifestyles diverge, the 

microbes and functions that are characteristic of infants from different lifestyles, and whether 

there are differences in the taxa that are vertically transmitted from mothers to infants and seed 

the microbiome assembly process. 

 

To address these questions we performed metagenomic sequencing on infant fecal 

samples from the Hadza, a group of modern hunter-gatherers in Sub-Saharan Africa (1, 6). The 

Hadza inhabit semi-nomadic bush camps of approximately 5 to 30 people and exhibit a moderate 

level of community child rearing within the camps (7). Hadza infants are breastfed early in life 

and then weaned onto a diet that consists of baobab powder, animal fat, and pre-masticated meat 

at approximately 2–3 years old (8, 9). In this study we performed i) a global meta-analysis of 

infant microbiome samples sequenced using 16S rRNA amplicon sequencing, including 62 

Hadza infant fecal samples, in order to contextualize the Hadza infant microbiome with as many 

samples as possible, and ii) deep metagenomic sequencing on 39 Hadza infant fecal samples in 

order to assess sub-species variation, functional potential, and patterns of vertical transmission 

(Table S1, S2).  

 

To assess inter-individual variation of infants across lifestyles, we curated a global 

dataset of 16S rRNA sequencing samples from 1,900 healthy infants aged 0-36 months from 18 

populations (including the Hadza samples described above) (1, 2, 4, 10–14) (Fig. S1, S2). 
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Populations were categorized as practicing industrialized, transitional, or non-industrialized 

lifestyles using the Human Development Index (HDI) and other lifestyle characteristics (15, 16); 

see methods for details. We created a UniFrac-based ordination from all 1,900 samples (Fig. 1A) 

and found that the main ordination axis of variation is strongly associated with age (EnvFit; 

n=1900; R2 = 0.43; P = 0.001) and the second axis of variation is strongly associated with 

lifestyle (EnvFit; n=1900; R2 = 0.50; P = 0.001). DNA extraction methods, or other study-

specific aspects of data generation, may contribute to some of the differences in data between 

studies. Comparison of two populations within the same country but with different lifestyles (the 

Bassa from Nigeria (non-industrialized lifestyle) and city dwelling Nigerian infants (transitional 

lifestyle)) demonstrate that shared lifestyle affects microbiota composition more than geographic 

proximity (Fig. 1A, right panel; Fig. S3). Similarly, the Tsimane infants in Bolivia harbor a 

microbiota more similar to Hadza and Bassa infants than to infants from other lifestyles in South 

America (Fig. S3). The microbiome of infants living industrialized lifestyles diverges from those 

living transitional and non-industrialized within the first 6 months of life, and the microbiomes 

of infants living transitional versus non-industrialized lifestyles diverge at ~30 months of life 

(Fig. 1B). A lack of complete metadata precluded us from testing whether this is due to 

differences in feeding practices between lifestyles. Among infants living transitional lifestyles, 

intermediate trajectories are exhibited by populations on the boundaries of industrialized or non-

industrialized lifestyles (Fig. 1B, dashed lines), highlighting the apparent sensitivity of infant 

microbiota development to lifestyle-related factors.  

 

Members of the gut microbiome are often metabolically or ecologically linked, for 

example in the respective production and consumption of metabolites. We identified five 

microbial co-abundance groups (CAGs) in our dataset using a network inference method (17, 

18), which together account for an average of 93.8% of the microbiota composition per sample 

(Fig. 1C; Fig. S4). The Bifidobacterium-Streptococcus CAG dominates infants from all 

lifestyles in early life (0-6 months) (Fig. 1C) and yields over time in a lifestyle-specific manner. 

A Bacteroides-Ruminocccocus gnavus CAG is enriched in industrialized infants whereas a 

Prevotella-Faecalibacterium CAG is enriched in infants living transitional / non-industrialized 

lifestyles (Fig. 1C). These differences in dominant CAGs by lifestyle become more pronounced 
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over time and mirror taxonomic tradeoffs observed in late infancy (19) and compositional 

differences found in adult microbiomes (1). 

 

 
Fig. 1. Age and lifestyle are associated with infant microbiome composition. (A) Unweighted UniFrac 

dissimilarity PCoA (top left panel) of 1900 infant fecal samples across 18 populations based on amplicon sequence 

variant (ASV) abundance. Point color indicates lifestyle, point size is proportional to age in months. Boxplots show 

the distribution of indicated age groups along PCo1 (bottom) and cohorts along PCo2 (right). (B) PCo2 versus 

sample age for the three lifestyle categories (solid lines) and specific indicated subpopulations (dashed lines). Upper 

purple dashed line includes Russia (Karelia) and South Africa (RU (Karelia)+SA) and the lower green dashed line 

includes Bangladesh, Malawi, and Nigeria (Urban) (MWI+NG+BD). The middle transitional line contains all 

transitional samples. Lines are the smoothed conditional mean of PCo2 loadings (loess fit). (C) Fractional 

abundance of co-abundance groups (CAGs) by age group and lifestyle. Taxa in annotation are the most abundant 

taxa in a CAG. 
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We next used our deep metagenomic sequencing data of Hadza infant fecal samples, in 

comparison to other available infant metagenomes, to assess microbiome-encoded functional 

differences across samples (see methods for details). Broad lifestyle-associated differences were 

seen in the overall functional capacity of the infant microbiomes, along with age-related 

microbiome development (Fig. 2A). These metagenomic data are consistent with 16S rRNA 

amplicon-based analysis (Fig. 1A) illustrating that these phylogenetic differences have 

functional consequences. 

 

Hadza infant metagenomes were assembled and binned into metagenome-assembled 

genomes (MAGs) to investigate taxonomic novelty and sub-species variation. Of the 745 

microbial species assembled from Hadza infant metagenomes, 23% (n=175) represent novel 

species according to UHGG (Table S7). These novel species belong to phylogenetically diverse 

taxonomic groups (Fig. S5A), 88.6% (n=155) were recovered from multiple Hadza samples (Fig. 

S5B), and their genome quality is similar to genomes in UHGG (Fig. S5C). To assess prevalence 

via read mapping, MAGs were integrated with genomes recovered from Hadza adults (20) and 

public genomes from the human gut (21) into a comprehensive database of 5,755 species-

representative genomes (see methods for details). Overall, 23.4% of microbial species detected 

in the Hadza infants represent novel species (Table S3). These data support that, like the adult 

Hadza gut, the Hadza infant gut contains extensive previously-uncharacterized diversity. 

 

 The taxonomic specificity afforded by metagenomic sequencing allowed us to identify 

particular species that are depleted or enriched in infants living industrialized versus non-

industrialized lifestyles. Microbial species exhibiting these patterns are termed VANISH 

(volatile and/or negatively associated in industrialized societies of humans) and BloSSUM 

(bloom or selected in societies of urbanization/modernization) species, respectively (2). 310 

VANISH and 12 BloSSUM species were identified among the infants in this analysis (Table S4, 

Fig. S6) (see methods for classification details). 63 VANISH species are effectively extinct (i.e., 

never detected) in industrialized and transitional lifestyle infants. Two asymmetries are apparent 

among VANISH and BloSSUM species across lifestyles. First, VANISH species are more 

numerous and abundant than BloSSUM taxa. VANISH species collectively comprise on average 

36.6% (± 2.16%) of non-industrialized lifestyle infant microbiomes by relative abundance 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2022. ; https://doi.org/10.1101/2022.03.30.486467doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486467
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

throughout infancy, while BloSSUM species comprise 7.73% (± 0.49%) in industrialized 

lifestyle infants (P=8.2e-21; n=569 industrialized infants; n=39 non-industrial infants; Wilcoxon 

rank-sum test) (Fig. S7). Second, VANISH species are over-represented shortly after birth 

whereas BloSSUM species occur primarily later in infancy. Many VANISH species (45.2%; 

140/310) are present at 0-6 months in non-industrialized infants, while few BloSSUM species are 

detected this early in industrialized lifestyle infants (16.7%; 2/12) (Fig. 2B). Together these 

patterns suggest that more species disappear than appear as lifestyles become more 

industrialized, and that differences in the very early life microbiome (0-6 months) may engender 

alternative trajectories of microbiome assembly. 

 

 
Fig. 2. Age and lifestyle are associated with infant microbiome functions. (A) PCoA based on 682 infant fecal 

metagenomes described at the gene abundance level in RPKM. Points are colored by lifestyle. Size indicates infant 

age in months. Boxplots (bottom panel) show the distribution of indicated age groups in months along PCo1. 
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Boxplots (right panel) show the distribution of each lifestyle along PCo2. The main axis of variation in this gene-

based ordination is significantly associated with age (EnvFit; R2 = 0.30; n=679; P = 0.001) and the second axis of 

variation is significantly associated with lifestyle (EnvFit; R2=0.35; n=679; P=0.001). (B) Fractional prevalence of 

species across lifestyles among 0-6 month old infants. Select VANISH (red) and BloSSUM (blue) (those with 

lowest adj-P) species are highlighted. B. infantis is shown in bold. “Other” (gray) taxa are those that are not 

significantly different by lifestyle. (C) Relative representation of four common Bifidobacterium species in 0-6 

month olds by lifestyle. (D) Scatterplot of B infantis versus B. breve abundance among 0-6 month old infants. 

Contour lines display the kernel density estimation (KDE). (E) Prevalence of HMO-utilization clusters across ages 

and lifestyles. Clusters are considered present if all genes in the cluster are detected above a variable coverage 

threshold (to ensure that results are robust to differences in sequencing depth; see methods for details). * = adj-P < 

0.05; Fisher’s exact test with false discovery rate correction; non-industrialized versus industrialized. (F) 

Phylogenetic tree of B. infantis genomes based on universal single copy genes. Genome names are colored based 

on lifestyle of origin. Isolate genomes are marked with a checkmark. Public reference genomes for B. longum and 

B. infantis are included in gray text.  

 

 

 Amplicon and metagenomic data both show that Bifidobacterium is the most prevalent 

taxon in early life (Fig. 1C, Fig. 2B), prompting us to next investigate variation in 

Bifidobacterium species and strains across lifestyles. In the first 6 months of life we found that 

non-industrial lifestyle infants are dominated by Bifidobacterium infantis (also known as 

Bifidobacterium longum subsp. infantis) (Fig. 2C), a prolific utilizer of human milk 

oligosaccharides (HMOs), associated with human health, and commonly used in probiotic 

supplements (22). Infants living transitional and industrialized lifestyles have expanded 

representation of other Bifidobacterium species with limited ability to degrade HMOs (Fig. 2C). 

At 0-6 months of life, B. infantis is significantly decreased in industrial microbiomes (Fig. 2C; 

adj-P = 0.04; n=151 industrialized infants; n=27 non-industrial infants; Wilcoxon-ranked) and its 

abundance in transitional 0-6 month infants is at an intermediate state between non-industrial and 

industrialized infants. Bifidobacterium breve, a species capable of limited HMO degradation 

(23), is the most abundant Bifidobacterium species in industrialized infants. Interestingly, 

Bifidobacterium infantis is anti-associated with Bifidobacterium breve in infants across lifestyles 

(Fig. 2D; correlation=-0.46, P=4.1E-5, n=73 infants, spearman two-sided hypothesis test). Even 

industrialized infants that have Bifidobacterium infantis have low levels of Bifidobacterium 
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breve (Fig. 2D; correlation=-0.41, P=1.0E-3, n=62 industrialized infants, spearman two-sided 

hypothesis test), suggestive of competitive exclusion. 

 

To determine whether these species-level differences result in community-wide differences 

in HMO degradation capacity, we mapped our metagenomic reads to the most well-characterized 

genetic clusters for human milk utilization (Table S5). Five of these clusters are involved in 

HMO degradation (H1 - H5) and one cluster is involved in nitrogen scavenging (referred to as 

the “urease” cluster) (22, 24), and recent studies have linked their expression in the infant gut 

microbiome with systemic immunological health outcomes (25). Five of the six clusters were 

more prevalent in non-industrialized than industrialized infants, and their prevalence among 

transitional infants was in between these two extremes, in all cases showing a pattern of 

decreasing representation as infants age (Fig. 2E). The H5 cluster, however, is found at the same 

prevalence level in infants from all lifestyles in early life, but exhibits continued persistence only 

in infants from industrialized lifestyles (Fig. 2E). The H5 cluster encodes an ABC-type 

transporter known to bind core HMO structures, and we found this cluster in 119 of 129 B.breve 

MAGs and 41of 69 B. infantis MAGs recovered from industrialized infants (P = 1.4E-9, Fisher's 

exact test). The persistence of the H5 cluster beyond 12 months in industrialized infants, a time 

period when breastfeeding is less common in these populations, suggests this cassette of genes 

exists in genomes that are not reliant upon breastfeeding. Breast milk consumption among 

industrialized infants reduces, but does not eliminate, lifestyle-associated differences in 

Bifidobacterium infantis and HMO-degradation cassette prevalence (Fig. S8). 

 

Beyond the species-level Bifidobacterium differences described above, we next leveraged 

the assembly-based metagenomic analysis performed in this study to investigate strain-level 

differences among B. infantis genomes recovered from infants living different lifestyles. B. 

infantis MAGs from infants aged 0-1 years old (n=96 MAGs) have several functional 

differences, including i) enrichment in non-industrialized versus industrialized infants of 

Glycoside Hydrolase Family 163 (GH_163), a CAZyme involved in the utilization of complex 

N-glycans (including those found on immunoglobulins) (26) (Fig. S9A), ii) three Pfams that 

differ in prevalence in infants from different lifestyles (Fig. S9C), and iii) the identification of 

four gene clusters at higher prevalence in B. infantis genomes found in the Hadza versus 
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industrialized infants (Fig. S9D). To verify the metagenome-based findings, we isolated and 

sequenced 20 B. infantis strains from the same Hadza infant fecal samples (Table S7). GH_163 

and all four gene clusters showed enrichment among Hadza B. infantis isolates as compared to 

public reference genomes (Fig. S9), consistent with our MAG-based findings. Finally, strong 

lifestyle-specific phylogenetic clustering was observed among B. infantis isolate sequences and 

MAGs (Fig. 2F). This observation of strong region-specific phylogenetic signals (Fig. 2F) could 

be a result of long-term, multi-generational vertical transmission (27). 

 

 To assess the extent of vertical strain transmission among the Hadza, we deeply 

sequenced fecal samples from Hadza mothers of infants in this study (n=23 Hadza dyads). 

Detailed strain-tracking analysis was performed using inStrain (28) with a threshold for identical 

strains of 99.999% popANI (Table S6). Dyad pairs share far more strains on average than non-

dyad pairs (6.4 vs 0.3 strains, respectively), and a higher percentage of infant strains are shared 

between an infant and their respective mother versus with another mother (12.4% vs 0.5%, 

respectively) (p < 0.001, Wilcoxon rank-sum test) (Fig. 3A). Remarkably, Hadza non-dyads 

living in the same bush camp also share more strains and a higher proportion of strains than 

those living in different bush camps (Fig. 3A) (p < 0.001, Wilcoxon rank-sum test), consistent 

with previously-reported increased rates of strain sharing within Fijian social networks. (29). 

Vertically shared strains were detected among a range of different phyla in the Hadza, with 

Bacteroidota and Cyanobacteria having more vertically shared strains than other phyla, and 

Firmicutes having less (Fig. 3B; Fisher's exact test with false discovery rate correction). 

Industrialized infants also exhibit significantly increased and decreased vertical strain sharing of 

Bacteroidetes and Firmicutes, respectively (30). Together these results suggest that community 

interaction during rearing of infants and bush camp microenvironments such as water source 

may play important roles in increasing transmission of strains to infants, and is consistent with 

proximity and social interactions propagating group-microbial sharing (31).  
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Fig. 3. Strain sharing between mother-infant dyads and non-dyads is lifestyle-specific. (A) The mean strains 

shared (left) and the percentage of infant strains found in mothers (right) in mother-infant dyads versus mother-

infant non-dyads (top) and non-dyads from the same bushcamp versus non-dyads from different bushcamps 

(bottom). Error bars represent standard error (* = adj-P < 0.05; ** = adj-P < 0.01; *** = adj-P < 0.001; Wilcoxen 

rank-sums test). (B) The percentage of strains detected in all Hadza mothers and infants and whether they are 

detected in infants only, mothers only, or shared within a mother / infant dyad (“Shared”) categorized by phylum. 

Numbers to the right of bars indicate the number of vertically shared strains over the number of strains detected in 

either infant or maternal samples. Phyla with a significant difference in the percentage of vertically transmitted 

strains as compared to all other phyla are marked with asterisks (Fisher's exact test with p-value correction). (C) 

Percentage of vertically transmitted strains in Hadza and Swedish cohorts by phylum (top), genus (middle; only 

genera with significant differences shown), and VANISH / BloSSUM (bottom). All metagenomes were subset to 

4Gbp for this analysis to reduce any biases associated with sequencing depth. Taxa that are significantly enriched 

in either cohort are marked with an asterisk (* = adj-P < 0.05; ** = adj-P < 0.01; *** = adj-P < 0.001; Fisher’s 

exact test). 

 

 

 To address whether lifestyle-dependent divergence of infant microbiotas could be 

explained by strain sharing between mothers and their infants, we performed the same detailed 

strain-tracking analysis on a previously sequenced dataset of 100 mother-infant dyads from 

Sweden (32). Swedish infants born via C-section were excluded from this analysis (n=17 
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eliminated; n=83 included). Infants in Swedish and Hadza dyads had average ages of 1.01 ± 0.00 

and 0.95 ± 0.21 years old, respectively (P=0.04, Wilcoxon rank-sum test); one difference 

between these studies is that Swedish mothers were sampled immediately after birth while Hadza 

mothers were sampled contemporaneously with infants. To identify differences between strains 

shared among Hadza versus Swedish dyad pairs, we performed in silico rarefaction to account 

for differences in sequencing depth between the studies. Bacteria of the phylum Bacteroidota 

(also known as Bacteroidetes) were the most commonly vertically transmitted strains in both 

populations (Fig. 3C). VANISH bacteria and bacteria of the genus Prevotella made up a higher 

portion of vertically shared strains in the Hadza, while bacteria of the genus Bacteroides and 

BloSSUM taxa were more commonly shared among Swedish dyads (Fisher's exact test; P < 

0.01) (Fig. 3C). While we cannot exclude the possibility that the small difference in infant age 

between populations plays a role, the differences seen in infants largely mirror lifestyle-related 

compositional differences observed among adults, consistent with the finding that species that 

were more abundant in maternal samples were more likely to be vertically transmitted (Fig. 

S10). Taken together, these data suggest that vertical transmission may propagate lifestyle-

dependent differences in microbiome composition (33). 

 

Together our data show that infants from all lifestyles begin life with similar 

(Bifidobacteria-dominated) gut microbiota compositions, but subtle differences detected in early 

life compound over time. The minor taxa found by amplicon analysis to differentiate lifestyles at 

0-6 months of life (Bacteroides in industrialized infants and Prevotella in non-industrialized 

infants) were the same taxa revealed by detailed metagenomic analysis to be the most commonly 

vertically transmitted. These data suggest that vertical transmission may be a mechanism by 

which microbiota change is propagated over generations in response to altered lifestyles (34, 35). 

Important differences were also discovered in the species composition and HMO-degradation 

genes of the initially-dominant Bifidobacterium communities, and recent studies of these same 

genes suggest that their depletion in industrialized infants could have long-term negative immune 

consequences (25). Crucially, in almost all analyses performed in this study, infants living 

transitional lifestyles display intermediate phenotypes between those of industrialized and non-

industrialized infants. While not conclusive, this is an important piece of evidence pointing to 

lifestyle as a possible causative factor in infant microbiome assembly. The Hadza-specific 
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discoveries reported in this work (including the finding of increased non-dyad vertical 

transmission among members of the same bush camp, a social structure with no equivalent 

among industrialized communities) exemplify the importance of studying people outside of 

industrialized nations, and highlights the need for additional studies to provide equity in 

microbiome understanding across global societies. Our results also highlight the question of 

whether lifestyle specific differences in the gut microbiome’s developmental trajectory 

predispose populations to diseases common in the industrialized world, such as those driven by 

chronic inflammation (36, 37). 
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