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ABSTRACT T cell receptor (TCR) repertoires can be profiled using next generation 
sequencing (NGS) to monitor dynamical changes in response to disease and other 
perturbations. Several strategies for profiling TCRs have been recently developed with 
different benefits and drawbacks.  Genomic DNA-based bulk sequencing, however, remains 
the most cost-effective method to profile TCRs. The major disadvantage of this method is the 
need for multiplex target amplification with a large set of primer pairs with potentially very 
different amplification efficiencies. One approach addressing this problem is by iteratively 
adjusting the concentrations of the primers based on their efficiencies, and then 
computationally correcting any remaining bias. Yet there are no standard, publicly available 
protocols to process and analyze raw sequencing data generated by this method. Here, we 
utilize an equimolar primer mixture and propose a single statistical normalization step that 
efficiently corrects for amplification bias post sequencing. Using samples analyzed by both 
approaches, we show that the concordance between bulk clonality metrics obtained from 
using the commercial kits and that developed herein is high. Therefore, we suggest the 
method presented here as an inexpensive and non-commercial alternative for measuring and 
monitoring adaptive dynamics in TCR clonotype repertoire. 

INTRODUCTION 

The receptors on the surface of T cells bind to an enormous array of antigens that play a 
pivotal role in shaping immune response during health and disease. The T cell receptor (TCR) 
is a heterodimer composed of one alpha and one beta chain which are encoded by the TCRα 
and TCRβ genes, respectively.  To recognize an extremely large antigen space, the TCR 
genomic loci undergo somatic recombination of variable (V), diversity (D), and joining (J) gene 
segments, and generate a diverse repertoire of TCRs. The complementarity determining 
region 3 (CDR3) region present at the D segment of the recombined TCRβ gene is highly 
diverse in TCR beta chains. Therefore, surveying the recombined TCRβ gene or transcript as 
a proxy for overall TCR repertoire diversity has emerged as a rational approach to study TCR 
repertoire dynamics.  
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Over the last ten years it became possible to obtain comprehensive profiles of TCR through 
an array of next generation sequencing (NGS) based approaches (1-8). These vary based on 
the experiment type (bulk or single-cell), sample type (RNA or DNA), library preparation 
(multiplex PCR, bead-based enrichment, 5’RACE) and sequencing platform, each choice 
presenting a different, and fascinatingly interlocked trade-off. Single cell approaches 
compared to bulk can be very accurate and unbiased for high frequency clones, but have 
lower resolution for low frequency clones (9,10). They are also substantially more expensive 
and require intact cells. RNA-based approaches are affected by the variability in TCR RNA 
expression levels, but may better reflect diversity when the sample size is limited (8). Genomic 
DNA (gDNA)-based approaches require either multiplex PCR or target enrichment during 
library preparation which introduces biases (11). A recent comparison of these two 
approaches confirmed these issues for both RNA- and DNA-based methods but also found 
the methodological variability to be smaller than the biological variability (12). New innovations 
are being introduced rapidly for all of these approaches but currently there is no established 
gold standard. 

Multiplexed PCR-based bulk sequencing approaches using gDNA, however, have become 
the standard approach for translational and even clinical applications due to reasonable 
sample requirements and moderate costs (13). This is reflected in the fact that all currently 
available commercial TCR sequencing products offer this as their major DNA option (Adaptive 
Biotechnologies (14), BGI (15), iRepertoire). Multiplex PCR refers to the usage of multiple 
forward primers specific for the V segments and multiple reverse primers specific for the J 
segments in combination during the initial amplification for target enrichment. Since each 
primer pair will have a different efficiency multiplexing will distort the relative abundances of 
the VDJ segment combinations (16). Correcting for this amplification bias is a key challenge 
for accurate quantification. One approach (14) is using spiked-in oligomers (synthetic 
templates) for each primer pair to measure primer efficiencies and to carefully control the 
design of the primers and their concentrations accordingly. Assuming that there is no 
interaction between the efficiency of primer pairs, amplification bias is reduced by iteratively 
calibrating the primer concentrations to find the optimal primer mix, and then removing any 
remaining amplification bias computationally using spiked-in oligomer counts.  

The proprietary setup described in (14) is currently available for human and murine samples 
exclusively through commercial kits. These are difficult and labor-intensive to adapt if requiring 
different settings, e.g. a different mammal or application. Furthermore, synthetic templates 
when added to all of the samples with the kits can substantially increase preparation and 
sequencing costs, as well as decrease coverage for clonotypes.  

Here we demonstrate, that using a negative binomial mean normalization strategy, it is 
possible to normalize amplification bias within a reasonable error margin without balancing 
primer concentrations using synthetic templates. Furthermore, we report that amplification 
bias parameters are highly preserved between datasets. This observation indicates that one 
can use synthetic template normalization controls for a small subset of samples, which can 
then be used to calculate mean scaling factors per batch/experiment, thus substantially 
reducing the cost and coverage of TCR repertoire analysis.  

MATERIAL AND METHODS 

Multiplex primers and design of synthetic TCR templates 

Multiplex PCR primers previously described by Faham et al. (US patent 8,628,972 B2), for the 
amplification of murine TCRβ genomic loci were utilized (Supplementary Table 1: primer 
sequences). The 20 Vβ segment specific primers amplify all the 21 functional Vβ segments, 
and the 13 Jβ specific primers amplify all the 13 functional Jβ segments. As previously 
described by Carlson et al., we designed 260 (20V x 13J) synthetic TCR templates (ST) to 
minimize amplification bias due to multiplexing with 20 V forward and 13 J reverse primers 
(14). Briefly, ST are 200 bp long double stranded DNA segments that contain partial V 
segment and J segment sequences encompassing a set of internal barcodes for post-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.30.486449doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486449
http://creativecommons.org/licenses/by-nc-nd/4.0/


  3 

sequencing identification. The internal barcode region contains a 16 bp barcode specific for 
each VJ combination. This specific barcode is further flanked by a 9 bp barcode that is 
common for all ST. An equimolar mixture of the 260 ST is added to the genomic DNA samples 
during PCR as internal controls. 

Amplification and deep sequencing of TCRβ genomic locus 

Genomic DNA from freshly resected mouse peripheral blood, peritoneal orthotopic 
mesotheliomas (17), and spleen was isolated using the Qiagen DNeasy Blood and tissue kit. 
Utilizing the method described in Robins et al (18), we performed a 2-stage PCR using genomic 
DNA for TCRβ deep-sequencing library preparation. The 1st stage involved amplifying the 
gDNA and the ST using a multiplex PCR with 20 V forward and 13 J reverse primers using 
the Qiagen multiplex PCR kit. The multiplex PCR primers contain a common 5’ overhang, 
allowing amplification by a single primer pair in the 2nd stage PCR. Using 2.0% of the purified 
PCR product from stage 1 as template, a 2nd stage PCR was performed with universal and 
indexed Illumina adaptors. Of note, the indexed adaptors contained an 8-base index sequence, 
providing each sample with a unique sample barcode.  Equal volumes of all samples were 
pooled. Each pool concentration, typically containing PCR mixtures from 70 samples, was 
measured with a 2200 TapeStation (Agilent), and the concentration determined by real time 
PCR using a StepOne Real Time Workstation (ABI/Thermo) with a commercial library 
quantification kit (Kapa Biosystems). Paired-end sequencing was performed with a 2 x 150 
protocol using a Midoutput 300 sequencing kit on a NextSeq 500 (Illumina). Target clustering 
was ~ 160 million clusters per run. Following the run, base call files were converted to fastq 
format and demultiplexed by a separate barcode read using the most current version of 
Bcl2Fastq software (Illumina). 

TCR data analysis Pipeline 

Fastq files were assessed for initial read quality using the FASTQC public tool (19), including 
the per-base quality scores. Quality paired-end sequences were combined using the PEAR 
(Paired-End reAd mergeR) algorithm (20). Merged sequences were then separated into ST 
and non-ST sequences. ST sequences were identified by searching for the common flanking 
9-bp internal barcodes allowing a one-nucleotide mismatch or indel. Sequences flagged as 
ST via this search were removed from downstream clonotype analyses. The individual ST 
sequences were distinguished and quantified by searching for the specific 16-bp barcode 
sequences unique to each ST, again allowing a one-nucleotide mismatch or indel 
(Supplementary Figure 1). Clonotypes were identified from purified (ST-removed) 
sequences utilizing the MiXCR pipeline (21), which is a two-step alignment and assembly 
process. First, reads were aligned to reference V, D, and J sequences, using the align module. 
Next, the assemble module grouped alignments into distinct clonotypes using a hierarchical 
clustering method based on sequence similarity and relative abundance. Finally, the export 
module exported alignments as well as assembled clones in tabular format. Raw clonotype 
counts were normalized using the NB mean normalization strategy described below. 
Normalized clonotype counts were exported in tabular format for use in downstream analysis. 
A number of TCR repertoire metrics, including clonality, maximum clonal frequency, and the 
Shannon diversity index were calculated. Quality control data was recorded in an overall 
summary table, for reference (Supplementary Material 1).  

Data Sets 

ST-only data sets: Twenty samples of an equimolar mixture of ST were sequenced. Two sets 
of ten samples of equimolar mixtures of ST at different concentrations were also sequenced 
at a later date. No genomic DNA was present in these samples. 

Transgenic TCR data sets: A dilution series was created from spleen genomic DNA of P14 
and OT-1 TCR transgenic mice (C57BL/6-Tg(TcraTcrb)1100Mjb/J). Three replicates of 300, 
600, 900, and 1200 ng of DNA from P14, OT1, and a 50:50 mixture of P14 and OT1 DNA 
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were sequenced along with an equimolar mixture of ST for a total of 12 samples. Appropriate 
amplification of the transgenic clones was assessed. (Supplemental Figure 2). 

ST dilution series data set: A dilution series was created from ST at six levels as below:  

* Stock: 3.2 ng/ul (equimolar mixture of all 260 spikes)  

Dil1=     0.1 of stock  
    

Dil2=     0.1 of Dil1 
     

Dil3=   0.01 of Dil1 
     

Dil4=   0.01 of Dil3 
     

Dil5= 0.001 of Dil3 
     

Dil6= 0.001 of Dil5 
     

Three replicates of 600 ng of blood DNA of murine were added to all levels of dilutions and for 
no ST samples for a total of 21 samples and three replicates of 600 ng of tumor DNA of murine 
were added to all levels of dilutions and for no ST samples for a total of 21 samples.   

WT spleen data set: Wild-type mouse spleen genomic DNA were sequenced for a total of five 
replicates. 

Byrne et al. data set (22): gDNA from 17 murine pancreatic ductal adenocarcinoma specimens 
were previously sequenced by a commercially available TCR beta platform. Aliquots of these 
gDNA samples were obtained and sequenced along with an equimolar mixture of ST using 
the protocol described above.  

Mesothelioma data set: Peritoneal mesothelioma tumors derived from the 40L cell line 
(17)derived genomic DNA samples derived from 12 syngeneic mice were sequenced along 
with equimolar mixture of ST.  

Batch mean scaling factors 

This method creates a scaling factor for each ST (and therefore for each primer pair) based 
on that ST’s counts among all samples, relative to all ST counts within a batch. Given a matrix 
൫𝐶௜௝൯ of ST counts from a batch, where i=1,…,260 labels ST and j=1,…,n labels samples in 
the batch, we denote the batch mean of the counts for ST i by 𝐶௜• ൌ 𝑛ିଵ ∑ 𝐶௜௝௝  and the batch 
mean of all ST means by 𝐶•• ൌ ሺ260ሻିଵ ∑ 𝐶௜• ൌ௜ ሺ260𝑛ሻିଵ ∑ 𝐶௜௝௜,௝  . The scaling factor (SF) for 
ST i in that batch is 𝑆𝐹௜ ൌ  𝐶௜• 𝐶•• ⁄ . 

Negative Binomial means 

The above idea of a scale factor is distribution free, but for its use in normalizing counts, would 
require a full set of ST in every sample. We explored the use of a ST-specific negative binomial 
model to dispense with the use of synthetic templates. Consider the set (C1, …., Cn) of counts 
for single, fixed ST across a batch of n replicate ST-only samples. A plausible model for these 
counts is the negative binomial (NB) distribution. We write 𝐶 ~𝑁𝐵ሺ𝑚,𝑑ሻ for this distribution, 
where m>0 is the mean parameter and d0 is the (over-) dispersion parameter, and refer to 
(23) for an explicit formula for the NB probability mass function. For present purposes, S has 
expected value 𝑬ሺ𝐶ሻ ൌ 𝑚  and variance 𝒗𝒂𝒓ሺ𝐶ሻ ൌ 𝑚 ൅ 𝑑𝑚ଶ. When d=0, the negative binomial 
reduces to the Poisson distribution, for which 𝑬ሺ𝐶ሻ ൌ 𝒗𝒂𝒓ሺ𝐶ሻ, and thus the use of the term 
over-dispersion here is relative to the Poisson. Using the methods of generalized linear models 
(23), we can obtain the maximum likelihood estimates (MLE)  𝑚ෝ  and 𝑑መ  of m and d from a 
replicate set of ST such as (C1, …., Cn). In the notation of the previous paragraph, the MLE 
𝑚ෝ௜ ൌ 𝐶௜• , that is, the MLE of the ith mean parameter 𝑚௜ of an NB fitted to (Cij) is the arithmetic 
mean of the ith set of observed counts (assumed independent and identically distributed 
across j=1,…,n with common mean 𝑚௜ and common dispersion parameter. Where no 
confusion will result in what follows, we will not distinguish the parameters (mi) from their 
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(maximum likelihood) estimates ሺ𝑚ෝ௜ሻ. These ST or primer-pair-specific means estimated from 
ST-only data can be used as scaling factors for normalization, even when there are no ST 
present in samples. Consistent with the notation in the previous paragraph, we write 𝑚• ൌ
ሺ260ሻିଵ ∑ 𝑚௜ ௜   for the average of the 260 (estimated) mean parameters. The 260 NB mean 
scaling factors are ሺ𝑚௜ 𝑚•ሻ ⁄ .  

Normalization 

To normalize a set of clonotype counts from a single sample, we first calculated the primer-
pair totals (Ci), where Ci denotes the total count of all clonotypes amplified with primer-pair i, 
where i=1,…,260. We then normalize the 260 counts (Ci) using the batch scaling factors (SFi) 
by dividing by the corresponding scaling factor: 𝐶௜

ᇱ ൌ ሺ𝑆𝐹௜ሻିଵ𝐶௜ ൌ ሺ𝐶•• 𝐶௜•ሻ 𝐶௜⁄  . Similarly, we 
normalize the (Ci) using the (estimated) NB mean scaling factors ሺ𝑚௜ 𝑚•ሻ ⁄  by dividing: 𝐶௜

ᇱᇱ ൌ
ሺ𝑚• 𝑚௜ሻ 𝐶௜⁄  . After these primer-pair totals were normalized, the counts for distinct clonotypes 
sharing the same primer-pair were normalized: if one such clonotype accounts for a proportion 
p of the total count C corresponding to its primer pair, then it will be assigned a normalized 
value equal to the same proportion p of the normalized primer-pair total C’ or C”.  

The same normalization could be used for ST counts if available. That is, divide the observed 
count of the fragments arising from primer pair i by the SFi or 𝑚௜ 𝑚• ⁄ for primer pair i for both 
ST and clonotype counts alike. Since the mean count of ST i will be proportional to 𝑚௜  , 
normalization should preserve the total count of ST, exactly for batch mean normalization, on 
average for NB normalization. As long as the observed clonotype counts exhibit the same 
relative over- and under-representation after amplification as that exhibited by the ST, any 
bias will be reduced by this normalization. 

RESULTS 

Amplification bias due to multiplex PCR is reproducible  

To amplify all possible TCR somatic recombination products, we performed a multiplex PCR 
with 20 different V-specific forward primers and 13 different J-specific reverse primers. Since 
the differences in efficiency of primer pairs can produce significant amplification bias in TCR 
clonotypes, we spiked-in 260 ST in equimolar concentration as internal controls to the 
multiplex PCR reaction in order to measure and control bias (Figure 1A). We hypothesized 
that the estimated mean counts of the 260 ST would scale proportionally across samples and 
experiments. To test this, we measured the distribution and variation of ST counts across 20 
ST-only samples in the absence of genomic DNA (Figure 1B). Within each sample, ST counts 
were converted to relative frequencies to reduce the effect of random sample-to-sample 
variation on the comparisons. For a given ST, deviation of the median relative frequency 
across all samples from 1/260 is a measure of the PCR amplification bias for the 
corresponding primer pair, while the spread of relative frequencies is an indication of the 
random sample-to-sample variation. We observed that the ST-to-ST variation was much larger 
than the sample-to-sample variation within an individual ST (~20-fold difference in respective 
median IQRs). These differences indicate that the observed differences in ST counts are 
primarily caused by amplification bias of different primer pairs. The ln (1/260) line indicates 
the (log) expected ST relative frequency in the absence of amplification bias. To demonstrate 
that the above observations apply in the presence of TCR clonotypes, we obtained ST counts 
from samples with genomic DNA extracted from P14 and OT-1 TCR transgenic mice where 
CD8 T cells primarily recognize OVA257-264 when presented by the MHC I molecule. A similar 
relationship was found between ST relative frequencies in the presence of TCR clonotypes 
across samples, though the sample-to-sample variation is noticeably larger (Supplementary 
Figure 3). 

A negative binomial model fits the data 

The fit of count data on 260 ST from each of 20 ST-only samples to the negative binomial 
(NB) with ST-specific means and a common dispersion parameter d can be informally 
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assessed by examining an empirical variance (v) vs mean (m) plot with the line v = m + dm2 
displayed, all with log-log scales. 

At the high end, we expect an approximate linear relationship between log mean and log 
variance for the ST counts, with a slope of about 2, since log v  log d + 2log m for large m. In 
Figure 2, we took d=0.125, as this was the median value of the dispersion estimates found 
by fitting separate NB distributions to the 260 sets of 20 ST counts.  

The fact that the ST counts fit NB distributions with approximately similar overdispersion 
parameters reassures us the variation we are seeing is in some sense natural and that the 
system is in control(24).  

Scaling factors are relatively stable across experiments  

We fit the NB model to three different sets of ST-only observations at different equimolar 
concentrations, coming from two different batches: (1) a set of 20 samples from one batch, (2) 
two sets of 10 samples from another batch. To demonstrate that scaling factors were relatively 
stable across ST-only samples, we compared the sets of 260 (𝑚ෝ௜/𝑚•ሻ values based on 20 ST-
only samples, to those based on the sets of 10 ST-only samples. We observed the 
(𝑚ෝ௜/𝑚•ሻ values to be highly correlated on a log-log scale (Pearson r = 0.84 and 0.97, p-value 
< 2×10-16 for both comparisons) (Figure 3A-B), indicating that scaling factors are relatively 
stable across experiments.  

We then computed estimates of the (mi) by pooling data across these sets, adjusting for the 
concentration differences, calling the results the combined estimates. Pooling also deals with 
errors introduced to the ST-only counts by processing samples in different batches along with 
different samples. The combined estimates of the (mi) are therefore used for normalization 
below (Supplementary Appendix 1).  

Normalization considerably reduces amplification bias 

We normalized the 20 ST-only measurements with the combined estimates of the (mi). The 
spread of the ST counts for 20 samples was considerably reduced after normalization (Figure 
4A). A similar comparison of ST counts for 20 samples, in the presence of genomic DNA 
derived from mesothelioma tumors, revealed that the reduction of ST counts was present, 
although less pronounced (Supplementary Figure 4). To validate the normalization 
procedure further, we assessed the observed ratio of monoclonal counts before and after 
normalization utilizing the 50:50 mixture of P14 and OT-1 TCR transgenic monoclonal DNA. 
After normalization, the differences between the transgenic TCR counts were substantially 
reduced for all samples, as represented by the smaller deviations of the proportion of the 
dominant clonotype from ½ following normalization (Figure 4 B). 

Amplification bias reduction benefits from the dependence of primer pairs 

A question from data presented in Figures 4A and 4B that arose had to do with determining 
how great a reduction in the spread of the 260 ST counts would be possible, given the 
variation, even in the absence of amplification bias. A theoretical analysis is presented in 
Supplementary Appendix 2 under the assumption that counts from equimolar concentrations 
of the 260 ST are independent NB distributions with the same mean and dispersion 
parameters gives a lower bound. Seeing that counts from the 20 ST-only samples were well 
approximated by NB distributions with the same dispersion parameters (albeit with quite 
different means), our conclusion was that the different ST counts were likely not independent. 
Further, this result supports the normalization scheme, as the dependence aids reduction of 
the amplification bias below the level that would be expected under independence. Since each 
primer pair shares one primer with 32 other primer pairs, it is not surprising that the different 
ST counts are not independent; indeed, patterns of dependence in counts using chi-squared 
statistics are observed (Figure 5). The interactions revealed as patches of red and blue colors 
demonstrate that groups of V primers exhibit positive or negative dependence together with 
groups of J primers, that is, they interact to become over or under-represented in groups.  
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In their experimental setup, Carlson et al., using an ANOVA based approach, concluded that 
primer pairs can be treated independently, and employed primer iteration experiments to find 
the optimal primer mix (14). Based on our normalization approach, however, the non-random, 
non-zero interaction terms revealed by chi-squared statistics substantially complicate 
preparation of an optimal primer mix through primer iteration experiments, and indicate a limit 
on the extent to which amplification bias can be addressed experimentally. We note that 
Carlson et al. also employed a second, computational normalization step, which we believe is 
primarily due to this limit.  

A negative binomial model supports downstream analyses of T cell repertoire dynamics 

With the TCR clonotype counts normalized, we wanted to determine if results from these 
analyses were concordant with results from a commercially available platform (Adaptive 
Biotechnologies) described by Carlson et al (14). To achieve this, we utilized gDNA generated 
from pancreatic ductal adenocarcinoma specimens described in Byrne et al(22) containing 17 
samples previously sequenced by Adaptive Biotechnologies’ platform. Aliquots of samples 
were sequenced and processed using the protocol described above. We utilized in-house 
software (see methods), tcR package, and VDJ tools to compute TCR repertoire metrics such 
as the diversity, clonality, and clonal distribution and refer to this pipeline as Open TCR 
Sequencing Protocol (OTSP). The 17 samples were sequenced in parallel and results were 
evaluated for concordance using Pearson correlation analyses for all combinations of: 1) 
Adaptive Biotech. platform sequences run by OTSP; 2) OTSP sequences run by OTSP; and 
3) Adaptive Biotech. platform sequences run by Adaptive Biotech. Figure 6A and Figure 6B 
show concordance between results of OTSP sequences run by OTSP and Adaptive Biotech. 
sequences run by OTSP for Clonal index (r=0.8) and Shannon diversity index (r=0.8). The 
concordance for other combinations for Clonal Index and Shannon Diversity, as well as 
concordance between results of OTSP sequences run by OTSP and Adaptive Biotech. 
platform sequences run by Adaptive Biotech. for the frequency of hyperexpanded clones are 
shown in Supplementary Figure 5 (A-E). Overall, results from the OTSP pipeline 
demonstrates a strong association with results from the Adaptive Biotech. TCR sequencing 
platform (p<0.001 for all comparisons).  

The descriptions and formulas related to Clonal index, Shannon diversity index and frequency 
of hyperexpanded clones are included in (25), which deploys the NB mean normalization 
methodology described here in a biological context.  

DISCUSSION 

Measuring and monitoring adaptive dynamics in patient TCR repertoires could have a 
significant impact on response and resistance monitoring for patients receiving various forms 
of immunotherapy in the treatment of cancer or auto-immune diseases. To achieve the goal 
of capturing the diversity, quantifying the abundance of T-cell clones and performing 
longitudinal comparisons, TCR sequencing has emerged as an approach to monitor T cell 
responses to therapy and disease progression.  

The OTSP pipeline described herein provides a transparent protocol enabling clonality 
metrics, including evaluating amplification bias specific to each primer pair, and is 
reproducable across samples. Count variability approximates the negative binomial 
distribution that can be exploited using estimated NB means. The NB distribution tells us the 
variation anticipated in ST counts is indicative of a controlled process. 

OTSP pipeline results were compared to data generated from the commercial platform by 
fixing 260 ST-specific scaling factors derived from ST-only measurements (without the 
presence of genomic DNA). We observed a high concordance between bulk clonality metrics 
across the two platforms. This observation indicates that the OTSP pipeline can be integrated 
across batches, samples and platforms, further improving utility of TCR clonality 
measurements, something not generally possible when using commercial platforms as ST-
counts are typically not provided. 
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OTSP is open and freely available; we anticipate this will allow scaling up the number of 
measurements substantially. Since we only use computational normalization, rather than 
addressing differing primer efficiencies at the bench level, the OTSP methodology is also less 
labor-intensive than previous methods. Notably, OTSP avoids the primer iteration experiments 
needed to address amplification bias problems. 

Since PCR amplification bias is repeatable across samples we have demonstrated the 
possibility of conducting analyses without the addition of ST beyond the initial calibration. This 
is achieved by using ST-specific normalization scale factors obtained from independent, ST-
only measurements. The idea of using 260 universal ST-specific scaling factors to address 
amplification bias in mouse models could be explored further, for if deployed this would 
substantially decrease cost of this methodology as ST are costly. An additional advantage 
stems from the fact that ST reduce sequencing depth due to competition between genomic 
DNA and the ST (Supplemental Figure 6). We observed that when gDNA amount was kept 
constant at 600 ng, increasing concentrations of ST led to decreasing detectability of 
clonotypes, indicating a competition between the ST and clonotypes during the process. This 
is especially important as indicated by our results revealing that drop-outs can be frequent, 
even for the most abundant clonotypes (Supplemental Figure 7). For example, when the 
most frequent 0.3% clonotypes from Wild Type spleen tissue were used, we observed that 
only 119 distinct clonotypes were detected in the 5 replicates, with 32 clonotypes detected in 
4 samples, 21 in 3, and 23 in 2, respectively. These drop-outs stem from the stochastic nature 
of the sampling and could be reduced by increasing the read coverage by not using ST. 

AVAILABILITY 

The source code for the analysis is available at 

https://github.com/burcudem/TCRSeqNormalization 

SUPPLEMENTARY DATA 

Supplementary Data are available at NAR online. 
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TABLE AND FIGURES LEGENDS 

 

Figure 1. Pipeline overview and ST proportion distributions. 

(A) Overview of the TCR seq analysis pipeline: A. gDNA extracted from freshly resected 
murine peripheral blood, peritoneal orthotopic mesotheliomas, and spleen tissues. B. 
Equimolar mixture of synthetic TCR templates (ST) were then added, and C. followed by 
addition of forward and reverse sequences of ST (top) and TCRβ (bottom). For ST, universal 
9-bp barcode (grey), unique 16-bp barcode (purple). For TCRβ, V-region (red), VD/DJ-
junctions (grey), D-region (purple), J-region (green). D. Samples amplified with multiplex PCR 
followed by second-stage barcoding PCR. E. Samples were then pooled for sequencing. F. 
ST and TCRβ were then separated using universal barcodes, and G. ST was quantified using 
unique barcodes. H. TCRβ clonotypes were quantified with the MiXCR tool suite. I. Negative 
binomial normalization was used to remove amplification bias. J. Scaling factors were applied 
to counts, and K. then used to normalize counts for diversity analyses. 

 
A 
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(B) Plot showing stability for relative frequencies of ST counts within individual samples, and 
amplification bias based on the reproducibility of the multiplex PCR. Median IQR of ST-to-ST 
variation was ~20-fold greater than the median IQR of experiment-to-experiment relative 
frequencies of ST counts. Target values aim to be at the ln (1/260) line in the absence of 
amplification bias. Data derived from twenty ST-only samples described in the ST-only data 
sets.  
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Figure 2. A negative binomial model fits the data 

Observed mean-variance relationships fit as compared to the negative binomial (NB) model. 
Dots are observed values derived from 260 ST count distributions with a separately fitted 
dispersion parameter. The red line is the relationship predicted by the NB model with fixed d 
(0.125). Data derived from twenty ST-only samples described in the ST-only data sets. 
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Figure 3. Stability of scaling factors 

(A, B) Scatter plots (log-log scales) comparing the sets of 260 (𝑚ෝ௜/𝑚•ሻ values based on 20 
ST-only samples to those based on the two sets of 10 ST-only samples (described in the Data 
Sets section). The (𝑚ෝ௜/𝑚•ሻ values are observed to be highly correlated across different 
batches and samples. (Pearson r = 0.97 and 0.84, p-value < 2×10-16 for both comparisons).  
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Figure 4. Normalization reduces amplification bias.  

(A) NB normalization reduces amplification bias. Variation in ST counts within samples is 
apparent before normalization (red), however, the ST-to-ST differences within each sample 
are reduced to less than two-fold after normalization (cyan). Data derived from twenty ST-only 
samples described in the ST-only data sets. 

(B) Amplification bias of spleen genomic DNA of P14 and OT-1 TCR transgenic mice. To 
further evaluate normalization parameters, a 50:50 mixture of P14 and OT1 TCR transgenic 
monoclonal DNA was utilized to examine differences between transgenic TCR counts (red) 
that were reduced for all samples following normalization (cyan), as observed by the smaller 
deviations from ½ of the proportions of the dominant clonotype. Red color indicates values 
from clone counts before normalization, green color indicates values from normalized clone 
counts. Data derived from 12 50:50 mixture of P14 and OT-1 transgenic mice samples 
described in the Transgenic TCR data sets.  
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Figure 5. Cluster analysis revealing dependence between forward and reverse primers.  

A heatmap of interaction terms between forward and reverse primers reveal widespread and 
reproducible deviations from expected efficiencies under independence. Interaction terms 
were calculated as signed Pearson residuals (O-E)/√E where O is the observed ST count and 
E is the expected ST count under independence, calculated as E = row total x column total / 
grand total. Blue and red colors indicate positive and negative deviation from independence 
between forward and reverse primers respectively, and white indicates no deviation. Data 
derived from twenty ST-only samples described in the ST-only data sets. 
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Figure 6. Concordance analysis of T cell repertoire metrics.  

Concordance analysis comparing commercial and in-house pipelines where samples were 
evaluated based on the results of OTSP sequences run by OTSP and the Adaptive Biotech 
platform sequences run by OTSP for Clonal Index (A) and Shannon Diversity Index (B). 
Pearson r=0.8 for both comparisons. (p<0.001). Data derived from samples described in the 
Byrne et al. data set. 
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Supplementary Table 1 Primer Sequences. 
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Supplementary Figure 1. TCR sequencing pipeline schema 

Depiction of TCR sequencing pipeline constructed from both extant software tools (configured 
for use within the pipeline), and dedicated programs written in-house. Multiple samples are 
processed in parallel, and quality-control checks provide visibility into the pipeline’s operation. 
Computation is performed on the 5000 cores using ExaCloud computing cluster. Steps in the 
pipeline include: A. Verification of file integrity and merging of paired-end reads; B. ST reads 
are then identified, quantified, and removed; C. Clonotypes are then aligned to reference 
segments, clustered, and quantified; D. Clonotype frequencies are then adjusted to account 
for PCR amplification; E. Clonotypes containing frameshifts and stop codons flagged, and 
output converted for use by visualization and analysis software; F. Analytic metrics computed 
(diversity, clonal expansion and other as applicable) using various tools indicated within the 
text.  
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Supplementary Figure 2. Monoclonal amplification check.   

Appropriate amplification and identification of clonal TCR segments was verified using OT1 
and P14 monoclonal samples, where OT1 was amplified by the primer pair (V12-1,2, J2.7), 
and P14 amplified by the primer pair (V13-3, J2-4). One example of each monoclonal sample 
for appropriate amplification is shown. 
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Supplementary Figure 3. ST Count Distribution in presence of DNA.  

ST counts were obtained from samples described in the Transgenic TCR data sets, where 24 
samples of gDNA from P14 and OT1 TCR transgenic mice were processed along with an 
equimolar mixture of ST. OT1 was amplified by the primer pair (V12-1,2, J2.7), and P14 was 
amplified by the primer pair (V13-3, J2-4). As with the ST-only samples, when TCR clonotypes 
were present in the samples along with the ST, the observed variation in the ST counts was 
caused by the amplification biases of the different primer pairs, rather than by sample to 
sample variation. 
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Supplementary Figure 4. Normalization reduces spread in presence of DNA.  

gDNA from 12 murine mesothelioma specimens were amplified along with ST (described in 
the Data Sets section) where the reduction in ST count spread in the presence of DNA before 
(red) and after (cyan) normalization was plotted.  
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Supplementary Figure 5. Concordance analysis of T cell repertoire metrics.  

Concordance analysis comparing commercial and in-house pipelines. gDNA from PDAC 
tumor samples were evaluated based on a commercial platform (Adaptive Biotech.) where 
sequences were compared based on output from Adaptive Biotechnology versus OTSP for 
Clonal index (R=0.9) and Shannon diversity index (R=0.9) (A-B), concordance between the 
Adaptive Biotech platform versus OTSP for Clonal index (R=0.7) and Shannon diversity index 
(R=0.8) (C-D), and concordance between the two pipelines for the frequency of 
hyperexpanded clones (E). p<0.001 for all comparisons with Pearson correlation analysis. 
Data derived from samples described in the Byrne et al. data set. 
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Supplementary Figure 6. Competition between gDNA and ST during TCR sequencing. 

Three replicates of 600 ng of gDNA isolated from peripheral blood leukocytes was added to 
all levels of dilutions (described in the Data Sets section) and for no ST samples for a total of 
21 samples plus three replicates of 600 ng of mouse mesothelioma tumor DNA were added 
to all levels of dilutions and for no ST samples for a total of 21 samples. When the gDNA 
amount was kept constant at 600 ng, the increasing (relative) concentration of ST lead to 
decreasing detectability of clonotypes for both type of tissues, showing the competition 
between DNA and ST occurring during TCR sequencing. 
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Supplementary Figure 7. Reproducibility analysis: Drop-outs are frequent even for the 
top clones. 

The detectability of distinct clones in five replicates for the most frequent 0.3% clonotypes from 
wild type spleen tissue is shown. (Data derived from samples described in the WT spleen data 
set.) Vertical bars indicate the frequency of distinct clones detected in replicates, where the 
number on top of the vertical bars indicates the total number of distinct clones detected in the 
replicates. On the bottom left, the five replicates (samples cf55-cf55) and the number of distinct 
clones detected in each replicate is represented by horizontal bars with set size scale. The 
round dots are black if a particular clone was detected in the corresponding replicate shown 
at the very left. The connected black dots indicate how many and in which replicates distinct 
clones were detected out of five replicates. For example, going from right to left, only 119 
distinct clonotype were detected in all 5 replicates, 32 clonotypes were detected in 4 samples, 
21 in 3 and 23 in 2, respectively. These drop-outs come from the stochastic nature of the 
sampling.  
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