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ABSTRACT T cell receptor (TCR) repertoires can be profiled using next generation
sequencing (NGS) to monitor dynamical changes in response to disease and other
perturbations. Several strategies for profiling TCRs have been recently developed with
different benefits and drawbacks. Genomic DNA-based bulk sequencing, however, remains
the most cost-effective method to profile TCRs. The major disadvantage of this method is the
need for multiplex target amplification with a large set of primer pairs with potentially very
different amplification efficiencies. One approach addressing this problem is by iteratively
adjusting the concentrations of the primers based on their efficiencies, and then
computationally correcting any remaining bias. Yet there are no standard, publicly available
protocols to process and analyze raw sequencing data generated by this method. Here, we
utilize an equimolar primer mixture and propose a single statistical normalization step that
efficiently corrects for amplification bias post sequencing. Using samples analyzed by both
approaches, we show that the concordance between bulk clonality metrics obtained from
using the commercial kits and that developed herein is high. Therefore, we suggest the
method presented here as an inexpensive and non-commercial alternative for measuring and
monitoring adaptive dynamics in TCR clonotype repertoire.

INTRODUCTION

The receptors on the surface of T cells bind to an enormous array of antigens that play a
pivotal role in shaping immune response during health and disease. The T cell receptor (TCR)
is a heterodimer composed of one alpha and one beta chain which are encoded by the TCRa
and TCRp genes, respectively. To recognize an extremely large antigen space, the TCR
genomic loci undergo somatic recombination of variable (V), diversity (D), and joining (J) gene
segments, and generate a diverse repertoire of TCRs. The complementarity determining
region 3 (CDR3) region present at the D segment of the recombined TCRf gene is highly
diverse in TCR beta chains. Therefore, surveying the recombined TCRp gene or transcript as
a proxy for overall TCR repertoire diversity has emerged as a rational approach to study TCR
repertoire dynamics.
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Over the last ten years it became possible to obtain comprehensive profiles of TCR through
an array of next generation sequencing (NGS) based approaches (1-8). These vary based on
the experiment type (bulk or single-cell), sample type (RNA or DNA), library preparation
(multiplex PCR, bead-based enrichment, 5RACE) and sequencing platform, each choice
presenting a different, and fascinatingly interlocked trade-off. Single cell approaches
compared to bulk can be very accurate and unbiased for high frequency clones, but have
lower resolution for low frequency clones (9,10). They are also substantially more expensive
and require intact cells. RNA-based approaches are affected by the variability in TCR RNA
expression levels, but may better reflect diversity when the sample size is limited (8). Genomic
DNA (gDNA)-based approaches require either multiplex PCR or target enrichment during
library preparation which introduces biases (11). A recent comparison of these two
approaches confirmed these issues for both RNA- and DNA-based methods but also found
the methodological variability to be smaller than the biological variability (12). New innovations
are being introduced rapidly for all of these approaches but currently there is no established
gold standard.

Multiplexed PCR-based bulk sequencing approaches using gDNA, however, have become
the standard approach for translational and even clinical applications due to reasonable
sample requirements and moderate costs (13). This is reflected in the fact that all currently
available commercial TCR sequencing products offer this as their major DNA option (Adaptive
Biotechnologies (14), BGI (15), iRepertoire). Multiplex PCR refers to the usage of multiple
forward primers specific for the V segments and multiple reverse primers specific for the J
segments in combination during the initial amplification for target enrichment. Since each
primer pair will have a different efficiency multiplexing will distort the relative abundances of
the VDJ segment combinations (16). Correcting for this amplification bias is a key challenge
for accurate quantification. One approach (14) is using spiked-in oligomers (synthetic
templates) for each primer pair to measure primer efficiencies and to carefully control the
design of the primers and their concentrations accordingly. Assuming that there is no
interaction between the efficiency of primer pairs, amplification bias is reduced by iteratively
calibrating the primer concentrations to find the optimal primer mix, and then removing any
remaining amplification bias computationally using spiked-in oligomer counts.

The proprietary setup described in (14) is currently available for human and murine samples
exclusively through commercial kits. These are difficult and labor-intensive to adapt if requiring
different settings, e.g. a different mammal or application. Furthermore, synthetic templates
when added to all of the samples with the kits can substantially increase preparation and
sequencing costs, as well as decrease coverage for clonotypes.

Here we demonstrate, that using a negative binomial mean normalization strategy, it is
possible to normalize amplification bias within a reasonable error margin without balancing
primer concentrations using synthetic templates. Furthermore, we report that amplification
bias parameters are highly preserved between datasets. This observation indicates that one
can use synthetic template normalization controls for a small subset of samples, which can
then be used to calculate mean scaling factors per batch/experiment, thus substantially
reducing the cost and coverage of TCR repertoire analysis.

MATERIAL AND METHODS
Multiplex primers and design of synthetic TCR templates

Multiplex PCR primers previously described by Faham et al. (US patent 8,628,972 B2), for the
amplification of murine TCRB genomic loci were utilized (Supplementary Table 1: primer
sequences). The 20 VB segment specific primers amplify all the 21 functional V segments,
and the 13 JB specific primers amplify all the 13 functional JB segments. As previously
described by Carlson et al., we designed 260 (20V x 13J) synthetic TCR templates (ST) to
minimize amplification bias due to multiplexing with 20 V3 forward and 13 Jj reverse primers
(14). Briefly, ST are 200 bp long double stranded DNA segments that contain partial V
segment and J segment sequences encompassing a set of internal barcodes for post-
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sequencing identification. The internal barcode region contains a 16 bp barcode specific for
each VJ combination. This specific barcode is further flanked by a 9 bp barcode that is
common for all ST. An equimolar mixture of the 260 ST is added to the genomic DNA samples
during PCR as internal controls.

Amplification and deep sequencing of TCR genomic locus

Genomic DNA from freshly resected mouse peripheral blood, peritoneal orthotopic
mesotheliomas (17), and spleen was isolated using the Qiagen DNeasy Blood and tissue kit.
Utilizing the method described in Robins et al (18), we performed a 2-stage PCR using genomic
DNA for TCRB deep-sequencing library preparation. The 15t stage involved amplifying the
gDNA and the ST using a multiplex PCR with 20 V§ forward and 13 Jj reverse primers using
the Qiagen multiplex PCR kit. The multiplex PCR primers contain a common 5’ overhang,
allowing amplification by a single primer pair in the 2" stage PCR. Using 2.0% of the purified
PCR product from stage 1 as template, a 2™ stage PCR was performed with universal and
indexed lllumina adaptors. Of note, the indexed adaptors contained an 8-base index sequence,
providing each sample with a unique sample barcode. Equal volumes of all samples were
pooled. Each pool concentration, typically containing PCR mixtures from 70 samples, was
measured with a 2200 TapeStation (Agilent), and the concentration determined by real time
PCR using a StepOne Real Time Workstation (ABlI/Thermo) with a commercial library
quantification kit (Kapa Biosystems). Paired-end sequencing was performed with a 2 x 150
protocol using a Midoutput 300 sequencing kit on a NextSeq 500 (lllumina). Target clustering
was ~ 160 million clusters per run. Following the run, base call files were converted to fastq
format and demultiplexed by a separate barcode read using the most current version of
Bcl2Fastq software (lllumina).

TCR data analysis Pipeline

Fastq files were assessed for initial read quality using the FASTQC public tool (19), including
the per-base quality scores. Quality paired-end sequences were combined using the PEAR
(Paired-End reAd mergeR) algorithm (20). Merged sequences were then separated into ST
and non-ST sequences. ST sequences were identified by searching for the common flanking
9-bp internal barcodes allowing a one-nucleotide mismatch or indel. Sequences flagged as
ST via this search were removed from downstream clonotype analyses. The individual ST
sequences were distinguished and quantified by searching for the specific 16-bp barcode
sequences unique to each ST, again allowing a one-nucleotide mismatch or indel
(Supplementary Figure 1). Clonotypes were identified from purified (ST-removed)
sequences utilizing the MiXCR pipeline (21), which is a two-step alignment and assembly
process. First, reads were aligned to reference V, D, and J sequences, using the align module.
Next, the assemble module grouped alignments into distinct clonotypes using a hierarchical
clustering method based on sequence similarity and relative abundance. Finally, the export
module exported alignments as well as assembled clones in tabular format. Raw clonotype
counts were normalized using the NB mean normalization strategy described below.
Normalized clonotype counts were exported in tabular format for use in downstream analysis.
A number of TCR repertoire metrics, including clonality, maximum clonal frequency, and the
Shannon diversity index were calculated. Quality control data was recorded in an overall
summary table, for reference (Supplementary Material 1).

Data Sets

ST-only data sets: Twenty samples of an equimolar mixture of ST were sequenced. Two sets
of ten samples of equimolar mixtures of ST at different concentrations were also sequenced
at a later date. No genomic DNA was present in these samples.

Transgenic TCR data sets: A dilution series was created from spleen genomic DNA of P14
and OT-1 TCR transgenic mice (C57BL/6-Tg(TcraTcrb)1100Mjb/J). Three replicates of 300,
600, 900, and 1200 ng of DNA from P14, OT1, and a 50:50 mixture of P14 and OT1 DNA
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were sequenced along with an equimolar mixture of ST for a total of 12 samples. Appropriate
amplification of the transgenic clones was assessed. (Supplemental Figure 2).

ST dilution series data set: A dilution series was created from ST at six levels as below:

* Stock: 3.2 ng/ul (equimolar mixture of all 260 spikes)

Dil1= 0.1 of stock

Dil2= 0.1 of Dil1

Dil3= 0.01 of Dil1

Dil4= 0.01 of Dil3

Dil5= 0.001 of Dil3

Dilé= 0.001 of Dil5

Three replicates of 600 ng of blood DNA of murine were added to all levels of dilutions and for
no ST samples for a total of 21 samples and three replicates of 600 ng of tumor DNA of murine
were added to all levels of dilutions and for no ST samples for a total of 21 samples.

WT spleen data set. Wild-type mouse spleen genomic DNA were sequenced for a total of five
replicates.

Byrne et al. data set (22): gDNA from 17 murine pancreatic ductal adenocarcinoma specimens
were previously sequenced by a commercially available TCR beta platform. Aliquots of these
gDNA samples were obtained and sequenced along with an equimolar mixture of ST using
the protocol described above.

Mesothelioma data set: Peritoneal mesothelioma tumors derived from the 40L cell line
(17)derived genomic DNA samples derived from 12 syngeneic mice were sequenced along
with equimolar mixture of ST.

Batch mean scaling factors

This method creates a scaling factor for each ST (and therefore for each primer pair) based
on that ST’s counts among all samples, relative to all ST counts within a batch. Given a matrix
(Cij) of ST counts from a batch, where i=1,...,260 labels ST and j=1,...,n labels samples in
the batch, we denote the batch mean of the counts for ST i by C;. = n~! ¥, C;; and the batch
mean of all ST means by C.. = (260)7* ¥; C;. = (260n) "' ¥; ; C;; . The scaling factor (SF) for
ST iin that batch is SF; = C;./C.. .

Negative Binomial means

The above idea of a scale factor is distribution free, but for its use in normalizing counts, would
require a full set of ST in every sample. We explored the use of a ST-specific negative binomial
model to dispense with the use of synthetic templates. Consider the set (Cy, ...., C;) of counts
for single, fixed ST across a batch of n replicate ST-only samples. A plausible model for these
counts is the negative binomial (NB) distribution. We write C ~NB(m, d) for this distribution,
where m>0 is the mean parameter and d>0 is the (over-) dispersion parameter, and refer to
(23) for an explicit formula for the NB probability mass function. For present purposes, S has
expected value E(C) = m and variance var(C) = m + dm?. When d=0, the negative binomial
reduces to the Poisson distribution, for which E(C) = var(C), and thus the use of the term
over-dispersion here is relative to the Poisson. Using the methods of generalized linear models
(23), we can obtain the maximum likelihood estimates (MLE) #iand d of m and d from a
replicate set of ST such as (Cy, ...., Cy). In the notation of the previous paragraph, the MLE
m; = C;,, thatis, the MLE of the ith mean parameter m; of an NB fitted to (C;) is the arithmetic
mean of the ith set of observed counts (assumed independent and identically distributed
across j=1,...,n with common mean m; and common dispersion parameter. Where no
confusion will result in what follows, we will not distinguish the parameters (m;) from their
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(maximum likelihood) estimates (71;). These ST or primer-pair-specific means estimated from
ST-only data can be used as scaling factors for normalization, even when there are no ST
present in samples. Consistent with the notation in the previous paragraph, we write m, =
(260)71Y; m; for the average of the 260 (estimated) mean parameters. The 260 NB mean
scaling factors are (m;/m,) .

Normalization

To normalize a set of clonotype counts from a single sample, we first calculated the primer-
pair totals (C;), where C; denotes the total count of all clonotypes amplified with primer-pair /,
where i=1,...,260. We then normalize the 260 counts (C;) using the batch scaling factors (SF)
by dividing by the corresponding scaling factor: ¢/ = (SF;)~*C; = (C../C;.) C; . Similarly, we
normalize the (C;) using the (estimated) NB mean scaling factors (m;/m.) by dividing: C;’ =
(m./m;) C; . After these primer-pair totals were normalized, the counts for distinct clonotypes
sharing the same primer-pair were normalized: if one such clonotype accounts for a proportion
p of the total count C corresponding to its primer pair, then it will be assigned a normalized
value equal to the same proportion p of the normalized primer-pair total C’ or C”.

The same normalization could be used for ST counts if available. That is, divide the observed
count of the fragments arising from primer pair i by the SF;or m;/m, for primer pair i for both
ST and clonotype counts alike. Since the mean count of ST J will be proportional tom; ,
normalization should preserve the total count of ST, exactly for batch mean normalization, on
average for NB normalization. As long as the observed clonotype counts exhibit the same
relative over- and under-representation after amplification as that exhibited by the ST, any
bias will be reduced by this normalization.

RESULTS
Ampilification bias due to multiplex PCR is reproducible

To amplify all possible TCR somatic recombination products, we performed a multiplex PCR
with 20 different V-specific forward primers and 13 different J-specific reverse primers. Since
the differences in efficiency of primer pairs can produce significant amplification bias in TCR
clonotypes, we spiked-in 260 ST in equimolar concentration as internal controls to the
multiplex PCR reaction in order to measure and control bias (Figure 1A). We hypothesized
that the estimated mean counts of the 260 ST would scale proportionally across samples and
experiments. To test this, we measured the distribution and variation of ST counts across 20
ST-only samples in the absence of genomic DNA (Figure 1B). Within each sample, ST counts
were converted to relative frequencies to reduce the effect of random sample-to-sample
variation on the comparisons. For a given ST, deviation of the median relative frequency
across all samples from 1/260 is a measure of the PCR amplification bias for the
corresponding primer pair, while the spread of relative frequencies is an indication of the
random sample-to-sample variation. We observed that the ST-to-ST variation was much larger
than the sample-to-sample variation within an individual ST (~20-fold difference in respective
median IQRs). These differences indicate that the observed differences in ST counts are
primarily caused by amplification bias of different primer pairs. The In (1/260) line indicates
the (log) expected ST relative frequency in the absence of amplification bias. To demonstrate
that the above observations apply in the presence of TCR clonotypes, we obtained ST counts
from samples with genomic DNA extracted from P14 and OT-1 TCR transgenic mice where
CD8 T cells primarily recognize OVA2s7-264 When presented by the MHC | molecule. A similar
relationship was found between ST relative frequencies in the presence of TCR clonotypes
across samples, though the sample-to-sample variation is noticeably larger (Supplementary
Figure 3).

A negative binomial model fits the data

The fit of count data on 260 ST from each of 20 ST-only samples to the negative binomial
(NB) with ST-specific means and a common dispersion parameter d can be informally
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assessed by examining an empirical variance (v) vs mean (m) plot with the line v = m + dm?
displayed, all with log-log scales.

At the high end, we expect an approximate linear relationship between log mean and log
variance for the ST counts, with a slope of about 2, since log v ~log d + 2log m for large m. In
Figure 2, we took d=0.125, as this was the median value of the dispersion estimates found
by fitting separate NB distributions to the 260 sets of 20 ST counts.

The fact that the ST counts fit NB distributions with approximately similar overdispersion
parameters reassures us the variation we are seeing is in some sense natural and that the
system is in control(24).

Scaling factors are relatively stable across experiments

We fit the NB model to three different sets of ST-only observations at different equimolar
concentrations, coming from two different batches: (1) a set of 20 samples from one batch, (2)
two sets of 10 samples from another batch. To demonstrate that scaling factors were relatively
stable across ST-only samples, we compared the sets of 260 (7; /m,) values based on 20 ST-
only samples, to those based on the sets of 10 ST-only samples. We observed the
(m;/m,) values to be highly correlated on a log-log scale (Pearson r = 0.84 and 0.97, p-value
< 2x107'8 for both comparisons) (Figure 3A-B), indicating that scaling factors are relatively
stable across experiments.

We then computed estimates of the (m;) by pooling data across these sets, adjusting for the
concentration differences, calling the results the combined estimates. Pooling also deals with
errors introduced to the ST-only counts by processing samples in different batches along with
different samples. The combined estimates of the (m;) are therefore used for normalization
below (Supplementary Appendix 1).

Normalization considerably reduces amplification bias

We normalized the 20 ST-only measurements with the combined estimates of the (m;). The
spread of the ST counts for 20 samples was considerably reduced after normalization (Figure
4A). A similar comparison of ST counts for 20 samples, in the presence of genomic DNA
derived from mesothelioma tumors, revealed that the reduction of ST counts was present,
although less pronounced (Supplementary Figure 4). To validate the normalization
procedure further, we assessed the observed ratio of monoclonal counts before and after
normalization utilizing the 50:50 mixture of P14 and OT-1 TCR transgenic monoclonal DNA.
After normalization, the differences between the transgenic TCR counts were substantially
reduced for all samples, as represented by the smaller deviations of the proportion of the
dominant clonotype from %2 following normalization (Figure 4 B).

Ampilification bias reduction benefits from the dependence of primer pairs

A question from data presented in Figures 4A and 4B that arose had to do with determining
how great a reduction in the spread of the 260 ST counts would be possible, given the
variation, even in the absence of amplification bias. A theoretical analysis is presented in
Supplementary Appendix 2 under the assumption that counts from equimolar concentrations
of the 260 ST are independent NB distributions with the same mean and dispersion
parameters gives a lower bound. Seeing that counts from the 20 ST-only samples were well
approximated by NB distributions with the same dispersion parameters (albeit with quite
different means), our conclusion was that the different ST counts were likely not independent.
Further, this result supports the normalization scheme, as the dependence aids reduction of
the amplification bias below the level that would be expected under independence. Since each
primer pair shares one primer with 32 other primer pairs, it is not surprising that the different
ST counts are not independent; indeed, patterns of dependence in counts using chi-squared
statistics are observed (Figure 5). The interactions revealed as patches of red and blue colors
demonstrate that groups of V primers exhibit positive or negative dependence together with
groups of J primers, that is, they interact to become over or under-represented in groups.
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In their experimental setup, Carlson et al., using an ANOVA based approach, concluded that
primer pairs can be treated independently, and employed primer iteration experiments to find
the optimal primer mix (14). Based on our normalization approach, however, the non-random,
non-zero interaction terms revealed by chi-squared statistics substantially complicate
preparation of an optimal primer mix through primer iteration experiments, and indicate a limit
on the extent to which amplification bias can be addressed experimentally. We note that
Carlson et al. also employed a second, computational normalization step, which we believe is
primarily due to this limit.

A negative binomial model supports downstream analyses of T cell repertoire dynamics

With the TCR clonotype counts normalized, we wanted to determine if results from these
analyses were concordant with results from a commercially available platform (Adaptive
Biotechnologies) described by Carlson et al (14). To achieve this, we utilized gDNA generated
from pancreatic ductal adenocarcinoma specimens described in Byrne et al(22) containing 17
samples previously sequenced by Adaptive Biotechnologies’ platform. Aliquots of samples
were sequenced and processed using the protocol described above. We utilized in-house
software (see methods), tcR package, and VDJ tools to compute TCR repertoire metrics such
as the diversity, clonality, and clonal distribution and refer to this pipeline as Open TCR
Sequencing Protocol (OTSP). The 17 samples were sequenced in parallel and results were
evaluated for concordance using Pearson correlation analyses for all combinations of: 1)
Adaptive Biotech. platform sequences run by OTSP; 2) OTSP sequences run by OTSP; and
3) Adaptive Biotech. platform sequences run by Adaptive Biotech. Figure 6A and Figure 6B
show concordance between results of OTSP sequences run by OTSP and Adaptive Biotech.
sequences run by OTSP for Clonal index (r=0.8) and Shannon diversity index (r=0.8). The
concordance for other combinations for Clonal Index and Shannon Diversity, as well as
concordance between results of OTSP sequences run by OTSP and Adaptive Biotech.
platform sequences run by Adaptive Biotech. for the frequency of hyperexpanded clones are
shown in Supplementary Figure 5 (A-E). Overall, results from the OTSP pipeline
demonstrates a strong association with results from the Adaptive Biotech. TCR sequencing
platform (p<0.001 for all comparisons).

The descriptions and formulas related to Clonal index, Shannon diversity index and frequency
of hyperexpanded clones are included in (25), which deploys the NB mean normalization
methodology described here in a biological context.

DISCUSSION

Measuring and monitoring adaptive dynamics in patient TCR repertoires could have a
significant impact on response and resistance monitoring for patients receiving various forms
of immunotherapy in the treatment of cancer or auto-immune diseases. To achieve the goal
of capturing the diversity, quantifying the abundance of T-cell clones and performing
longitudinal comparisons, TCR sequencing has emerged as an approach to monitor T cell
responses to therapy and disease progression.

The OTSP pipeline described herein provides a transparent protocol enabling clonality
metrics, including evaluating amplification bias specific to each primer pair, and is
reproducable across samples. Count variability approximates the negative binomial
distribution that can be exploited using estimated NB means. The NB distribution tells us the
variation anticipated in ST counts is indicative of a controlled process.

OTSP pipeline results were compared to data generated from the commercial platform by
fixing 260 ST-specific scaling factors derived from ST-only measurements (without the
presence of genomic DNA). We observed a high concordance between bulk clonality metrics
across the two platforms. This observation indicates that the OTSP pipeline can be integrated
across batches, samples and platforms, further improving utility of TCR clonality
measurements, something not generally possible when using commercial platforms as ST-
counts are typically not provided.
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OTSP is open and freely available; we anticipate this will allow scaling up the number of
measurements substantially. Since we only use computational normalization, rather than
addressing differing primer efficiencies at the bench level, the OTSP methodology is also less
labor-intensive than previous methods. Notably, OTSP avoids the primer iteration experiments
needed to address amplification bias problems.

Since PCR amplification bias is repeatable across samples we have demonstrated the
possibility of conducting analyses without the addition of ST beyond the initial calibration. This
is achieved by using ST-specific normalization scale factors obtained from independent, ST-
only measurements. The idea of using 260 universal ST-specific scaling factors to address
amplification bias in mouse models could be explored further, for if deployed this would
substantially decrease cost of this methodology as ST are costly. An additional advantage
stems from the fact that ST reduce sequencing depth due to competition between genomic
DNA and the ST (Supplemental Figure 6). We observed that when gDNA amount was kept
constant at 600 ng, increasing concentrations of ST led to decreasing detectability of
clonotypes, indicating a competition between the ST and clonotypes during the process. This
is especially important as indicated by our results revealing that drop-outs can be frequent,
even for the most abundant clonotypes (Supplemental Figure 7). For example, when the
most frequent 0.3% clonotypes from Wild Type spleen tissue were used, we observed that
only 119 distinct clonotypes were detected in the 5 replicates, with 32 clonotypes detected in
4 samples, 21in 3, and 23 in 2, respectively. These drop-outs stem from the stochastic nature
of the sampling and could be reduced by increasing the read coverage by not using ST.

AVAILABILITY

The source code for the analysis is available at

https://github.com/burcudem/TCRSeqNormalization
SUPPLEMENTARY DATA
Supplementary Data are available at NAR online.
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Figure 1. Pipeline overview and ST proportion distributions.

(A) Overview of the TCRp seq analysis pipeline: A. gDNA extracted from freshly resected
murine peripheral blood, peritoneal orthotopic mesotheliomas, and spleen tissues. B.
Equimolar mixture of synthetic TCR templates (ST) were then added, and C. followed by
addition of forward and reverse sequences of ST (top) and TCRp (bottom). For ST, universal
9-bp barcode (grey), unique 16-bp barcode (purple). For TCRpB, V-region (red), VD/DJ-
junctions (grey), D-region (purple), J-region (green). D. Samples amplified with multiplex PCR
followed by second-stage barcoding PCR. E. Samples were then pooled for sequencing. F.
ST and TCRp were then separated using universal barcodes, and G. ST was quantified using
unique barcodes. H. TCR[ clonotypes were quantified with the MiXCR tool suite. I. Negative
binomial normalization was used to remove amplification bias. J. Scaling factors were applied
to counts, and K. then used to normalize counts for diversity analyses.
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(B) Plot showing stability for relative frequencies of ST counts within individual samples, and
amplification bias based on the reproducibility of the multiplex PCR. Median IQR of ST-to-ST
variation was ~20-fold greater than the median IQR of experiment-to-experiment relative
frequencies of ST counts. Target values aim to be at the In (1/260) line in the absence of

amplification bias. Data derived from twenty ST-only samples described in the ST-only data
sets.
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Figure 2. A negative binomial model fits the data

Observed mean-variance relationships fit as compared to the negative binomial (NB) model.
Dots are observed values derived from 260 ST count distributions with a separately fitted
dispersion parameter. The red line is the relationship predicted by the NB model with fixed d
(0.125). Data derived from twenty ST-only samples described in the ST-only data sets.
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Figure 3. Stability of scaling factors

(A, B) Scatter plots (log-log scales) comparing the sets of 260 (7i;/m,) values based on 20
ST-only samples to those based on the two sets of 10 ST-only samples (described in the Data
Sets section). The (m;/m,) values are observed to be highly correlated across different
batches and samples. (Pearson r = 0.97 and 0.84, p-value < 2x10'® for both comparisons).
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A Raw and Normalized ST Count Distributions B Raw vs Normalized 50:50 Monoclonal
P14 and OT1 Samples

N
.

M . Count

B3 Raw
B3 Norm

In(Count)

abs((A / A+B) - 0.5)
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cloneCount nb.clone.count

Sample

Figure 4. Normalization reduces amplification bias.

(A) NB normalization reduces amplification bias. Variation in ST counts within samples is
apparent before normalization (red), however, the ST-to-ST differences within each sample
are reduced to less than two-fold after normalization (cyan). Data derived from twenty ST-only
samples described in the ST-only data sets.

(B) Amplification bias of spleen genomic DNA of P14 and OT-1 TCR transgenic mice. To
further evaluate normalization parameters, a 50:50 mixture of P14 and OT1 TCR transgenic
monoclonal DNA was utilized to examine differences between transgenic TCR counts (red)
that were reduced for all samples following normalization (cyan), as observed by the smaller
deviations from %z of the proportions of the dominant clonotype. Red color indicates values
from clone counts before normalization, green color indicates values from normalized clone
counts. Data derived from 12 50:50 mixture of P14 and OT-1 transgenic mice samples
described in the Transgenic TCR data sets.
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Figure 5. Cluster analysis revealing dependence between forward and reverse primers.

A heatmap of interaction terms between forward and reverse primers reveal widespread and
reproducible deviations from expected efficiencies under independence. Interaction terms
were calculated as signed Pearson residuals (O-E)/NE where O is the observed ST count and
E is the expected ST count under independence, calculated as E = row total x column total /
grand total. Blue and red colors indicate positive and negative deviation from independence
between forward and reverse primers respectively, and white indicates no deviation. Data
derived from twenty ST-only samples described in the ST-only data sets.
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Figure 6. Concordance analysis of T cell repertoire metrics.

Concordance analysis comparing commercial and in-house pipelines where samples were
evaluated based on the results of OTSP sequences run by OTSP and the Adaptive Biotech
platform sequences run by OTSP for Clonal Index (A) and Shannon Diversity Index (B).
Pearson r=0.8 for both comparisons. (p<0.001). Data derived from samples described in the
Byrne et al. data set.
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A
\V segment 5'to 3'
V1 CAAAGAGGTCAAATCTCTTCCCG
V2 CTTATGGACAATCAGACTGCCTCA
V3 GTCATGGAGAAGTCTAAACTGTTTAAGG
V4 GTAAACGAAACAGTTCCAAGGCG
V5 GGTGCCCAGTCGTTTTATACCTGAAT
\V 12-1, V 12-2 |[CCCAGCAGATTCTCAGTCCAACAGT
\V 13-2 IAGATATCCCTGATGGATACAAGGC
\V 13-3 IAGATATCCCTGATGGGTACAAGGC
\V 13-1 IAGATGTCCCTGATGGGTACAAGGC
\V 14 GATAATTCACAGTTGCCCTCGGAT
\V 15 GATGGTGGGGCTTTCAAGGATC
\V 16 CAAGCTCCTATAGATGATTCAGGG
v 17 CTATGATAAGATTTTGAACAGGGAAGC
V19 GATCTACTATTCAATAACTGAAAACGATCTTC
\V 20 TAGCACTTTCTACTGTGAACTCAGCA
\V 23 CTTGATCAAATAGACATGGTCAAGG
\V 24 IAGAGATTCTCAGCTAAGTGTTCCTCG
\V 26 GTTCTTCAGCAAATAGACATGACTG
\V 29 IAGCGAAGGAGACATCCCTAAAGGAT
\V 30 CGAGAGTGGATTCACCAAGGACAAG
B
J segment  |5'to 3'
J1-1 IACTGTGAGTCTGGTTCCTTTACC
J1-2 IAAGGCCTGGTCCCTGAGCCGAAG
J1-3 CTTCCTTCTCCAAAATAGAGC
J1-4 GACAGCTTGGTTCCATGACCG
J1-5 GAGTCCCCTCTCCAAAAAGCG
J1-6 TCACAGTGAGCCGGGTGCCTGC
J1-7 IATACCTAAGTTCCTTTCCAAGACC
J2-1 GTGAGTCGTGTTCCTGGTCCGAAG
J2-2 CCAGCACTGTCAGCTTTGAGC
J2-3 GTTCCTGAGCCAAAATACAGCG
J2-4 GTGCCCGCACCAAAGTACAAG
J2-5 GTGCCTGGCCCAAAGTACTGG
J2-7 CTAAAACCGTGAGCCTGGTGC

Supplementary Table 1 Primer Sequences.
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Supplementary Figure 1. TCR sequencing pipeline schema

Depiction of TCR sequencing pipeline constructed from both extant software tools (configured
for use within the pipeline), and dedicated programs written in-house. Multiple samples are
processed in parallel, and quality-control checks provide visibility into the pipeline’s operation.
Computation is performed on the 5000 cores using ExaCloud computing cluster. Steps in the
pipeline include: A. Verification of file integrity and merging of paired-end reads; B. ST reads
are then identified, quantified, and removed; C. Clonotypes are then aligned to reference
segments, clustered, and quantified; D. Clonotype frequencies are then adjusted to account
for PCR amplification; E. Clonotypes containing frameshifts and stop codons flagged, and
output converted for use by visualization and analysis software; F. Analytic metrics computed
(diversity, clonal expansion and other as applicable) using various tools indicated within the
text.
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Supplementary Figure 2. Monoclonal amplification check.

Appropriate amplification and identification of clonal TCR segments was verified using OT1
and P14 monoclonal samples, where OT1 was amplified by the primer pair (V12-1,2, J2.7),
and P14 amplified by the primer pair (V13-3, J2-4). One example of each monoclonal sample
for appropriate amplification is shown.

20


https://doi.org/10.1101/2022.03.30.486449
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486449; this version posted April 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Distribution of ST Frequency Among P14 and OT1 Monoclonal Samples

In(ST Frequency)

ST

Supplementary Figure 3. ST Count Distribution in presence of DNA.

ST counts were obtained from samples described in the Transgenic TCR data sets, where 24
samples of gDNA from P14 and OT1 TCR transgenic mice were processed along with an
equimolar mixture of ST. OT1 was amplified by the primer pair (V12-1,2, J2.7), and P14 was
amplified by the primer pair (V13-3, J2-4). As with the ST-only samples, when TCR clonotypes
were present in the samples along with the ST, the observed variation in the ST counts was
caused by the amplification biases of the different primer pairs, rather than by sample to

sample variation.
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Raw and Normalized ST Count Distributions

i

Supplementary Figure 4. Normalization reduces spread in presence of DNA.
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gDNA from 12 murine mesothelioma specimens were amplified along with ST (described in
the Data Sets section) where the reduction in ST count spread in the presence of DNA before
(red) and after (cyan) normalization was plotted.
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Supplementary Figure 5. Concordance analysis of T cell repertoire metrics.

Concordance analysis comparing commercial and in-house pipelines. gDNA from PDAC
tumor samples were evaluated based on a commercial platform (Adaptive Biotech.) where
sequences were compared based on output from Adaptive Biotechnology versus OTSP for
Clonal index (R=0.9) and Shannon diversity index (R=0.9) (A-B), concordance between the
Adaptive Biotech platform versus OTSP for Clonal index (R=0.7) and Shannon diversity index
(R=0.8) (C-D), and concordance between the two pipelines for the frequency of
hyperexpanded clones (E). p<0.001 for all comparisons with Pearson correlation analysis.
Data derived from samples described in the Byrne et al. data set.
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Supplementary Figure 6. Competition between gDNA and ST during TCR sequencing.

Three replicates of 600 ng of gDNA isolated from peripheral blood leukocytes was added to
all levels of dilutions (described in the Data Sets section) and for no ST samples for a total of
21 samples plus three replicates of 600 ng of mouse mesothelioma tumor DNA were added
to all levels of dilutions and for no ST samples for a total of 21 samples. When the gDNA
amount was kept constant at 600 ng, the increasing (relative) concentration of ST lead to
decreasing detectability of clonotypes for both type of tissues, showing the competition
between DNA and ST occurring during TCR sequencing.
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Supplementary Figure 7. Reproducibility analysis: Drop-outs are frequent even for the
top clones.

The detectability of distinct clones in five replicates for the most frequent 0.3% clonotypes from
wild type spleen tissue is shown. (Data derived from samples described in the WT spleen data
set.) Vertical bars indicate the frequency of distinct clones detected in replicates, where the
number on top of the vertical bars indicates the total number of distinct clones detected in the
replicates. On the bottom left, the five replicates (samples cf55-cf55) and the number of distinct
clones detected in each replicate is represented by horizontal bars with set size scale. The
round dots are black if a particular clone was detected in the corresponding replicate shown
at the very left. The connected black dots indicate how many and in which replicates distinct
clones were detected out of five replicates. For example, going from right to left, only 119
distinct clonotype were detected in all 5 replicates, 32 clonotypes were detected in 4 samples,
21 in 3 and 23 in 2, respectively. These drop-outs come from the stochastic nature of the
sampling.
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