

Selective IL13Ra2-Targeted Functionality of IL13-Ligand CARs is Enhanced by Inclusion of 4-1BB Co-Stimulation

Authors: Renate Starr¹, Xin Yang¹, Brenda Aguilar¹, Diana Gumber², Stephanie Huard², Dongrui Wang¹, Wen-Chung Chang¹, Alfonso Brito¹, Vivian Chiu¹, Julie R. Ostberg¹, Benham Badie⁴, Stephen J. Forman¹, Darya Alizadeh¹, Leo D. Wang^{2,3,*}, and Christine E. Brown^{1,*}

¹Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA.

²Department of Immuno-oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA.

³Department of Pediatrics, City of Hope National Medical Center, Duarte, CA.

⁴Department of Neurosurgery, City of Hope National Medical Center, Duarte, CA.

⁵Department of Developmental and Stem Cell Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA.

*Co-senior authors.

Running Title: Improved Function of IL13-based CARs

Keywords: Chimeric antigen receptor, glioblastoma, costimulatory domains, IL13Ra2, T cell

Financial Support: This work was supported in part by Mustang Bio., Inc., R01-CA236500 (to D. Alizadeh, C.E. Brown), K08-CA201591 (to L. Wang), CA234923 (to D. Wang), California Institute for Regenerative Medicine (CIRM) CLIN2-10248 (to D. Alizadeh, C.E. Brown), CIRM CLIN2-12153 (to L. Wang), CIRM EDUC4-12772 (to D. Gumber), Pediatric Cancer Research Foundation (to L. Wang), and Cancer Center Support Grant P30 CA33572.

Corresponding Author: Dr. Christine E. Brown, Department of Hematology/HCT, TCTRL, City of Hope, Duarte, CA 91010. Phone: 626-256-4673, ext. 83977; Fax: 626-301-8978; E-mail: cbrown@coh.org

Conflict of Interest: Patents associated with IL13Ra2-CAR T have been licensed by Mustang Bio., Inc., for which S.J. Forman and C.E. Brown receive royalty payments.

Word count: 4638 (Introduction through Acknowledgements)

Figures: 7

Tables: 0

ABSTRACT

Chimeric antigen receptor (CAR) T cell immunotherapy is emerging as a powerful strategy for cancer therapy; however, an important safety consideration is the potential for off-tumor recognition of normal tissue. This is particularly important as ligand-based CARs are optimized for clinical translation. Our group has developed and clinically translated an IL13(E12Y) ligand-based CAR targeting the cancer antigen IL13R α 2 for treatment of glioblastoma (GBM). There remains limited understanding of how IL13-ligand CAR design impacts the activity and selectivity for the intended tumor-associated target IL13R α 2 versus the more ubiquitous unintended target IL13R α 1. In this study, we functionally compared IL13(E12Y)-CARs incorporating different intracellular signaling domains, including first-generation CD3 ζ -containing CARs (IL13 ζ), second-generation 4-1BB- (CD137) or CD28-containing CARs (IL13-BB ζ or IL13-28 ζ), and third-generation CARs containing both 4-1BB and CD28 (IL13-28BB ζ). *In vitro* co-culture assays at high tumor burden establish that 2nd generation IL13-BB ζ or IL13-28 ζ outperform first-generation IL13 ζ and 3rd generation IL13-28BB ζ CAR designs, with IL13-BB ζ providing superior CAR proliferation and *in vivo* anti-tumor potency in human xenograft mouse models. IL13-28 ζ displayed a lower threshold for antigen recognition, resulting in higher off-target IL13R α 1 reactivity both *in vitro* and *in vivo*. Syngeneic mouse models of GBM also demonstrate safety and anti-tumor potency of murine IL13-BB ζ CAR T cells delivered systemically after lymphodepletion. These findings support the use of IL13-BB ζ CARs for greater selective recognition of IL13R α 2 over IL13R α 1, higher proliferative potential, and superior anti-tumor responsiveness. This study exemplifies the potential of modulating factors outside the antigen targeting domain of a CAR to improve selective tumor recognition.

INTRODUCTION

Chimeric antigen receptor (CAR) T cell therapy has achieved striking efficacy in the treatment of relapsed and refractory CD19⁺ B cell malignancies (1,2), and there is tremendous interest in extending these gains into other tumor types, solid tumors in particular. An evolving area of study is the impact of CAR design, e.g., affinity optimization, spacer selection, or choice of intracellular signaling domain, on differential target recognition. A better understanding of these principles will permit the design of CARs with superior specificity and diminished off-target toxicity, as well as improved expansion, persistence, and anti-tumor potency.

Our group has developed CAR T cells that recognize the high-affinity interleukin-13 receptor $\alpha 2$ (IL13R $\alpha 2$). IL13R $\alpha 2$ is expressed on both adult and pediatric brain tumors, including high grade glioma, ependymoma, atypical teratoid/rhabdoid tumor, and brainstem glioma (3-5). Importantly, IL13R $\alpha 2$ is not expressed on normal brain tissue (3-5). Our CAR designs incorporate IL13, the natural ligand for IL13R $\alpha 2$, as the antigen-binding domain, with an E12Y engineered mutation that improves selectivity of the CAR for IL13R $\alpha 2$ over IL13R $\alpha 1$ (6-8), which is expressed more frequently on normal tissues. Additionally, based on preclinical and clinical studies, we have incorporated numerous other construct modifications to optimize clinical and biological activity. These include mutations in the hinge and spacer domains that reduce interactions with Fc gamma receptors (Fc γ Rs) (9), as well changes in the cytoplasmic endodomain from a 1st-generation CD3 ζ -CAR (IL13- ζ ; containing only ITAM motifs) to a 2nd-generation 4-1BB-containing CAR (IL13-BB ζ) (6,10-12). Finally, we have also evaluated route of delivery as an important contextual modification that greatly improves CAR T cell efficacy (6). Taken together, this body of work shows that 2nd generation IL13-BB ζ CAR T cells are superior to 1st generation CAR T

cells in controlling GBM xenotransplants in mice (6), and that intraventricular delivery of IL13-BB ζ CAR T cells provides improved control of multifocal disease as compared to intratumoral or intravenous (IV) delivery (6). These studies provide the foundation for several phase I clinical trials for refractory or recurrent brain tumors (NCT02208362, NCT03389230, NCT04003649, NCT04214392, NCT04510051), in which 2nd generation 4-1BB-containing CAR T cells are delivered intracranially to patients.

Expanding on this work, herein we investigate the molecular underpinnings of important clinical observations of the IL13-BB ζ CAR constructs and identified further contextual modifications that improve IL13R α 2-CAR function *in vivo*. Specifically, we describe important functional differences between 1st, 2nd, and 3rd generation IL13R α 2-targeted CAR constructs, identifying 2nd generation CARs as superior to both 1st and 3rd generation constructs *in vitro* and *in vivo*. We show that IL13-28 ζ CAR T cells are more likely than IL13-BB ζ CAR T cells to cause off-target toxicity through IL13R α 1 recognition, and that IL13-BB ζ CAR T cells are more effective than IL13-28 ζ CAR T cells at the low effector-to-target (E:T) ratios reflective of the *in vivo* setting. We use protein-focused techniques to compare signaling upon antigen stimulation between these 2nd generation CAR constructs and find that IL13-BB ζ CAR T cells activate the noncanonical NF κ B pathway more effectively than IL13-28 ζ CAR T cells, particularly in the setting of high antigen concentration. Finally, we show that immunocompetent syngeneic mice treated with systemic administration of IL13-BB ζ CAR T cells after lymphodepleting irradiation exhibit no evidence of off-tumor toxicity and mediate potent antitumor activity in murine orthotopic glioma models. Excitingly, lymphodepleted mice that successfully clear disease after CAR T cell treatment are subsequently able to survive rechallenge with antigen-negative tumor, indicating

that they develop immunologic memory to other tumor-associated antigens. These findings, taken together, indicate that IL13-BB ζ CAR constructs are more suited for further clinical development than IL13-28 ζ CAR constructs, and justify further clinical trials to evaluate the effects of contextual modifications such as lymphodepletion on IL13-BB ζ CAR T cell efficacy.

MATERIALS AND METHODS

CAR constructs

The codon-optimized IL13(E13Y) mutein-containing, first generation IL13-zetakine CAR sequence was previously described (11), and is here referred to as IL13- ζ . The 4-1BB-containing 2nd-generation CAR construct (IL13-BB ζ) was also previously described (6), with the CD28-containing 2nd generation CAR (IL13-28 ζ) as well as the 3rd generation CAR (IL13-28BB ζ) only differing by the co-stimulatory sequences that were inserted by splice overlap PCR (**Fig. 1A**).

Generation of CAR T cells

PBMC were collected from discard apheresis kits of five different human donors as approved by City of Hope Internal Review Board oversight. Central memory T cells (Tcm) were then selected from the PBMC, transduced with lentivirus to express either of the four CAR variants (**Fig. 1A**), and expanded with IL-2 and IL-15 as previously described (6). The CD3/28 stimulation beads (Fisher Scientific Cat#11141D) were removed on day 7, successfully transduced cells were enriched based on CD19t expression on day 11-15 using EasySep™ Human CD19 Positive Selection Kit II (Stemcell Technologies, Inc., Cat#17854), and the resulting CAR+ T cells were cryopreserved at day 15 or 17. Unless otherwise indicated, thawed cells were then rested overnight in media with IL-2/IL-15 prior to analysis or use in the assays.

Murine IL13-BB ζ T cells were generated as previously described (13). Briefly, T cells isolated from mouse spleens, transduced with retrovirus to express the CAR, and expanded with IL-2 and IL-7. Before their use in *in vivo* experiments, the CD3/28 stimulation beads (Invitrogen Cat#11452D) were magnetically separated from the IL13-BB ζ T cells, and CAR expression was

determined by flow cytometry.

Cell lines

The patient-derived, low passage GBM tumor sphere line PBT030-2, and PBT030-2 engineered to express the firefly luciferase (ffLuc) reporter gene have been previously described (14). The fibrosarcoma line HT1080, and HT1080 engineered to express IL13R α 2 have also been previously described (6). Jurkat T cells were obtained from the American Type Culture Collection (ATCC #TIB-152) and maintained between 1×10^5 and 1×10^6 in RPMI 1640 (Corning) with 10% FBS (Genesee Scientific), Penicillin-Streptomycin (Gibco), and L-glutamine (Corning). Small cell lung carcinoma line A549 (ATCC #CCL-185) was cultured under ATCC suggested conditions. Mouse GBM lines KLuc and KLuc-IL13R α 2 have been previously described (13).

Flow cytometry

IL13R α 2-CAR T cell variants were stained with fluorochrome-conjugated monoclonal antibodies (mAbs) to human IL13 (BD Biosciences Cat#340508) and CD19 (BD Biosciences Cat#557835). A549 cells were stained for human IL13R α 1 and IL13R α 2 using R&D Systems goat polyclonal reagents Cat#AF152 and Cat#AF146, respectively, with phycoerythrin-conjugated donkey anti-goat secondary antibody (Novus Biologicals Cat#NB7590). Isotype-matched mAbs served as controls, and DAPI (Life Technologies) was used to determine viability. Data acquisition was performed on a MACSQuant (Miltenyi Biotec) using either FCS Express (De Novo Software) or FlowJo (v10, TreeStar) software.

In vitro co-culture assays.

For degranulation and intracellular IFN- γ assays, T cells and tumor cells were co-cultured at a 1:1 effector to target (E:T) ratio for 5 hours in the presence of GolgiStop Protein Transport Inhibitor (BD Biosciences). Surface phenotype of cells was determined by flow cytometry using fluorochrome-conjugated antibodies specific for CD3 (Miltenyi Biotec, Inc. Cat#130-094-363), CD19 and CD107a (BD Biosciences Cat#555800), followed by permeabilization with Cytofix/cytoperm kit solution (BD Biosciences) and staining with anti-IFN- γ (BD Biosciences Cat#554702). For cytotoxicity and surface expression of activation markers, T cells and tumor cells were co-cultured at a 1:4 E:T ratio for 48 hours, and analyzed by flow cytometry with DAPI using antibodies specific for CD45, CD3, CD19, CD25, CD69, and 4-1BB (BD Biosciences Cat#s 347464, 563109, 557835, 555431, 340560, 555956). Percentages of tumor killing were based on viable tumor cells (CD45-negative, DAPI-negative) in co-cultures with mock-transduced T cells. Long term killing assays were carried out with co-cultures at a 1:20 E:T ratio (1,250:25,000 in a 96-well plate) for 9 or 14 days, and included staining with antibody specific for CD4 (BD Biosciences Cat#562970) where indicated. Proliferation assays used the CellTraceTM CFSE Cell Proliferation kit (Invitrogen) to stain the T cells prior to their co-culture with tumor cells at a 1:1 E:T ratio for 4 days. Cells were then stained with antibodies specific for CD45 and CD19 prior to flow cytometric analysis. Rechallenge assays were carried out as previously described (15), with cells analyzed by flow cytometry using DAPI and antibodies specific for IL13, CD45, CD4, and CD8 (Fisher Scientific Cat#BDB348793) at each time point. Flow cytometric evaluation of intracellular cleaved caspase-3 was carried out using the FITC Active Caspase-3 Kit (BD Bioscience) and CD19 staining after 24 hour co-culture at a 1:4 E:T ratio.

Bead-bound receptor stimulation assay

Protein G Dynabeads (Invitrogen) were washed and resuspended in PBS with 0.02% Tween-20 (PBS-T) and loaded with recombinant human IL13R α 2-Fc chimera (R&D Systems Cat#614INS; 2.1 μ g per 3.9×10^7 beads) by incubation for 10 minutes at room temperature. After washing in PBS-T, the IL13R α 2-Fc-bound beads were resuspended at 3.90×10^7 beads/100uL of warmed media. CAR+ T cells (Jurkat- or human donor-derived) were plated at 2×10^5 cells/well on a 96-well U-bottom plate with or without beads at a 195:1 bead-to-cell ratio and incubated for 16 (Jurkat T cells) or 12 (human donor derived T cells) hours at 37°C. After incubation, T cells were harvested, washed with ice-cold PBS, and resuspended in ice-cold lysis buffer containing a working dilution of Halt Phosphatase Inhibitor Single-Use Cocktail (ThermoFisher). After 30 minutes of incubation on ice, lysates were centrifuged at 17,200g for 20 minutes at 4°C, and supernatants were collected and either frozen at -80°C or immediately analyzed by Western blot. In brief, after determining lysate protein concentration by Bradford protein assay, equal proportions of protein were combined with Laemmli buffer (BioRad) and DTT (Sigma-Aldrich) and boiled at 95°C for 5 minutes. Protein was loaded into a 7.5% TGX gel (BioRad) using a Mini-PROTEAN Tetra Cell (BioRad) and transferred to 0.2 μ m nitrocellulose (Prometheus). Membranes were incubated in blocking buffer for 1 hour at room temperature, washed in TBS with 0.05% Tween-20 (TBST), and then incubated overnight at 4°C with 1:1000 dilution of primary antibody - either anti-p52/p100 (Millipore Sigma Cat#05361) or anti- β -Actin (Cell Signaling Technology Cat#3700). Membranes were then washed and incubated in blocking buffer containing HRP-linked horse anti-mouse (1:5000; Cell Signaling Technology Cat#7076) for 45 minutes at room temperature. After washing with TBST, membranes were imaged on a

ChemiDoc Imaging System (BioRad) with SuperSignal Chemiluminescent Substrate (Thermo Scientific).

Plate-bound receptor assays

T cells were cultured overnight at 5×10^3 cells/well on 96-well plates that had been coated with 5000, 2500, 1250, 625 or 312.5 ng/mL recombinant human IL13R α 1-Fc chimera (R&D Systems Cat#146IR) or IL13R α 2-Fc chimera. Supernatants were then evaluated for IFN- γ levels using the Legend Max ELISA kit with pre-coated plates (human IFN- γ) (Biolegend). Surface phenotype of cells that had been removed from the well was determined by flow cytometry using fluorochrome conjugated antibodies specific for 4-1BB or CD69.

Mouse studies

All mouse experiments were approved by the City of Hope Institute Animal Care and Use Committee. For xenograft models, on day 0, either ffLuc+ PBT030-2 cells (1×10^5) were stereotactically implanted into the right forebrain (intracranial, i.c.) of NSG mice (Jackson Laboratory Strain#005557) or A549 cells (1×10^6) were injected subcutaneously (s.c.) in a 1:1 solution of PBS:Matrigel into the flank of NSG mice. Mice were then treated intratumorally with CAR T cells as indicated in the figure legend for each experiment.

For syngeneic studies, mouse GBM line KLuc-IL13R α 2 cells (1×10^5) were implanted i.c. in C57BL/6 mice (Jackson Laboratory Strain#000664). Mice were then treated with 500 rads of whole body irradiation on day 5, and/or murine T cells expressing a murine IL13-BB ζ CAR (5×10^6) administered intravenously (i.v.) on day 7. Confirmation of lymphodepletion was

performed by flow cytometric analysis of peripheral (retroorbital) blood collected on days 6 and 11. After 110 days, surviving mice were rechallenged i.c. with parental KLuc cells (1×10^4), and survival was compared to that of naïve mice implanted i.c. with KLuc cells.

Groups of mice were monitored for i.c. tumor engraftment by non-invasive optical imaging as previously described(8) using a Lago-X (Spectral Instruments Imaging), or for s.c. tumor size using calipers. Where indicated, survival was monitored with euthanasia applied according to the American Veterinary Medical Association Guidelines.

Statistics

Student's t-tests, ANOVA tests and log rank (Mantel Cox) tests were used as indicated in each figure legend. *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$; ****, $p < 0.0001$ unless otherwise indicated in the legend.

Data Availability

Data were generated by the authors and either included in the article or available on request.

RESULTS

In vitro effector function of IL13(E12Y)-CAR variants with low tumor burden is independent of co-stimulatory domain

We have previously described the preclinical generation and clinical evaluation of T cells expressing IL13R α 2-targeting, ligand-based CARs harboring an IL13 binding domain that contains the E12Y [IL13(E12Y)] single point mutation to minimize cross-reactivity with IL13R α 1 (6-8,10,11). To further reveal the impact of IL13-ligand CAR design on functionality and selectivity, we generated a panel of IL13(E12Y)-CARs harboring different intracellular signaling domains: a 1st generation CD3 ζ construct (IL13- ζ), 2nd generation constructs bearing either 4-1BB or CD28 co-stimulatory domains (IL13-BB ζ or IL13-28 ζ), and a 3rd generation construct containing both 4-1BB and CD28 intracellular signaling domains (IL13-28BB ζ) (**Fig. 1A**). Using our well-described manufacturing platform(16), central memory T cells (Tcm) from five different normal human donors were lentivirally transduced to express either one of these IL13(E12Y)-CAR variants, expanded with IL-2 and IL-15, enriched based on expression of the coordinately expressed CD19t transduction marker, and cryopreserved. Interestingly, although the resulting IL13(E12Y)-CAR T cell variants expressed similar levels of CD19t on their cell surface, they expressed different cell surface CAR levels (**Fig. 1B**). In particular, the ratio of CAR to CD19t marker was markedly different between constructs (**Fig. 1C**): IL13-28 ζ expressed the highest level of CAR and CAR:CD19t ratio, IL13-BB ζ expressed the least CAR relative to CD19t, and IL13- ζ and IL13-28BB ζ had intermediate CAR:CD19t ratios.

To test the effects of the different signaling domains on CAR effector activity, we co-cultured the IL13(E12Y)-CAR T cell variants with IL13R α 2-negative HT1080 human fibrosarcoma cells, IL13R α 2-engineered HT1080 (HT1080-R α 2), or the patient-derived GBM line PBT030-2, with

glioma stem cell-like characteristics (6). All of the CAR T cell variants, independent of co-stimulatory domain and CAR expression levels, exhibited comparable IL13Ra2-specific degranulation, intracellular IFN- γ production, and activation marker expression at relatively high E:T ratios (1:1, 1:4) (**Fig. 1D**). Each of the IL13(E12Y)-CAR T cell variants were also able to efficiently kill IL13Ra2-expressing tumor cells in a 48-hour co-culture at E:T ratios of 1:4 (**Fig. 1E**), albeit the 3rd generation IL13-28BB ζ CAR displayed slightly reduced killing potency against the GBM line PBT030-2. Additionally, all CAR variants robustly proliferated after four days of co-culture with the HT1080-Ra2 and PBT030-2 stimulator lines compared with Mock T cell controls (**Fig. 1F**). IL13-28BB ζ T cells, however, did not proliferate as well as the other CAR T cell variants, which may relate to the slightly sub-optimal killing of PBT030-2 that had been observed with this construct (**Fig. 1E**). We also noted that IL13-28 ζ appeared to direct higher levels of killing of the IL13Ra2-negative HT1080 cells, and these CAR T cells exhibited higher levels proliferation upon HT1080 stimulation (**Fig. 1E, F**). Overall, these studies indicate that IL13Ra2-dependent activation and effector function of IL13(E12Y)-CARs was not strongly influenced by either CAR expression levels or the co-stimulatory domain.

IL13-BB ζ CAR T cells outperform other CAR variants *in vitro* at high tumor burden

It was surprising to us that initial *in vitro* studies showed little difference in effector activity of the IL13(E12Y)-CAR T cell variants (**Fig. 1**), even for IL13- ζ , which lacked co-stimulatory signaling. As a result, we next examined co-cultures with PBT030-2 cells at E:T ratios that were decreased to a more challenging ratio of 1:20 to evaluate the recursive killing potential of CAR variants (**Fig. 2A-D**). In this 14-day *in vitro* stress test, 2nd generation IL13-BB ζ and IL13-28 ζ outperformed both IL13- ζ and IL13-28BB ζ , demonstrating the requirement for optimal co-

stimulation for recursive killing potency. IL13-BB ζ CAR T cells exhibited clear superiority with regards to CAR T cell persistence and proliferation, with significant numbers of CAR-positive T cells detected in co-cultures after tumor cell elimination (**Fig. 2B, C**). To further compare the recursive killing potential of IL13(E12Y)-CAR T cell variants, a tumor rechallenge assay was performed with the addition of GBM cells every other day (**Fig. 2D**) (15,17). All IL13(E12Y)-CAR T cell variants mediated effective elimination of GBM cells until day three (i.e., after a single GBM rechallenge, total E:T = 1:12). However, upon additional GBM tumor challenge, IL13- ζ and IL13-28BB ζ CAR T cells showed decreased cytotoxicity (**Fig. 2D**). Between the 2nd generation CAR T cell variants, IL13-BB ζ again outperformed IL13-28 ζ CAR T cells, with more efficient tumor elimination following repetitive tumor addition (**Fig 2D**).

To understand whether the differences in persistence may be due to CAR-mediated activation induced cell death (AICD), we evaluated signaling in CAR T cells after antigen stimulation. In CAR T cells co-cultured with PBT030-2 (E:T 1:4) for 24 hours, cleaved caspase-3 was most highly expressed in IL13-28BB ζ CAR T cells, whereas IL13-BB ζ CAR T cells had the lowest levels, suggesting that IL13-BB ζ CAR T cells were the least inclined toward AICD (**Fig. 3A**). It has previously been shown that noncanonical NF κ B signaling is upregulated in 4-1BB-containing CAR T cells, and that this leads to increased survival and proliferation (18). First using a Jurkat CAR T model system, we found that IL13-BB ζ CAR T cells stimulated for 16 hours with antigen-coated beads upregulated noncanonical NF κ B pathway signaling much more than IL13-28 ζ CAR T cells as evidenced by an increase in p100 processing (**Fig. 3B, C**). Similarly, in CAR T cells generated from a normal human donor, the noncanonical NF κ B pathway activation was increased in IL13-BB ζ CAR T cells relative to IL13-28 ζ CAR T cells

after 12 hours after stimulation (**Fig. 3D, E**). Taken together, these findings suggest that the pronounced functional superiority of IL13-BB ζ CAR T cells observed at low E:T ratios are a result of improved CAR T cell proliferation and survival through augmented noncanonical NF κ B signaling and consequent decreased caspase-3 activity.

IL13-28 ζ CAR T cell activation is more sensitive to lower levels of IL13Ra2 antigen

To evaluate further the impact of antigen density on the functional activity of IL13(E12Y)-CAR T cells, we challenged CAR variants with plate-bound IL13Ra2 at different concentrations (**Fig. 4**). The IL13-BB ζ CAR T cells, which functioned well at the low E:T ratios in long-term co-cultures (**Fig. 2**), released IFN- γ levels in a manner similar to the 1st and 3rd generation variants (**Fig. 4A**). This is in contrast to the IL13-28 ζ CAR T cells, which produced detectable IFN- γ at antigen concentrations that were 4-fold lower than that observed with any of the other variants (**Fig. 4A**). Analysis of the activation markers 4-1BB and CD69 also suggested that the IL13-28 ζ CAR T cells had a lower IL13Ra2-induced activation threshold compared to the IL13-BB ζ CAR T cells (**Fig. 4B**).

IL13-BB ζ CAR T cells exhibit superior IL13Ra2-directed anti-tumor efficacy *in vivo*

We hypothesized that superior persistence and anti-tumor efficacy of IL13-BB ζ CAR T cells observed at the low E:T ratios in long-term co-cultures would translate to improved disease control *in vivo*. To test this, we established brain tumor xenografts using ffLuc-expressing PBT030-2, treated the mice intracranially (i.c.) with the IL13Ra2-CAR T cell variants, and then followed tumor size over time using biophotonic imaging (**Fig. 5**). While anti-tumor efficacy could be seen in mice treated with each of the variants, the most significant effects on tumor

burden (**Fig. 5B**) and overall survival (**Fig. 5C**) were observed with the IL13-BB ζ CAR T cells. Indeed, mice treated with IL13-BB ζ CAR T cells exhibited long-term tumor-free survival in >60% of mice after 152 days (**Fig. 5D**).

IL13-28 ζ CAR T cells exhibit off-target activity against IL13R α 1

To further evaluate differences in these IL13R α 2-CAR T cell variants, we examined off-target effects towards IL13R α 1. IL13 binds both IL13R α 1 and IL13R α 2, and while the IL13(E12Y) mutein was originally designed to increase selectivity for IL13R α 2 (7), some groups have reported IL13R α 1 cross reactivity in similar IL13(E12Y)-based CARs containing a CD28 co-stimulatory domain (19,20). Consistent with these reports, we observed in plate-bound IL13R α 1 assays that our IL13-28 ζ CAR produced IFN- γ (**Fig. 6A**) and up-regulated activation marker expression at the highest concentrations of plate bound IL13R α 1-Fc (**Fig. 6B**; 500 ng/mL). By comparison, the other CAR variants, including IL13-BB ζ , were not strongly activated at high concentrations of plate-bound IL13R α 1-Fc. Using the tumor line A549, which endogenously expresses IL13R α 1, but not IL13R α 2, we found that the IL13-28 ζ CAR T cells exhibited the most off-target-mediated degranulation (**Fig. 6C**), activation marker expression (**Fig. 6D**), *in vitro* cytotoxicity (**Fig. 6E**), and proliferation (**Fig. 6F**). Further, IL13-28 ζ CAR T cells exhibited *in vivo* anti-tumor activity against A549 xenograft tumors (**Fig. 6G**). Together, these data argue against using the IL13-28 ζ CAR for selective IL13R α 2-targeting of tumors (20).

Systemic delivery of murine IL13-BB ζ CAR T cells for treatment of GBM is both safe and effective with pre-conditioning lymphodepletion

The above studies comparing human IL13(E12Y)-CAR design support the selective IL13Ra2-targeting of IL13-BB ζ CAR T cells. Because *in vitro* co-culture assays and xenograft mouse models likely do not reveal the full potential for off-tumor toxicities given the cross-species differences in IL13-ligand binding, we developed a fully murine IL13(E12Y)-CAR to further study the safety and specific tumor targeting of IL13-BB ζ CAR T cells in a syngeneic, immunocompetent mouse brain tumor model (**Fig. 6A**) (13). C57BL/6 splenocytes were engineered to produce muIL13-BB ζ CAR T cells that exhibited equivalent numbers of CD4+ and CD8+ subsets with mixed undifferentiated and differentiated T cell populations on day five (13). Brain tumors were established in C57BL/6 mice using KLuc invasive glioma cells derived from *Nfl*, *Trp53* mutant mice(21) that had been further gene modified to express mouse IL13Ra2 (KLuc-IL13Ra2 cells) (13). Since there is interest in clinically evaluating systemic delivery of IL13Ra2-CAR T cells for GBM and other IL13Ra2+ solid tumors, including neuroendocrine cancers (22), melanoma (23), ovarian cancer (24), and colorectal cancer (25), we set out to utilize this fully murine platform to preclinically assess the safety and efficacy of intravenously (i.v.) delivered muIL13-BB ζ CAR T cells. Furthermore, because systemic i.v. administration of CAR T cells often incorporates pre-conditioning with lymphodepletion and exacerbates CAR T cell mediated toxicities, we also wanted to evaluate the effect of lymphodepletion on both the safety and anti-tumor potency of the muIL13-BB ζ CAR T cells in this model. Using irradiation, we were able to confirm lymphodepletion by flow cytometric analysis of the blood (**Fig. 6B**). Biophotonic imaging then revealed that the best anti-tumor efficacy was observed in mice treated with both irradiation and muIL13-BB ζ CAR T cells (**Fig. 6C**). Overall survival was improved with muIL13-BB ζ CAR T cells alone, but the tumors ultimately progressed, and complete cures were only observed upon treatment with both irradiation and muIL13-BB ζ CAR T cells (**Fig.**

6D). Furthermore, when the cured mice were re-challenged with i.c. administration of parental KLuc cells (i.e., not expressing muIL13R α 2), 60% survival was again observed, suggesting the establishment in the mice of broader immunological memory against the parental tumor (**Fig. 6E**). Importantly, throughout this study, the mice were monitored for any obvious signs of distress or general toxicity, and those treated with the muIL13-BB ζ CAR T cells did not exhibit any signs of therapy-associated adverse events – they did not exhibit weight loss and were bright, alert, and reactive until affected by their tumor burden.

DISCUSSION

Optimization of CAR T cell therapy for solid tumors faces many challenges; in particular, poor CAR T cell persistence, tumor antigen heterogeneity, antigen escape, and off-tumor targeting present barriers to both the safety and curative potential of CAR T cell therapy. It is increasingly clear that successful therapies will need to combine both rational receptor design and contextual modifications to the tumor microenvironment and immune system. This work with IL13Ra2-CARs advances our understanding of how receptor design impacts CAR expression, signaling, and function. These findings inform our current clinical trials and suggest generalizable strategies for other adoptive cellular therapy efforts.

Our data show that for the IL13Ra2-targeting CAR construct, co-stimulatory domain choice influences cell surface CAR expression. Despite different expression levels, the variants surprisingly conferred comparable recognition, activation and short-term effector activity against target cells *in vitro* (i.e., IL13Ra2-directed degranulation, intracellular IFN- γ production, and activation marker expression). However, in long-term co-cultures with high tumor burden, disparities in persistence, survival and anti-tumor activity of these variants became apparent. Specifically, IL13-BB ζ CAR T cells exhibited superior persistence and recursive killing ability, likely due to increased noncanonical NF κ B pathway signaling and decreased caspase-3 signaling. These findings translated into superior IL13Ra2-directed anti-tumor efficacy *in vivo* for the IL13-BB ζ variant. Furthermore, IL13-28 ζ CAR T cells appeared more sensitive to lower levels of plate-bound IL13Ra2 and IL13Ra1, as evidenced by quantification of 4-1BB and CD69 tumor flux, which showed that IL13-28 ζ had a lower activation threshold, and, unlike IL13-BB ζ CAR T cells, exhibited off-target activity against IL13Ra1. IL13-28 ζ , but not IL13-BB ζ , CAR T

cells exhibited IL13R α -dependent degranulation, activation marker expression, cytotoxicity, proliferation, and *in vivo* anti-tumor activity, which is consistent with previous reports evaluating CD28-containing IL13-ligand CAR designs (20). Taken together, these findings argue against using IL13-28 ζ for selective IL13R α 2-targeting of tumors in favor of IL13-BB ζ CAR T cells.

Other studies have shown CD28-containing CARs to exhibit more robust signaling and lower thresholds of activation than CARs with 4-1BB domains. Indeed, the effect of the costimulatory domain on differential recognition of low antigen density levels has been reported with CARs targeting CD19 (26,27), HER2(28), PSCA (29), and ROR1 (26). This study extends these findings by showing that costimulatory domains can also impact recognition based on affinity differences between the CAR and its target antigens (i.e., the affinity of IL13(E12Y)-CAR for IL13R α 1 vs. IL13R α 2). Specifically, the CD28 domain increased the off-target recognition of the low affinity IL13R α 1 receptor by the IL13(E12Y)-CAR, whereas that containing the 4-1BB domain demonstrated negligible recognition IL13R α 1 and superior selectivity for IL13R α 2.

To further evaluate the safety of IL13-BB ζ CAR T cells, we developed a fully murine IL13(E12Y)-CAR to better assess off-tumor toxicities in immunocompetent mouse models of GBM, and administered the CAR T cells systemically with and without lymphodepletion. Lymphodepletion is known to be required for optimal efficacy with hematologic malignancy-targeted CAR T cells (30,31) and adoptive therapy of other solid tumors (32); and augments the potency and toxicity profiles of CAR T cell therapy. We have previously shown, both preclinically and clinically, that locoregional delivery of IL13R α 2-CAR T cells was safe and effective at eliminating malignant brain tumors (6,10). We extend that work here, and, similar to a previous study by Suryadevara et al using lymphodepletion (33), demonstrate that the use of

lymphodepleting radiation before i.v. delivery of muIL13-BB ζ CAR T cells also significantly enhances *in vivo* anti-tumor efficacy and survival, with complete cures only observed upon treatment with both irradiation and muIL13-BB ζ CAR T cells. Importantly, systemic treatment with muIL13-BB ζ CAR T cells did not result in any signs of therapy-associated adverse events. Furthermore, when the cured mice were re-challenged, prolonged survival was again observed, suggesting that the establishment of immunological memory in these mice was not compromised by lymphodepleting radiation. Our work contributes to a growing body of evidence supporting the use of pre-conditioning lymphodepletion as a valuable adjunct for solid tumor-directed CAR T cell therapies. Additionally, these studies open the door to investigations combining lymphodepletion and locoregional CAR T cell delivery, studies which are currently ongoing in our group.

Ultimately, this study supports several general principles of CAR design, including improved specificity, persistence, and efficacy of 4-1BB-based 2nd generation CARs, in part, through increased noncanonical NF κ B signaling and decreased caspase-3 activity. These differences are most pronounced at lower effector to target ratios, which may help to explain why 4-1BB-based CARs are often clinically superior to CD28-based CARs for solid tumors. Additionally, these findings extend our previous work demonstrating that changes to the context of CAR T cell therapy substantially affect their efficacy; locoregional delivery and lymphodepletion independently augment the ability of IL13-BB ζ CAR T cells to control tumors. Taken together, these data justify novel clinical trials that combine IL13-BB ζ CAR T cells, locoregional delivery, and lymphodepletion for solid tumor therapy.

ACKNOWLEDGMENTS: The authors would like to thank Jim O’Hearn and Jennifer K. Shepphard for formatting and editing of this manuscript; and Aniee Sarkissian, Sarah Wright and Brenda Chang for their technical assistance.

AUTHOR CONTRIBUTIONS:

Conception and design: BB, SJF, LDW and CEB

Development of methodology: XY, DW, and W-CC

Acquisition of data: RS, XY, BA, DG, SH, DW, and VC

Analysis and interpretation of data: RS, XY, BA, DG, DW and CEB

Writing, review and/or revision of manuscript: DG, JRO, LDW and CEB

Administrative, technical or material support: RS, XY, BA, W-CC, and AB

Study Supervision: DA, LDW and CEB

REFERENCES

1. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. *The New England journal of medicine* 2018;378(5):439-48.
2. Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. *The New England journal of medicine* 2018;378(5):449-59.
3. Brown CE, Warden CD, Starr R, Deng X, Badie B, Yuan YC, et al. Glioma IL13Ralpha2 is associated with mesenchymal signature gene expression and poor patient prognosis. *PloS one* 2013;8(10):e77769.
4. Debinski W, Gibo DM, Slagle B, Powers SK, Gillespie GY. Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme. *Int J Oncol* 1999;15(3):481-6.
5. Thaci B, Brown CE, Binello E, Werbaneth K, Sampath P, Sengupta S. Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. *Neuro-oncology* 2014;16(10):1304-12.
6. Brown CE, Aguilar B, Starr R, Yang X, Chang WC, Weng L, et al. Optimization of IL13Ralpha2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. *Molecular therapy : the journal of the American Society of Gene Therapy* 2018;26(1):31-44.
7. Debinski W, Thompson JP. Retargeting interleukin 13 for radioimmunodetection and radioimmunotherapy of human high-grade gliomas. *Clin Cancer Res* 1999;5(10 Suppl):3143s-7s.

8. Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. *Cancer research* 2004;64(24):9160-6.
9. Jonnalagadda M, Mardiros A, Urak R, Wang X, Hoffman LJ, Bernanke A, et al. Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy. *Molecular therapy : the journal of the American Society of Gene Therapy* 2015;23(4):757-68.
10. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. *The New England journal of medicine* 2016;375(26):2561-9.
11. Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and Safety of IL13Ralpha2-Redirected Chimeric Antigen Receptor CD8+ T Cells in Patients with Recurrent Glioblastoma. *Clin Cancer Res* 2015;21(18):4062-72.
12. Keu KV, Witney TH, Yaghoubi S, Rosenberg J, Kurien A, Magnusson R, et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. *Science translational medicine* 2017;9(373).
13. Alizadeh D, Wong RA, Gholamin S, Maker M, Aftabizadeh M, Yang X, et al. IFN γ Is Critical for CAR T Cell-Mediated Myeloid Activation and Induction of Endogenous Immunity. *Cancer Discov* 2021;11(9):2248-65.
14. Brown CE, Starr R, Aguilar B, Shami AF, Martinez C, D'Apuzzo M, et al. Stem-like Tumor-Initiating Cells Isolated from IL13Ralpha2 Expressing Gliomas Are Targeted and Killed by IL13-Zetakine-Redirected T Cells. *Clin Cancer Res* 2012;18(8):2199-209.

15. Wang D, Starr R, Alizadeh D, Yang X, Forman SJ, Brown CE. In Vitro Tumor Cell Rechallenge For Predictive Evaluation of Chimeric Antigen Receptor T Cell Antitumor Function. *J Vis Exp* 2019(144).
16. Wang X, Naranjo A, Brown CE, Bautista C, Wong CW, Chang WC, et al. Phenotypic and Functional Attributes of Lentivirus-modified CD19-specific Human CD8+ Central Memory T Cells Manufactured at Clinical Scale. *Journal of immunotherapy* (Hagerstown, Md : 1997) 2012;35(9):689-701.
17. Wang D, Aguilar B, Starr R, Alizadeh D, Brito A, Sarkissian A, et al. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. *JCI Insight* 2018;3(10).
18. Philipson BI, O'Connor RS, May MJ, June CH, Albelda SM, Milone MC. 4-1BB costimulation promotes CAR T cell survival through noncanonical NF-κB signaling. *Sci Signal* 2020;13(625).
19. Kong S, Sengupta S, Tyler B, Bais AJ, Ma Q, Doucette S, et al. Suppression of human glioma xenografts with second-generation IL13R-specific chimeric antigen receptor-modified T cells. *Clin Cancer Res* 2012;18(21):5949-60.
20. Krebs S, Chow KK, Yi Z, Rodriguez-Cruz T, Hegde M, Gerken C, et al. T cells redirected to interleukin-13Ralpha2 with interleukin-13 mutein--chimeric antigen receptors have anti-glioma activity but also recognize interleukin-13Ralpha1. *Cyotherapy* 2014;16(8):1121-31.
21. Reilly KM, Loisel DA, Bronson RT, McLaughlin ME, Jacks T. Nfl1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. *Nat Genet* 2000;26(1):109-13.
22. Lai EW, Joshi BH, Martinova L, Dogra R, Fujisawa T, Leland P, et al. Overexpression of interleukin-13 receptor-alpha2 in neuroendocrine malignant pheochromocytoma: a novel target for receptor directed anti-cancer therapy. *J Clin Endocrinol Metab* 2009;94(8):2952-7.

23. Beard RE, Abate-Daga D, Rosati SF, Zheng Z, Wunderlich JR, Rosenberg SA, et al. Gene expression profiling using nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy. *Clin Cancer Res* 2013;19(18):4941-50.

24. Kioi M, Kawakami M, Shimamura T, Husain SR, Puri RK. Interleukin-13 receptor alpha2 chain: a potential biomarker and molecular target for ovarian cancer therapy. *Cancer* 2006;107(6):1407-18.

25. Barderas R, Bartolome RA, Fernandez-Acenero MJ, Torres S, Casal JI. High expression of IL-13 receptor alpha2 in colorectal cancer is associated with invasion, liver metastasis, and poor prognosis. *Cancer research* 2012;72(11):2780-90.

26. Salter AI, Ivey RG, Kennedy JJ, Voillet V, Rajan A, Alderman EJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. *Sci Signal* 2018;11(544).

27. Majzner RG, Rietberg SP, Sotillo E, Dong R, Vachharajani VT, Labanieh L, et al. Tuning the Antigen Density Requirement for CAR T-cell Activity. *Cancer Discov* 2020;10(5):702-23.

28. Priceman SJ, Tilakawardane D, Jeang B, Aguilar B, Murad JP, Park AK, et al. Regional Delivery of Chimeric Antigen Receptor-Engineered T Cells Effectively Targets HER2(+) Breast Cancer Metastasis to the Brain. *Clin Cancer Res* 2018;24(1):95-105.

29. Priceman SJ, Gerdts EA, Tilakawardane D, Kennewick KT, Murad JP, Park AK, et al. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. *Oncoimmunology* 2018;7(2):e1380764.

30. Turtle CJ, Berger C, Sommermeyer D, Hanafi LA, Pender B, Robinson EM, et al. Anti-CD19 Chimeric Antigen Receptor-Modified T Cell Therapy for B Cell Non-Hodgkin

Lymphoma and Chronic Lymphocytic Leukemia: Fludarabine and Cyclophosphamide Lymphodepletion Improves In Vivo Expansion and Persistence of CAR-T Cells and Clinical Outcomes. *Blood* 2015;126:184.

31. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. *Blood* 2011;118(18):4817-28.
32. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. *J Clin Oncol* 2008;26(32):5233-9.
33. Suryadevara CM, Desai R, Abel ML, Riccione KA, Batich KA, Shen SH, et al. Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma. *Oncoimmunology* 2018;7(6):e1434464.

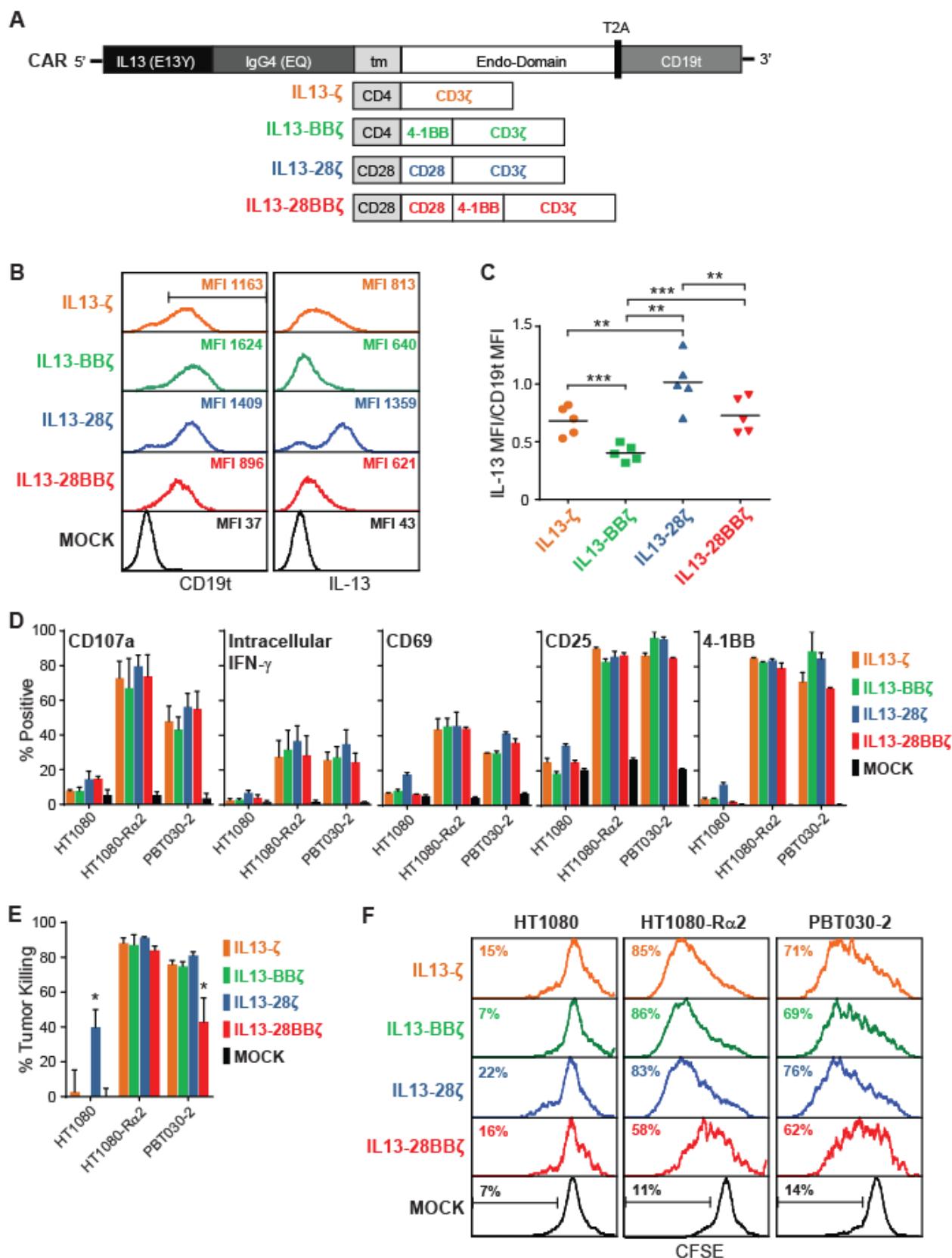

FIGURE LEGENDS

Figure 1. Design, expression, and effector activity of IL13(E12Y)-CAR variants. A,

Schematics of the cDNA open reading frame of each construct, where the IL13Ra2-targeting ligand IL13(E13Y), IgG4(EQ) Fc hinge, transmembrane (tm), and cytoplasmic endo-domains consisting of the indicated 4-1BB and/or CD28 co-stimulatory and CD3 ζ signaling domains of each CAR variant, as well as the T2A ribosomal skip and truncated CD19 (CD19t) sequences are indicated. **B**, Representative flow cytometric assessment of transgene expression on Tcm-derived cells that were mock-transduced (MOCK) or transduced to express the indicated IL13Ra2-CAR variant. Left histograms depict the transduction efficiency based on CD19t expression. The region marker in the top left histogram indicates the CD19t $^{+}$ gating strategy for the cells displayed in the right histogram, which depicts expression of the IL13-containing IL13Ra2-CAR. **C**, Relative CAR expression level, as defined by the ratio of IL13 to CD19t mean fluorescence intensity (MFI). Data are generated from Tcm-derived cells transduced to express the indicated IL13(E13Y)-CAR variants from five different human donors, expanded and enriched as described in the Methods, and stained as depicted in B. Lines indicate the mean values; using a paired Student's t-test: **, p < 0.01, ***, p < 0.001. **D**, Characterization of antigen-induced activation. CD107a: Degranulation of IL13Ra2-CAR T cell variants upon challenge with IL13Ra2-negative parental HT1080 fibrosarcoma cells, IL13Ra2-expressing HT1080-Ra2, or PBT030-2 cells for 5 hours at a 1:1 E:T ratio. Mean + S.D. of % CD107a $^{+}$ in CD3/CD19t $^{+}$ gated cells from three different donors are depicted. Intracellular IFN- γ : expression in IL13Ra2-CAR T cell variants after 5-hour co-culture with the indicated stimulators at a 1:1 E:T ratio; mean + S.D. of CD3/CD19t $^{+}$ gated cells from three different donors are depicted. CD69, CD25, 4-1BB: Surface expression of activation markers on IL13Ra2-CAR T cell variants

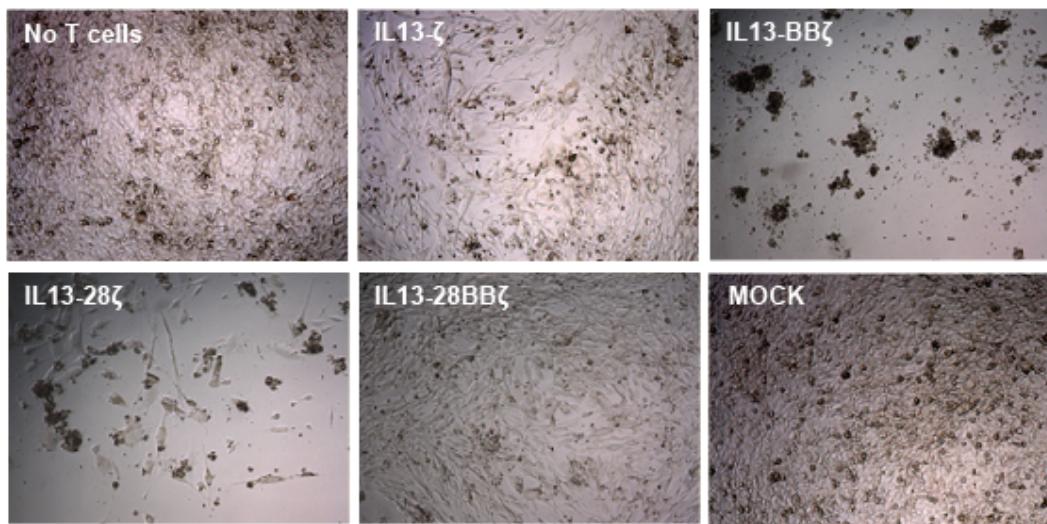

after 48-hour co-culture with the indicated stimulators at a 1:4 E:T ratio; mean + S.E.M. of CD3/CD19t+ gated cells from duplicate wells are depicted; data are representative of IL13R α 2-CAR T cell variants from 4 different donors. **E)** Cytotoxic activity of IL13R α 2-CAR T cell variants after 48-hour co-culture with the indicated targets at a 1:4 E:T ratio. Mean + S.D. of triplicate wells are depicted. Data are representative of IL13R α 2-CAR T cells from 4 different donors. Using an unpaired Student's t-test: *, p < 0.05 when compared to the killing of that same tumor line by each of the other IL13R α 2-CAR T cell variants. **F)** Proliferation of CFSE-stained IL13R α 2-CAR T cell variants after 4 days of co-culture with the indicated stimulators at a 1:1 E:T ratio. CD45/CD19t+ gated cells were analyzed for CFSE dilution (mock-transduced were only gated on CD45+). Data are representative of IL13R α 2-CAR T cell variants from 2 different donors.

Fig. 1

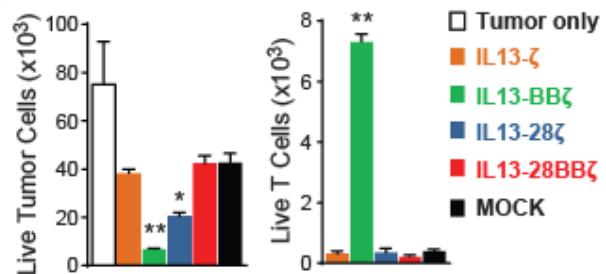
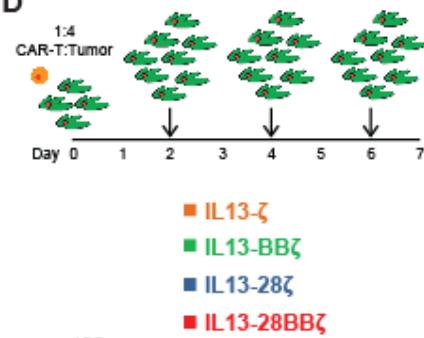
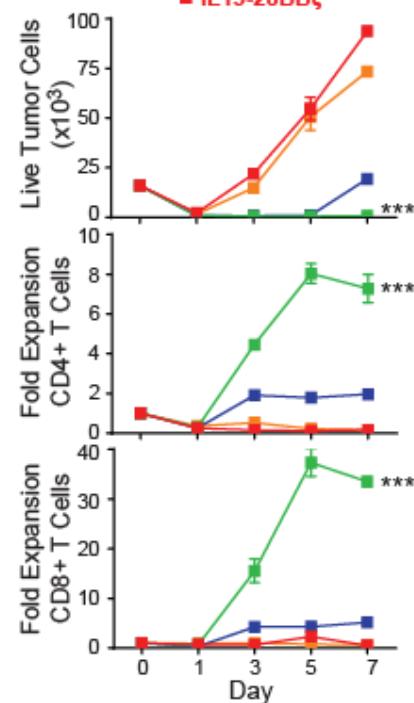
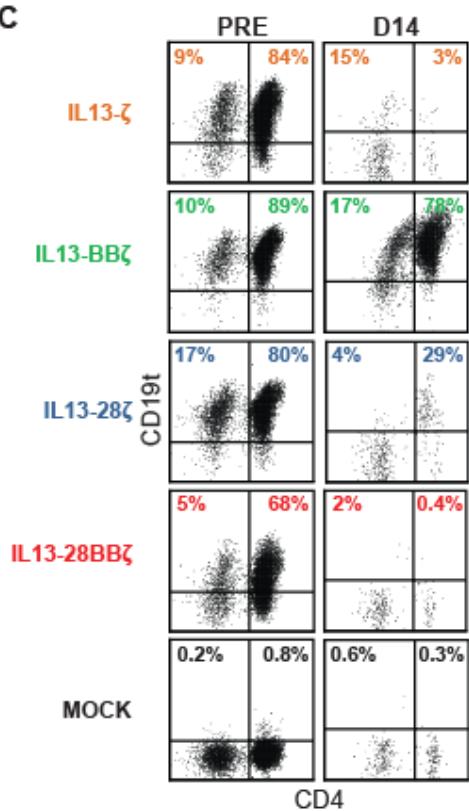
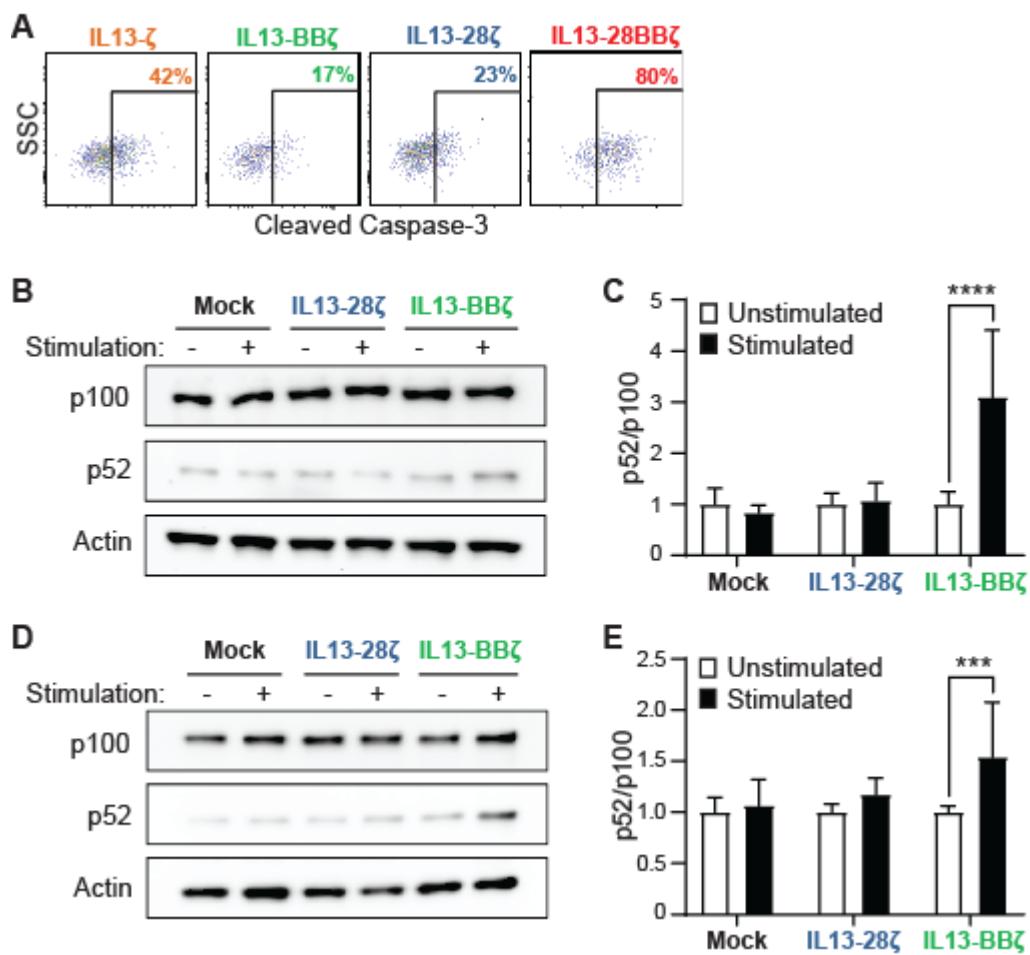


Figure 2. T cells expressing the IL13-BB ζ CAR have superior persistence and anti-tumor activity in a long-term co-culture with high tumor burden. A) Day 9 culture images of PBT030-2 cells that had been plated alone or co-cultured at a 1:20 E:T ratio with the indicated IL13Ra2-CAR T cell variants. **B)** Enumeration of viable tumor cells (DAPI-/CD45- gated, left) and T cells (DAPI-/CD45+ gated, right) after 14 days of co-cultures that had been plated at a 1:20 E:T ratio as in (A). Mean + S.D. of values from triplicate wells are depicted. Using an unpaired Student's t-test: *, p = 0.0006; **, p <0.0001 when compared to MOCK. **C)** CD4 and CD19t transgene expression on the IL13Ra2-CAR T cell variants (DAPI-/CD45+ gated) before and after the 14-day co-culture with PBT030-2 as in (B). Percentages of immunoreactive cells are indicated in the upper quadrants, which were drawn based on isotype controls. Data are representative of IL13Ra2-CAR T cell variants from 2 different donors. **D)** The indicated IL13Ra2-CAR T cell variants (4×10^3 cells) were co-cultured with PBT030-2 cells (1.6×10^4 cells) and re-challenged with 3.2×10^4 GBM cells every other day (schema at top). Remaining viable tumor cell numbers and fold expansion of either CD4-gated (middle) or CD8-gated (bottom) IL13Ra2-CAR T cells were determined at the indicated time points during the rechallenge assay. Mean \pm S.E.M. of values from duplicate wells are depicted. Using a two-way ANOVA test: ***, p < 0.0001 when compared to each of the other IL13Ra2-CAR T cell variants.


A



B


D

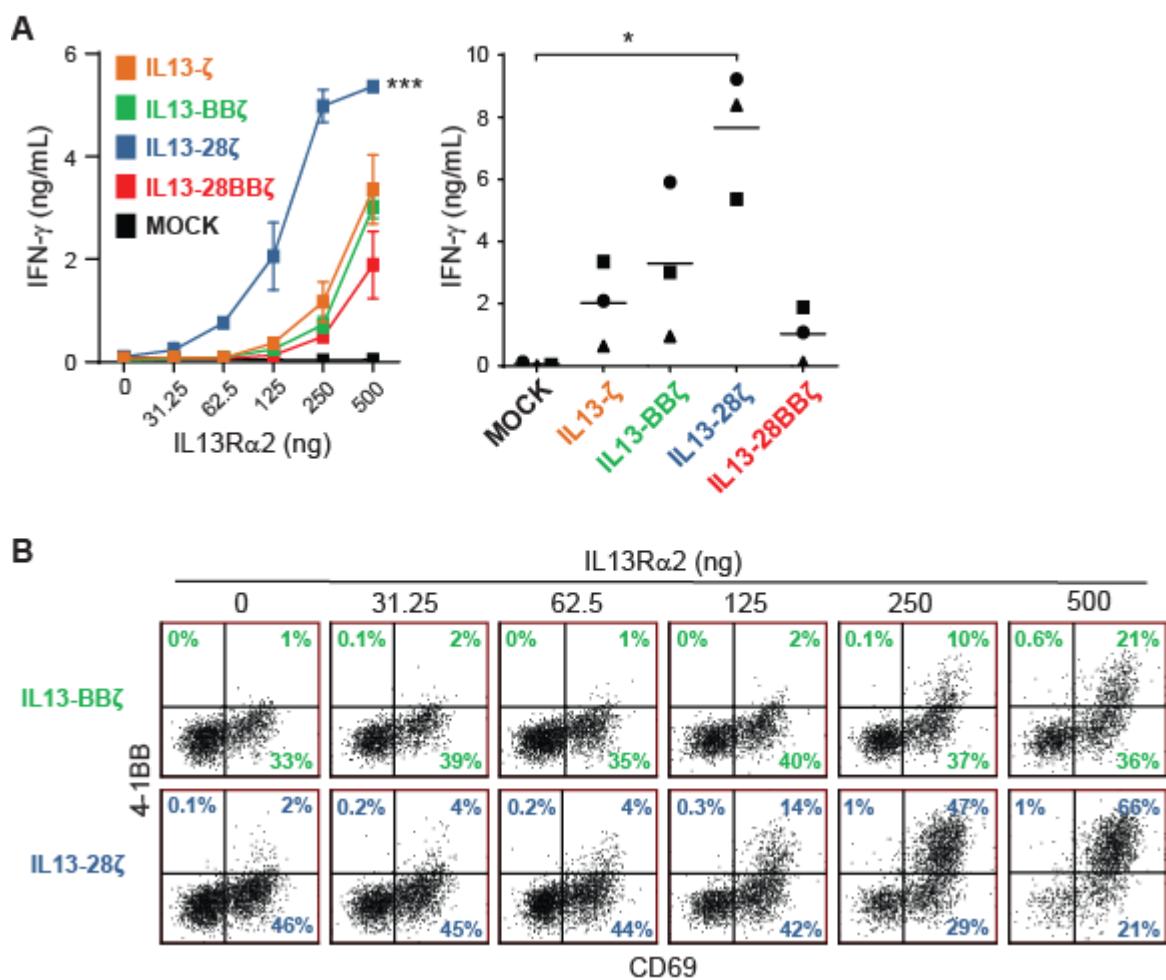

C

Figure 3. T cells expressing the IL13-BB ζ CAR have a greater CAR-induced activation of the ncNF- κ B. A) The indicated IL13Ra2-CAR T cell variants were co-cultured with PBT030-2 cells at an E:T ratio of 1:4 for 24 hours before they were stained for intracellular cleaved caspase-3. Percentages of immunoreactive CD19 t^+ gated cells are depicted in each histogram. Using Jurkat (**B, C**) or human donor derived (**D, E**) CAR T cells: **B, D)** Representative Western blot of p52 and p100 abundance in Mock, IL13-28 ζ , and IL13-BB ζ T cells after overnight IL13Ra2-bead stimulation; and **C, E)** Quantitative analysis of p100 processing, where the band intensity of p52 was divided by the band intensity of p100 for each lane on a Western blot. **C, E)** Mean + S.D. of the ratios of p52 to p100 abundance of 3 different experiments, each using triplicate lanes and normalized to their unstimulated Mock controls, are depicted. Using 2-way ANOVA with Šídák's multiple comparisons test: ****, p = <0.0001; **, p = 0.0003 when compared to the relative unstimulated cells. **D, E)** Results representative of CAR T cells derived from 2 different human donors.

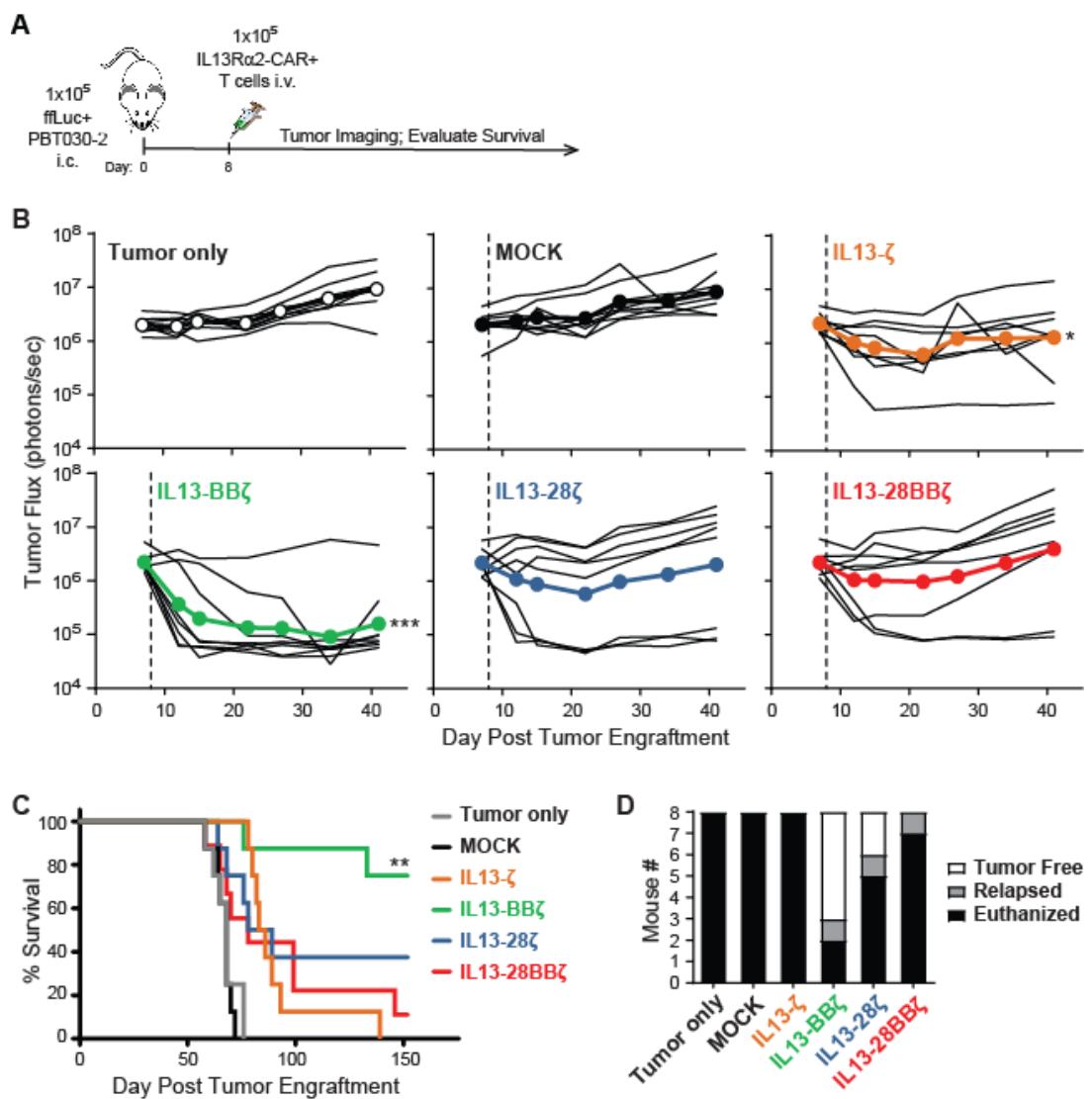
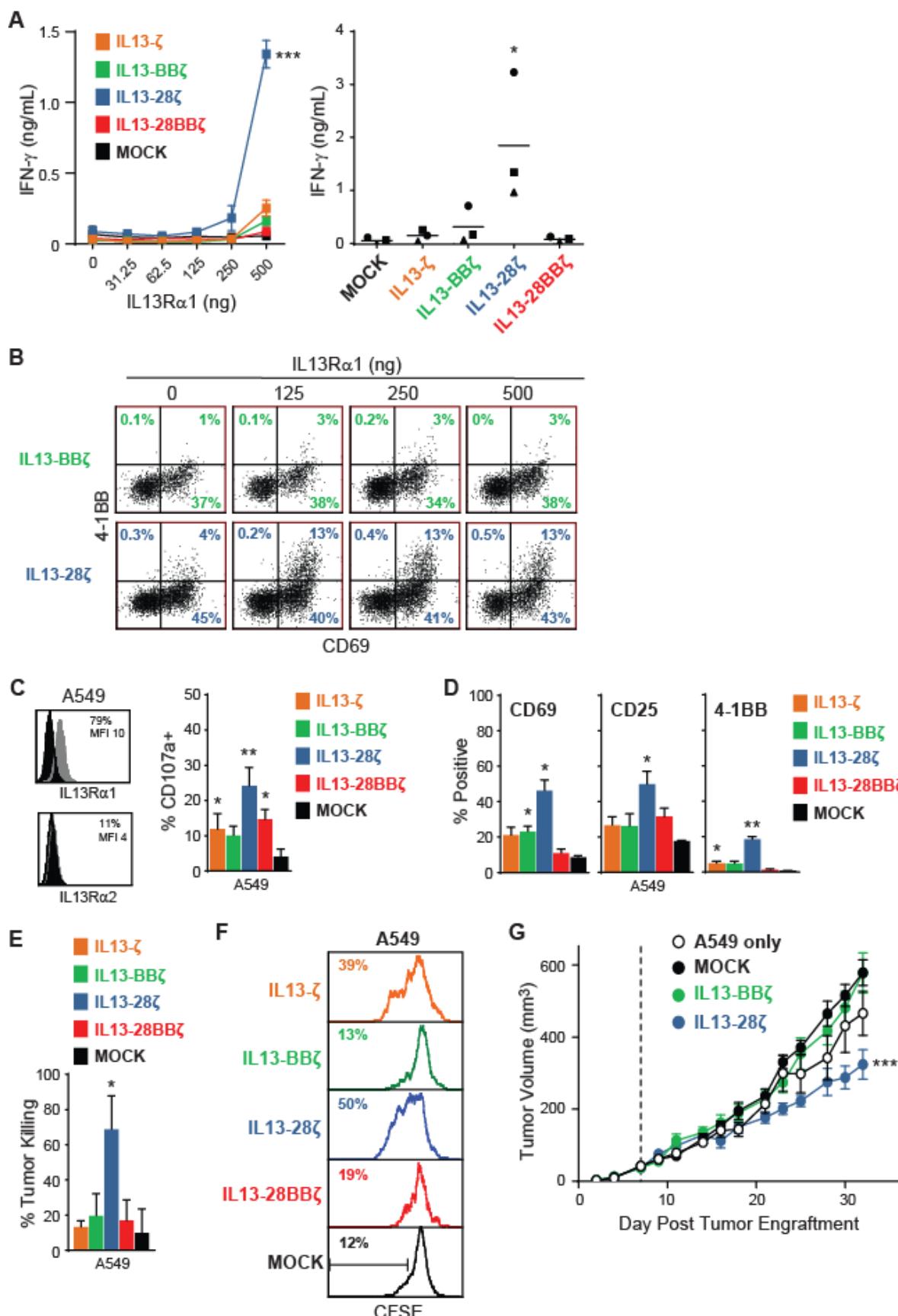
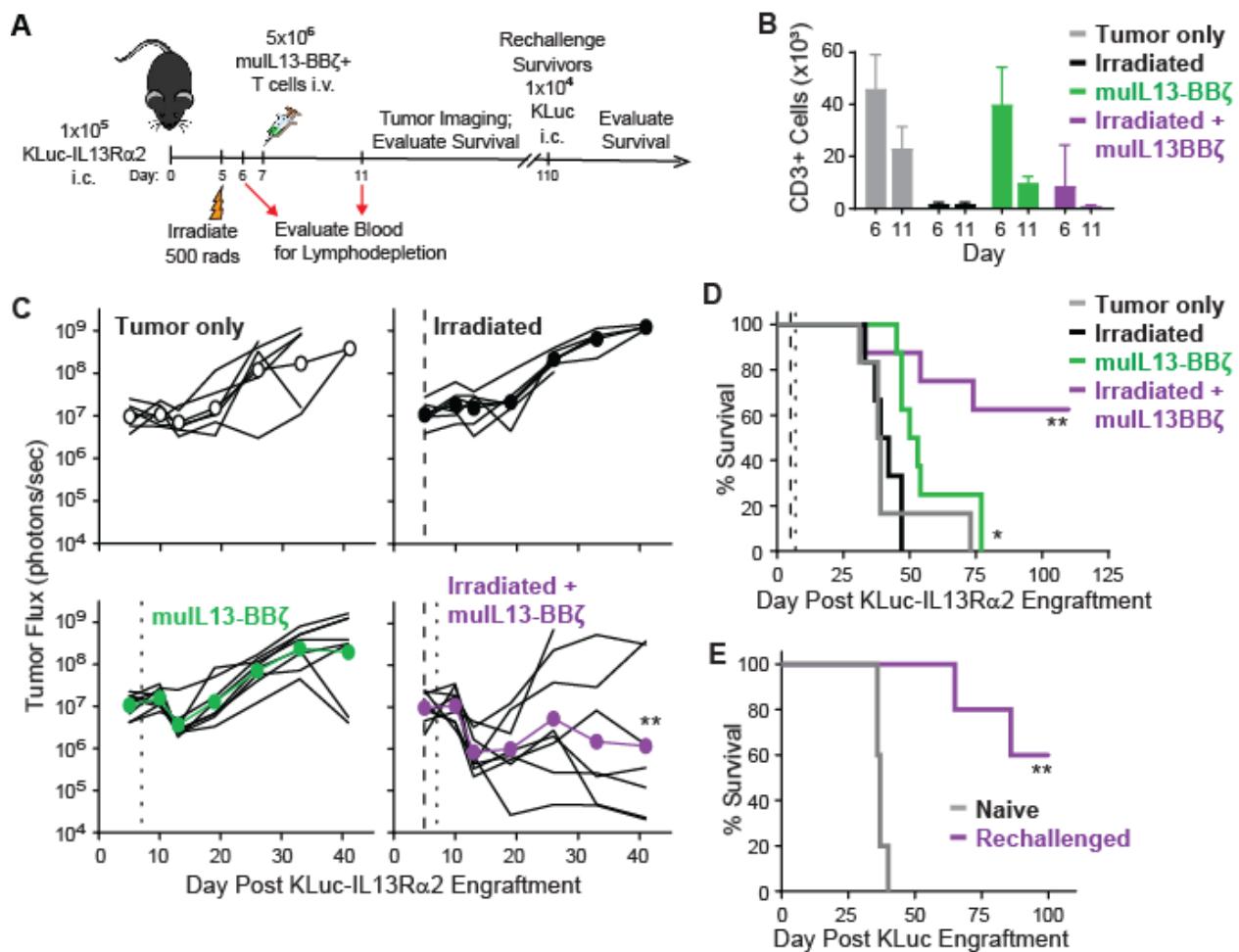


Figure 4. T cells expressing the IL13-28 ζ CAR are more sensitive to lower levels of IL13Ra2. **A,** IFN- γ release upon overnight culture of the indicated IL13Ra2-CAR T cell variants on plate-bound IL13Ra2 as determined by ELISA. Left, a representative assay with CAR T cells from a single donor on 0-500 ng plate-bound IL13Ra2, depicting mean \pm S.D. of triplicate wells. Using a two-way ANOVA test: ***, p < 0.0001 when compared to each of the other IL13Ra2-CAR T cell variants. Right, results of the indicated IL13Ra2-CAR T cell variants from three different donors cultured on 500 ng plate-bound IL13Ra2, with lines indicating mean values. Using a paired Student's t-test: *, p = 0.0225. **B,** Surface expression of activation markers on IL13-BB ζ and IL13-28 ζ CAR T cells from a plate-bound IL13Ra2 assay as in (A) was determined by flow cytometry of the viable CD3/CD19 t^+ gated cells. Percentages of immunoreactive cells are depicted in each histogram.


Figure 5. T cells expressing the IL13-BB ζ CAR exhibit superior anti-tumor efficacy *in vivo*.

A) FfLuc+ PBT030-2 cells (1×10^5) were implanted i.c. in NSG mice, and 8 days later the indicated IL13Ra2-CAR T cell variants (1×10^5) were administered intratumorally (n = 8 per group). **B)** Quantification of tumor ffLuc flux (photons/sec) for individual mice over 41 days post tumor engraftment. Dashed lines indicate day of T cell administration. Using a two-way ANOVA test: *, p = 0.0153; ***, p = 0.0002 when compared to MOCK. **C)** Kaplan Meier survival curve (n=8 per group). Using the log rank (Mantel Cox) test: **, p = 0.0021 when compared to IL13- ζ . **D)** Graphic representation of the numbers of euthanized, relapsed, and tumor-free animals in each group at the end point of 152 days.


Figure 6. T cells expressing the IL13-28 ζ CAR are more cross-reactive to IL13R α 1. A) IFN- γ release upon overnight culture of the indicated IL13R α 2-CAR T cell variants on plate-bound IL13R α 1 as determined by ELISA. Left, a representative assay with CAR T cells from a single donor on 0-500ng plate-bound IL13R α 1, depicting mean \pm S.D. of triplicate wells. Using a two-way ANOVA test: ***, p < 0.0001 when compared to each of the other IL13R α 2-CAR T cell variants. Right, results of the indicated IL13R α 2-CAR T cell variants from three different donors cultured on 500ng plate-bound IL13R α 1, with lines indicating mean values. Using a paired Student's t-test: *, p < 0.05 when compared to MOCK. **B)** Surface expression of activation marker CD69 on IL13-BB ζ and IL13-28 ζ CAR T cells from a plate-bound IL13R α 2 assay as in (A) was determined on viable CD3/CD19 t^+ gated cells. Percentages of immunoreactive cells are depicted in each histogram. **C)** Degranulation of IL13R α 2-CAR T cell variants upon challenge with IL13R α 1-expressing A549 cells. Mean \pm S.D. of %CD107a $^+$ of CD3/CD19 t^+ gated cells from four different donors are depicted. Using a paired Student's t-test: *, p < 0.05; **, p = 0.006 when compared to MOCK. **D)** Surface expression of activation markers on IL13R α 2-CAR T cell variants after 48-hour co-culture with the indicated stimulators at a 1:4 E:T ratio. Mean \pm S.E.M. of CD3/CD19 t^+ gated cells from duplicate wells are depicted. Using an unpaired Student's t-test: *, p < 0.05; **, p < 0.01 when compared to MOCK. Data are representative of IL13R α 2-CAR T cell variants from 4 different donors. **E)** Cytotoxic activity of IL13R α 2-CAR T cell variants after 48-hour co-culture with A549 targets at a 1:4 E:T ratio. Percentages of tumor killing were based on viable tumor cells in tumor-only wells. Mean \pm S.D. of triplicate wells are depicted. Using an unpaired Student's t-test: *, p = 0.012 when compared to MOCK. Data are representative of IL13R α 2-CAR T cells from 4 different donors. **F)** Proliferation of CFSE-stained IL13R α 2-CAR T cell variants after 4 days of co-culture with A549 cells at a 1:1 E:T ratio. CD45/CD19 t^+ gated

cells were analyzed for CFSE dilution (mock-transduced were only gated on CD45+). Data are representative of IL13Ra2-CAR T cell variants from 2 different donors. **G)** A549 cells (1×10^6) were injected s.c. into the flank of NSG mice and 7 days later the indicated freshly thawed IL13Ra2-CAR T cell variants (2×10^6) were administered intratumorally. Tumor size was determined with calipers. Dashed line indicates day of T cell administration. Using a two-way ANOVA test: ***, p = 0.0009 when compared to A549 tumor only.

Figure 7. Anti-tumor efficacy of muIL13-BB ζ CAR T cells in a syngeneic mouse tumor

model. A) Mouse GBM line KLuc-IL13R α 2 cells (1×10^5) were implanted i.c. in C57BL/6 mice, and the indicated groups of mice (n = 6-8 per group) received whole body irradiation on day 5, and/or murine T cells expressing a murine IL13-BB ζ CAR (5×10^6) were administered IV. After 110 days, surviving mice (which occurred only in the irradiated + muIL13-BB ζ group) were rechallenged i.c. with parental KLuc cells (1×10^4), and survival was compared to that of naïve mice implanted i.c. with KLuc cells. **B)** Confirmation of radiation induced lymphodepletion. Enumeration of CD3+ T cells per μ L blood was performed on 4 mice per group on days 6 and 11. Means \pm S.D. are depicted. **C)** Quantification of tumor luciferase flux (photons/sec) for individual mice over 41 days post tumor engraftment. The dashed line indicates day of irradiation, the dotted line indicates day of T cell administration. Using a mixed model ANOVA test: **, p = 0.0024 when compared to untreated mice. **D)** Kaplan Meier survival curve after engraftment of KLuc-IL13R α 2 cells. Using the log rank (Mantel Cox) test: *, p = 0.0387 and **, p = 0.0048 when compared to untreated mice. **E)** Kaplan Meier survival curve after re-challenge (day 110 depicted here as day 0) with KLuc cells. Using the log rank (Mantel Cox) test: **, p = 0.0019 when compared to naive mice engrafted with KLuc cells for the first time.

